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Abstract
Various hand-crafted features have been explored for medical image classification,

which include SIFT and Local Binary Patterns (LBP). However, hand-crafted features

may not be optimally discriminative for classifying images from particular domains (e.g.

colonoscopy), as not necessarily tuned to the domain’s characteristics.

In this work, I give emphasis on learning highly discriminative local features

and image representations to achieve the best possible classification performance for

medical images, particularly for colonoscopy and histology (cell) images. I propose

approaches to learn local features using unsupervised and weakly-supervised methods,

and an approach to improve the feature encoding methods such as bag-of-words. Unlike

the existing work, the proposed weakly-supervised approach uses image-level labels to

learn the local features. Requiring image-labels instead of region-level labels makes

annotations less expensive, and closer to the data normally available from normal

clinical practice, hence more feasible in practice.

In this thesis, first, I propose a generalised version of the LBP descriptor called

the Generalised Local Ternary Patterns (gLTP), which is inspired by the success of LBP

and its variants for colonoscopy image classification. gLTP is robust to both noise

and illumination changes, and I demonstrate its competitive performance compared to

the best performing LBP-based descriptors on two different datasets (colonoscopy and

histology). However LBP-based descriptors (including gLTP) lose information due to the

binarisation step involved in their construction. Therefore, I then propose a descriptor

called the Extended Multi-Resolution Local Patterns (xMRLP), which is real-valued and

reduces information loss. I propose unsupervised and weakly-supervised learning

approaches to learn the set of parameters in xMRLP. I show that the learned descriptors

give competitive or better performance compared to other descriptors such as root-SIFT

and Random Projections. Finally, I propose an approach to improve feature encoding

methods. The approach captures inter-cluster features, providing context information in

the feature as well as in the image spaces, in addition to the intra-cluster features often

captured by conventional feature encoding approaches.

The proposed approaches have been evaluated on three datasets, 2-class

colonoscopy (2, 100 images), 3-class colonoscopy (2, 800 images) and histology (public

dataset, containing 13, 596 images). Some experiments on radiology images (IRMA

dataset, public) also were given. I show state-of-the-art or superior classification

performance on colonoscopy and histology datasets.
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Glossary

Adenoma detection rate - The proportion of individuals undergoing a complete

colonoscopy screening who have one or more adenomas detected.

Benign - A condition, tumour, or growth that is not cancerous. Such growths can often

be removed and, in most cases, they do not come back. Cells in benign tumours do not

spread to other parts of the body.

Bin (histogram) - Consecutive, non-overlapping intervals of a variable.

Computer Aided Diagnosis - Computerized techniques that assist doctors in the

interpretation of medical images.

Histology - Brand of biology that deals with the microscopic examination of tissue.

Histogram - A bar graph of a frequency distribution in which the horizontal axis lists

each unique value (or range of values) in a set of data, and the height of each bar

represents the frequency of that value (or range of values).

iid - A sequence or collection of random variables is iid (independent and identically

distributed) if each random variable in that collection has the same probability

distribution as the others and all are mutually independent.

Malignant - A condition, tumour, or growth that is cancerous and is made up of cells

that grow out of control. Cells in these growths can invade nearby tissues and spread to

other parts of the body.

Non-invasive procedure - A medical procedure which does not involve the introduction

of instruments into the body.

Withdrawal times (colonoscopy) - The amount of time spent viewing the internal wall

of the colon as the colonoscope is withdrawn during a colonoscopy.
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1INTRODUCTION

This thesis is mainly focussing on learning highly discriminative local features

and image representations to achieve the best possible image level classification

performance for medical, particularly, for colonoscopy and histology (cell) images.

Some experiments with radiology images were also given. Since this thesis

was funded by the 2011-2016 EU FP7 ERC project "CODIR: colonic disease

investigation by robotic hydrocolonoscopy”[3], I gave emphasize to the images

from the colonoscopy domain.

This chapter explains the background and the motivation for feature learning

approaches for medical image classification, the clinical background and the

motivation for image analysis systems for colonoscopy, the contributions, and the

organisation of the thesis.

1.1 Medical image analysis background and motivation

Three main steps are involved in automated classification systems in computer vision

and medical image analysis: feature extraction, feature encoding, and classification

(Figure 1.1). In the feature extraction stage, descriptors capturing a variety of local

image properties are computed. The descriptors (features) from a set of training images,

for which labels are available, are then clustered to generate a dictionary. In the feature

encoding stage, this dictionary of features is then used to compute a compact image

representation for any given image. In the training stage, the image representations

obtained from the training images are used to train a classifier. Finally the classifier

learned is used to predict the label of any test image.
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Figure 1.1: The major steps involved in the automated classification systems for
computer vision and medical image analysis.

The current approaches proposed for medical image analysis (particularly for

colonoscopy and cell image classification) have focussed mainly on identifying

appropriate features and classifiers. Various hand-crafted features such as Root-SIFT

[13, 113], colour histograms [70], Local Binary Patterns [113], Local Ternary Patterns

[113], and classifiers such as SVM [113], Neural Networks [72] have been explored

for colonoscopy image analysis. However, hand-crafted features may not be optimally

discriminative for classifying images from particular domains (e.g. colonoscopy), as not

necessarily tuned to the domain’s characteristics.

Recently, feature learning approaches [19, 26, 132, 150, 151, 174, 175] have

become popular as they learn domain-specific discriminative features and have been

shown to improve the performance of, among others, medical image segmentation

[19], image retrieval [132, 150, 151], and interest point matching [26, 174, 175].

These approaches assume that region-based annotations or a training set consisting

of matching and non-matching pairs of image patches are available to learn the

feature descriptors. For example, Winder et al. [26, 174, 175] proposed to learn

the configurations of the local descriptor such as the smoothing factors, number of

orientation bins, configuration of the local pooling regions, and others. Philbin et al.

[132] proposed to learn the local descriptors by learning a projection matrix such that in

the projected descriptor space the matching descriptors are assigned to the same cluster,

and non-matching descriptors are assigned to different clusters. These approaches

need a training set of matching and non-matching image patches to learn the local

descriptors. On the other hand, Simonyan et al. [151] proposed a method to generate

the matching and non-matching image patches from a weakly labelled dataset (dataset

with image-level labels) for learning the descriptors. However, generating annotations
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for any medical training set (region-level or matching and non-matching feature pairs)

is a difficult, time-consuming task.

Convolutional neural nets (CNN) [79] have also been used to learn local features

(filters). In CNN, a set of filters as well as the image-level classifiers are learned

in a unified framework. Usually CNN require a very large amount of training data

[122]; when this is not available, CNN may give worse performance than traditional,

hand-crafted features and BOW-based feature encoding methods [122].

None of these feature-learning approaches have been explored for colonoscopy

image classification yet. In this thesis I investigate novel approaches to learn features

based on weak supervision (learning from image-level labels) for discriminative image

classification.

1.2 Clinical background and motivation

More than one million new colorectal cancer (CRC) cases are diagnosed yearly

worldwide [2]. CRC remains the second leading cause of cancer death in the world and

the third most common cancer in the UK [2], although the death rate due to CRC has

been dropping for more than 20 years worldwide. One of the reasons is the development

of screening programmes identifying and removing polyps and other suspicious lesions

before they can develop into cancers [7]. If CRC is diagnosed in its earliest stages, the

chance of surviving for five years is 90%, and a complete cure is often possible [1].

Clearly, early identification of colonic abnormalities is crucially important.

Adenoma detection rate (ADR) is a commonly used predictor of the risk of

developing colorectal cancer after undergoing a colonoscopy screening [167]. Although

colonoscopy remains the gold standard for colorectal cancer screening, miss rates

around 6% for CRC, and 12% to 17% for adenomas larger than 1 cm have been reported

in different studies [25, 40], posing risk of developing colon cancer due to a failure to

detect treatable lesions in time. Several studies have examined the miss rate associated

with colonoscopy and its causes, which include inadequate training and experience

of the examiners, misinterpretation of the images [157], and shorter-than-average

withdrawal times [18]. It is therefore arguable that a reliable computer-aided detection

(CAD) system specialised for identifying suspicious colonic abnormalities in colonoscopy
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videos could contribute to improve ADR, e.g. by presenting clinicians with a second

opinion obtained by objective and repeatable methods.

Some studies support this hypothesis. For example, Baker et al. [15] found a

significant improvement in the sensitivity of polyp detection by inexperienced radiologist

readers when CAD was used, and Regge et al. [136] reported an improvement of 9%

and 2% in CRC detection rates for inexperienced and experienced readers, respectively,

when analysing virtual colonoscopy with CAD. Complementarily, Mang et al. [112]

found that a 'first-reader' CAD workflow, in which an observer only reviewed the

colonic regions identified as suspicious by a CAD system, ignoring the rest of the colon,

substantially decreased reading times while enabling accurate detection of colorectal

adenomas. Similarly, video recording and post-procedure review improved ADR with

flexible endoscopy data in [107]. This background gives the clinical motivation for the

colonoscopy related research reported in this thesis.

1.2.1 Background on colonoscopy

Colonoscopy is an endoscopic procedure to inspect the colonic mucosa in a relatively

painless way. Colonoscopy is used to investigate the potential cause of symptoms like

abdominal pain, rectal bleeding, or changes in bowel habits; and, most relevant for my

work, to screen for CRC [4]. Various kinds of colonoscopy/endoscopy systems exist, e.g.

white-light endoscopy or flexible endoscopy (FE), wireless capsule endoscopy (WCE),

and virtual colonoscopy (VC) [97].

Colonoscopy systems other than VC contain light sources and a camera to capture

the images of the colon mucosa. They differ in various ways, e.g. purpose (whether

to image the micro or macro structure of the colon), motion control, patient comfort,

imaging type (whether zoomed or not, 3D or 2D), etc. The following section briefly

explains various kinds of colonoscopy systems and Figure 1.2 shows some example

images.

1.2.1.1 Flexible Endoscope

A flexible endoscope (FE) consists of a flexible, hollow tube and a camera with light

sources on its tip. A channel in the tube is dedicated to surgical instruments for
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Figure 1.2: Examples of images taken from various endoscopy systems (a) white light
(b) zoom (c) confocal laser endomicroscopy (d) chromoendoscopy (e) narrow band
imaging (f) wireless capsule endoscopy (g) virtual endoscopy (h) hydro colonoscopy.

excisions, e.g. polyp removal, and biopsies. Disadvantages of FE include the need

for sedation, patient discomfort, and a small but real risk of colonic perforation with

adverse consequences including, in the most extreme cases, even death.

