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ABSTRACT 

Gastrointestinal (GI) bleeding is very common in humans, which may lead to fatal 

consequences. GI bleeding can usually be identified using a flexible wired endoscope. In 2001, a 

newer diagnostic tool, wireless capsule endoscopy (WCE) was introduced. It is a swallow-able 

capsule-shaped device with a camera that captures thousands of color images and wirelessly sends 

those back to a data recorder. After that, the physicians analyze those images in order to identify 

any GI abnormalities. But it takes a longer screening time which may increase the danger of the 

patients in emergency cases. It is therefore necessary to use a real-time detection tool to identify 

bleeding in the GI tract.   

Each material has its own spectral ‘signature’ which shows distinct characteristics in 

specific wavelength of light [33]. Therefore, by evaluating the optical characteristics, the presence 

of blood can be detected. In the study, three main hardware designs were presented: one using a 

two-wavelength based optical sensor and others using two six-wavelength based spectral sensors 

with AS7262 and AS7263 chips respectively to determine the optical characteristics of the blood 

and non-blood samples.  

The goal of the research is to develop a machine learning model to differentiate blood 

samples (BS) and non-blood samples (NBS) by exploring their optical properties. In this 

experiment, 10 levels of crystallized bovine hemoglobin solutions were used as BS and 5 food 

colors (red, yellow, orange, tan and pink) with different concentrations totaling 25 non-blood 

samples were used as NBS. These blood and non-blood samples were also combined with pig’s 

intestine to mimic in-vivo experimental environment. The collected samples were completely 

separated into training and testing data.  
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Different spectral features are analyzed to obtain the optical information about the samples. 

Based on the performance on the selected most significant features of the spectral wavelengths, k-

nearest neighbors algorithm (k-NN) is finally chosen for the automated bleeding detection. The 

proposed k-NN classifier model has been able to distinguish the BS and NBS with an accuracy of 

91.54% using two wavelengths features and around 89% using three combined wavelengths 

features in the visible and near-infrared spectral regions. The research also indicates that it is 

possible to deploy tiny optical detectors to detect GI bleeding in a WCE system which could 

eliminate the need of time-consuming image post-processing steps.  
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CHAPTER 1 

INTRODUCTION 

1.1 Capsule Endoscopy 

Wireless capsule endoscopy (WCE) is a procedure that captures images of the digestive 

tract using a tiny wireless camera. It is a non-invasive, painless endoscopic technique that can be 

used for diagnostic and other medical experiments to screen all components of gastrointestinal 

tract. In medical terms, capsule endoscopy is a method for observing the esophagus, stomach, 

small intestine, and colon within the GI tract [18]-[19]. WCE does not require any needles, fluids 

or instruments to be inserted into the body due to its non-invasive nature. In a vitamin-sized 

capsule, the patient swallows a capsule endoscopy (CE) camera. As the capsule travels through 

the digestive tract, the camera takes thousands of images that are transmitted to a data recorder 

worn around the waist using a belt. On the other hand, traditional endoscopy includes passing 

down the throat or through the rectum through a lengthy, flexible tube fitted with a video camera. 

There are different types of endoscopy procedures such as cystoscopy, colonoscopy, anoscopy, 

gastroscopy, etc. These procedures are classified on the basis of their region of operation and 

endoscopy application [20]. Prior to the development of the WCE, the small intestine could only 

be explored by invasive procedures (intraoperative enteroscopy) or poorly effective methods, such 

as small bowel series. Traditional endoscopy can create discomfort and have some risks. Over 

sedation, cramps, persistent pain, or even tissue perforation and minor internal bleeding are some 

of the major side effects of traditional endoscopies. In addition, it is also restricted to travel within 

the entire GI tract's abdomen and duodenum [27]. On the contrary, WCE a small electronic device 

and an advanced version of traditional endoscopy which has overcome these limitations [8]. The 
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extensive accessibility of WCE, which permits better visualization of the mucosa with few 

complications, has led to a revolution in small intestinal endoscopy and a substantial boost in CE 

signs. It helps doctors see within the small intestine - an area that is not easily reached through 

traditional endoscopy procedures. In patients suspected of bleeding and other kinds of 

abnormalities such as Crohn's disease in GI, WCE imaging is a must. It can be used for patients 

with the syndrome of polyposis and small bowl disorder. It also identifies celiac disease, 

inflammation, swelling, ulcers, bleeding, tumors, lesions, pre-cancer abnormalities, and blockages 

[6].  It can be endorsed to assess the muscle tube connecting the patient’s mouth and belly 

(esophagus) to search for unusual, enlarged veins (varices).  

A group of researchers invented WCE in Baltimore in 1989 and later introduced it as a 

commercial tool by Given Imaging Inc. PillCam SB2, which is a swallow-able wireless capsule, 

has been developed by Given Imaging, which has been the only product on the market since 2002. 

Since 2005, a competitor, Olympus Corporation, has been selling “EndoCapsule” in Europe and 

received FDA approval in September 2007. From an operational point of view, the difference 

between the two products is less. A miniaturized color camera and an optical dome with four white 

light LEDs are located at one end of the PillCam capsule. The camera captures over 50,000 images 

that are wirelessly transferred to a patient-worn storage device. The video feedback is then 

uploaded to a nearby storing device, where medical staff can review and examine endoscopic 

images. WCE technology has been refined over the years to provide superior resolution, increased 

battery life, and the ability to view various parts of the GI tract. Researchers have also been 

investigating automatic techniques for detecting abnormalities since the practical use of WCE in 

2001 [9], [28]. These methods could reduce the observation time spent by the physicians on 

medical diagnosis and detection of anomalies [16].  
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1.2 Gastrointestinal Bleeding  

Any form of bleeding that occurs in a tract of human GI is called gastrointestinal bleeding 

[1]. In several cases, it may be a life-threatening issue, if not properly diagnosed and addressed in 

time. Based on abnormality symptoms, clinicians conduct various medical exams to verify the 

nature and source of bleeding [4]. Endoscopy is one of the procedures for detecting GI bleeding. 

GI bleeding can mainly be classified as overt, occult or obscure bleeding.  

1.2.1. Epidemiology of Obscure Gastrointestinal Bleeding (OGIB) 

Obscure gastrointestinal bleeding is defined as persistent or recurrent bleeding associated 

with negative results from endoscopic evaluations of the upper and lower gastrointestinal tract. 

Depending on the existence or lack of clinically obvious bleeding, OGIB may be further 

categorized into overt or occult bleeding [43]. Overt OGIB is described as noticeable GI bleeding 

(e.g. melena or hematochezia) and may be classified as active or inactive bleeding since there is 

proof of continuing bleeding. OGIB is categorized as occult when there is no proof of visible GI 

bleeding such as unexplained anemia with iron deficiency suspected of causing GI blood loss [2], 

[37]. 

A prevalent clinical presentation of gastrointestinal bleeding is about 1 case per 1,000 

people per year [38]. OGIB accounts for about 5% of all GI bleeding instances, with tiny intestines 

as the suspected cause. This has resulted in the new word "mid-gastrointestinal bleeding" being 

used to define bleeding between the papilla and the ileocecal valve [39].  

Diagnosis and management of OGIB patients are especially difficult due to the small 

intestine's long and complicated loops [40]. The symptoms present may assist to guide the inquiry 

plan. Hematemesis may show upper GI swelling, while melena may suggest bleeding from the 
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nose to the large bowel anywhere. In contrast, hematochezia (the presence of blood and blood clots 

in the feces) suggests either a reduced GI bleeding or a rapidly higher GI bleeding. 

1.2.2. Causes of Obscure Gastrointestinal Bleeding 

Obscure gastrointestinal bleeding may result from any lesion throughout the GI tract, 

although most of it occurs in the small intestine and mainly involves vascular lesions [41]. The 

rate of OGIB is around 5% among all the patients with gastrointestinal bleeding [98].  Bleeding 

etiology in the small intestine is diverse and may depend on the patient's age. Tumors, meckel's 

diverticulum, dieulafoy's lesion, crohn's disease, celiac disease, etc. are the most common cause 

of OGIB in patients younger than 40 years. On the other hand, in patients 40 years older, 

angiectasia, nonsteroidal anti-inflammatory drug, enteropathy, vascular ectasias, celiac diseases 

are the most common causes of OGIB. There are still some uncommon causes of OGIB which 

includes hemobilia, hemosuccus pancreaticus, aortoenteric fistula, long-distance running, etc. 

[99]. 

1.3 Literature Review 

In 1806, Phillip Bozzini, known as "Father of Endoscopy," demonstrated a light conductor 

(Lichtleiter) that allowed a direct view into the living body [21] - [22]. Antonin Jean Desormeaux 

first used the term 'endoscopy' in 1853 [19].  In 1954, "Fiberscope" was created as an optical unit 

that transmitted optical images along a flexible axis [23]. In 1955, a French bronchoscopy team 

broadcast on live television their endoscopic technique [24].  

Dr. V. K. Zworykin launched the first wireless machine to send GI tract data in 1957. It 

was called "Radio Pill" and consisted of a plastic capsule with a length of 1.125 inches and a 

diameter of 0.4 inches. Signals were transferred according to the pressure variation in the GI Tract 

[29].   
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Many doctors and technologists have further created the endoscopic system and now the 

entire operation is miniaturized to include small camera/s and lighting equipment, communication 

module and processor [13], [25] - [26]. Microelectronic development, condensed batteries, and 

effective techniques have enabled the entire system to be transformed into a capsule [30], [27]. In 

2001, a firm named Given Imaging launched a full capsule endoscopy with self-illumination, 

camera, battery, processor, and transmitter [9]. A data recorder device obtains all the related 

information from the capsule. A typical block diagram of WCE [31] system is shown in Fig. 1.1 

 

Figure 1.1: A typical block diagram of a wireless capsule endoscopy 

 

The capsule sends the captured images to the data recorder via suitable wireless 

communication. Then the outputs will be analyzed to diagnose the defects. Fig. 1.2 shows the full 

operating steps of a WCE system.   
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Figure 1.2: A complete system of wireless capsule endoscopy 

Given Imaging's first capsule endoscope was PillCam SB, concentrating primarily on the 

small intestine. Given Imaging had also released some updated versions of its products like 

PillCam SB 2, SB 3, ESO 2, ESO 3, Colon 2. Some other companies also introduced their products 

onto the market like Intromedic, Olympus, JinShan Science, and CapsoVison. Table 1.1 shows a 

brief comparison of the existing capsule endoscopy products.  

Table 1.1: Comparisons of capsule endoscopy available in the market  

Device 
PillCam 

SB3 

PillCam 

ESO2 

PillCam 

Colon2 
MiroCam 

Endo 

Capsule 
OMOM CapsoCam 

Company name Given Imaging Intromedic Olympus JinShan CapsoVision 

Region of 

operation 

Small 

bowel 
Esophagus Colon 

Small 

bowel 

Small 

bowel 

Small 

bowel 

Small 

bowel 

Dimension (mm) 11.4 x 26.2 11 x 26 11 x 31 10.8 x 24.5 11 x 26 13 x 27.9 11 x 31 

Mass (gm) 3.0 2.9 2.9 3.25 3.3 ≤6 4 

Battery life ≥8 hr 0.5 hr 10 hr 12 hr 12 hr 6-8 hr or longer ~15 hr 

Field of view 156o 172o 172o 170o 160o 140o ±10 360o 

Frame rate (fps) 2 or ~6 35 4 or 35 3 2 0.5 or 2 3 or 5 

Type of 

image sensor 
1 CMOS 2 CMOS 2 CMOS 1 CMOS 1 CCD 1 CMOS 4 CMOS 

Resolution 256x256 256x256 256x256 320x320 1920x1080 640x480 1920x1080 

Transmission RF RF RF HBC RF RF USB 

CCD, charge-coupled device; CMOS, complementary metal-oxide-semiconductor 

RF, radiofrequency; HBC, human body communication 
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Given Imaging was the first who came up with a solution of automated bleeding detection 

using their PillCam SB2 capsule [72]. The capsule system had an embedded software called 

suspected blood indicator (SBI) which could mark the red areas in the frames as the potentially 

blood which eventually speeded up the bleeding detection diagnosis [14]-[15]. Furthermore, to 

explore the esophagus PillCam ESO was launched, and PillCam Colon was launched to examine 

the colon. Jinshan Science and Technology had also developed the OMOM impedance-pH capsule 

wireless monitoring system which integrated both pH sensor and impedance sensor to monitor 

patient’s pH and impedance data continuously within the esophagus for diagnosing GI function 

disorders [97].  

Most of these commercial capsule endoscopy systems only provide video or image 

capturing options. Also, there does not have any automated bleeding detection system in some of 

the systems to reduce the diagnosis time. On the other hand, the systems which have bleeding 

detection capabilities are usually based on the color properties of the blood which may provide 

wrong result as the blood color could vary from light red to dark red to brown. So, it could be very 

difficult for these commercial endoscopy devices to separate blood from non-blood samples since 

these devices are not using any optical sensors to observe the optical characteristics of blood. 

Therefore, in this research, an optical sensor-based blood detection system has been proposed 

using machine learning techniques to solve such problems.  

1.4 Structure of a Typical Capsule Endoscopy System 

The WCE system has three different parts - a) a capsule with a camera, b) a datalogger for 

receiving the capsule’s data wirelessly, and c) a computer software, to download and analyze 

recording information. Accurate inspection of a WCE readings is time-consuming and requires 

concentrated, undivided attention, as anomalies can occur within the range of a very few frames. 
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On average, it takes approximately 1-2 hours to visualize all the images. However, some WCE 

device manufacturers have made an effort to develop computer aided software that could reduce 

the time required to analyze the WCE results. The three main components of a WCE system are 

shown in Fig 1.3 

                     

(a)                                                                              (b) 

 

(c) 

Figure 1.3: Wireless capsule endoscopy components a) capsule, b) datalogger, c) computer 

software 

The capsule generally has a modular structure, which consists of four layers- i) imaging 

sensor layer, ii) processing unit layer, iii) RF transceiver layer, and iv) power management layer. 