The following can be used with FE to get some additional advantages. I refer the

reader to [17] for a detailed review. (a) Zoom-endoscope is a FE with the advantage

of zoom-in at interesting regions with a magnification factor of up to 150 times. (b)

Chromoendoscopy is a procedure sometimes used with FE to improve tissue localisation,

characterisation, or diagnosis by applying colour dyes. (c) Confocal Laser Endomicroscopy

(CLE) is a new diagnostic technique that allows microscopic examination of the digestive

mucosa during endoscopy using low-power laser. 'Optical biopsies' are obtained by

injecting a fluorescent marker and imaging with a high level of magnification (up to

1000-fold)[5]. (d) Narrow Band Imaging is a real time, on-demand image enhancement

technique which places narrow-band filters in front of a conventional white light source

to obtain tissue illumination in selected narrow wavelength bands.

1.2.1.2 Wireless Capsule Endoscopy

Wireless Capsule Endoscopy (WCE) is not designed particularly for the colon but for the

whole gastrointestinal tract. It is a better imaging tool for the small intestine, where the

FE has no access. In WCE the patient swallows a small capsule of size about 22× 11mm

which contains light source, lens, camera, radio transmitters, and batteries. This capsule
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then travels through the digestive system, propelled by peristalsis, and automatically

takes images of 5 to 40 f/s during a travelling time of about eight hours [97]. There are

several advantages, including very low levels of patient discomfort as the capsule travels

in the digestive system, but also drawbacks: an extensive pre-procedure complete bowel

preparation lasting 24 hours and use of drugs to promote capsule transit is needed, the

motion is passive resulting in uncontrollable images (unlike FE), cannot take biopsy,

contamination of the lenses and reluctance of patients to adopt the procedure.

1.2.1.3 Virtual Colonoscopy

Virtual Colonoscopy (VC) is a non-invasive procedure to look for signs of pre-cancerous

growths and other diseases in the large intestine. 3D images are taken using

computerised tomography (CT) or, less often, magnetic resonance imaging (MRI).

Specialised software creates a 3D view of the inside of the large intestine. Advantages

include the speed and non-invasiveness of the procedure with no patient discomfort and

no sedation required. A limitation is that, since VC is non-invasive, lesions cannot be

excised directly as with FE, e.g. taking a biopsy. The major drawback of this procedure

is the loss of colour and texture information.

All the above mentioned imaging modalities other than VC and CLE provide colour

images. VC is the only procedure providing 3D image models.

1.2.2 The CODIR project

FE is uncomfortable for patients. In FE CO2 gas is often used to inflate the colon

to distend the colonic mucosa. Usually pain medication and sedation (which can

cause drowsiness) are given to the patient prior to the procedure to reduce discomfort.

Sedation imposes a recovery time burden on patients [83]. To minimise discomfort, the

water method [83, 84, 86] uses warm water to inflate the colon in unsedated patients,

instead of CO2 (as in conventional endoscopy). The water-method shows improved

adenoma detection rate (ADA) by up to 50%.

Inspired by the water-method, the 2012-2017 EU-funded project CODIR (Colonic

Disease Investigation by Robotic hydro colonoscopy)[3], of which this PhD was part,
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aims to develop a controllable, tethered swimming/submerging robot inspecting the

colon wall in an irrigated environment.

CODIR stems from two considerations: (1) the replacement of the conventional

FE with a lower-discomfort system for inspection of the colonic mucosa (internal wall),

and (2) the very recent concept of hydro-colonoscopy (or the water method) whereby

water or specifically developed chemical solution [85] is used instead of the traditional

air insufflation. CODIR aims to enable a breakthrough in patient-compliant complete

endoscopic examination and biopsy of the colon for the further study of life threatening

disorders [3].

Although the work reported here is a part of the CODIR project, it proved

impossible, in the course of the work, to obtain hydro-colonoscopy videos, as the robotic

platform is still under development. Therefore, the proposed methods were evaluated

on the images taken from white-light colonoscopy.

1.3 Contributions

The contributions of this thesis can be summarised in three points: (1) novel feature

learning approaches for discriminative image classification; (2) a novel approach

to capture inter-cluster statistical features for feature encoding; and (3) extensive

experimental evaluation of the proposed approaches and various state-of-the-art

approaches for colonoscopy and histology (cell) image classification. Some experiments

with radiology images were also given.

The approaches proposed in this thesis are not particularly designed for

colonoscopy, histology or radiology images. Hence, can be applied to other medical

imaging domains, e.g. brain tumour segmentation [118].

1.3.1 Novel feature learning approaches

To the best of my knowledge, discriminative feature/descriptor learning approaches

have never been explored for colonoscopy images. I propose unsupervised (Chapter 5)

and weakly-supervised (Chapters 6 and 7) feature learning approaches for colonoscopy

image classification. Unlike existing discriminative feature learning approaches
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explained in Section 1.1, where labelled data is required for learning in the form of

region-level annotations [19], or matching and non-matching feature pairs [26, 174,

175], I use only weakly labelled data, i.e. training data with image-level labels, to learn

the most discriminative local image features for image-level classification.

1.3.2 Inter-cluster statistics for feature encoding

Feature encoding plays an important role for image classification. Intra-cluster features

such as bag-of-words (BOW) have been widely used for feature encoding, to capture

statistical information within each cluster of local features, but fail to capture the

inter-cluster statistics, such as how the visual words co-occur in images or image regions.

I propose a new method (Chapter 9) to choose a subset of cluster pairs and propose

new inter-cluster statistics to improve the traditional BOW-based feature encoding

approaches. Since the cluster pairs are selected based on image regions rather than

the whole images, the final representation also captures the local structures present in

images.

1.3.3 Experimental evaluations

I provide extensive experimental results to validate the proposed approaches.

Comparative experiments with state-of-the-art approaches on various datasets show

that the proposed approaches match or surpass the state-of-the-art approaches for

colonoscopy as well as cell (histology) image classification. Mean class accuracy

(average of per-class accuracies, defined in Section 3.2) was used to measure the

classification performance, as it is a widely used measure for classification in medical

imaging [102, 172, 173] and computer vision [146, 168].

1.4 Thesis organisation

Figure 1.3 is a map of some paths that the reader may choose to explore the chapters.

Chapters 4-7 focus on learning local image descriptors for image classification, and

Chapter 9 focuses on improving the traditional feature encoding approaches.
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Figure 1.3: Thesis roadmap. Chapters and their relations.

• Related Work. Chapter 2 reviews the work related to colonoscopy image analysis,

local descriptor learning and image classification. A concise review of BOW related

approaches is also given.

• Datasets and experimental settings. Chapter 3 explains the datasets as well as

the experimental settings used in the experiments throughout in this thesis.

• The Generalised Local Ternary Patterns. Inspired by the success of the

Local Binary Patterns (LBP) descriptor, and its variants for colonoscopy image

classification, in Chapter 4 I propose a generalised variant of LBP called the

generalised Local Ternary Patters (gLTP). This chapter is a part of the paper which

is under preparation for the journal of Medical Image Analysis (MIA).

• Extended Multi-Resolution Local Patterns and unsupervised feature learning.

Although gLTP shows competitive performance for image classification compared

to LBP and its variants, gLTP loses information due to the binarisation procedure

involved in the feature extraction stage. Therefore, Chapter 5 proposes a

novel descriptor called the Extended Multi-Resolution Local Patterns (xMRLP), and

its simplified variant the Multi-Resolution Local Patterns (MRLP). Since xMRLP



Chapter 1. Introduction 10

contains a set of free parameters an unsupervised approach to learn these

parameters is also presented. This chapter is a part of the journal paper which

is under preparation for MIA.

• Discriminative Feature Learning using weak labels. Chapter 6 is an extension

of Chapter 5, where a discriminative weakly-supervised approach is proposed for

feature learning using image-to-class distances (I2CD) [23]. This work has been

published at International Symposium on Biomedical Imaging 2015 [114].

• Discriminative feature learning with weak-labels and weighted I2CD. The

I2CD used in Chapter 6 can be affected by the noisy local features as well as

the features from the image background. Therefore, in Chapter 7 I propose a

feature learning approach based on weighted I2CD, where the I2CD calculated

from different classes are weighted differently to learn the local features as well

as an image-level classifier. This chapter is a part of the journal paper which is

currently under preparation for MIA.

• MRLP and xMRLP for colonoscopy and cell image classification: experimental

evaluation. In Chapter 8 I provide extensive experiments with the proposed

as well as various other state-of-the-art features. Also in this chapter I

propose image-classification systems to classify colonoscopy and cell images into

predefined classes, and show my systems outperform the state-of-the-art. Some

work from this chapter based on cell images has been published at the I3A

1st workshop on Pattern Recognition Techniques for Indirect Immunoflurescence

Images, International Conference on Pattern Recognition, 2014 [115, 116]. This

chapter is also parts of the journal paper which is accepted by Pattern Recognition

[117].

• Inter-cluster features for image classification Since the traditional feature

encoding approaches (e.g. BOW) capture only the intra-cluster information

(statistics of each cluster of features), in Chapter 9 I propose an approach

to improve them by capturing the inter-cluster information in addition to the

intra-cluster features. The work from this chapter has been published at MICCAI

2014 [120].

• Conclusion, discussion and future directions. Chapter 10 concludes this thesis

and suggests future directions for exploration.



2RELATED WORK

This section reviews the work related to colonoscopy image analysis, feature

learning and feature encoding approaches (e.g. BOW) which have been proposed

in the computer vision and medical image analysis literature, and identifies their

possible limitations.

2.1 Endoscopy image analysis

As explained in Section 1.2.1, different imaging modalities are used to image the

gastrointestinal tract. The images taken from WCE have similar features to conventional,

white-light colonoscopy (WLC) images. The images taken from confocal laser

endomicroscopy, virtual endoscopy and narrow band imaging are very different from

the images taken from WCE and WLC. Therefore, this literature survey only focuses on

the systems proposed for WCE and WLC.

I categorize the systems proposed for endoscopy image analysis by purpose/tasks,

feature representations and classification methods. The purpose of the systems can be

further categorised to consider image-level classification tasks, region segmentation

(region-level detection/classification) methods, lesion quantification, image retrieval,

and topographic segmentation.

2.1.1 Purpose

Table 2.1 shows an overview of the methods proposed for (a) image classification, (b)

region detection/classification, (c) lesion characterisation, (d) image retrieval, and (e)
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topographic segmentations for WLC and WCE images.

Image classification aims to assign the whole image to one of several classes, e.g.

normal vs abnormal [72, 113, 158], informative vs non-informative[70]. Supervised

classifiers are generally used.

Region segmentation (region detection/classification) approaches segment regions

of interest in images, e.g. abnormal region segmentation, polyp segmentation. Both

supervised and unsupervised approaches have been reported.

Supervised approaches require region-level annotations in order to train classifiers,

e.g. labelling regions into normal vs abnormal [91, 92] or normal vs bleeding [88, 89].

Unsupervised approaches rely on pre-defined rules, e.g. thresholding schemes on colour

values [63], and do not therefore need annotated images. The rules must be devised in

close collaboration with clinical experts.

Table 2.1 shows that a higher amount of work has been directed to region detection

and classification than to other tasks. Since bleeding is an important indicator (e.g.

bowel cancer), the majority of the work reviewed concerns “normal vs. bleeding”

classifiers. Polyp detection is also much investigated in the literature. Polyps are

abnormal growths and carry a high risk of developing into cancer [8]. Crohn’s disease,

ulcers and cancers have been considered for automatic WCE and endoscopy image

analysis [65, 109].

Lesion characterisation / quantification systems can be thought as a special kind of

classifiers assuming a specific type of abnormality and classifying images into a set of

abnormality varieties, e.g. classifying Crohn’s disease images into mild or severe [76],

automatic grading of celiac disease images [32]. Image ranking methods have also been

proposed for lesion quantification (e.g. Crohn’s disease [75]) where a ranking score

indicates the lesion severity.

Image retrieval from large image repositories has been reported for endomicroscopy

[11, 12], but, to my knowledge, not for WLC or WCE images. The image of a specific

lesion observed during or after the examination could be used as query to retrieve

similar, annotated images, to assist with the final clinical decision. For instance, [176]

reports an iterative process which updates the weights of the features based on the user’s

interaction with the system for retrieval of endoscopy images.
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Purpose endoscopy type Reference

Image classification

Normal vs bleeding WCE [16, 39, 70]

Normal vs abnormal

WCE [72]

endoscopy [158]

colonoscopy [113, 119]

Normal vs ulcer WCE [182, 184]

Polyp vs non-polyp WCE [183, 185, 190]

Informative vs non-informative WCE [70]

Normal, Crohn’s disease and other
abnormalities

WCE [20]

Normal, bleeding, polyps, ulcer and other
abnormalities

WCE [98]

Region segmentation (region detection/classification)

Bleeding detection WCE [63, 64, 77, 80, 88–90, 106, 135]

Polyp detection

WCE [105, 149]

endoscopy [165]

colonoscopy [10, 44, 57, 74, 121]

Tumour region endoscopy [67]

Polyp and ulcer region WCE [65]

Normal vs Abnormal endoscopy [91, 92]

Malignant vs benign tumour endoscopy (gullet) [109]

Normal vs Cancer endoscopy [66, 154]

Normal vs gastritis endoscopy (stomach) [153]

Normal, Crohn’s disease and others WCE [76]

Lesion quantification

Crohn’s disease(mild, severe) WCE [75, 76]

Celiac disease endoscopy [32]

Tumour (malignant vs benign) endoscopy (gullet) [109]

Image retrieval

Image retrieval endoscopy [176]

Topographic segmentation

Topographic segmentation WCE [36, 37]

Table 2.1: Existing endoscopy image analysis systems for different purposes

Topographic segmentation approaches segment the gastrointestinal tract into major

topographic areas, for example, stomach, small intestine, and large intestine. According

to medical specialists, this can reduce exam annotation times by up to 12% [36, 41]. For

instance, MPEG 7 visual descriptors were used for topographic segmentation in [36, 41].
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2.1.2 Features and representations

Texture, colour, shape, or combination of them have been used for endoscopy image

analysis. Table 2.2 shows an overview of the existing approaches proposed for

endoscopy image analysis.

2.1.2.1 Texture features

Texture is an important property for medical images, capturing the structure of the

variation of intensity patterns. Various texture features have been proposed in the

literature for general image analysis [124, 177, 189]. For example, Zhang et al.

[189] categorized these features into (1) statistical, (2) model-based, and (3) structural

features. Statistical texture features capture statistical information about the local

spatial distribution of pixel values. e.g. gray-level co-occurrence matrices, LBP. In the

model based approaches, a texture image is modelled as a probability model or as a

linear combination of a set of basis functions. Model based approaches include, Markov

model [35], Gabor filters [58], etc. In structural methods, texture is viewed as consisting

of many textural elements arranged according to some placement rules. Commonly

used element properties are average element intensity, area, perimeter, eccentricity,

orientation, etc [14]. However, in this section I only focus on the texture features which

were proposed for endoscopy image analysis.

Gray level co-occurrence matrices (GLCM), LBP and texture spectrum (TS) have

been used as texture features in the spatial as well as in the frequency domain in

endoscopy image analysis. A global image representation is normally obtained by

computing statistical representations (e.g. histogram) of these features.

GLCM [50] captures the distribution of co-occurrence of intensity values of pixels

in local neighbourhoods. Statistical measures (e.g. contrast, energy) on GLCM in

frequency or spatial domain are often a basis to generate more complex texture

features [67, 98], although these statistics have also been used directly, e.g. to

detect pre-cancerous polyps [121]. A GLCM-based feature is the colour wavelet

covariance (CWC) [67] whose entries capture the covariance of statistical measures

of co-occurrence of wavelet coefficients between colour channels. CWC has been used

to detect polyps [67] and to classify WCE images into 5 different categories (normal,
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bleeding, ulcer, polyps and unclassified defects) [98]. CWC-related measures have been

used to detect colorectal lesions [121].

LBP [126] and TS [52] are features describing the local texture around each pixel

by comparing and thresholding pixel difference in local neighbourhood. In contrast

to LBP, three-level thresholding is used in TS. Statistics of LBP/TS have been used,

e.g. for polyp detection [190], bleeding detection [89], and normal-abnormal image

classification [66, 72, 113].

Gabor filters are Gaussian functions modulated by oriented complex sinusoidal

signals [188]. Gabor filters capture low-level oriented edges and are widely used for

texture segmentation [188, 189]. They have also been explored for detecting polyps in

WCE images [149] and to classify chromoendoscopy and narrow-band imaging into a

set of predefined categories (normal, precancerous, and cancerous)[137–140].

SIFT features, on the other hand, captures the histograms of local intensity

gradients. SIFT features have been employed for ulcer vs normal image classification

of WCE images [182].

2.1.2.2 Colour features

Colour is a salient feature for bleeding detection. Histograms and other statistics in

different colour spaces (e.g. RGB or HSI) have been used for bleeding detection in

WCE images [80][16][39][158]. Colour histograms reportedly perform better than

CWC features for classifying colonoscopy frames as informative (e.g. with folds,

lumen, abnormalities) or uninformative (i.e. poor-quality images not useful for decision

making), and as containing bleeding or not [70].

Most of the endoscopy image classification approaches compute global colour

histograms (from the entire images), failing to capture local image properties. In [70]

colour histograms computed from non-overlapping image blocks are concatenated to

get a feature representation, which encodes spatial/location information of the blocks

and therefore is not desirable for endoscopy images.
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2.1.2.3 Shape-based features

Shape-based image features have also been tested in endoscopic image analysis, e.g.

ellipses to approximate the contours of polyps [57], edge orientation histograms, part

of MPEG-7 visual descriptors for Crohn’s disease classification [76], and for topographic

segmentation of WCE videos [36, 38].

2.1.2.4 Combination of texture, colour and/or shape-based features

Combining different features may capture richer image representation than any

individual feature type. In practice, colour and texture features are often

combined together, e.g. colour histograms are combined with TS-based features for

normal-abnormal image classification [158], with the statistics of discrete wavelet

transformations (DWT) for lesion detection [91], and with LBP histograms to detect

bleeding [89]. Edge orientation histograms, part of MPEG-7 visual descriptors,

together with colour and texture features such as dominant colour and homogeneous

texture, have also been used for Crohn’s disease classification [76] and for topographic

segmentation of WCE videos [36, 38].

Finally, a few approaches based on feature encoding (e.g. BOW) with features such

as SIFT have been reported, e.g. for ulcer-normal WCE image classification [182], and

normal-abnormal colonoscopy image classification [113].

In contrast to the above approaches, Yuan et al. use saliency information for polyp

classification [183, 185] and ulcer detection [184] in WCE images. In their approach

the encoded features computed from the salient and non-salient regions of an image are

combined together to get the final image representation. This approach show improved

performance compared to the ones where the saliency information is not considered.

2.1.3 Classifiers for endoscopy image analysis

In endoscopy image analysis, SVM and artificial neural networks (ANN)-based

approaches have been widely used to classify and/or detect lesions. Table 2.2

summarizes the different classifiers which have been used by existing approaches.
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Poh et al. [135] propose a hierarchical ANN ensemble for bleeding detection in

WCE images. In their approach, first each image is divided into blocks (small rectangular

image regions), then blocks into cells. An ANN is trained on cells to classify them into

bleeding/non-bleeding cells. Then the cell-level classification responses are used to train

a block-level ANN to classify blocks. The final classification decision of each block has

been computed based on the outputs of the cell and the block-level classifiers.

Kodogiannis et al. [72] propose an ANN-based classifier fusion approach, which

combines multiple classifiers from the features extracted from different colour channels

for normal-abnormal image classification. However, as there is no comparison given

with other classifiers such as SVM, or ANN (without fusion) it is hard to say whether

this classifier fusion approach improves the classification performance or not.

Since the shape and the size of the possible abnormalities vary, single-size patch

analysis may not provide sufficiently discriminative feature vectors. Therefore, Peng et

al. [91, 92] propose a multi-size patch-based classifier ensemble to detect abnormal

regions (polyps, tumours, inflammation, bleedings, ulceration and diverticula) in

colonoscopic images. Different sizes of overlapping patches are extracted, and a

classifier is trained for each patch size independently. In the classification stage, features

from each patch size are passed to this ensemble classifier to get the classification score,

and then these scores are then aggregated to get the final decision. This multi-size patch

classifier ensemble approach shows improved performance over the classifier which is

trained on single-size patches.

Classifier cascades using SVM classifiers have also been used in [20, 76] to classify

images into normal, mild and severe Crohn’s disease. In this approach, first the images

are classified into normal vs lesions, and then the lesion images are further classified

into mild vs severe.
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2.2 Image representation using visual words

In image classification, image descriptors/features play an important role as they capture

image/region properties, such as colour, shape, edges, texture, etc. In general, there

are two approaches to describe an image using descriptors, global and local. The

global descriptor captures the overall statistics of an image. On the other hand, the

local descriptors capture the local image properties. Various global descriptors have

been proposed, for example colour histograms [155], GIST descriptors [128]. These

global representations may not well capture the local image properties, and may not

be invariant to image and object transformations. On the other hand, local descriptors

(e.g. SIFT [87, 104]) capture the local image properties such as local shape, texture,

etc. and they are designed to be robust to image transformations. Since many local

descriptors can be extracted from each image, an aggregation strategy is necessary to

get an image-level representation from the extracted local features. Feature encoding

approaches such as BOW together with feature pooling strategies are often used for this

purpose.