The overall block diagram of the capsule is shown in Fig. 1.3 (a). The modular structure of the 

capsule does not require separate modules and makes it more versatile for practical usage. The 

whole system could be used or modified for different purposes depending on its application. The 

capsule’s size and power consumption should be in a limited range. Therefore, components were 

chosen considering performance, power requirement and packaging size during the designing 

process. 
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The data logger is capable of receiving the capsule’s signal and then transmitting the data to 

a computer. The data logger usually has two modes of operation. First, when a data logger is 

plugged into a computer via USB port, it enters into the “Software” mode operation. In this mode, 

the data logger receives signals from the capsule and transmits it to the computer in real-time. On 

the other hand, when the data logger is powered up by an external power source without having 

any connection to the computer, the device enters into the “Standalone” mode. In standalone mode, 

the data logger still receives data from the capsule but stores them into the built-in memory like 

EEPROM or SD card. By connecting the data logger to the computer, the WCE software could 

read the stored image or sensor data.  

The workstation software depends heavily on the WCE scheme. When administered to a 

human body, a typical endoscopy capsule operates for about 8 to 10 hours and produces around 

50,000 frames. A doctor still has to sit before the computer to determine any faded or unreliable 

frame. While there could be some features that could assist the doctor to automate abnormality 

detection, the current systems are still inefficient and unreliable in providing such features. The 

information recorded on the data logger will be obtained at a workstation during post-processing, 

where the software is configured to evaluate the information recorded. The respective 

manufacturer of the commercial WCE system provides the analyzing software. Different WCE 

manufacturers have developed software with multiple features which are frequently maintained 

and updated. For example, PillCam develops and provides RAPID reader software which includes 

some advanced functionalities that help physicians with automatic bleeding detection. 

1.5 Clinical Need and Target Population 

Since bleeding is a common symptom for many GI diseases, it has major clinical 

importance for the diagnosis of the relevant diseases. Capsule endoscopy is usually performed only 
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after endoscopy or colonoscopy does not disclose the origin of bleeding to explore the blood loss. 

Conventional methods, like gastroscopy and colonoscopy, face problems and cause a lot of pain 

when examining the small intestine. On the contrary, because of WCE’s non-invasive nature, it 

primarily is gaining popularity. It is safe, painless, free from infection and does not require 

sedation. It has a higher diagnostic efficiency than many other methods for assessing intestinal 

lumen and is capable of finding lesions. The main problem of WCE is the long period of medically-

assessed bleeding detection steps in the entire GI tract. In addition, smaller bleeding regions and 

bleeding within a few frames sometimes may not be detected with naked eyes. Therefore, several 

researchers have given a lot of attentions to the automation of the bleeding detection system. 

1.6 Thesis Objective 

The goal of the thesis is to develop a machine learning classifier model that can be used to 

differentiate GI blood from other non-blood substances. To achieve the goal, the following 

research objectives are set:  

a) To explore the spectrum of wavelengths for separating the blood and non-blood 

samples. These experiments could be carried out using two 6-channel spectral 

sensors- one in the visible spectral region (AS7262) and other in the infrared 

spectral region (AS7263). 

b) To develop a machine learning classifier model for predicting the bleeding, from 

non-blood and blood samples by considering specified spectral wavelengths as the 

features for the model. 

c) To compare the prediction results and overall accuracy of two different blood 

detection methods which predict the unknown samples based on two visible 
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spectral wavelengths, and three most significant spectral wavelengths from the 

combined visible and near-infrared light region respectively. 

1.7 Thesis Organization  

The thesis is structured in eight chapters. A short description of each of the chapters and 

sections are given below: 

Chapter 1: Introduction presents the overview of the WCE system, clinical needs of 

wireless endoscopy system, the motivation of the thesis, thesis organization. 

Chapter 2: The chapter discusses the related literature works on detecting bleeding in the 

GI tract in the WCE systems. It also provides the overview of the systems which are being used in 

the commercial capsule endoscopy systems as well. 

Chapter 3: The chapter represents the research motivation of the thesis. It also discusses 

the sample collections procedures which are used for validating the proposed methods. In order to 

obtain the best results from the experiment, all samples are prepared in an identical manner as far 

as possible. All the unforeseen deviations were also noted at the time of preparing the samples to 

discuss unforeseen outcomes. 

Chapter 4: Proposed methods are discussed in the chapter. The basic working procedures 

of the developed sensors to detect bleeding are discussed. The hardware architectures of the 

developed sensors are clearly explained. The design criteria of the sensors, architectural design, 

and the results are presented in this chapter as well. The limitations of the sensors and expected 

results are also discussed in the chapter. 

Chapter 5: Methods of selecting the most significant features for the classifier models are 

discussed in this chapter 
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Chapter 6: Development of the machine learning models and algorithms related to the pre-

processing of the data before feeding into the machine learning model are discussed in the chapter. 

The complexity analysis, performance of the model, and model’s accuracy are also discussed. 

Chapter 7: The chapter discusses the comparative analysis of all the methods by 

incorporating the comparison between the existing methods.  

Chapter 8: The chapter presents the conclusions regarding this research and also points out 

some recommendations for future directions related to the study.   
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CHAPTER 2  

OVERVIEW OF BLEEDING DETECTION IN WCE 

2.1 Introduction  

Wireless capsule endoscopic recordings are now being inspected by using advance digital 

technologies, including analysis of images by using computers and other visual methods to detect 

GI bleeding. As this technique involves capturing different images in the gastrointestinal tract 

especially in the region of the small intestine, it has minimized the time of the doctors to interpret 

the traditional video recordings.  

Capsule endoscopy is a non-invasive method commonly used to identify unknown internal 

GI bleeding which is not discovered by X-rays or ultrasounds [100]. The standardized method to 

investigate the existence of the disease involves capturing approximately 50,000 images of the GI 

tract by using camera sensors incorporated inside an endoscopic capsule [7],[10]-13]. The capsule 

is usually swallowed by the patient and excreted out through bowel movement. It usually takes 

about 1 to 2 hours to analyze the internal imaging of the GI tract by a physician [42]. The main 

task is to read and interpret those images to determine the existence and cause of bleeding. This 

method is unable to detect disease at the initial stage as it can miss smaller areas of GI bleeding or 

can have blurred images of the bleeding areas. The PillCam which is used as a suspected blood 

indicator had also shown an 80% inaccuracy in detecting and visualizing sensitive and smaller 

areas of bleeding within the gastrointestinal tract [71]. The main problem is that there is no 

confined area of bleeding and erosion of the lining of GI. For this reason, it was difficult for SBI 

PillCam to detect normal bleeding at an early stage of the disease. The color of blood even 

misinterprets the findings because the physicians might get confused between light or dark red to 
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brownish colored blood with interstitial fluid. The color of blood changes in different areas and it 

is also affected by the position of camera within the capsule [69]. 

2.2 Methods and Procedures 

Recently many researches have been carried out about capsule endoscopic techniques. 

Various methods of identification of causes of the unknown GI tract bleeding were proposed by 

the researchers. Based on the research methodologies, the investigated research studies can be 

classified as: 

• Signal processing methods 

• Images and color processing techniques 

• Use of artificial intelligence  

All methodologies involving the processing of data in the frequency domain are included 

in the category of signal processing. Signal processing techniques include the Fourier transforming 

technique, wavelength transforming technique and band-bass signal transformation technique. 

Color and image processing techniques involve the transformation of color, segmentation etc. 

However, these methods are also called computer-vision technologies. On the other hand, the use 

of artificial intelligence includes neural networking and clustering of digital images. 

Nowadays commonly used techniques for bleeding detection are based on pixel, image and 

patch. Statistical analysis and color resemblances are the main features of color and image 

processing techniques for the identification of GI bleeding [47]. This technique is less time 

consuming but unreliable in terms of the accuracy of results. On the contrary, the pixel-based 

technique has higher accuracy but it is cost-effective due to the use of neural networking and color 

properties [50] - [51]. However, the patch technique has better durability and speed. In the patch 

technique, images are split into patches or boxes by binary division method. Then from the patches, 
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those with the most cleared images are selected to identify the blood and non-blood areas [52] - 

[53]. 

 The pattern and indications of pixel and image-based techniques have been described by 

many researchers in their studies. Statistical readings, colored models and histograms are image-

based techniques. The ratio of range to color is based on pixel measurements.  

There are numerous alternative methods discovered by the scientists to detect GI bleeding, 

their specificity and accuracy have also been assessed in many studies. The assessment of an 

individual method to obtain highly accurate results is discussed in this study. The advantages and 

limitations of different methods are also described. It is not a comparative study because each 

technique has a different method and every technique has different indications. 

2.2.1. Blood Detection in WCE using Expectation-Maximization Clustering 

Recently a new suspected blood indicator (SBI) system proposed by M2A software has 

shown better results but it cannot replace manual human methods in terms of precision at an early 

stage. It has been reported that the sensitivity and specificity of the Suspected blood indicator 

system is approximately 72 and 85 percent. To encounter this problem for the definitive diagnosis 

of GI bleeding, the expectation-maximization (EM) clustering method of statistics and Bayesian 

information criterion (BIC) [93] was suggested. The major drawback of EM cluster analysis is, it 

is insufficient information and inefficiency in terms of comparative studies. 

 However, the EM analysis is effective in the estimation of calculating the extent of 

bleeding to a maximum limit even if incomplete or obscure information is given. The maximum 

likelihood (ML) calculates the parameters with the given information. There are two steps in EM 

statistical analysis- E step and M step. In the expectation or E step, the missed information is 

estimated by using model parameters and observed information. In the M step, the probability data 
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is calculated by using the assumed missed information. The missed data calculated through the E 

step is used in the M step instead of using real information. 

 The main purpose of this method is to differentiate between colored pixels of blood and 

non-blood areas. As dark pixels have zero chrominance so it is quite difficult to distinguish 

between dark blood pixels and dark non-blood pixels. Some areas of bleeding are blue and some 

areas of dark blood pixels are red. That is why the same dark pixels are clustered together to have 

a comparative probability model for pixels of blood and pixels of non-blood areas. 

 The EM system is fed with the non-bleeding and bleeding pixels to identify accurately the 

bloody areas within the GI tract. There are also subcategories of bleeding pixels, such as dark red 

and bluish-red, that are to be distinguished. The Gaussian mixture density parameter categorizes 

each subcategory. Following are the steps to detect GI bleeding:  

1. Removal of dark pixels of blood 

2. Selection of pixels for blood detection  

3. Tiny areas of blood are filtered from the regions to discriminate from the actual 

bleeding areas. 

2.2.2. Color Range Ratio Technique Based on Pixels 

A color descriptor technique based on the color spectrum of RGB pixel values was 

discussed in [60], which calculated the color range ratio for each pixel values. The main focus of 

the study was to separate the bleeding pixel values from the pixel values of non-bleeding areas. 

Blood color purity was used as an indicator in the pixel-based method. However, sometimes it 

failed to detect areas of bleeding. For this reason, the pixel values were explored to set a threshold 

level to detect GI bleeding. There were two categories in the color range ratio technique- one for 

accurate detection in bleeding areas and another for areas adjacent to bleeding. The research 
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suggested the RGB values for bleeding pixels to be in a certain range, such as - [(R=177 & R= 

215) & (G=99 & G= 56) & (B= 52 & B= 20)]. 

2.2.3. Endoscopic Images Classification Based on Texture Patterns 

Different methods of endoscopic images have been recognized by scientists to identify 

malignant areas such as chronic ulcers and E-coli [96]. For the extraction of texture features, a 

local binary pattern (LBP) is used and for the evaluation of the distribution of local binary pattern, 

the ratio of G- statistical log-likelihood is used, which tests the goodness of fit of observed 

frequencies to their expected frequencies [44]. The LBP system has been proven as a much 

accurate measure of textured images as it has developed many extensions for the sake of precision 

and sensitivity of complex cases. It is now known as a very helpful tool in many types of research. 

With the combination of image intensity and a standardized LBP system, more precise and fine 

images and results can be obtained. Initially, the LBP system does not incorporate color contrast 

intensity and image textures. A modified version of Kullback’s criterion is G- statistics [96], which 

is used to indicate the probability index of samples coming from the same areas. The lower value 

of G-statistics, the more likelihood of its occurrence is present. self-organization map (SOM) is 

used for further classification. The greatest advantage of SOM is its uncontrolled nature, which is 

quite beneficial for the complex endoscopic images. 

2.2.4. Methods Based on Deep Learning 

Computer-aided decision support scheme (CADSS) systems in capsule endoscopy are 

being used in many types of research from the early years of the 2000 century [17]. CADSS is 

used to achieve higher precision values to diagnose a disease at an early stage. However, 

amendments in this technique have been made to improve image quality and deep extraction of 

data. The proportion rate of standard endoscopic technique and capsule endoscopy with CADSS 

is quite similar [17]. Still, there are many advantages of computer-aided technologies such as 
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higher efficacy, reduction of time to diagnose disorders at early stages, fine video quality, ability 

to detect minor hemorrhages [61]. Specific color and texture contrast-based techniques of CADSS 

systems are quite helpful in hemorrhagic and malignant lesions detection [49], [62] - [64]. Support 

vector machines (SVM) [62] - [64], binary classifiers [65], and neural networks [49] are also 

capable of classifying target classes in endoscopic images. 

Although earlier techniques based on machine learning with invariant characteristics have 

shown concordant results for the identification of various lesions, those still have a very consistent 

ratio of design issues related to the lack of proper training and testing datasets. To overcome such 

problems, a few techniques related to deep learning-based capsule endoscopy have been suggested 

in table 2.1 [79] - [86].  