Figure 2.1: Pipeline of feature encoding approaches. Local features extracted from
an input image are encoded using a pre-trained dictionary. The encoded-features are
then pooled to get an image-level representation, on which the classification is based
on (image was extracted from [47]).

The major steps involved in feature encoding-based image classification approaches

are (Figure 2.1) local feature extraction, encoding, aggregation/pooling and classifier

learning. In the feature extraction stage, low-level features which describe the local

image properties are extracted. Then they are vector-quantised using a pre-trained

dictionary to obtain a fixed size mid-level representation for each local feature, called the

encoded-features. These encoded local features from each image are then aggregated by

a pooling step to get a vector which describes each image (image-level representation).

Finally the image-level representations from the training images are used to build a
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classifier to separate different classes. In the testing, the image-level representation of a

test image is given as the input to the trained classifier to predict its label.

Various approaches have been proposed to improve each step of this pipeline.

They mainly focus on: what kind of, and how the local features are extracted (e.g.

sparse vs dense feature extraction [125]); how the dictionary is built (e.g. unsupervised

manner [33, 34], supervised manner [108]), how to effectively encode each feature

using the dictionary (e.g. use of different cluster-statistics [60]), and how to aggregate

the encoded features effectively so that the final image representation will capture

discriminative information (e.g. different pooling mechanisms [61, 181]).

2.2.1 Feature extraction

Various local descriptors have been proposed in the literature to effectively capture the

local image properties, for example, SIFT [104] descriptors capture local shape/texture,

LBP [126] and BRISK [87] descriptors capture texture features.

(i) Interest point sampling (ii) Dense sampling

Figure 2.2: Example descriptor sampling strategies; (a) interest points-based sampling,
and (b) dense sampling (image was obtained from [47]).

There are two sampling methods generally used for feature extraction (Figure 2.2):

(i) dense sampling, where the feature extraction is based on a regular grid of points

placed over the images, and (ii) interest points, where special points in the images are

identified by a detector (e.g. Harris detector [51]) and feature descriptors computed
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around those points. Dense feature sampling seems to lead to better performance

compared to interest points detectors for image classification [125].

2.2.2 Feature encoding

Feature encoding methods transform the low-level (or local) image descriptors into

a mid-level representation called the encoded features using a pre-trained dictionary.

Various feature encoding methods such as BOW [152], Sparse Coding [168, 178], Fisher

Vectors [129], and Vector of Locally Aggregated Gradients [60] have been proposed in the

literature.

2.2.2.1 Bag-of-Words

BOW is widely applied as a feature encoding method for medical [113, 120] as well

as natural [146] image classification. In BOW local features sampled from training

images are clustered to build a dictionary (codebook). This dictionary represents a set

of visual words (clusters or dictionary elements) which are then used to compute a BOW

frequency histogram as a feature vector representation of any given image. BOW uses

hard quantisation where each local image descriptor is assigned to only one visual word.

2.2.2.2 Sparse coding

Sparse coding (SC) has shown improved performance over BOW for image classification

[178]. In SC each local image descriptor is reconstructed using weighted combination

of a few dictionary elements.

Locality-constrained linear coding (LLC) [168], on the other hand, enforces locality

instead of sparsity. LLC utilizes the local linear property of manifolds to project

each descriptor into its local coordinate system [168]. Let Xi ∈ Rd×Ni be a matrix

in which each of the Ni columns is a d-dimensional local descriptor extracted from

an image Ii, i.e. Xi = [xi1,xi2, . . . ,xiNi ]. Given a codebook with M entries,

B = [b1,b2, . . . ,bM ] ∈ Rd×M , LLC uses the following criterion to compute the codes

C = [ci1, ci2 . . . ciNi ].
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argmin
C

Ni∑
j=1

‖xij −Bcij‖2 + λ‖dij � cij‖2

s.t. 1T cij = 1, ∀ij

(2.1)

where � denotes the element-wise multiplication and,

dij = exp

(
dist(xij , B)

σ

)
(2.2)

where dist(xij , B) =
[
‖xij − b1‖22, . . . , ‖xij − bM‖22

]T and σ is a decay parameter. A

fast approximation to LLC was described in [168] to speed up the encoding process.

Specifically, instead of solving Problem (2.1), the K(with K < d < M) nearest

neighbours of xij in B were considered as the local bases B̄ij and a much smaller linear

system (Equation (2.3)) was solved to get the local linear codes.

argmin
C

Ni∑
j=1

‖xij − B̄ijcij‖2

s.t. 1T cij = 1, ∀ij

(2.3)

The image representation of an image Ii is then obtained by aggregating (pooling)

the sparse codes associated with the local descriptors.

2.2.2.3 Fisher vectors

Fisher vectors (FV) capture additional information about the distribution of the image

descriptors compared to the count (0th-order) statistics in BOW. FV has shown improved

performance over BOW and SC for image classification in [130]. In FV, the dictionary is

first modelled as a Gaussian mixture model (GMM) p(x|Θ):

p(x|Θ) =

M∑
m=1

πmp(x|µm,Σm)

p(x|µm,Σm) =
exp−

1
2

(x−µm)T Σ−1
m (x−µm)√

(2π)d det(Σm)

(2.4)

where Θ = (π1, µ1,Σ1, . . . , πM , µM ,ΣM ) are the parameters of the GMM.

πm ∈ R+ (
∑

m πm = 1) , µm ∈ Rd and Σm ∈ Rd×d are respectively the weight, the
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mean and the covariance of the mth Gaussian. GMM uses a soft descriptor-to-cluster

assignment:

qm (xij) =
πmp(xij |µm,Σm)∑M
l=1 πlp(xij |µl,Σl)

(2.5)

In FV each cluster is then represented based on the derivative of the GMM with respect

to its parameters {µm} and {Σm} (1st and 2nd order statistics), i.e.

Giµm =
1

N
√
πm

Ni∑
j=1

qm (xij) Σ
− 1

2
m (xij − µm)

GiΣm
=

1

N
√

2πm

Ni∑
j=1

qm (xij)
[
(xij − µm)T Σ−1

m (xij − µm)− 1
] (2.6)

The final image description is the concatenation of Giµm and GiΣm
for all m = 1, . . . ,M ,

leading to a dimensionality of 2Md. For e.g. SIFT features with a dictionary size of 64

will leads to an image level representation of size 2× 64× 128.

2.2.2.4 Vector of locally aggregated descriptors

The vector of locally aggregated descriptors (VLAD) [60], an approximation of FV, uses

k-means to learn the dictionary. VLAD uses the 1st-order statistics to represent each

cluster Qm; the mth cluster representation of an image Ii can be given as:

vim =
∑

xij∈Qm

xij − µm (2.7)

The image representation by VLAD is the concatenation of vim for all m = 1, . . . ,M ,

leading to a dimensionality of Md.

2.2.3 Pooling

BOW, FV and VLAD use sum pooling to aggregate the local codes to get an image-level

representation. In addition to the sum pooling, max pooling is also used in SC [24].

Let zi =
[
z1
i , . . . , z

M
i

]T be the image level representation of an image Ii, where M

is the dimensionality of zi, e.g. for BOW M represents the size of the dictionary. ckij

represents the jth encoded feature from image Ii.
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Max-pooling can be defined as:

zki = max |ckij |, j = 1, . . . , Ni. (2.8)

and sum pooling as:

zki =

Ni∑
j=1

|ckij | j = 1, . . . , Ni. (2.9)

where, zki and ckij are respectively the kth element of zi and cij .

The sum or max pooling extracts statistical information from all the encoded

feature vectors over the entire image, without considering information on the spatial

layouts of local features in the image. This may reduce the discriminative power of

the representation. To solve this issue, region-based pooling was proposed, which

firstly divides an image into fixed spatial pyramid (SPM) regions, and then the pooled

image features from each region are concatenated to get the final image representation

[178]. Various region-based versions include learning a set of rectangular regions

instead of fixed ones [61], applying weights to different regions based on saliency

[179], and assigning each local feature to multiple SPM regions with weights [27].

Since the final image representation using these region-based pooling methods is usually

obtained via direct concatenation of region-based pooled representations, the final

image representation can capture the location information. This location or global

structure information is very useful for natural images, for example the sky is always

in the upper part of the image. Unlike natural images, colonoscopy images have less or

no spatial structures therefore this direct concatenation region-level pooled results may

not be appropriate.

2.3 Feature learning approaches

Local image descriptors play an important role in many computer vision systems.

Various descriptors, e.g. SIFT [104], LBP [126], BRISK [87] have been proposed for

different purposes, including image classification [113, 168], and feature matching [87,

103]. Among them SIFT [104] is the most widely used descriptor capturing a set of local

orientation histograms. Since most of these descriptors are hand-crafted, they may not

be optimally discriminative for classifying/retrieving images from a particular domain,
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e.g. colonoscopy or histology. On the other hand, recent machine learning techniques

have explored learning domain-specific descriptors, showing improved performance

compared to hand-crafted ones, for example, in medical image segmentation [19],

image retrieval [132, 150, 151], and interest point matching [26, 174, 175]. However,

these approaches assume that labelled data, e.g. region-based annotations or a training

set of labelled image patches, are available to learn the feature descriptors.

The approaches proposed so far for feature learning can be categorised into

unsupervised, supervised and weakly-supervised, based on the annotations used for

learning. Let xij represents the jth local feature extracted from image Ii . The

unsupervised approaches do not require labels to learn the feature representations,

hence the training set used to learn the features in the unsupervised approaches is in

the form of {xij}. Supervised approaches need labels for each individual feature; they

require a training dataset in the form of {xij , yij}, where yij is the label of xij . On the

other hand, weakly supervised approaches do not require labels for individual features,

but assume that the image level labels are given for the training set, i.e. {{xij}, yi},

where yi is the label of the image Ii. The following section concisely reviews the existing

feature learning approaches under these categories.

Various discriminative feature learning approaches for recognizing faces have

been proposed, e.g. [81, 82]. However, face recognition is a different problem as

face images are usually aligned with each other. The approaches in [81, 82], which

were proposed to learn discriminative features for face recognition, make use of this

alignment. Differently from face images, colonoscopy and histology images do not have

such a property, hence these approaches cannot be applied, and are excluded from this

review.