Zou et al. had proposed a convolutional neural network (CNN) based technique to solve 

issues related to the digestive organ classification in capsule endoscopy [79]. In this concern, three 

possible classes of these issues include colon, stomach and small intestine, had been analyzed. In 

the comparison with Scale-invariant feature transform (SIFT) and SVM methods, the proposed 

techniques had shown a divine precision of almost 95.52% in 15,000 endoscopic images of 25 

patients. In another technique by Segui et al. [80] for the classification of motility occurrences 

such as wrinkles, bubbles, transparent blob, wall and turbidity, the scored percentage of precision 

was 96.01 for 100K training and 29K testing images. On the contrary, the results of gained 

precisions were only around 82 to 83 percent in case of handcraft characteristics techniques such 

as SIFT [68], gist [87]. 
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Table 2.1: State-of-the-Art deep learning-based methods for capsule endoscopy [92] 

Article 

Cited 
Class 

No. of 

training/testing 

images 

No. of 

patients or 

videos 

Features Accuracy Specificity 

[79] Localizationa 60K/15K 25 patients Alexnet 95.5% N/A 

[80] 
Scene 

classificationb 
100K/20K 50 videos CNN 96.0% N/A 

[81] Bleeding 8.2K/1.8K N/A Alexnet 99.9% 99.2%/ (N/A) 

[82] Haemorrhage 9,672/2,418 N/A 

LeNet 

AlexNet 

GoogLeNet 

VGG-Net 

100% 98.7%/(N/A) 

[84] Polyp 4,000 /(N/A) 35 patients SSAE 98.0% N/A 

[86] 
Various 

lesionsc 
465/233 

1,063 

volunteers 
CNN 96.3% 90.7%/88.2% 

[85] Hookworm 400K/40K 11 patients CNN 88.5% 84.6%/88.6% 

[83] Angiectasia 600/600 200 videos CNN N/A 100%/96% 

CNN, convolutional neural networks; SSAE, stacked sparse autoencoder. 

LeNet, AlexNet, GoogLeNet, VGG-net are CNN architectures 

a) Localization, localization of stomach, small intestine, colon. 

b) Scene classification, scene classification of bubble, wrinkle, turbid, wall, clear. 

c) Various lesions, gastritis, cancer, bleeding, ulcer 

In order to detect bleeding and haemorrhaging of positive images, AlexNet based deep 

learning-based technique had shown the best results with the precision percentage of 99.9% in 

2,850 positive images [81]. Another technique had also shown a 100% precision in 390 positive 

images [82] to detect haemorrhaging or bleeding. GoogleNet that is the largest performance 

network and LeNet that is the smallest performance network has an undoubted performance 

discrepancy among the different deep learning networks up to 100% and 97.44% respectively. A 

CNN based network to detect GI angiectasia with semi segmentation algorithm was suggested in 

[83], which obtained a specificity of 96% and a sensitivity of 100%.  

Although, the latest deep learning techniques have proved to be efficient in gaining result 

in some characteristics but in some instances, the hand-crafted characteristics have shown a better 

accuracy in results. In the case of medical modality classification, both the LBP [89] and Harris 
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corner [66] with SIFT features have provided more efficient classification results as compared to 

the CNN based technique with an inadequate training dataset [88].  

One of the major drawbacks of deep learning methods is the need for a very huge dataset. 

In addition to the dataset problem, the deep learning-based technique has another issue of image 

overfitting. In case of small datasets, the problem of overfitting always doubles its problems. 

However, there are certain measures available in deep learning techniques to eliminate the problem 

of overfitting [90] - [91] which might make a deep learning-based approach more practical.   
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CHAPTER 3  

RESEARCH MOTIVATION AND SAMPLE PREPARATION 

3.1 Research Motivation 

Bleeding is a common sign of many gastrointestinal diseases, and therefore the monitoring 

of bleeding is of great medical significance in the diagnosis of relevant diseases. A supporting 

diagnostic approach can be very helpful in this scenario. But it is a big challenge in the field of 

capsules endoscopy to locate and diagnose obscure GI bleeding. Most of the research in WCE 

images on automatic blood detection is primarily image-based or pixel-based which has a 

significantly higher false alarm rate since the real blood does not show a consistent pattern or 

distribution in all types of situations. Therefore, several other factors are directly involved in the 

detection of bleeding. The color properties of blood, for instance, are not always the same at 

various levels of oxygenation and may appear to be bright, dark or even black [67]. Blood can 

even be mixed with secreted fluids or digested food and may differ from normal blood [55]. 

Because of illumination light and camera angle, the images taken by the WCE camera may also 

appear completely different for blood [54]. To overcome this situation, the research proposes a 

sensor-based solution to detect gastrointestinal bleeding based on blood's optical properties with a 

higher true-positive (TP) rate while keeping the false-positive (FP) rate reasonably low. 

3.2 Theory of Operation 

Blood is a fluid which provides nutrients and oxygen in bodily cells and carries metabolic 

waste products from the cells. It is composed of red blood cells (RBC), plasma and white blood 

cells (WBC) of 45%, 54.3% and 0.7% [7]. RBC is also known as an erythrocyte containing 

hemoglobin, a protein containing oxygen within the RBC. Blood is red because of hemoglobin. 



 

22 

 

The blood color also depends on the level of blood oxygen saturation. The oxygenated blood is 

bright red whereas the deoxygenated blood is dark red [7] - [ 8]. The saturation of oxygen thus 

plays an important role in blood spectrophotometry. Therefore, the percentage of oxygen 

saturation depends on optical properties such as reflection, dispersion, transmission. The 

erythrocyte is discoid and has very strong light dispersion and absorption characteristics. The 

presence of RBC dominates the optical properties of the blood, and that is why these properties 

are also entirely dependent on blood dilution [9]. 

The spectrophotometer is a device that measures the intensity of an object's emitted or 

reflected light, transmitted light through any substance and few other optical properties [10]. There 

are few essential parts of this device, such as a light source, a filter that only allows a specific 

portion of the light spectrum, and a detector (photo-resistor, photodiode or phototransistor), which 

measures the intensity of reflected or transmitted light. Fig. 3.1 illustrates how spectrophotometers 

measure the intensity of the light [11]. The quantity of the reflected light from the sample’s surface 

is measured as a percentage of the incident light. It is ideally 100 percent for a white surface and 

ideally 0 percent for each wavelength for a black surface. Substances other than black or white 

surface, however, have a different amount of transmitted light percentage at different wavelengths. 

 

Figure 3.1: Basic working principle of a spectrophotometer [95] 
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In the interaction between blood and light, the internal structure of hemoglobin plays a 

significant role due to its reddish nature in the blood. Different portions of the light are transmitted, 

absorbed, scattered or reflected when the spectrophotometer emits white light on blood samples. 

The reflection can then be measured against the wavelengths varying from 400nm to 700nm with 

an increase of 10nm, such as 400nm, 410nm, 420nm, ...,680nm, 690nm, 700nm. 

Due to the specific optical characteristics, all other substances will differ from the blood, 

and the amount of reflection will, therefore, be different. The reflected spectrum pattern is mainly 

used to distinguish between blood samples and non-blood samples. Instead of using the whole 

spectrum, however, it could be easier to optimize the decision-making parameters by using a few 

wavelengths of the spectrum. The initial objective was to find the optimum wavelength through 

this experiment with a spectrophotometer [35]. 

3.3 Related Works 

In [35], two distinct data sets were used to explore the spectrum of light that could be used 

to distinguish blood samples from non-blood samples using a spectrophotometer. The research 

suggests that the proportion of the amount of reflected light (ARL) at two distinct wavelengths 

could be used to differentiate the samples. The ARL was also suggested as a parameter to separate 

the samples according to some of the past studies [3] – [5]. 

The ratio of ARL at two wavelengths (λa, λb), for any sample n, could be expressed as 

Rn (λa, λb) = 
ARL at λa for sample n

ARL at  λb for sample n
    (3.1)                

 



 

24 

 

 

Figure 3.2: The ratio of ARL at two different wavelengths for separating blood from non-

blood samples [35] 

Fig. 3.2 shows the maximum separation of two distinct wavelength ranges (480nm, 530nm) 

and (700nm, 630nm). BS and NBS can easily be separated based on the vertical axis. The 

wavelengths (λa, λb) of the Eqn. 3.1 are illustrated using the two horizontal axes. A cut-off point 

(CP) of the ratio was determined to distinguish BS from the NBS. By subtracting the cut-off point, 

the normalized ratio is calculated from the ARL ratio. A sample may be considered as a blood 

sample or as a non-blood sample based on the following conditions- 

Blood samples: 𝑅𝐵𝑆𝑖
 > = CP                                                  (3.2) 

Non-blood samples: 𝑅𝑁𝐵𝑆𝑖
 < CP                                               (3.3) 

Based on two different datasets, the research in [35] also suggests that, there is a better 

separation using the ARL value of (480nm, 530 nm) than the (700nm, 630nm). The cut-off point 

is 1.2093 for the (700nm, 630nm) range, which implies that if the proportion is higher than or equal 

to 1.2093, the sample is very probable to be a blood sample; otherwise, the sample would be a non-
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blood sample. Table 3.1 demonstrates the cut-off points values and accuracy for the two different 

pairs of wavelengths.   

Table 3.1: The value of the separating point and accuracy at different pairs of wavelengths 

Pair of wavelengths ARL CP Value Accuracy 

(700nm, 630nm) 1.2093 84% 

(480nm, 530nm) 0.9189 98.48% 

According to work in [35], two pairs of wavelengths have been suggested which can be 

used to detect bleeding in the GI tract. In this thesis, these wavelengths will be analyzed with the 

developed hardware design. In order to develop a proper working bleeding detection sensor, two 

other spectral sensors (AS2762 and AS7263) will also be tested to determine bleeding accurately 

and reliably in the GI tract.  

3.4 Sample Preparation  

For an endoscopic operation, the patient has to follow some periodic activities [2]. The 

patient will avoid eating at least 8 to 10 hours prior to endoscopy in order to obtain clear images 

of the GI tract. Sometimes the physician even asks for a laxative to flush out the small intestine 

which can improve photos. Therefore, in a clearer perspective, saliva, mucus, and few other 

digestive enzymes are the only possible accessible substances that could be discovered in an 

ordinary GI tract [70]. Blood or similar substances will be present in the event of an abnormality. 

The aim of this research is to use separate wavelengths of LEDs to distinguish blood from other 

substances. Three separate sensors were initially used in this study. Two different datasets 

containing blood samples and non-blood samples were used for each sensor. The blood samples 

are mainly solutions of bovine hemoglobin. As the patient has to fast for around 8-10 hours before 

the endoscopy, there is less chance of having other substances rather than blood or some food 
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colors which could still be in the GI tract for that long of fasting period of the patient. So, in this 

research only food colors were considered as the non-blood samples.  

 

Figure 3.3: Few of the blood solutions with different dilutions 

  

All solutions are stored in test tubes. The sample tube dimensions were 40ml. Samples of 

bovine hemoglobin were produced from crystallized hemoglobin. Fig. 3.3 shows some of the blood 

samples. Many of the reagents used in research are solutions that need to be bought or prepared. 

The exact concentration value is very important in this research. Therefore, the solution 

concentration and its preparation method must be as accurate as possible. This chapter discusses 

useful data on the fundamental ideas and guidelines for preparing blood samples using Sigma 

H2625 hemoglobin.  

3.4.1. Preparation of Bovine Hemoglobin Blood Samples  

Hemoglobin (Hb) is a complex protein that contains mainly iron molecule. The ordinary 

erythrocyte concentration of Hb is 34%. It is the most significant respiratory protein in vertebrates 

because of its ability to transport oxygen from the lungs to body tissues. It also helps to expel 

carbon dioxide from the body. The molecule of hemoglobin iron also plays an important role in 
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assisting red blood cells to gain their disc-like shape, helping them move through blood vessels 

readily.  

Sigma H2625 is the crystallized bovine hemoglobin used in the preparation of samples for 

hemoglobin. Hemoglobin is generally expressed in grams per blood deciliter (g/dL). A lower blood 

hemoglobin level is directly associated with a low oxygen level, while a higher hemoglobin level 

is associated with a higher oxygen level [46]. Biological and biochemical researches rely entirely 

on the ability to detect a range of substances concentrations. In this research, understanding the 

concentration of hemoglobin in the blood is very important. So, it is required to reliably and 

accurately calculate how much hemoglobin crystal solid in a certain volume of distilled water 

would need to be dissolved to prepare the proper amount in a volume of 1 ml of blood. 

The amount of a substance is often measured by how much it weighs – i.e. in g or mg or 

kg etc. The concentration is the amount divided by the volume it is dissolved in.  

concentration = 
𝑎𝑚𝑜𝑢𝑛𝑡

𝑣𝑜𝑙𝑢𝑚𝑒
                                            (3.4) 

For example, if 0.9g of sodium chloride is dissolved in 100mL of water, it is referred to as 

0.9% w/v since it is 0.9g weight divided by 100mL volume and “w/v” stands for weight per 

volume.” The concentration of this solution could be described as 0.009g/mL or 9mg/mL. 

Alternatively, if 0.9g is dissolved in 100mL, then 9g would be dissolved in 1000ml (=1L) and the 

concentration could also be written as “9g/L”  

In this research, the reagents are mixed as percent solutions since dry reagents of 

hemoglobin are used. When preparing solutions from dry reagents, the same mass of any reagent 

is used to make a given percent concentration although the molar concentrations would be 

different. In general, 

Weight percent (w/v) = 
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑒 (𝑔)

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑚𝑙) 
× 100                          (3.5) 
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So, for this research, 100ml of 10% solution of dry hemoglobin reagent would contain 10g 

dry hemoglobin crystal in a final volume of 100ml.  

Ten blood samples were prepared in this research work. In order to do that, firstly the 

weight of an empty test tube was assessed with a scientific measuring scale. After that, the weight 

of the test tube along with the bovine hemoglobin crystal was again measured. The difference was 

the mass of hemoglobin between these two measurements. Finally, 100mL of water was poured 

into the test tube. Then the test tube was correctly shut and shaken. Table 3.2 shows the list of 

blood samples prepared for the experiment. 