2.3.1 Unsupervised feature learning

Unsupervised feature learning aims to learn a set of filters which efficiently represent

the data using an unlabelled dataset. Various unsupervised feature learning approaches

have been proposed, which includes Principal Component Analysis (PCA), Local Linear

Embedding (LLE), and unsupervised dictionary learning such as K-means clustering, and

SC. These techniques are often applied on raw pixel values as well to features extracted

from image patches.
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PCA and LLE are dimensionality reduction techniques, projecting high-dimensional

inputs into a low-dimensional space while preserving important information. After the

projection a supervised classifier is often learned based on the projected feature space

to separate different classes. PCA is a linear dimensionality reduction technique which

finds a low-dimensional space in which the variance of the data after the projection

is maximal. PCA-based approaches have been used for image classification, e.g. in

[28, 68, 142]. LLE [144], on the other hand, is a non-linear, neighbourhood-preserving

low-dimensional embedding technique, successfully applied to image classification.

Applications include digit classification [42] and prediction of Alzheimer’s disease from

brain MRI data [101].

Unlike PCA and LLE, unsupervised dictionary learning approaches aim to find a set

of prototypes which best represent the original data. These prototypes are subsequently

used to get an image representation for a given image, based on the local patches (raw

pixels or features extracted from patches) from that image.

K-means is one of the widely applied technique to learn these prototypes, by

grouping the inputs into a set of clusters. K-means techniques are widely used for

classification, e.g. K-means on raw image patches [33] and features extracted from

image patches [146].

SC aims to reconstruct the data using an over-complete dictionary (number of

dictionary elements > size of the input). SC represents the optimal dictionary that can

be used to reconstruct a set of training samples under sparsity constraints on the feature

vector. For given data X (e.g. a set of vectorised patches), and the matrix B whose

columns are the dictionary elements, feature vectors Z∗ is obtained by minimising the

following energy function [178],

E(X,Z,B) = ‖X−BZ‖22 + λ‖Z‖1.

Z∗ = arg min
Z

E(X,Z,B).
(2.10)

where λ is a regularisation parameter. SC and its variants (e.g. Locality Constrained

Linear Coding [168]) are widely applied for natural [33, 59, 168, 178] as well as medical

[120] image classification.
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Auto-encoders (AE) [54, 145] also aims to reconstruct the data using an

encoder-decoder paradigm. Compare to SC, AE use non-linear activation functions in

the encoding stage. The encoder maps an input x to hidden representation z = σ(Bx),

where B is a weight matrix, and σ is a non-linear activation function, typically a

sigmoid function σ(Bx) = 1
1+exp−Bx . The decoder maps the hidden representation z

back to a reconstruction u = BT z. AE learns the weight matrix B by minimising the

reconstruction error of the training set:

arg min
B

N∑
i=1

‖BTσ(Bxi)− xi‖22. (2.11)

where N represents the number of training samples. Several variants of AE have also

been proposed to improve the original version, e.g. [141].

Inspired by the multi-layer architectures of deep neural networks, various

approaches have been proposed which stack simple learning blocks (such as AE), and

show improved performance compared to the single-layer approaches [59, 78].

2.3.2 Supervised feature learning

Various approaches in the form of supervised feature learning have been proposed to

learn descriptors which are discriminative for tasks such as feature matching [26, 55,

174, 175], image retrieval [132], object [148] and vessel [19] segmentation. These

approaches use labelled data for learning in the form of matching and non-matching

feature pairs [26, 55, 132, 174, 175], or segment-level labels [19, 148].

These approaches mainly learn a set of descriptor parameters or configurations

of the descriptors such that the learned descriptors are discriminative for specific

tasks. For example, Winder et al. [174, 175] examine a series of building blocks for

descriptor construction which consists blocks such as, pre-smoothing, transformation,

spatial pooling, and normalisation. The optimal configuration of each block (e.g. the

configuration of the pooling regions in the pooling block) is selected in a way that the

resultant descriptor maximizes the area under the ROC curve for descriptor matching.

Selecting the optimal pooling region configurations from a set of pre-defined ones is

an optimisation problem which cannot be solved analytically. In [26], an approach

similar to that of Hua et al. [55] is introduced, which replaces the pooling block by
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an embedding block. The embedding block applies a dimensionality reduction on the

original local image patch, hence the optimisation can be done analytically.

A similar idea, where feature learning is formulated as selecting and weighting a

set of pooling regions (PR) among a large set of candidate ones, has been proposed by

Simonyan et al. [150, 151]. The PR configurations are constrained to be symmetric, and

are grouped into rings (Figure 2.3). Hence, the PR selection is performed at the ring

level. To determine which rings to select, a non-negative weight wk is assigned to each

ring, and these weights are learnt by minimising the distance between the matching

feature pairs while maximizing the distance between the non-matching feature pairs.

The learned descriptors show improved performance compared to the hand-crafted SIFT

features for large-scale image retrieval on two public datasets, Oxford buildings1 and

Paris buildings2.

Figure 2.3: Pooling region candidate rings. The green circle shows a ring of single
PR, the red and the blue circles show a ring with eight PRs, and a ring of four PRs
respectively. Each ring corresponds to the sub-vector in the final descriptor, and the
weight wi is applied to the ith ring, which determines whether that ring has to be
selected (wi > 0) or not (wi = 0) (shown on the right).

Shotton et al. [148] propose semantic texton forest features, where the local

features are given by the output of a learned decision forest. A decision forest from

the given training data has been learned, where the nodes in each tree of that forest

apply simple functions on raw pixels which are inside image patches (Figure 2.4). These

simple functions include sum, difference, and absolute difference of a pair of pixels. This

approach shows state-of-the-art performance for segmentation on the Pascal VOC-2007

dataset3.
1http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
2http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/
3http://host.robots.ox.ac.uk/pascal/VOC/

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/
http://host.robots.ox.ac.uk/pascal/VOC/
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(i) an image patch. (ii) a tree in the forest.

Figure 2.4: Semantic texton forest features. The split nodes in semantic texton forests
use simple functions of raw image pixels within a d × d patch: either the raw value of
a single pixel, or the sum, difference, or absolute difference of a pair of pixels (red)
(figures extracted from [148]).

A similar approach which transforms regions (instead of image pixels) which are

inside the local image patches into a non-linear space has been proposed by Trzcinski

et al. [160, 161] for viewpoint and illumination invariant descriptor matching. Here a

metric which transforms the original Euclidean space to some other space, where the

similar and dissimilar patches can be easily separated is learned together with a set of

local non-linear filters. In this approach, image patch appearance is modelled using

non-linear filters evaluated within the image patch that are effectively selected with

boosting (Figure 2.5).

Let ui and vi be two image patches, and yi the label indicating whether they are similar

(+1) or dissimilar (−1). The method proposed by Trzcinski et al. [160, 161] learns

the descriptor H(ui) as a non-linear transformation of the original image patch ui.

The non-linear transformation H(ui) is formed by a collection of non-linear response

functions {hk}Kk=1. Each function hk(ui) operates on a rectangular region r within the

patch ui as shown in Figure 2.5. This non-linear mapping is learned by minimising the

following exponential loss:

L =

N∑
i=1

exp (−yif(ui,vi)) , (2.12)
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Where N is the total number of training patch pairs. The similarity function f(ui,vi) is

given by

f(u,v) = h(u)TAh(v) (2.13)

=
K∑

i,j=1

αijhi(u)hj(v) (2.14)

where A ∈ RK×K is a distance metric defining a space where any two patches can

be easily separated into similar (matching) or dissimilar (non-matching). αij are the

entries of A. In [160, 161] the non-linear response functions ({hk}Kk=1) are obtained

via simple weak-learners (decision stumps) which threshold the region-based pooled

responses (Figure 2.5). K represents the considered number of local regions inside the

patch (or the number of weak learners). The regions, the thresholds of the weak learners

which acts on the selected regions, and the metric A have to be selected/learned using

the training set with labelled patches.

Figure 2.5: Learning image descriptors with boosting. An image patch (u) is
represented by the black rectangle. Blue, red and green rectangles (ri) show the
selected pooling regions inside the image patch. The pooled responses from these
regions are mapped to a non-linear space (hi(ri)). The resultant descriptor H(u) can
be given as [h1(u), . . . , hK(u)]

T .

Supervised feature learning approaches have also been explored for medical image

analysis. An approach similar to [160, 161] has been proposed by Becker et al. [19] to

segment vessels in the retina and confocal microscopy images. In [160, 161] the pooling

function to aggregate the information from a region r is pre-defined. Therefore, Becker

et al. [19] learn these functions automatically in addition to the boosting classifier

which classify pixels into vessel or non-vessel using a dataset with pixel-level labels.

Since learning both may lead to over-fitting, a regularisation term which encourages the

learned adjacent kernels to be similar to each other is added to the objective function.
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This joint learning shows improved performance compared to existing approaches for

vessel segmentation in the retina and confocal microscopy images. However, it is unclear

whether learning these functions instead of fixing them as in [160, 161] improves the

classification as no comparisons are given.

The approaches proposed in [160, 161] and [19] use boosting to select the regions

(support of the kernels) and the weak-learners (kernels) which acts on these regions.

However, boosting is a greedy approach: once a kernel or its support is selected in

a particular boosting iteration, its values cannot be changed in subsequent iterations.

These may need to learn an increased number of kernels, compared to an approach

where the kernels can be updated during the learning process.

2.3.3 Weakly supervised feature learning

Unlike the approaches reviewed in Section 2.3.2, weakly-supervised approaches can

learn discriminative local features using image-level labels. Therefore, they avoid the

need for expensive annotations in the form of patch-level or region-level labels, which

are needed for supervised feature learning. They are therefore, in principle, more

applicable to the medical imaging domain, where obtaining such labels is difficult due

to the limited time available from specialists.

Few approaches try to automatically identify similar or dissimilar patches as a

pre-processing step for feature learning for descriptor matching. For example Simonyan

et al. [151] detect correspondences between images which contain a common image

part, and use the identified patches to learn the features in a supervised manner. A

similar approach has been proposed by Philbin et al. [132] to generate the training data

for learning a discriminative projection for natural image retrieval.

Shotton et al. [148] assign the label of an image as the label for a patch which

is extracted from that image to learn the texton forest (Section 2.3.2) to represent the

local features. The weakly learned texton forest features in this manner give worse

performance compared to supervised learning approach where each patch is individually

labelled as belonging to a particular object or not.

Convolutional neural nets (CNN) [79] have also been used to learn local features

in a supervised or weakly-supervised way. In CNN, a set of convolutional filters and
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a classifier are learned in a unified framework. CNN requires a careful design, and it

is computationally expensive to train, even on the GPU [19]. Usually CNN requires a

very large amount of training data [122]; when this is not available, CNN gives worse

performance than traditional, hand-crafted features and BOW-based feature encoding

methods [122].