Table 3.2: List of blood samples 

Sample  

Number  

Sample   

Description  

1 Hemoglobin -1 %  

2  Hemoglobin -2 %  

3  Hemoglobin -5 %  

4  Hemoglobin -8 %  

5  Hemoglobin -10 %  

6  Hemoglobin -13 %  

7  Hemoglobin -15 %  

8  Hemoglobin -17 %  

9  Hemoglobin -20 %  

10  Hemoglobin -40 %  

3.4.2. Preparation of Non-blood Samples  

Different kinds of food colors were used as non-blood samples in this research. The 

samples contain red, tan, yellow, pink and orange food colors with different levels of 

concentrations. For each of the food colors, 5 different levels of concentration were considered.  
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Figure 3.4: Artificial food colors as non-blood samples for the experiment 

The non-blood samples of twenty-five food colors were shown in Fig. 3.4. In Table 3.3, 

the full list of NBS samples were also provided. 

Table 3.3: List of non-blood samples 

Sample 

Number  

Food Color Sample   

Description  

1-5 Red (5 different concentrations) 

6-10 Tan (5 different concentrations) 

11-15 Yellow (5 different concentrations) 

16-20 Pink (5 different concentrations)  

21-25 Orange (5 different concentrations) 

Total 25 Non-blood samples 
  

3.4.3. Preparation of Blood and Non-blood Samples with Pig’s Intestine 

Since testing on human requires additional permission and authorization, it is wise to use 

other animal which has similar gastrointestinal tract and similar digestive pattern like humans. In 

this case, pig’s intestine can be used for experimental purposes as it is an omnivorous 

representative with metabolically similar gastrointestinal functions close to humans [59]. Though 

the pigs have narrower intestinal lumens, sparse transverse folds and wider but less prominent villi 

compared to humans, it can be used for this research due to its omnivorous characteristics. For this 
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research, tissue from pig's small intestine was used in vitro to provide a practical test environment 

of the lumen wall which could also be considered as a viable resource in the development of the 

sensor.  

In order to prepare the samples using pig’s intestine, the full intestine was cut into several 

pieces. 

           

Figure 3.5: Some of the pieces of the whole pig’s intestine for the experiment 

The blood and non-blood samples were mixed carefully with the pig’s intestine to mimic the 

real test environment. Fig 3.6 (a) shows the piece of intestine with blood sample and Fig 3.6 (b) 

shows the piece of intestine with non-blood food color sample.  

                

(a)                                                                     (b) 

Figure 3.6: Sample preparation a) pig’s intestine mixed with blood sample, b) pig’s intestine 

mixed with non-blood (tan color) sample 
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After including the pig’s intestine, the blood and non-blood samples were 22 and 32 

respectively. Table 3.4 and Table 3.5 describes the blood and non-blood samples    

Table 3.4: List of blood samples with pig’s intestine 

Sample  

Number  

Sample   

Description  

1 Hemoglobin ((Hb)-1 %  

2  Hemoglobin -2 %  

3  Hemoglobin - 5 %  

4  Hemoglobin - 8 %  

5  Hemoglobin -10 %  

6  Hemoglobin - 13 %  

7  Hemoglobin - 15 %  

8  Hemoglobin - 17 %  

9  Hemoglobin - 20 %  

10  Hemoglobin - 40 %  

11 Intestine with Hb - 1 % 

12 Intestine with Hb - 2 % 

13 Intestine with Hb - 5 % 

14 Intestine with Hb - 8 % 

15 Intestine with Hb - 10 % 

16 Intestine with Hb - 13 % 

17 Intestine with Hb - 15% 

18 Intestine with Hb - 17 % 

19 Intestine with Hb - 20 % 

20 Intestine with Hb - 40 % 

21 Intestine with Hb - random % 

22 Intestine with Hb - random % 

Total 22 Blood Samples 

 

 

 

 

 

 



 

32 

 

Table 3.5: List of non-blood samples with pig’s intestine 

Sample 

Number 

Sample Description 

1-5  Red (1-5 levels concentration) color 

6-10  Tan (1-5 levels concentration) color 

11-15  Yellow (1-5 levels concentration) 

color 

16-20  Pink (1-5 levels concentration) color  

21-25  Orange (1-5 levels concentration) 

color 

26 Intestine Only 

27 Intestine with 4th level red color 

28 Intestine with 5th level red color 

27 Intestine with 4th level tan color 

28 Intestine with 3rd level tan color 

27 Intestine with 3rd level pink color 

28 Intestine with 4th level yellow color 

Total 32 Non-blood samples 

 *higher level means higher concentration 

3.5 Justification of Sample Selection  

Blood specimens from bovine hemoglobin solutions were prepared for the dataset. There 

was also a broad variation in the range of blood concentration from very lower to higher blood 

concentrations. The range of blood sample concentrations were varied from 1% to 40% solutions. 

The broad range of solutions were taken into consideration to determine where the developed 

sensor provides better results or fails. Food colors were considered as non-blood samples primarily 

because those could somehow mimic the gastrointestinal wall color and blood color. In addition, 

some of the past researches used similar NBS for their study [74], [77] - [78].  

Although the sensor is designed to identify the bleeding of the human intestine, the blood 

samples used in this research were produced of bovine hemoglobin. The reasons behind not using 

human blood samples are primarily owing to the absence of equipment in the workstation and the 
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restricted authorization that only enables the animal blood samples to be handed over. Since there 

are many similarities of hemoglobin and blood substances between human and other mammals, 

the results of the assessment using animal blood samples are therefore anticipated to be comparable 

to those of human blood [32]. 
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CHAPTER 4  

PROPOSED METHODS 

The following chapter provides an overview of the proposed bleeding detection methods and then 

provides data preparation, data collection, working steps information of the proposed 

methodologies. Data preparation consists of steps to prepare blood and non-blood samples. Sigma 

H2625 crystallized bovine hemoglobin was used for the blood samples. Different artificial food 

colors liquid solutions are used to prepare the non-blood samples. The collection of data involves 

measuring the reflected light values for various wavelengths of light transmitted from the optical 

sensors. The working procedure describes the system for three different methods developed using 

microcontroller and Raspberry Pi. The processing unit for the first method was developed using 

an 8-bit RISC microcontroller, whereas in the last two methods Raspberry Pi was used as the 

processing unit. 

4.1 Method 1: Optical LED Sensor based on Two Specific Wavelengths 

The working principle of the sensor for blood presence detection is based on blood optical 

properties. According to the research in [35], the two sets of wavelengths were selected. The first 

set includes LEDs of 700nm and 625nm, and the second set includes LEDs of 475nm and 530nm. 

The main idea for gastrointestinal bleeding recognition in real-time includes the development of 

an optical sensor that can be swallowed to detect effective bleeding in the esophagus and stomach 

or attaching it close to the gastrointestinal tract wall, close to a prospective source of bleeding for 

continuous monitoring. The system is battery-powered and includes two specific wavelength 

LEDs, an AVR microcontroller, photodiode and related peripheral circuits for blood presence 
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detection. Fig. 4.1 shows the functional block diagram of the optical sensor-based bleeding 

detection system. 

 

Figure 4.1: Block diagram of the blood detection sensor system 

4.1.1. Photodetector  

A photodetector is mainly a light or electromagnetic radiation sensor [45]. The sensor's p-

n junction converts light photons into energy. Some photodetector examples are photodiodes and 

phototransistors. It is a light-weight sensor that transforms light energy into electric power or 

current voltage proportionate to the incident optical power. 

In the research, photodiodes were used as photosensors. A photodiode is a form of p-n 

junction semi-conductive device. In order to produce an electric current, the photodiode accepts 

light energy as input. It is sometimes named as a light detector or photosensor as well. It works in 

reverse bias, i.e. the p–side of the photodiode is linked to the negative battery terminal (or energy 

supply) and n–side of the positive battery terminal. Silicon, Germanium, Indium Gallium Arsenide 

Phosphide and Indium Gallium Arsenide are typical photodiode materials. Internally, there are 

optical filters constructed into a photodiode and a surface area. The response time of a photodiode 
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usually gets slower with the increase of its surface area. As shown in Fig 4.2 below, it has two 

terminals. The smaller terminal acts as a cathode whereas the longer terminal as anode. 

 
 

Figure 4.2: A photodiode 

In some spectral region (range of optical wavelengths), the photodetector has to be adaptive 

according to application. In some situations, the responsivity needs to be continuous or at least 

specified within a certain range of wavelengths. In certain wavelength ranges, it is also necessary 

to have zero response. A photodiode that is sensitive only to visible wavelengths of light and 

provides zero response to the other wavelengths of light was used in the experiment. 

4.1.2. Working Principle and Developed Sensor System of Method 1 

The main principle of the method is based on the amount of reflected light theory. When 

light is reflected by the presence of blood cells in the optical path in a container, it provides the 

reflected values for different concentrations of blood. The sensitivity and accuracy depend on the 

sensitivity and stability of the intensity measurement system and on the fluctuations of the incident 

light respectively. The purpose of this study is to propose a simple method for improvement of 

both the sensitivity and stability of the blood detection system, without using complicated 

equipment, and to describe the construction of a practical bleeding sensor system. 

The prototype was developed using an 8-bit RISC microcontroller operating at a clock 

speed of 16MHz to detect the ARL of the samples and a high-speed epitaxy PIN photodiode with 
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an active region of 13mm2. The photodiode has a quick response time which can detect the pulsed 

light readily. Fig. 4.3 shows the sensor's fundamental structure with all of its components. 

 

(a) 

 

(b) 

Figure 4.3: Developed prototype a) all parts of the blood detection sensor b) blood detection 

sensor in operation 

4.1.3. The Procedure of Data Collections for Method 1 

To justify the proposed algorithm with the sensor prototype, 10 blood samples of 1%, 2%, 

5%, 8%, 10%, 13%, 15%, 17%, 20% and 40% dilutions of crystallized bovine hemoglobin blood 

were prepared. Five food colors with different dilutions totally 25 samples were also included as 

non-blood samples for the testing.  
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Two sets of LEDs were individually tested to separate the blood samples from the non-

blood samples. The first set contains LEDs with wavelengths of 700nm and 625nm, and the second 

set contains wavelengths of 475nm and 530nm. The LEDs were placed very close to the sample 

surface so that only the specified light on the wavelength was transmitted to the sample surface. 

Then the microcontroller toggled those LEDs with a defined interval and reflected light from the 

sample’s surface was measured using the high-speed epitaxy PIN photodiode. It is very important 

to measure the reflection for the specific wavelength of lights for an accurate result. If other light 

sources are present around the samples, the final results may not be as accurate as expected. That 

is why the entire experiment was carried out in a dark and closed environment using a black box 

shown in Fig. 4.4. 

 

(a)                                                      (b) 

Figure 4.4: a) Sensor in the non-blood solution, b) Taking readings of the samples in a black 

box environment 

The microcontroller was connected to the computer using the serial communication port 

using a USB to TTL converter device. The RX and TX pins of the USB to TTL converter are 

alternately connected to the microcontroller’s TX and RX pin for capturing the data to the 

computer transmitted by the microcontroller. For each sample, around 20 reflected sample data of 

the two specific wavelengths of each set of LEDs were stored. So, for the first set of LEDs, 200 
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sample data for 10 blood samples and 500 sample data for 25 non-blood samples for each set of 

LEDs were collected. 

 

4.2 Method 2: Optical Spectral Sensor in Visible Regions 

In order to understand the core of this method, spectrometry needs to be clarified. The light 

that the eyes see is, in fact, a part of what the sun sends and it travels within a broad frequency 

range called a spectrum. Human eyes can only sense a tiny part of the solar spectrum which is 

known as a visible spectrum or visible light. By chance, the visible spectrum is precisely the sub-

set of high-intensity frequencies. In fact, as an outcome of the evolution of human eyes for 

thousands of years, the eyes can only detect the most significant portion of the spectrum of light 

that hits the planet. 

When light strikes on an object and it is not completely absorbed, it falls apart and it is an 

optical phenomenon called reflection. If this reflected light is in the range of human’s sight and 

the eye absorbs some of the visible spectrum wavelengths, only then the associated color of that 

spectrum can be seen. So, when someone sees a green leaf, it means that the leaf absorbed every 

wavelength except the green component of electromagnetic radiation with a wavelength of about 

520nm.  

4.2.1. Working Principle and Developed Sensor System of Method 2 

The spectral detector works in the visible light area on the basis of the six wavelengths of 

light. The SparkFun AS7262 visible spectral sensor breakout introduces spectroscopy like the 

same way as a spectrophotometer [56], making it simpler to assess and characterize how distinct 

materials absorb and reflect distinct light wavelengths than ever before. It is a cost-effective multi-

spectral sensor-on-chip solution designed for spectral ID applications. This highly integrated 
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device provides 6-channel multi-spectral sensing of approximately 430nm to 670nm in visible 

wavelengths with a full-width half-max (FWHM) of 40nm that can be roughly translated into red, 

orange, yellow, green, blue, and violet color. The AS7262 uses deposited interference filter 

technology to integrate Gaussian filters into conventional CMOS silicon and is packaged in a land 

grid array (LGA) package [57]. The impulse response of the filter is a Gaussian function and 

removes the overshoot to a step function input while minimizing the rise and fall time. This 

package offers an integrated aperture to regulate the light that enters the range of sensors. Access 

to control and spectra information is introduced either through the I2C register set or through a 

serial UART with a high-level AT spectral set. The board also has several methods to illuminate 

items that will attempt to evaluate for more precise reading of the spectroscopy. There is an 

onboard LED specifically selected to obtain more precise spectral measurements and also to 

evaluate surface reflectivity. The 6-channels can either be read as raw 16-bit values or as calibrated 

floating-point values via the I2C bus. There is also a temperature sensor on-board that can be used 

to read the chip's temperature. The 6 spectral sensor-module (AS7262) from SparkFun [94] was 

used to conduct the initial research which is shown in Fig 4.5. 