Differently from the above approaches, recently, Zuo et al. [192] proposed an

approach which learns a set of filters transforming the local image patches into features.

These filters are learned based on three objectives: (1) the learned features should

preserve relevant information in the original data; (2) the learned filters should be

shareable across different categories; and (3) the learned filters should be discriminative

for different categories. This approach shows state-of-the-art performance for scene

image classification on different datasets such as Scene-15 4, UIUC Sports 5, and MIT

Indoor 6.

2.4 Conclusions and discussion

In this chapter I concisely reviewed the work related to endoscopy image analysis,

feature encoding approaches, and feature learning approaches. It should be noted

that feature learning approaches (supervised/weakly-supervised) reported so far have

not yet been explored for endoscopy image analysis. The approaches proposed for

endoscopy image analysis mainly use a combination of hand-crafted features, which

capture texture, colour and/or shape information. Below I discuss the main limitations

associated with the existing approaches for endoscopy image classification.

• Limits of concatenated colour representations. Colour is a salient feature

for colonosocopy. Some works, e.g. [16, 158], use histograms of intensity

values to capture colour properties, but such global representations fail to

capture local image properties well. In [70], the image is divided into

blocks, and the histograms obtained from the blocks are concatenated to get

an image representation, which are then concatenated into a feature vector.

Such concatenated histogram representations have drawbacks when used with
4http://www-cvr.ai.uiuc.edu/ponce_grp/data/
5http://vision.stanford.edu/lijiali/event_dataset/
6http://web.mit.edu/torralba/www/indoor.html/

http://www-cvr.ai.uiuc.edu/ponce_grp/data/
http://vision.stanford.edu/lijiali/event_dataset/
http://web.mit.edu/torralba/www/indoor.html/
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colonoscopy images. First, they encode spatial/location information of the local

features. Spatial information is useful in natural images; for instance, the sky

appears always in the upper part of an image. In colonoscopy images such

information is absent, limiting the use of concatenated representations. Second,

such representations increase the length of the feature vector, and therefore

increase the computational and memory cost of a classifier. Instead, colour

features could be extracted locally, from image patches, to capture the local image

properties, and can be encoded using any feature encoding approach to compute

the image representation. This representation will avoid the limitations raised by

the global colour histograms, as well as the concatenated colour representations.

Therefore, in Chapter 8 I propose to use local colour histograms together with

feature encoding approaches for colonoscopy image classification, and show

considerable improvements in MCA over the global and concatenated colour

histogram representations.

• Recent feature encoding approaches not yet investigated for colonoscopy.

BOW and SC approaches have been explored for colonoscopy image classification

(e.g. [183, 185]). However, in computer vision various feature encoding

approaches such as VLAD and FV (Section 2.2) have been proposed, and show

improved performance over BOW and SC ([131]) as they capture additional

information of the images compared to BOW and SC. These approaches have

not yet been explored for colonoscopy image analysis. Therefore, in Chapter 8

I explore these approaches for colonoscopy image classification.

• Limitations with the feature encoding approaches. The traditional feature

encoding approaches capture intra-cluster features, for example, BOW capture

information about how many local features fall into a particular cluster. BOW

or other feature encoding methods such as SC, FV and VLAD do not capture how

the local features co-occur in the local image regions. This information may be

important for medical images, for example, a particular type of cell may densely

appear with another type of cell in cancer regions compared to healthy regions

in histology images. This local co-occurrence can be captured using inter-cluster

features. To overcome this, in Chapter 9, I propose an approach to capture

inter-cluster features, in addition to the intra-cluster features which are often
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captured by the traditional feature encoding approaches. My approach shows

improved performance over the traditional feature encoding approaches.

• Supervised/weakly-supervised feature learning approaches not yet

investigated for colonoscopy. The features explored in the current colonoscopy

image classification literature are hand-crafted, hence are not tuned to the specific

characteristics of the problem domain, possibly limiting their discriminative

power. On the other hand, feature learning approaches (Section 2.3) are

becoming popular in computer vision as they automatically learn features which

capture discriminative domain-specific properties. These approaches have not yet

been explored for colonoscopy image analysis. Hence, I propose to learn the local

features based on the given training data and show improved performance over

the hand-crafted features in Chapters 5, 6 and 7.



3
DATASETS AND EXPERIMENTAL

SETTINGS

In this thesis I used four datasets, 2-class colonoscopy, 3-class colonoscopy, ICPR

cell images, and IRMA radiology images. This section explains how these datasets

were generated, the experimental settings, and in which chapters these datasets

were used.

3.1 Datasets

3.1.1 2 class colonoscopy images dataset

I collected white light, air colonoscopy images and 82 white light, air colonoscopy

video clips (each one is less than a minute long) from various sources from the Internet

(mainly from [6]). These videos are in various resolutions and illumination conditions.

Normal videos represent the videos taken from healthy colons and the abnormal videos

represent the videos taken from unhealthy colons. Abnormal videos contain frames

which show different lesions including polyps, cancers, Crohn’s disease, ulcerative

colitis, etc.

Images were extracted from videos in 30 frames/sec rate. The unusable (e.g. very

blurred) images were identified and removed manually. Since the resulting dataset

contains a large set of redundant images, I applied a clustering approach to get a

subset of representative frames from each video. I extracted a set of colour and texture

features to represent each image. Statistics such as mean, standard deviation, skewness,

kurtosis and entropy in each colour channel in the RGB space were considered as the
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colour features. Local Binary Pattern (LBP) histograms were considered as the texture

feature. LBP histograms computed from 3 different scales and from each colour channel

of RGB colour space were concatenated to get the image representation (detail about

LBP can be found in Section 4.2 of Chapter 4). At the first, second and third scales LBP

features were extracted around each pixel from a neighbourhood of radius 1, 2 and 3

respectively. At each scale eight sampling points were considered. Uniform LBP patterns

were considered as they capture frequently occurring local image patterns such as edges,

spots, etc. The dimensionality of the resulting image representation was 546 (3 × 5 for

colour, and 3 × 59 for texture). After feature extraction, I used k-means to get a set of

representative clusters for the images obtained from each video. It is observed that the

movement of the colonoscope is fast in normal videos compared to the abnormal ones as

the corresponding colon segments do not need a careful inspection of the colonic walls.

Therefore the number of clusters were experimentally set to Vi
7 for normal and Vi

10 for

abnormal videos, where Vi is the total number of frames extracted from video i. After

clustering, one image per cluster is randomly selected and added to the final dataset.

Each image in the resulting dataset was annotated into normal (healthy) or abnormal

(containing any lesion, including polyp, ulcer, bleeding, cancer) by a clinician (thanks

to Dr. Adrian Hood, surgical research fellow, Leeds Institute of Molecular Medicine,

University of Leeds, UK), who was blind to the video labels. In total I was able to obtain

1050 normal and 1050 abnormal images. Some example images from the dataset are

shown in Figures 3.1 and 3.2. Since the videos are very short (< 1 min), I reported

experiments based on random splits (see experimental settings in Section 3.2). These

experiments show the effectiveness of the proposed features compared to the baseline

features. However, future work will focus on training and testing images from different

videos (see Sections 10.3 and 10.4 for the limitations of this dataset and for the future

work).

3.1.2 3 class colonoscopy images dataset

This dataset is an extension of the 2-class colonoscopy dataset. In this dataset very

unclear (or uninformative) images from the normal and the abnormal classes were

removed manually. In this dataset, the uninformative frames which were manually

identified when generating the 2-class dataset were added into a new class called the

"uninformative”. In these uninformative images the mucosa is largely invisible due
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to blur, overexposure, smoke, etc. After removing the unclear images (where the

colonic mucosa is hardly visible) from the normal and abnormal classes, the new 3-class

colonoscopy dataset contains 1000 abnormal, 900 normal, and 900 uninformative

images. Some images from the uninformative class are shown in Figure 3.3.

Figure 3.1: Examples of normal images from the 2-class colonoscopy dataset.

3.1.3 ICPR 2014 cell images dataset

This dataset is a part of the contest "Performance Evaluation of Indirect

Immunofluorescence Image Analysis Systems”1 organised by ICPR 2014. This competition

consists of two tasks, Task 1 - classifying individual cell images, and Task 2 - classifying

specimens which contains groups of cells. In this thesis I use only the Task 1 dataset.

The images in this dataset (Task 1) were collected between 2011 and 2013 at the

Sullivan Nicolaides pathology laboratory, Australia. For this task, a set of training images

was provided to the contest participants. Submitted systems were then evaluated on a

separate hidden test set which was privately maintained by the contest organisers and

not released to the participants.
1http://i3a2014.unisa.it/

http://i3a2014.unisa.it/
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Figure 3.2: Examples of abnormal images from the 2-class colonoscopy dataset.

Figure 3.3: Examples of uninformative images from the 3-class colonoscopy dataset.
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(i) Homogeneous (ii) Speckled (iii) Nucleolar

(iv) Centromere (v) Nuclear
Membrane

(vi) Golgi

Figure 3.4: Sample images from the ICPR 2014 Task 1 dataset (individual cell
classification)

The Task 1 dataset consists of 68, 429 images of individual cells extracted from 419

patient positive sera (approximately 100−200 cell images per patient serum) along with

their binary segmentation masks. 13, 596 images were available during training. The

remaining 54, 833 images were used for the hidden test set to evaluate performance

of systems submitted to the contest. The specimens were automatically photographed

using a monochrome high dynamic range cooled microscopy camera. Cell images are

approximately 70× 70 pixels in size. The dataset has six pattern classes: homogeneous,

speckled, nucleolar, centromere, nuclear membrane, golgi. An example image from each

of the six classes is given in Figure 3.4.

3.1.4 IRMA dataset

The Image Retrieval in Medical Applications dataset2 (IRMA) contains 15,363

anonymous radiographs from 57 classes of various human body parts. Since the number

of images is very unbalanced across the classes, only 20 classes which contain at least

200 images were randomly selected. The images in each of the selected class were

randomly sampled such that each class will contain 200 images. Some examples of

images from different classes of this dataset is given in Figure 3.5.
2courtesy of TM Deserno, Dept. of Medical Informatics, RWTH Aachen, Germany. http://ganymed.

imib.rwth-aachen.de/irma/index_en.php

http://ganymed.imib.rwth-aachen.de/irma/index_en.php
http://ganymed.imib.rwth-aachen.de/irma/index_en.php
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Figure 3.5: Examples of images from the IRMA dataset.