                  

Figure 4.5: Backside and the front side of AS7262 sensor [94] 

For the initial testing of the second method, the experiment was conducted using the 

SparkFun’s AS7262 sensor module. The sensor was connected to a multiplexer which was 

connected to the Raspberry Pi. Python programming language was used to read the 6 spectral data 
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from the sensor.  The 6 spectral data from each of the blood and non-blood samples were then 

stored in a CSV file for further analysis. Fig. 4.6 shows the complete arrangement for conducting 

the experiment with the spectral sensor. 

  
 

Figure 4.6: Developed bleeding detection system using AS7262 module 

4.2.2. The Procedure of Data Collections for Method 2 

In order to test the second method, blood and non-blood samples were kept in a plastic petri 

dish. Then the whole petri dish was covered using a dark box in order to make sure no other spectral 

wavelength was present at the time of the experiment. Only a certain portion of the black box is 

kept open in order to insert the AS7262 sensor module and get the reflected light values of the 6 

spectral wavelengths.  

               

(a)                                                                  (b) 
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(c)                                                                           (d) 
 

Figure 4.7: Experimental setup a) blood sample b) non-blood sample c) pig’s intestine mixed 

with non-blood sample d) complete dark box arrangement for collecting accurate data 

In this setup, multiple AS7262 modules can also be connected and can be controlled 

separately as well. Fig. 4.8 shows the data collection procedures using the AS7262 module. Using 

this experimental arrangement, the data can be easily stored in the computer for further processing. 

A complete dark box environment was ensured at the time of collecting the data to collect accurate 

reflected spectral data using the system. The AS7262 module’s white LED was also kept on in 

order to get accurate data in the dark environment. 

  

Figure 4.8: Data collection using AS7262 module while sensor facing towards surface of the 

samples in a dark box environment 
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4.3 Method 3: Optical Spectral Sensor in Near-infrared Regions 

The near-infrared (NIR) optical spectroscopy provides an easy analytical method for 

characterizing materials in various applications. For the initial testing of the third method, the 

experiment was conducted using the SparkFun’s AS7263 [73] sensor module. The AS7263 is a 

digital 6-channel multi-spectral sensor for spectral identification in the NIR light wavelengths. 

AS7263 consists of 6 independent optical filters whose spectral response is defined in the NIR 

wavelengths from approximately 600nm to 870nm with FWHM of 20nm. An integrated LED 

driver with programmable current is also provided for electronic shutter applications.  

Through nano-optic embedded interference filter technology, the AS7263 incorporates 

Gaussian filter in a typical CMOS silicon and has been bundled with an LGA package, offering an 

optimized illumination to handle the light entering the sensor screen. Controlling and spectral 

access to data is carried out either via the I2C register set or via the UART serial using a spectral 

high-level AT command set [58]. 

The working method is similar to the method shown in section 4.2 as it uses the same 

hardware design components with an exception only to the spectral chip which is AS7263 rather 

than the AS7262. The overall developed sensor system using both AS7262 and AS7263 is shown 

in Fig 4.9 
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Figure 4.9: Developed bleeding detection system using AS7262 and AS7263 modules and 

Raspberry Pi 
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CHAPTER 5 

AUTOMATED FEATURE SELECTION  

5.1 Overview of the Features of the Methods 

The aim of this research is to reduce the number of wavelengths to a minimum for the 

optimal hardware design of the bleeding sensor. In this respect, the feature selection methods 

mentioned in section 5.2 can be quite supportive. It helps considering only specified LEDs 

associated with the most significant wavelengths in the final prototype design and retains the 

sensor accuracy in a reasonable range. Therefore, the bulky AS7262 or AS7263 modules can be 

substantially reduced to a few LEDS and can be incorporated easily into the WCE system. 

In machine learning, features are the characteristics of a problem on which the model 

predicts results. Features typically are numerical. But, in syntactic pattern recognition structural 

features such as strings and graphs are used. For example, the selling price of a house can be 

predicted by the size of the house feature. Features are a column of input data which are also called 

attributes or dimensions. There may be several features tagging a particular problem set. In order 

to improve the exactness of the model, it is necessary to choose the features that are more 

applicable to the issue. It also decreases model’s uncertainty as the least important function details 

can be removed.  

Feature selection is one of the main pre-processing phases of developing a machine 

learning model. Different algorithms can be used to achieve the most important features. The 

features used for training the models in this research are mainly the reflectance value of light from 

the samples at different wavelengths. The features which are used to build the models for the three 

different methods are shown in Table 5.1 
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Table 5.1: Overview of the features of different methods 

Method 

Type 

No of 

Features 
Features 

Wavelength 

Region 

Blood 

Samples 

Non-

blood 

Samples 

Data 

per 

Samples 

Method 1 

(with food 

colors) 

2 

Ratio and the average value 

of the reflected light for 

700nm and 625nm 

wavelength 

Visible 10 25 20 

Method 2 

(with food 

colors) 

6 

Reflected light value of 

450nm, 500nm, 550nm, 

570nm, 600nm, 650nm 

wavelength 

Visible 10 25 20 

Method 3 

(with food 

colors) 

6 

Reflected light value of 

610nm, 680nm, 730nm, 

760nm, 810nm, 860nm 

wavelength 

Near 

infrared 
10 25 20 

Method 2 

(with food 

colors and 

pig’s 

intestine) 

6 

Reflected light value of 

450nm, 500nm, 550nm, 

570nm, 600nm, 650nm 

wavelength 

Visible 22 32 20 

Method 3 

(with food 

colors and 

pig’s 

intestine) 

6 

Reflected light value of 

610nm, 680nm, 730nm, 

760nm, 810nm, 860nm 

wavelength 

Near 

infrared 
22 32 20 

 

 

 

From Table 5.1, it can be seen that, there are two types of datasets-  

a) First Dataset: 25 non-blood food color samples and 10 hemoglobin blood samples. 

There are total 35 blood and non-blood samples. Total observations are 700 since 20 observations 

per sample. 

b) Second Dataset: 32 non-blood food color samples and 22 hemoglobin blood samples 

with pig’s intestine. The total blood and non-blood samples are 54. So, the total observations are 

1080 since 20 observations per sample. 
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5.2 Feature Selection Methods 

The selection of features is one of the key concepts in machine learning that significantly 

impacts on the model's efficiency. The data features used to train machine learning models affect 

the results immensely. Irrelevant or somewhat less relevant features may affect the efficiency of 

the model adversely. The first and most important step of every model design must therefore be 

the feature selection and the data cleaning. 

Selection of features requires automatic or manual choosing of features that are most 

relevant to the predicted component or desired results. When the data set contains irrelevant 

features, models can learn from irrelevant features and be less precise. 

A strong understanding of feature selection is required in order to achieve greater precision 

for machine learning models. A good grasp of these strategies leads to better performing models. 

The clear knowledge of the underlying structure and data properties contributes to a better 

understanding of the algorithms. There are two main reasons why function selection is performed 

before data modeling: 

1. Reduction of features, reduces overfitting and improves model generalization. 

There will be fewer opportunities to take noise-based decisions with fewer 

redundant data. 

2. To better understand the characteristics and their relation to response variables. It 

also decreases training times, since less data points minimize the difficulty of 

algorithms and train algorithms quicker. 

Such two objectives are often at odds and therefore require other approaches: based on the 

data at hand, sometimes a correct form of selection for the first reason may not be necessarily 

appropriate for the second and vice versa. But what also appears to be happening is that people are 
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indiscriminately utilizing their preferred approach or what is more easily accessible from their 

preference device, in specific methods more appropriate for the first reason to achieve the goal of 

the second’s. 

In the study, some of the most common approaches for selecting features are applied and 

observed side-by-side on the sample dataset. According to Table 5.1, there are only 2 features in 

method 1. So, feature selection method was not used for method 1. But in the case of method 2 

and method 3, there are 12 features in total with 6 features each. So, in order to find the appropriate 

features, three feature selection methods are used- a) Univariate feature selection, b) Random 

forest feature selection, c) Principal component analysis (PCA) feature selection. 

5.2.1. Univariate Feature Selection 

Univariate feature selection independently tests each feature to assess the intensity of the 

feature's relationship with the response factor. These methods are easy to use and understand and 

are particularly suitable for better comprehension of data. Statistical measures can be used to pick 

the most important features of the input function by comparing each feature to the target variable.  

When the relation between one feature and the response variable is evaluated, the other 

features are overlooked, which is the explanation why it is referred to as "univariate". Every feature 

has its own test score. Eventually all test scores are measured and features that have the highest 

scores have been chosen. The Python Scikit-learn presents feature selections as objects to execute 

the process of transformation. According to [48], there are 3 basic selection objects in Scikit-learn: 

a) SelectKBest, b) SelectPercentile and c) GenericUnivariateSelect.  

In ‘SelectKBest’ method, only the highest scoring features are selected and the rest of the 

features are ignored. In case of ‘SelectPercentile’, it eliminates almost all the popular predictive 

univariate tests on each feature except the maximum user-defined scoring rate such as false 
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positive, false rate of discovery or family-wise errors. However, the ‘GenericUnivariateSelect’ 

offers a configurable filtering technique, enabling a hyper-parameter search estimator to select the 

best univariate selection strategy. 

Such objects have a scoring function as feedback that returns univariate p-values (or just 

SelectKBest and SelectPercentile scores). The scoring functions for regression are f_regression, 

mutual_info_regression and scoring functions for classification are chi2, f_classif, 

mutual_info_classif. 

In this research, blood and non-blood are needed to be classified separately. So, according 

to the discussion, ‘chi2’ scoring function is used with ‘SelectKBest’ univariate selection method. 

5.2.2. Random Forest Feature Selection 

One of the most popular machine learning algorithms is the random forest. It is so effective 

because it usually has good predictive quality, low overfit and is easy to interpret. The fact that, it 

is simple to derive the value of every parameter on the tree decision because of this interpretability. 

In other terms, the contribution of each parameter to the decision can be easily calculated by this 

method. 

Feature selection using the random forest comes under the category of embedded methods. 

Embedded methods combine the qualities of filter and wrapper methods. They are implemented 

by algorithms that have their own built-in feature selection methods. Some of the benefits of 

embedded methods are: 

• Highly accurate. 

• Easy to generalize. 

• Easy to interpret. 
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Random forests consist of 4 to 12 hundred decision trees, each of them built over a random 

extraction of the observations from the dataset and a random extraction of the features. Not every 

tree sees all the features or all the observations, and this guarantees that the trees are de-correlated 

and therefore less prone to over-fitting. Each tree is also a sequence of yes-no questions based on 

a single or combination of features. At each node, the tree divides the dataset into 2 branches, each 

of them hosting observations that are more similar among themselves and different from the ones 

in the other branch. Therefore, the importance of each feature is derived from how “pure” each of 

the branch is. 

For classification, the measure of impurity is either the ‘Gini’ impurity or the information 

gain/entropy and for regression the measure of impurity is variance. Therefore, when training a 

tree, it is possible to compute how much each feature decreases the impurity. The more a feature 

decreases the impurity, the more important the feature is. In random forests, the impurity decrease 

from each feature can be averaged across trees to determine the final importance of the variable. 

To give a better intuition, features that are selected at the top of the trees are in general more 

important than features that are selected at the end nodes of the trees, as the top splits lead to bigger 

information gains. 

5.2.3. Principal Component Analysis (PCA) Feature Selection 

PCA is a linear transformation technique, mostly used for feature extraction and 

dimensional reduction. It enables the simplification of high-dimensional data while preserving 

patterns and trends by converting the details into less dimensional feature summaries. Other 

popular applications of PCA include exploratory data analyzes and signal de-noise in equity 

trading, and genome-data analysis and bioinformatic gene expression levels. It allows us to identify 

patterns on the basis of feature correlation in the dataset. It is unsupervised and a clustering-like 
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learning method [34]. It always shows patterns with no previous knowledge as to whether the 

samples originate in various treatment groups or whether they are phenotypical. In short, PCA 

attempts to detect maximum variance in high dimensional data and projects them in a new 

subspace with the same or less sizes than the original one. It is often used to decrease the 

dimensionality of a large data set in order to make machine learning more practical where the 

original data is inherently large in size such as in image recognition. This converts a sequence of 

observations of potentially correlated variables into values of uncorrelated variables called 

principal components using an orthogonal transformation. It emphasizes on variation by bringing 

out strong patterns in a dataset which makes data easy to explore and visualize as well. 

5.3 Selection of Appropriate Features from the Samples 

There are often completely irrelevant, trivial and unimportant features in a high-

dimensional dataset. In contrast to the essential characteristics, the role of this category of features 

has always been less significant for predictive modelling. They could also have null contributions. 

Such characteristics cause a number of issues such as the excessive allocation of resources to 

additional features, which is a disturbance for which the design is extremely poor and which in 

effect inhibits effective modelling. 

In this research, there are six features of reflected light values consisting of 450nm, 500nm, 

550nm, 570nm, 600nm, 650nm wavelength for the 2nd method and six features of reflected light 

values consisting of 610nm, 680nm, 730nm, 760nm, 810nm and 860nm wavelength for the 3rd 

method.  But all of the 12 features may not be equally contributing to the greater performance of 

the model. So, it is better to find out the most significant features from the dataset which will be 

effective in building the model and will enhance the performance of a machine learning model. 
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5.3.1. Features Selection using Univariate Feature Selection 

According to Table 5.1, it can be seen that the datasets correspond to classification tasks 

on which the model needs to predict blood samples based on total 12 features for method 2 and 

method 3. In order to select the appropriate features for method 2 and method 3, the second dataset 

was used which had blood samples and non-blood samples with pig’s intestine. 

There was a total of 1080 observations in the second dataset. The first task was to load the 

dataset. The 6 different features labeled into the outcomes of 1 and 0, where 1 stands for the blood, 

and 0 denotes for non-blood. The dataset was checked for missing values before starting the 

selection. First, for the “univariate feature selection”, a Chi-Squared statistical test for non-

negative features will be used to select two of the best features from the dataset. The Scikit-learn 

library provides the SelectKBest class that can be used with a suite of scoring function to select a 

specific number of features, in this case, the scoring function is Chi-Squared. Fig. 5.1 and 5.2 show 

the scores for each attribute and the 2 attributes chosen- 500nm and 550nm for the 2nd method and 

610nm for the 3rd method. These scores will help further in determining the best features for 

training the model.  

  

Figure 5.1: Feature selection using univariate selection for method 2 
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Figure 5.2: Feature selection using univariate selection for method 3 

5.3.2. Features Selection using Random Forest Feature Selection 

During training time of random forest, it considers different decision trees. The actual 

prediction is taken into account after analyzing all the probabilities from those trees. The features 

can be found by observing the decrease in accuracy. If any of the features are removed and the 

accuracy increased, then the rest of the features are important than the removed one. In practice, it 

is not removed from the model rather it randomly permutes the feature and measures the decrease 

in accuracy on an out of bag sample.  There is actually a second way of computing feature 

importance often called “Gini importance”. Each function value is computed as a sum of the 

number of splits that contain the element, proportionally to the amount of the samples it divides, 

according to the Gini importance. In the case of a random forest regressor, the importance is 

assessed by measuring the reduction in node impurity by the probability to reach that node. The 

probability of a certain node can be computed according to the number of samples reaching the 

node divided by the total number of samples. The feature with higher probability is more 
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significant than the others. The method was implemented by Python Scikit-learn library to find the 

best feature [36].  

  

Figure 5.3: Feature selection using random forest for method 2 

  

Figure 5.4: Feature selection using random forest for method 3 



 

55 

 

From Fig. 5.3 and 5.4, it is clear that the highest score is 550nm for 2nd method and 610nm 

for the 3rd method.  

5.3.3. Features Selection using PCA Feature Selection 

PCA uses linear algebra to transform the dataset into a compressed form. Generally, this is 

called a data reduction technique. A property of PCA is that it can automatically choose the number 

of dimensions or principal components in the transformed result. In this case, PCA will be used to 

guess 2 principal components. The python Scikit-learn library has PCA class to implement the 

feature selection. PCA uses variance-ratio to get relevant features. Which tells how much 

information (variance) can be attributed to each of the principal components. By using the attribute 

“explained_variance_ratio_”, From Fig. 5.5, it can be observed that the first principal component 

550nm contains around 0.51% of the variance and the second principal component 500nm contains 

0.86% of the variance for method 2. 

  

Figure 5.5: Feature selection using PCA for method 2 
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Figure 5.6: Feature selection using PCA for method 3 

For method 3, from Fig. 5.6, it can also be observed that the first principal component 610nm 

contains around 58.81% of the variance and the second principal component 680nm contains 

21.95% of the variance. 
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Table 5.2: Summary of the selected features 

Method 

Type 

No of 

Features 

Features Univariate 

Feature 

Selection 

Random 

Forest Feature 

Selection 

PCA 

Feature 

Selection 

Most 

Significant 

Features 

Method 2 6 

450nm, 500nm, 

550nm, 570nm, 

600nm, 650 nm 

500nm, 

550nm, 

570nm 

550nm, 650nm, 

600nm, 

500nm 

450nm, 

500nm, 

550nm 

500nm, 

550nm 

Method 3 6 

610nm, 680nm, 

730nm, 760nm, 

810nm, 860nm 

680nm, 

730nm, 

610nm 

610nm, 

860nm, 680nm 

610nm, 

680nm, 

730nm 

610nm 

 

The significant features were used to train the final model for this research. From Table 5.2, 

it can be seen that the most significant features are 500nm and 550nm for the 2nd method and 

610nm for the 3rd method. Table 5.3 shows the final two methods with the most significant features 

for building machine learning models. 

Table 5.3: Summary of the methods with selected features 

Method Type No of Features Most Significant Features 

Method 1 2 ARL value and average value for (700nm, 625nm) 

Method 2 and 3 Combined 3 500nm, 550nm, 610nm 

 There are mainly 3 different hardware setups in this research. In method 1 hardware setup, 

two LEDs, an 8-bit microcontroller and photodiode were used. For the method 2 and method 3 

hardware setups, Raspberry Pi was used as the processing unit and AS7262 spectral sensor in 

visible wavelength range for method 2 and AS7263 spectral sensor in near infrared wavelength 

range for method 3 were used as the reflected light detectors for the blood and non-blood samples.  
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Table 5.4: Summary of the experiments 

Experiment 

Type 

Method 

Type 

Dataset No of 

Features 

Most Significant 

Features 

Total 

Samples 

Experiment 1 Method 1 

Food colors and 

hemoglobin 

samples 

2 

ARL value and 

average value for 

(700nm, 625nm) 

25 non-blood 

samples, 10 

blood 

samples 

Experiment 2 

Method 2 

and 3 

combined 

Food colors and 

hemoglobin 

samples 

3 

500nm, 550nm, 

610nm 

25 non-blood 

samples, 10 

blood 

samples 

Experiment 3 

Method 2 

and 3 

combined 

Food colors and 

hemoglobin 

samples with pig’s 

intestine 

3 

500nm, 550nm, 

610nm 

32 non-blood 

samples, 22 

blood 

samples 

 
According to Table 5.3, the three hardware setups were then divided into two methods 

based on the number of features considered for the final experiments. From Table 5.1, it can be 

observed that, there are two different datasets- one with 25 non-blood food color samples and 10 

hemoglobin samples whereas the second one with 32 non-blood color sample with pig’s intestine 

and 22 hemoglobin blood sample along with pig’s intestine. Therefore, the final experiments for 

the method 1 and combined method 2 and 3 were analyzed on both of these two datasets. The 

summary of the final three experiments were shown in Table 5.4. 
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CHAPTER 6 

MACHINE LEARNING MODELS AND THEIR PERFORMANCE 

EVALUATION 

6.1 Proposed Framework 

Dataset is taken as input to the classification methods followed by performance evaluation 

as depicted in Fig. 6.1. Four types of classification methods are used to analysis the results. The 

experiments are done by using Python and Scikit-learn library.  

The training process of a model is the process of feeding data into a neural network and 

letting it learn the patterns of the data by itself. The training process takes in the data and pulls out 

the best features of the dataset. During the training process for a supervised classification task, the 

network is passed both the input features and the response labels of the training data. However, 

during testing, the network is only fed with input features. 

In the testing process, the learnt patterns of that network are tested. The features are passed 

to the network, and the network then predict the proper response labels. The data for the network 

is divided into training and testing sets. The output classifier or model can not be evaluated with 

the same training dataset since the it has already learnt the characteristics of that dataset during its 

training process. So, it would be extremely biased if it is being tested against the same dataset for 

further analysis.  

Therefore, it is necessary to distinguish the training and the testing data from the dataset in 

order to train and evaluate the model. But during the development phase, it may not be always 

possible to have so many details. The obvious solution in such situation is to split the dataset into 

two sets, one for training and the other for testing; and it has to be done before starting the model 

training. It is also required to make sure splitting the data should be in a proper manner. In order 
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to achieve that task, for this research, the whole datasets were divided into training and testing 

datasets. The testing datasets were kept fully separated. The training datasets had no influence of 

the testing datasets. The models were trained in such a way that it could provide accurate validation 

results for the fully separated testing datasets. 

It is important to compare the performance of multiple machine learning algorithms 

consistently. The key to a fair comparison of machine learning algorithms is ensuring that each 

algorithm is evaluated in the same way on the same data. In order to ensure that, each algorithm 

will be evaluated on a consistent test harness. 

    

Figure 6.1: Proposed experimental framework 

Four different algorithms were used for comparison in this research: 

• k-Nearest Neighbors Classifier 

• Random Forest Classifier 

• AdaBoost Classifier 

• Decision Tree Classifier 
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These four machine learning algorithms are very handy, popular and important, particularly 

for text analytics and general classification. Some of the algorithms are discussed below- 

6.1.1. k-Nearest Neighbors Classifier 

k-Nearest Neighbors (k-NN) is one of the best machine-learning algorithms that is very 

basic, flexible, easy to understand and scalable. It has succeeded in a large number of classification 

and regression problems, despite its simplicity. It is in the area of supervised learning and is widely 

applicable to the analysis of patterns, data mining, intrusion detection, economics, safety, political 

science, handwriting, video recognition, etc. It is appropriate for statistical problems of both 

classification and regression. It is primarily used in the industry for statistical classification 

problems, though. 

It is an algorithm for non-parametrical and lazy learning. Non-parametric means for the 

underlying assumptions on data representation, there is no inference. In other words, the model 

structure is calculated from the dataset. In its training phase it uses the entire dataset. Whenever a 

prediction is made for an unseen data case, it scans for k-most like instances through the whole 

training data and eventually returns the decision with the most similar instance. It implies that 

when k is close to 1, the class label is given to the nearest neighbor. Nevertheless, if K is 5, the 

algorithms choose the next five most closely related data points and categories them according to 

groups represented by the corresponding five items, by a majority vote. 

k-NN is often used in search applications where related objects are being searched, such as 

finding similar items. Algorithms say that object is one of them, if it is close to its neighbors. Like 

the same way, apple is most likely a fruit, for instance, when apple is more similar to peach, pear, 

and cherry (fruit) than monkey, cats or rats (animals). 
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6.1.1.1. Steps of k-Nearest Neighbors Classifier 

The k-NN algorithm utilizes 'feature similarities’ to determine the values in new 

datasets, ensuring the new data point will be given a value based on how well that 

correlates with the points in the training set. For developing or building a classifier, the 

process of data collection, preparation, and then testing is common in the entire machinery 

learning area. A dataset is necessary to implement every algorithm. Therefore, the training 

and the test data must be prepared during the first phase of k-NN. The algorithm’s other 

steps can be explained as below- 

a) Select an integer number K of the nearest neighbors 

b) Calculate the Euclidean distance of K number of neighbors between test data 

and each row of the training data. 

c) Take the K nearest neighbors according to the calculated Euclidean distance 

and sort them in ascending order. 

d) Count the number of the data points in each category among these K neighbors 

e) The category for which the neighbor’s number is highest is applied to the new 

data points. 

6.1.2. Random Forest Classifier 

Random forest is a type of supervised, ensemble-based learning algorithm. Ensembled 

algorithms combine more than one same or different type of algorithms for the classification of 

object. There are many individual decision-making trees created on a randomly divided dataset. 

The collection of decision trees is also known as the forest. Every individual forest tree in a random 

forest provides a class prediction and the class with the most votes becomes the final prediction of 

the model which is shown in Fig. 6.2. 
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Figure 6.2: Random forest classifier’s prediction 

For classification and regression, which provides an estimation of the relations between a 

dependent variable and one or more independent variables, random forests can be used. It includes 

various applications, such as recommendation engines, classification of images and selection of 

features. It is ideal for classifying trustworthy lenders, detecting fraudulent activity and forecasting 

diseases.  

For almost every predictive issue (even non-linear ones), random forests classifier is a good 

choice. It is a rather new learning machine strategy that was developed in the 90's by Bell Labs. 

Compared to other nonlinear classification algorithms, it is easier and more powerful.  

6.1.2.1. Steps of Random Forest Classifier 

Because of the number of decision-makers involved in the process, random forests 

classifier is recognized as an exceptionally precise and stable tool. The overfitting 
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problem does not impact it since all forecasts were made on average, which cancels out 

the biases. The classifier works as follows- 

a) Pick random dataset samples.  

b) Build a sample decision tree and extract the outcome of each decision tree.  

c) Take out a vote on each outcome that is predicted.  

d) Pick the prediction outcome as the final prediction with the most votes 

 

6.2 Performance Matrices 

Performance evaluation in a classification problem includes determining the classification 

performance of the system. A binary classifier predicts all data instances of a test dataset as either 

positive or negative. This classification (or prediction) produces four outcomes –  

1. True positive (TP): correct positive prediction 

2. False positive (FP): incorrect positive prediction 

3. True negative (TN): correct negative prediction 

4. False negative (FN): incorrect negative prediction 

Sensitivity/recall, specificity, precision, and accuracy are the most ideal criteria for 

measuring classification performance. In order to analyze the performance of a classifier model, 

these matrices are a must to understand. 

Sensitivity (SN) or recall (REC) is the possibility that representatives of the successful 

categories are appropriately identified. It is determined by dividing the right number of positive 

expectations by the total number of positive predictions. The highest sensitiveness is 1.0, while 

the worst response is 0.0 which also indicates how appropriate the model in determining positive 

predictions. 
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𝑟𝑒𝑐𝑎𝑙𝑙(𝑅𝐸𝐶) = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑁) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                    (6.1) 

Probability of accurately identifying negative situations is specificity (SP). SP is calculated 

by dividing the amount of correct negative predictions by total negative numbers.  It is also referred 

to as a true negative rate. The best feature is 1.0 and the worst 0.0 respectively. This explains how 

well the model can eliminate false alarms. 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑃) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                              (6.2) 

Precision (PREC) decides the successful labeling quality. Precision quantifies the number 

of predictions in positive category that really belong to the positive class. The correct number of 

positive predictions divided by the overall positive predictions is considered as the precision. The 

highest accuracy is 1.0, while the worst is 0.0 and also indicates how many positive classifications 

are relevant. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑅𝐸𝐶) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                              (6.3) 

Accuracy (ACC) is the likelihood that accurately mark all positive and negative events. It 

is measured as the amount of all correct observations divided by the total dataset size. The highest 

accuracy is 1.0, while the worst is 0.0. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
                                         (6.4) 

Almost all bleeding detection methods have utilized the aforementioned metrics for system 

evaluation. However, all the methods calculate these measures using their specified classifier 

models.  
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6.3 Development and Analysis of Models for Experiment 1  

In order to choose the best feature for the classifier model of the experiment 1, the collected 

sample data (10 blood samples and 25 non-blood samples) were observed carefully. From the 

observation, it appeared that the average and the ratio of the reflected light data from the two 

wavelengths might be used as features to separate the samples easily from the non-blood. In the 

experiment, approximately 20 reflected sample data were collected for each of the 10 blood 

samples and 25 non-blood samples using both LED sets. After that, the ratio of the ARL of the 

two specific wavelength LEDs was calculated for both sets of LEDs. The cut-off point of the ratio 

for the 35 samples was determined by considering the mean value of the ratio of the 20 reflected 

sample data. 700nm and 625nm LED set were used mainly for the experiment as from Fig 3.2, it 

can be observed from the first LED set (475nm, 530nm) and second LED set (700, 625nm), the 

second LED set provides better separation between the ARL of ratio than the first LED set.  So, it 

is wiser to choose the first LED set (700nm, 625nm) for the developed prototype to separate the 

blood and non-blood samples.  