Dataset Class name No of images Chapters

2-class colonoscopy Abnormal 1,050 Chapter 4, 5, 6
Normal 1,050

3-class colonoscopy Abnormal 1,000 Chapter 4, 5, 6
Normal 900
Uninformative 900

ICPR cells Homogeneous 2,494 Chapter 4, 5, 6, 9
Speckled 2,831
Nucleolar 2,598
Centromere 2,741
Nuclear Membrane 2,208
Golgi 724

IRMA 20 classes 200/class Chapter 9

Table 3.1: Detail of the classes in different datasets, and the chapters in which these
datasets were used.
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3.2 Experimental settings

To facilitate the comparisons (between different features), I follow the same

experimental settings throughout this thesis. This section explains the settings for

different datasets in detail.

3.2.1 Image preprocessing

For the 2-class colonoscopy, 3-class colonoscopy and the IRMA radiographs datasets the

images were rescaled by keeping their row to column aspect ratio unchanged, such that

the maximum dimension (row or column) of the images was 300 pixels.

The masks of the cells provided with the cell images of the ICPR dataset were not

used in Chapters 4, 5, 6, 7 and 9. In these chapters, prior to the feature extraction,

the cell images were intensity normalised such that 2% of pixels in each cell became

saturated at low and high intensities. Cell masks were used in Chapter 8 when

comparing the proposed method with the state-of-the art methods.

3.2.2 Evaluation metric and experimental setup

In this thesis Mean Class Accuracy (MCA) was used as the evaluation metric. It is defined

as,

MCA =
1

K

K∑
k=1

CCRk (3.1)

where CCRk is the correct classification rate for class k and K is the number of classes.

I randomly sample 300 and 200 images respectively from each class of the 2-class

and the 3-class colonoscopy datasets for training, and I use the rest of the images for

testing. This process is repeated 10 times. The mean and the standard deviation of the

MCAs obtained from these 10 experimental runs are reported.

For the ICPR cells dataset I report the average mean and the standard deviation of

the MCA obtained from two-fold cross-validation experiments, which were repeated 5

times.
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For the IRMA dataset 30 images per class are selected for training and the rest are

used for testing; the averaged MCA over 10 iterations are reported.

I experimented different approaches for normalising the image-level feature

representations prior to classification. This approaches include (1) un-nomalised

representation, (2) L1-normalisation, (3) L2-normalisation, and (3) L2 and power

normalisations [130]. I experimentally found that, overall, the L2 and power

normalisation performs better than other approaches regardless of the feature and

encoding types. Therefore, in all the reported experiments the final image-level feature

representations are normalised by the L2 and power normalisation. Let zi ∈ Rd

represents the image-level representation of an image Ii, where d is the size of the

representation, the L2-and-power normalisations can be given as.

zi ←
sign(zi)|zi|

1
2

‖zi‖2
(3.2)

where |zi|
1
2 applies the square root to each component of zi.



4
THE GENERALISED LOCAL

TERNARY PATTERNS

Local Binary Patterns (LBP) are widely used for texture classification. Several

variants of LBP have been proposed, e.g. Local Ternary Patterns (LTP) to make LBP

resilient to noise, Scale Invariant LTP (SILTP) to make LBP resilient to illumination

changes. But neither LTP nor SILTP are resilient to both noise and illumination

changes. This chapter proposes a generalised variant of LBP called the Generalised

Local Ternary Patterns (gLTP) which captures edge and blob-like features and

makes the LBP resilient to both noise and illumination changes. Experiments on

two datasets (Normal/Abnormal colonoscopy and ICPR cell images) show that

neither LTP nor SILTP gives better performance on either dataset. On the other

hand, the proposed gLTP descriptor gives competitive performance compared to

the best performing descriptors in the datasets, confirming that gLTP is resilient to

noise and illumination.

4.1 Introduction

LOCAL Binary Patterns, proposed by Ojala et al. [126], have proved a very powerful

texture descriptor which has been widely applied for e.g. texture classification

[126], face recognition [56], medical image classification [113, 190]. LBP describes

the local texture around each pixel by comparing and thresholding pixel differences in

a local image neighbourhood. A global image representation of an image is normally

obtained by computing statistical representations (e.g. histogram) of the LBP-based

pixel representations. Several variations of LBP have been proposed, e.g. Local Ternary
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Patterns (LTP) [156] makes LBP resilient to noise, Scale Invariant LTP (SILTP) [94]

makes LBP resilient to illumination changes, uniform LBP[127] captures informative

patterns such as edges, bright and dark spots, and reduces the dimensionality of the

histogram image representation, BlockLBP[96] captures information from larger local

neighbourhood (e.g. larger than 3x3 which is often used by LBP).

In the following sections first LBP and its major variants will be concisely reviewed,

then the proposed gLTP descriptor described in detail, and finally several experiments

comparing gLTP with baseline representations reported.

4.2 LBP and its variants

4.2.1 The standard LBP descriptor

Consider N sampling points distributed uniformly on a circle of radius R around a 2D

point pc in a gray image I (Figure 4.1). LBP can be defined as:

LBPN,R(pc) =
N∑
n=1

qn × 2n−1 where qn =

 1 In ≥ Ic

0 In < Ic.
(4.1)

Ic and In represent the intensity values at the centre point (pc) and at the n-th sampled

image point, respectively. In is bilinearly interpolated when the sampling point does

not coincide with a pixel. Since this operator gives 2N different labels, an image can be

represented as a histogram with 2N bins.

Figure 4.1: The circular (8, 1), (16, 2) and (8, 2) neighbourhoods. The pixel values
are bilinearly interpolated whenever the sampling point is not in the centre of a pixel.

The generation of the standard LBP codes from a 8 neighbourhood is illustrated in

Figure 4.2. Figure 4.3 shows an example image, its corresponding LBP representation
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Figure 4.2: Example illustrating the derivation of the standard LBP codes. The pixels
in this block are thresholded by its centre pixel value, multiplied by powers of two and
then summed to obtain a value for the centre pixel.

(i) original image (ii) LBP labels (iii) LBP histogram

Figure 4.3: Example of input image, its corresponding LBP labels (R=1, N=8) and LBP
histogram. (The higher values (red) in the LBP image correspond to LBP labels with
value 255 and the lower values (blue) correspond to LBP labels with value 0.)

and the LBP histogram. The LBP image (Figure 4.3(ii)) was obtained by transforming

each 3× 3 image patch (Figure 4.3(i)) by its LBP representation (Equation 4.1).

4.2.2 Uniform and rotation invariant LBP

As some of the binary patterns occur more commonly in texture images than others,

an extension of LBP, called the uniform LBP [127], has been proposed. The uniform

patterns describe frequently occurring basic features such as bright spots, dark spots and

edges. A LBP is called uniform if the binary pattern (Equation 4.1) contains at most two

bitwise transitions from 0 to 1 or vice versa when the bit pattern is traversed circularly.

For example, the patterns 00000000 (0 transitions), 01110000 (2 transitions) and

11001111 (2 transitions) are uniform whereas the patterns 11001001 (4 transitions)

and 01010010 (6 transitions) are not. Figure 4.4 shows some examples of uniform

and non-uniform patterns. The resultant LBP representation has a separate label for
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Figure 4.4: Some example uniform (first four images) and non-uniform (last image)
patterns.

each uniform pattern and all the non-uniform patterns are assigned to a single label.

For example when N = 8 the number of patterns produced by the uniform LBP is 59

compared to the total number of 256 patterns produced by the standard LBP ([133]).

Uniform patterns have several advantages: (1) they capture more commonly

occurring local structures, (2) considering the uniform patterns makes the number

of possible LBP labels significantly lower, hence require fewer samples to estimate

their distribution reliably and (3) the dimensionality of the final image representation

is reduced, hence reducing the classification complexity. It has been observed that

considering only the uniform patterns instead of all the possible patterns produces better

recognition results for many applications [133].

Rotation-invariant LBP makes the LBP descriptors invariant to local image region

rotations by rotating the LBP binary codes in a circular bit-wise manner so that the

resultant LBP label will have the minimum value [127].

4.2.3 Local Ternary Patterns

To make LBP robust to noise, a three-level thresholding has been applied in Local Ternary

Patterns (LTP) [156] by the introduction of a user-specified threshold τ (Equation (4.2)).

The LTP histogram representation of an image is obtained by splitting each LTP into two

LBP and then concatenating the two LBP-based representations.

qn(τ) =


1 In − Ic ≥ τ

0 |In − Ic| < τ

−1 In − Ic ≤ −τ .

(4.2)
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An ideal LBP should be robust to illumination changes and (at least) Gaussian

noise. While the introduction of τ makes LTP robust to noise, LTP may sensitive to

changes in illumination (Figure 4.5(iii)).

4.2.4 Scale Invariant Local Ternary Patterns

To counteract illumination variations, a variant of LTP called the Scale1 Invariant Local

Ternary Pattern (SILTP) has been proposed in [94], i.e.

SILTPN,R(pc, a) = ⊕Nn=1qn(a)

where qn(a) =


01 In > (1 + a)Ic

10 In < (1− a)Ic

00 otherwise,

(4.3)

where a is a scale factor and ⊕ denotes concatenation of the 2-bit binary strings qn. Note

that SILTP is not designed particularly for image classification, but the ‘2-bit’ codes can

be converted to ‘ternary’ patterns to generate a histogram representation for an image.

Since SILTP is designed to cope with the changes in illumination it may sensitive to noise

(Figure 4.5).

4.2.5 Other variants

Inspired by the success of LBP in various computer vision applications, different variants

of LBP have been proposed to increase robustness and discriminative power. Since

LBP uses zero as the threshold to compare a pixel with its neighbourhood, several

alternative thresholding techniques have been proposed, e.g. median and mean of the

local neighbourhood is used as the threshold in [49] and [62] respectively. Usually

LBP operates on a small image neighbourhood (3 × 3). To capture larger image

neighbourhoods Gaussian filtering is applied to collect intensity information from an

area larger than the original single pixel in [123], the averaged pixel values in small

image blocks were used in [95]. I described only the major relevant variants. A complete

review on LBP variants can be found in [133].
1The term “scale” here means gray scale pixel value, not spatial scale.
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4.3 Generalised Local Ternary Patterns

LTP and SILTP make the LBP representations resilient to noise and illumination changes

respectively. But neither LTP nor SILTP are resilient to both noise and illumination

changes. Therefore I propose a generalised variant of LBP called the Generalised Local

Ternary Patterns (gLTP) which makes the LBP resilient to both noise and illumination

changes.

4.3.1 Definition

When a scene is illuminated by a single distant light source, the observed luminance

image I(x, y) at point (x, y) can be approximated as the product of the reflectance image

R(x, y) and the illuminance image S(x, y) [69], i.e.