On the basis of the above experimental framework shown in Fig. 6.1, four classifier models 

were evaluated using python to carry out the binary classification task in which the blood samples 

were considered to be "1" while the non-blood samples were considered to be "0" in the 

classification. All the models of the experimental framework used the above mentioned two 

features to train the blood detection model and calculate the probability scores. The models were 

compared based on different parameters of the models such as training accuracy, testing accuracy, 

precision scores, recall scores which are shown in Fig 6.3 to Fig. 6.6 respectively. For Exp. 1, the 

k-NN classifier performs better than the other algorithms which is shown in Fig 6.4. The training 

accuracy for k-NN classifier was 92.50% which is lower than the all the other classifiers but the 
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test accuracy is higher than all the classifier which can be realized from the Fig. 6.4. Precision is 

another factor that indicates how many of the positively classified samples are relevant to the 

model. From Fig 6.5 it can be seen clearly that the k-NN classifier provides the best results out of 

all the algorithms. The models’ sensitivity or recall score is shown in Fig 6.6 which indicates how 

good the model in detecting positive samples. k-NN provides a recall value of 83.33% which also 

seems higher or equivalent compared to the other algorithms. All the performance matrices of the 

algorithms can also be visualized in Table 6.1. From the table, it is clear that the k-NN classifier 

provides the best results for test accuracy, precision, AUC matrices. So, it can be surely concluded 

that the k-NN is the best algorithm for classifying blood and non-blood samples for Exp. 1. 

 

Figure 6.3: Machine learning algorithms’ train accuracy comparison (Experiment 1) 
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Figure 6.4: Machine learning algorithms’ test accuracy comparison (Experiment 1) 

 

Figure 6.5: Machine learning algorithms’ precision comparison (Experiment 1) 

 

Figure 6.6: Machine learning algorithms’ recall comparison (Experiment 1) 
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The samples were considered to be blood or non-blood samples based on the high 

probability calculated by the trained model. From the initial Spectrophotometer experiment, it is 

found that the first set of LEDs with 700nm and 625nm performs better than the second set of 

LEDs with 475nm and 530nm. So, in this experiment, 700nm to 625nm reflected value dataset 

was used to figure out the best result from the machine learning model.  According to the analysis 

of four different models, the highest testing accuracy was found to be 91.54% for the k-NN 

classifier. Table 6.1 shows the full comparison between different machine learning algorithms. 

Table 6.1: Analysis of machine learning algorithms’ performance using different performance 

matrices for Exp. 1 

MLA Name 

MLA 

Train 

Accuracy 

MLA Test 

Accuracy 

MLA 

Precision 

MLA 

Recall 

MLA 

AUC 

KNeighborsClassifier 0.925 0.9154 0.8064 0.8333 0.8866 

AdaBoostClassifier 0.9341 0.9115 0.7936 0.8333 0.8841 

RandomForestClassifier 0.9727 0.8962 0.7894 0.750 0.8450 

DecisionTreeClassifier 0.9955 0.8692 0.7096 0.7333 0.8216 

 

The model predicts the blood samples from the non-blood samples with good accuracy but 

it fails to separate at some of the samples. The model mostly failed to separate the blood samples 

having a low dilation of less than 1-2% and some non-blood samples which had a strong color 

similar to blood with higher light absorption characteristics. 

The confusion matrix is very useful to understand the performance of any classifier. It gives 

information about predicted and actual values. Here TP is the number of positive examples that 

are correctly classified, TN is the number of negative examples that are correctly classified, FN is 
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the number of positive examples that are incorrectly classified as negative and FP is the number 

of negative examples that are incorrectly classified as positive. There are different types of 

performance matrices are used in this research (1) Overall Accuracy, (2) Specificity, (3) Recall, 

(4) Precision, (5) ROC curve (AUC). The specificity is the proportion of the TN and (TN+FP) and 

with the higher specificity fewer positive cases are labeled as negatives, so this ratio can be 

regarded as the percentage of negative cases correctly classified as belonging to the negative class. 

The proportion of cases that are TP for all the cases that are positive in the diagnostic tests (TP+FN) 

is called sensitivity. It ranges from 0 to 1 and an attribute that is perfectly correlated to the class 

provides a value of 1.  

The confusion matrix is shown in Fig. 6.7 to describe the performance of the k-NN model 

on the test dataset. From the confusion matrix, it can be clearly understood that out of the 200 non-

blood samples 188 samples are correctly predicted, and out of the 60 blood samples 50 samples 

are correctly predicted which gives an overall accuracy of 91.54% for the model. 

 

Figure 6.7: Confusion matrix of the k-NN classifier (Experiment 1) 
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Summary of Experiment 1: 

Training data: 7 blood samples, 15 non-blood samples (20 data/sample) 

7*20=140, 15*20=300. Total= 440 samples  

Fully separated testing data: 3 blood samples, 10 non-blood samples (20 

data/sample) 

Blood=3*20=60,  

Non-blood=10*20=200,  

Total= 260 samples 

k-NN Classifier’s Performance Details: 

Blood/Positive= 60 (True Pos=50, False Neg=10) 

Non-blood/Negatives=200 (True Neg=188, False Pos=12) 

Test accuracy=91.54% 

6.4 Development and Analysis of Models for Experiment 2 

The models for the second and third methods with the AS7262 and AS7263 modules are 

combined for the proper development of the classifier and only 3 most significant features out of 

the 12 features were selected. For each of the spectral wavelengths, 20 sample data were collected 

for the training. So, around 700 sample data (500 data values for 25 non-blood food color samples 

and 200 data values for 10 blood samples) were used for the training and testing. According to 

Table 5.3, three features - 500nm, 550nm, and 610nm wavelength will be used for the development 

and analysis of the models based on the experimental framework shown in Fig. 6.1. Four classifier 

models were evaluated using Python to carry out the binary classification task in which the blood 

samples were considered to be "1" while the non-blood samples were considered to be "0" in the 

classification. The models’ training accuracy, testing accuracy, precision scores, recall scores are 
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shown in Fig 6.9 to Fig. 6.11 respectively. For the experiment 2, reflected light values were used 

as the features for developing the classifier model. Out of the four classifier models, k-NN 

classifier performs better than the other algorithms in the validation data. Fig 6.9 and Fig 6.10 

indicate that k-NN provides a training accuracy or 97.95% and test accuracy of 89.23% which are 

higher than most of the algorithms. Fig 6.11 indicates k-NN also provides higher precision value 

which is around 0.7857. This score indicates the model’s positively classified predictions are very 

relevant to the actual value. From Fig 6.12, it is clear that the k-NN classifier algorithm is very 

good at detecting positive values out of all the classifier algorithms. The overall summary of all 

the classifier models can be observed in Table 6.2. So, it is clear that the k-NN algorithm is the 

best approach to differentiate the blood and non-blood samples for the experiment 2. 

 

Figure 6.8: Machine learning algorithms’ train accuracy comparison (Experiment 2) 
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Figure 6.9: Machine learning algorithms’ test accuracy comparison (Experiment 2) 

 

Figure 6.10: Machine learning algorithms’ precision comparison (Experiment 2) 

 

Figure 6.11: Machine learning algorithms’ recall comparison (Experiment 2) 
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From Table 6.2, it can easily be seen that the k-NN classifier performed really well in 

separating the blood and non-blood samples with a testing accuracy of 89.23%. It can also be seen 

that some blood samples tend to give false results but the rate is not so much. Therefore, it can be 

considered as a good classifier model.  

Table 6.2: Analysis of machine learning algorithms performance using different performance 

matrices for Exp. 2 

MLA Name 

MLA 

Train 

Accuracy 

MLA 

Test 

Accuracy 

MLA 

Precision 

MLA 

Recall 
MLA AUC 

KNeighborsClassifier 0.9795 0.8923 0.7857 0.7333 0.8366 

RandomForestClassifier 1.0 0.8885 0.8039 0.6833 0.8166 

AdaBoostClassifier 0.9977 0.8269 0.7419 0.3833 0.6716 

DecisionTreeClassifier 1.0 0.8192 0.6585 0.45 0.69 

 

 

The confusion matrix of the k-NN model is shown in Fig 6.13. From that figure, it can be 

understood clearly that, out of the 200 samples of non-blood samples 188 samples were correctly 

predicted and 12 samples were wrongly predicted. On the other hand, for the 60 blood samples, 

all the samples were predicted correctly. So, the k-NN classifier model provides an accuracy of 

around 89.23%. 
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Figure 6.12: Confusion matrix of k-NN classifier (Experiment 2) 

Summary of Experiment 2: 

Training data: 7 blood samples, 15 non-blood samples (20 data/sample) 

7*20=140, 15*20=300. Total= 440 samples  

Fully separated testing data: 3 blood samples, 10 non-blood samples (20 

data/sample) 

Blood=3*20=60,  

Non-blood=10*20=200,  

Total= 260 samples 

k-NN Classifier’s Performance Details: 

Blood/Positive= 60 (True Pos=44, False Neg=16) 

Non-blood/Negatives=200 (True Neg=188, False Pos=12) 

Test accuracy=89.23% 
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6.5 Development and Analysis of Models for Experiment 3  

In case of experiment 3, machine learning models are developed based on the only 3 most 

significant features (500nm,550nm and 610nm). The difference between the experiment 2 and 

experiment 3 is basically with the dataset. In experiment 3, more blood and non-blood samples 

were added to represent the real experimental scenario by including pig’s intestine with the 

existing dataset. There were 32 non-blood samples and 22 blood samples in experiment 3 

compared to the 25 non-blood samples and 10 blood samples in experiment 2. For each of the 

samples around 20 sample data were collected for the training. Three top most selected features- 

500nm, 550nm, and 610nm wavelengths were used for the development and analysis of the four 

classifier models. The k-NN classifier and decision tree classifier models perform better than the 

other two models. Fig 6.15 and Fig 6.16 indicate that k-NN classifier provides a training accuracy 

of 98.33% and test accuracy of 89.05% which are higher than the other algorithms. Fig 6.18 

indicates that the k-NN classifier also provides a higher recall value of 0.8875 than the other 

classifiers. The k-NN has also shown a higher AUC value of 0.8899 which indicates that it is good 

at separating the different classes. The overall summary of all the classifier models can be observed 

in Table 6.3. Therefore, it can be seen that the k-NN classifier is very efficient at differentiating 

the blood and non-blood samples using the 3 specified spectral wavelengths.  
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Figure 6.13: Machine learning algorithms’ train accuracy comparison (Experiment 3) 

 

Figure 6.14: Machine learning algorithms’ test accuracy comparison (Experiment 3) 

 

Figure 6.15: Machine learning algorithms’ precision comparison (Experiment 3) 
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Figure 6.16: Machine learning algorithms’ recall comparison (Experiment 3) 

The k-NN performed really well in separating the blood and non-blood samples with a 

testing accuracy of 89.05%. Though the for some blood samples with lower concentration it tends 

to provide false results, still it can be considered as a good classifier model.  

Table 6.3: Analysis of machine learning algorithms performance using different performance 

matrices for Exp. 3 

MLA Name 
MLA Train 

Accuracy 

MLA Test 

Accuracy 

MLA 

Precision 

MLA 

Recall 

MLA 

AUC 

KNeighborsClassifier 0.9833 0.8905 0.8352 0.8875 0.8899 

DecisionTreeClassifier 1.0 0.8905 0.9453 0.7562 0.8646 

RandomForestClassifier 0.9985 0.8810 0.8160 0.8875 0.8822 

AdaBoostClassifier 0.9909 0.7786 0.6936 0.75 0.7730 

 

The confusion matrix of the k-NN model is shown in Fig 6.19. Out of the 260 samples of 

non-blood samples 232 samples were correct and 28 samples were wrong. In case of blood 

samples, 142 blood samples predicted correctly predicted out of the 160 samples which indicates 

an accuracy of around 89.05%. 
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Figure 6.17: Confusion matrix of k-NN classifier (Experiment 3) 

Summary of Experiment 3: 

Training Data: 7 blood samples and 7 blood samples with pig’s intestine, 15 non-

blood Samples (20 data/sample) and 4 non-blood samples with pig’s intestine 

(20data/sample) 

14*20=280, 19*20=380. Total= 660 samples  

Fully Separated Testing Data: 3 blood samples and 5 blood samples with pig’s 

intestine, 10 non-blood Samples and 3 non-blood samples with pig’s intestine  

Blood=8*20=160,  

Non-blood=13*20=260,  

Total= 420 samples 

k-NN Classifier’s Performance Details: 

Blood/Positive= 160 (True Pos=142, False Neg=18) 

Non-blood/Negatives=260 (True Neg=232, False Pos=28) 

Test Accuracy=89.05% 
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CHAPTER 7 

COMPARATIVE ANALYSIS 

The chapter described the analyses and the results of the models of the three different 

experiments. The experiments were done to explore the ways to separate the blood samples from 

the non-blood samples. The summary of the findings will be summarized in this chapter and then 

a comparison with some previous works will also be presented here.  

7.1 Evaluation Metrics 

Evaluating the model’s accuracy, is an essential part of the process in developing any 

machine learning model since it describes how well the model is performing in its predictions. 

Evaluation metrics sometimes also change according to the problem type. In this research, three 

separate methods with different hardware components were used to detect blood using optical 

sensors. For the first method, two LEDs of 700nm and 625nm wavelength were used and for the 

other methods, 6-spectral wavelength visible sensor modules and 6-spectral wavelength near-

infrared sensor modules were used. Two different datasets of blood and non-blood samples was 

used to determine the best method for detecting blood in the gastrointestinal tract. Four different 

classifier models were evaluated to determine the performance for all the three experiments.  

Linear or non-linear models can be a typical example of binary classification problem which 

contains only true and false. After training all the models, those models are evaluated by checking 

the error rates evaluation metrics in prediction. The errors represent how much the models are 

making mistakes in prediction. The basic concept of accuracy evaluation is comparing the original 

response with the predicted one.  
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The MSE, MAE, RMSE, RMSLE, and R-Squared metrics are mainly used to evaluate the 

prediction error rates and model performance in the model’s analysis. 

 

• Mean absolute error (MAE) represents the difference between the original and 

predicted values extracted by averaged the absolute difference over the data set. 

• Mean squared error (MSE) represents the difference between the original and 

predicted values extracted by squared the average difference over the data set. 

• Root mean squared error (RMSE) is the error rate by the square root of MSE. 

• R-squared (coefficient of determination) represents the coefficient of how well the 

values fit compared to the original values. The value from 0 to 1 interpreted as 

percentages. The higher the value is, the better the model is. 

• There is a variation of RMSE that is sometimes more convenient to use - root mean 

squared logarithmic error (RMSLE). The only difference from the RMSE is that 

instead of using output, y values directly, it uses the logarithm of them. 

 

The above metrics can be expressed as, 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑦̂|𝑁

𝑖=1                                                     (7.1) 

 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 −𝑁

𝑖=1 𝑦̂)2                                                  (7.2) 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 −𝑁

𝑖=1 𝑦̂)2                                     (7.3) 

 

𝑅2 = 1 −
∑(𝑦𝑖−𝑦̂)2

∑(𝑦𝑖−𝑦̅)2
                                                          (7.4) 
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𝑅𝑀𝑆𝐿𝐸(𝑦, 𝑦̂) = √
1

𝑁
∑ (log

𝑒
(𝑦𝑖 + 1) − log

𝑒
(𝑦̂

𝑖
+ 1))

2𝑁
𝑖=1                            (7.5) 

Where, 𝑦̂ − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑦 𝑎𝑛𝑑 𝑦̂ − 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑦 

In this research work, three different experiments with different hardware designs were 

conducted to detect the bleeding in the gastrointestinal tract. 4 different classifier models were 

used to train the collected data using the three different hardware setups. The performances of all 

the experiments were measured using different performance matrices i.e. (RMSE, RMSLE, R-

Squared, MSE, MAE, and ROC curve). Table 7.1 shows the results of classifiers' performance 

using various types of performance matrices. 

Table 7.1: Results of final classifier’s performance using different performance matrices 
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(%
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Experiment 

1 

(without 

pig’s 

intestine) 

k-NN 

classifier 

700nm 

625nm 
0.523 0.0846 0.0846 0.2908 0.201 88.66 91.54 

Experiment 

2 

(without 

pig’s 

intestine) 

k-NN 

classifier 

500nm 

550nm 

610nm 

0.393 0.1076 0.1076 0.3281 0.2274 83.66 89.23 

Experiment 

3 

(with pig’s 

intestine) 

k-NN 

classifier 

500nm 

550nm 

610nm 

0.535 0.1095 0.1095 0.3309 0.2293 88.99 89.05 
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All of the experiments performed well in predicting the blood form the samples. In both 

experiment 2 and experiment 3, the k-NN classifier performed almost similar. The experiment 2 

without pig’s intestine sample data provides an overall accuracy of 89.23% whereas the 

experiment 3 with pig’s intestine provides 89.05% which are very close to each other and can be 

used for practical environment for distinguishing blood from non-blood samples. It can also be 

observed from the ROC curve that, the experiment 3 with pig’s intestine provides better 

performance with an AUC value of 88.99%. It could be because the experiment 2 used 10 

hemoglobin blood samples and 25 food colors as the non-blood samples whereas in the experiment 

3 with pig’s intestine, 22 blood samples and 32 non-blood samples were used to detect the bleeding 

which provided more reliable information related to the bleeding. 

7.2 Experimental Analysis with Different Concentrations of Blood 

From the above three experiments, it can be seen that k-NN classifier performs better than 

the other classifiers. Furthermore, among all the three experiments, the 3rd experiment seems more 

reliable and efficient as it had considered the pig’s intestine for training and testing the blood and 

non-blood samples. So, it is wise to consider the 3rd experiment as the most valid one. In order to 

explore the limitations of the 3rd experiment model, it should be tested with different 

concentrations of blood samples as well. In order to achieve that the blood samples were separated 

into three different groups based on their concentrations- low, medium, and high concentrations, 

which is shown in Table 7.2. 
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Table 7.2: List of blood samples with different level of concentrations 

Group Number Concentration Level 
Blood Sample 

Description 

Blood Sample 

Observations 

1st Group Low 

Hemoglobin-1 % 

Hemoglobin -2 % 

Hemoglobin -5 % 

60 

2nd Group Medium 

Hemoglobin -8 % 

Hemoglobin -10 % 

Hemoglobin -13 % 

Hemoglobin -15 % 

80 

3rd Group High 

Hemoglobin -17 % 

Hemoglobin -20 % 

Hemoglobin -40 % 

60 

These three groups of blood concentrations were then tested with the 3rd experiment’s 

developed k-NN classifier model to evaluate the performance of the model. The result is shown in 

Table 7.3. 

Table 7.3: Summary of the results with different level of blood concentrations 

Group Number 
Blood Sample 

Observations 

k-NN Classifier 

Predictions 
Accuracy (%) 

1st Group 60 
True positive – 43 

False negative – 17 
71.67 

2nd Group 80 
True positive – 77 

False negative – 3 
96.25 

3rd Group 60 
True positive – 53 

False negative – 7 
88.33 

It can be observed from the table that, when the blood concentration is lower than or equal 

to 5% hemoglobin, the model does not perform quite well. In case of medium concentrations of 

blood ranging from 8 to 15 %, the model performed really well with an accuracy of 96.25%. On 

the other hand, the model performed moderate in case of high concentrations of blood samples. 

The model does not perform well in high concentrations in contrast to the medium concentrations 

of blood. Since the developed model was trained on high levels of red, tan colored non-blood 

samples, it could not properly distinguish the higher concentrations of blood samples properly and 
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get confused with the non-blood samples. Therefore, the model struggled to get the right 

predictions for the high concentrations of blood. However, the overall accuracy of the k-NN 

classifier in predicting medium and high concentrations of blood samples is quite good. 

7.3 Summary Comparison  

In recent years, several studies have been conducted on the identification of bleeding with 

several optical and imagery instruments. Table 7.4 offers a contrast between the proposed work 

and different existing research works.  

Table 7.4: Summary of proposed work and existing works  

Article cited Sensor Type Measures Parameter BS NBS 

Comments/ 

Fails to 

separate 

[76] 

Violet (415nm) 

and red (720nm) 

LED 

Transmission 

anchored in 

the GI wall 

Ratio 1 5 N/A 

[74] TCS230D 
Internal 

reflection 

Two 

factors 

13 

Hemoglobin 
0 N/A 

[77] 
LED 

(415nm,720nm) 
Transmission Ratio 

05 

0.1%, 1%, 

5%, 10%, 

50% human 

blood 

19 
Except 1% to 

10% of blood 

[75] TCS 3200 
Internal 

reflection 
HSL 

08 

Normal 

human blood 

02 

Intestinal 

juice 

Fails in low 

concentration 

Max/ (128, 

256, 512) 

[77] Spectrophotometer Transmission Ratio 

05 

0.1%, 1%, 

5%, 10%, 

50% human 

blood 

19 
Except 1% to 

10% of blood 

[78] 
LED 

(415nm,720nm) 
Transmission Ratio 

06 

5%, 7.7%, 

13.3%, 

15.4%, 33%, 

40% human 

blood 

 

Water  
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Proposed 

Method (1st 

Experiment) 

LED 

(700nm,625nm) 
Reflection 

Ratio, 

average 

10 

1%, 2%, 

5%, 8%, 

10%, 13%, 

15%, 17%, 

20%, 40% 

hemoglobin 

25 

Food 

colors 

Accuracy of 

91.54% 

Proposed 

Method (2nd 

Experiment) 

AS7262 

(500nm,550nm) 

and AS7263 

(610nm) 

 

Reflection 

Spectral 

wavelengths 

(2 in visible 

region, 1 in 

near 

infrared 

region) 

10 

1%, 2%, 

5%, 8%, 

10%, 13%, 

15%, 17%, 

20%, 40% 

hemoglobin 

25 

Food 

colors 

Accuracy of 

89.23% 

Proposed 

Method (3rd 

Experiment) 

AS7262 

(500nm,550nm) 

and AS7263 

(610nm) 

 

Reflection 

Spectral 

wavelengths 

(2 in visible 

region, 1 in 

near-

infrared 

region) 

22 

1%, 2%, 

5%, 8%, 

10%, 13%, 

15%, 17%, 

20%, 40% 

hemoglobin 

and 12 

hemoglobin 

with pig’s 

intestine 

32 

Food 

colors 

with 

pig’s 

intestine 

Accuracy of 

89.05%. 

 

Lower 

accuracy at 

5% or lower 

blood 

concentrations 

  

There does not have enough things to compare with the previous research articles as the 

dataset used in various studies was completely different. If a quantitative comparison is attempted, 

it can result in confusion between the studies. Therefore, specific analysis of works such as 

accuracy, detail, responsiveness, and little more is challenging. 

The analysis may rely on only a few things like the number of samples used, validity of the 

proposed model, operating area and operating mode. Firstly, there is much more test samples than 

any other previous works. Furthermore, this analysis used two separate datasets for the training 

and validation of the classifier models, while no study showed the validation by using a separate 

dataset. Furthermore, the sensors used in this study can detect any blood level except very low, 



 

87 

 

similar to the previous works. A combination of multi-spectral sensors can be considered to 

diagnose bleeding more efficiently in the visible, near-infrared and ultraviolet areas. 

The proposed experimental methods have been tested with different concentrations of 

blood samples and various non-blood samples with and without pig’s intestine. The methods have 

been able to distinguish the blood and non-blood samples with an accuracy of 91.54% using the 2 

features without the pig’s intestine, 89.23% and 89.05% with the three most significant features of 

combined visible and near-infrared spectral wavelengths including and excluding pig’s intestine 

respectively. It was also found that the k-NN classifier did not perform well for 5% or lower 

concentrations of blood samples. However, it performed well for higher concentrations of blood 

samples. 

  



 

88 

 

CHAPTER 8 

CONCLUSION AND FUTURE WORK 

Three separate studies were proposed and the findings were discussed in this chapter. 

The chapter concludes the entire study and provides suggestions for potential improvements 

in the future. 

8.1 Conclusion 

The purpose of the research is to propose a method related to development of a bleeding 

detection sensor for the WCE system. Nevertheless, owing to similarity in blood components [32] 

the same sensing and procedures could be used to classify human GI bleeding. Therefore, blood 

samples used in the analysis are not human blood but bovine hemoglobin. 

From Table 7.1, the experimental setup with only two different wavelength LEDs (700nm 

and 625nm) provides a better result than the combined hardware setup using the AS7262 and 

AS7263 spectral sensors. According to experiment 2 and experiment 3, it can be seen that the 

outcomes using food colors with and without pig’s intestine provide an accuracy of 89.23% and 

89.05% respectively which are quite similar.  This kind of bleeding detection sensor system may 

be used with the existing WCE system by replacing the existing camera system which takes a long 

time to detect bleeding. 

The three spectral wavelengths- 500nm,550nm, and 610nm of the AS7262 and AS7263 chip 

provide a better bleeding observation in both scenarios of with and without pig’s intestine which 

may not be possible by an imaging sensor that only analyzes the color properties of the blood 

rather than the spectral properties of blood. 
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Finally, it has been shown that the experiments with AS7262 and AS7263 sensors provide an 

overall accuracy of around 89% which could solve the problem of bleeding detection in all 

scenarios. Though the k-NN model is not good at predicting blood samples of 5% or lower 

concentrations, it has shown great efficiency and improved performance compared to the other 

existing methods. 

8.2 Recommendation for Future Work 

In this section, some recommendations have been provided to improve the design to 

detect the human GI bleeding which was beyond the scope of the thesis. 

1. The experiments carried out in this analysis, take place in a controlled environment. In 

spite of some of the experiments were done with real pig’s intestine, the results might 

be slightly different in real scenarios. Thus in-vivo sample testing with sensors is 

needed to confirm that the proposed sensors and the corresponding operating mode 

can be used in a living body environment. 

2. The sensor, processor, transmission modules and power modules are becoming smaller 

and more efficient day by day. Therefore, several sensors might be combined into the 

endoscopic system for higher accuracy with more analytics. 

3. The scale of the proposed sensors is slightly greater than that of capsule devices 

available on the market. It needs to develop technologies further to limit the size to a 

minimum. 
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4. One important point in miniaturizing the system is to design an IC which will combine 

all modules into a single integrated die. Thus, it would take less space and consume 

less power.  

5. In addition to the current features, other features like pH level, glucose level, etc., 

could be incorporated to detect GI tract abnormalities. If there could have a triggering 

feature in the capsule which would change the camera’s frame rate or wake up the 

capsule from power saver mode, then it could significantly save power consumption.  

6. In addition, there could be some research on getting the accurate position of the WCE 

capsule which will provide the exact bleeding location inside the body when bleeding 

is detected by the sensors. 
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