I(x, y) = S(x, y)R(x, y) +G(x, y). (4.4)

Consider two pixels I(x1, y1) and I(x2, y2) in image I, and the difference

D = I(x1, y1) − I(x2, y2). Under a different illumination, using Equation (4.4) D

becomes:

D = [a1I(x1, y1) + τ1]− [a2I(x2, y2) + τ2]

∝ I(x1, y1)− aI(x2, y2)− τ. (4.5)

where a1 and a2 represent the non-uniform illumination applied to the pixels I(x1, y1)

and I(x2, y2), τ1 and τ2 are the sensor noise due to the image capturing device at those

pixels, and a = a2
a1

, τ = τ2−τ1
a1

.

From Equation (4.5) we can observe that LBP is not resilient to noise (Figure

4.5(ii)), as it assumes τ = 0. LTP is not robust to illumination changes (Figure 4.5(iii))

as it considers a = 1. SILTP is robust to illumination changes but it assumes the

noise dependent on pixel values (SILTP can be rewritten as, e.g. qn(a) = 01 when

In − aIc > τ , where τ = Ic). To make the LBP robust to noise and illumination changes,

my formulation considers a ∈ R and τ ≥ 0 (Gaussian noise). The proposed formulation,
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generalised Local Ternary Patterns (gLTP), becomes:

qn(a, τ) =


1 In − aIc ≥ τ

0 |In − aIc| < τ

−1 In − aIc ≤ −τ .

(4.6)

The standard LBP (a = 1, τ = 0), LTP (a = 1, τ > 0) and the SILTP (a ∈ R, τ = Ic) can

be seen as special cases of gLTP. The proposed formulation outputs ternary patterns; I

convert each ternary pattern into two binary patterns as in the standard LTP.

parameters LBP LTP SILTP gLTP
a 1 1 ∈ R ∈ R
τ 0 ∈ R Ic ∈ R

Table 4.1: The gLTP with different parameter settings (Equation (4.6)). LBP is not
resilient to noise, as it assumes τ = 0. LTP is not robust to illumination changes as
it considers a = 1. SILTP is robust to illumination changes but it assumes the noise
dependent on the value of the centre pixel. gLTP is a generalisation of LBP, LTP and
SILTP and robust to both noise and illumination changes.

Figure 4.5 shows an image patch, its three transformed versions (changed

illumination, noise and both) and its LBP, LTP, SILTP and gLTP codes. This figure shows

that LTP is resilient to noise but not to illumination changes and SILTP is resilient to

illumination changes but not to noise. Changing illumination and noise (last row, Figure

4.5), gLTP yields the most stable output compared to the other methods.

4.3.2 Effect of parameters

Here I show qualitatively that the gLTP can capture edge and blob-like features in an

image by appropriate parameter setting. The first row of Figure 4.6 shows a colonoscopy

image from a standard in-air procedure and its LBP, LTP and gLTP codes. The remaining

rows show the original image under different illumination and noisy conditions, and the

codes computed by LBP, LTP, SILTP and gLTP. To mimic the spot illumination which is

often used in colonoscopy procedure, first an un-normalised Gaussian filter was created

with a window size which is equal to 3w and a standard deviation equals to 2w
3 , where

w is the width of the image. Then I randomly selected a point in the image and placed

this Gaussian filter. The pixel values of the image are then multiplied by this filter, and

the resultant values are then clipped at 255 to make sure they are in [0, 255].
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(i) Image patches (ii) LBP (iii) LTP (iv) SILTP (v) gLTP

Figure 4.5: A demonstrative example for the effect of noise and illumination changes
on (b) LBP, (c) LTP (τ = 5), (d) SILTP (w = 0.1), and (e) the proposed gLTP
(w = 0.9, τ = 5). (a) First row: original image patch with 3 × 3 pixels (i.e. s = 1
and G = 0 in Equation 4.4); Second row: noise added to the original image patch
(s = 1 and G 6= 0) shown in red; Third row: the original image patch under a different
illumination (s = 2 and G = 0); Fourth row: the original image patch under a different
illumination with noise added (s = 2 and G 6= 0) (noisy pixels are shown in red);.
LTP is robust to noise but not to illumination changes. LBP and SILTP are robust to
illumination but not to noise. LBP, LTP and SILTP are sensitive to both illumination and
noise (last row). The proposed gLTP is robust to both noise and illumination.

It is clear that LBP, LTP and SILTP (second, third and forth columns) gives different

output codes under different conditions (noise, illumination or both). On the other

hand the codes generated by gLTP capture edge-like features and are less affected by

illumination and noise transformations. Figure 4.7 shows an example histological image

and the resulting LBP, LTP, SILTP and gLTP codes. Since the original cell image itself

is very noisy, LBP and SILTP gives very different outputs under different conditions.

gLTP captures blob-like features and is less affected by the illumination and/or noise

transformations.

Figures 4.6 and 4.7 show the uniform patterns generated by LBP-based

representations computed from N = 8 and R = 2 (Section 4.2.1). Only one binary

code representation is shown for LTP, SILTP and gLTP. The blue and the red colours

represent the uniform LBP labels with values 0 and 59 respectively.
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LBP LTP SILTP gLTP

(a)
original
image

(b)
noise added
to (a)

(c)
illu. changed
image of (a)

(d) illu.
changed &
noise added

Figure 4.6: The effect of noise and illumination changes on LBP, LTP (τ = 10), SILTP
(w = 0.1), and the proposed gLTP (w = 0.9, τ = 10) for an example colonoscopy
image. The colonoscopy image under different transformations and the corresponding
LBP based labels. See text (Section 4.3.2) for more details.

LBP LTP SILTP gLTP
(a)
original
image

(b)
noise added
to (a)

(c)
illu. changed
image of (a)

(d) illu.
changed &
noise added

Figure 4.7: The effect of noise and illumination changes on LBP, LTP (τ = 10), SILTP
(w = 0.1), and the proposed gLTP (w = 0.9, τ = 10) for an example cell image. The cell
image under different transformations and the corresponding LBP based labels. See
text (Section 4.3.2) for more details.
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4.4 Experiments

This section compares the proposed gLTP with the baselines such as LBP, LTP

and SILTP, on two qualitatively different datasets from two independent domains,

Normal/Abnormal colonoscopy and the ICPR cell images, and shows that gLTP gives

competitive performance compared to the best-performing descriptors in the datasets.

The colonoscopy image dataset contains images which were taken under different

illumination conditions, and the images in the ICPR cell dataset are severely affected

by noise.

4.4.1 Experimental setup

Two sets of experiments with different sizes of the local image neighbourhood

for LBP-based descriptors were carried out. The first one uses N = 8

sampling points on a circle of radius R = 1 around each pixel. To capture

larger local neighbourhood the second one uses 3 sets of sampling points

{(N = 8, R = 1), (N = 12, R = 2), (N = 16, R = 3)} around each pixel. From

each image the LBP-based codes were extracted densely with a step size of S pixels

in the horizontal and the vertical directions. Since the colonoscopy images are relatively

large compared to the cell images (Section 3.2) the step size S was set to S = 4

and S = 2 for the colonoscopy and the cell images respectively. In all the reported

experiments in this chapter, the uniform patterns were used for all the LBP-based (LBP,

LTP, SILTP and gLTP) descriptors to get the final image-level histogram representations

as they capture commonly occurring patterns and reduce the dimensionality of the

image representations.

I follow the experimental setup explained in Section 3.2 and report the results.

For colonoscopy dataset I use a SVM classifier (LibSVM [29]) with the exponential

Chi-square kernel defined as:

K(H1,H2) = exp

(
−γ

2

d∑
i=1

(H1i −H2i)
2

H1i +H2i

)
. (4.7)

where H1 and H2 are d-dimensional histograms representing two images, and H1i is

the i-th component of H1. The high number of training images in the ICPR cell dataset
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(∼ 6000) makes it computationally expensive to use the exponential chi-square kernel.

Therefore I use a SVM classifier (LibLinear [45]) with the explicit chi2 kernel mapping

[164]. Since it is an explicit mapping a linear SVM can be used for training, which

makes the training procedure much faster to learn and evaluate than the non-linear

SVM particularly for larger datasets.

The SVM and the kernel parameters were learned using a 3-fold cross validation

applied on the training set of each experimental run.

4.4.2 Parameter selection

At each iteration of the experiment I apply a 3-fold cross validation on the training set

to select the parameters for LTP, SILTP and gLTP. The parameters which give the best

average MCA over these 3-folds of the training set were selected as the best parameters.

Table 4.2 shows the ranges of the parameters used for parameter selection.

LBP variant a τ

LTP - [5, 10, 20, 30, 40]

SILTP [0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9] -
gLTP [0.95, 0.9, 0.8, 0.7, 0.5, 0.3, 0.1] [5, 10, 20, 30, 40]

Table 4.2: The range of parameters used for LTP, SILTP, and gLTP.

Figure 4.8 shows the histogram of the parameters which were selected in the

repeated experiments.

4.4.3 Comparison of LBP, LTP, SILTP and gLTP

Table 4.3 reports the experimental results. Using the larger neighbourhood

({(N = 8, R = 1), (N = 12, R = 2), (N = 16, R = 3)}) improves the MCA of all the

descriptors regardless of the dataset. It is clear that LBP gives modest performance

compared to the best performing descriptor as it is sensitive to noise and illumination

changes. As expected SILTP gives better performance than LBP and LTP for colonoscopy

images as they are affected by illumination, and LTP gives better performance compared

to LBP and SILTP on cell dataset as the images in that dataset are severely affected by

noise. Neither LTP nor SILTP gives better performance on either dataset. The proposed
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(i) LTP (ii) SILTP (iii) gLTP

(iv) LTP (v) SILTP (vi) gLTP

Figure 4.8: Histogram of the selected parameters for LTP, SILTP and gLTP for
colonoscopy images (top row) and the ICPR cell images (second row). The vertical
axis represents the number of iterations (out of 10) the values in the horizontal axis
(or axes) were selected as the best parameters by the cross-validation process using the
sampling points {(8, 1), (12, 2), (16, 3)}.

gLTP descriptor gives similar performance compared to the best performing SILTP on

colonoscopy, and performs significantly better than others on the cell images. Note that

the aim of the experiments based on gLTP is not to beat other LBP-based descriptors,

but to show that under different conditions gLTP gives stable performance compared to

others.

Colon images ICPR cell images

(8, 1) {(8, 1), (12, 2), (16, 3)} (8, 1) {(8, 1), (12, 2), (16, 3)}
LBP 80.97± 1.25 84.64± 1.18 41.25± 0.51 63.29± 0.63

LTP 79.79± 2.41 85.50± 1.55 57.47± 0.82 72.28± 0.52

SILTP 82.25± 1.11 87.56± 1.05 51.97± 0.51 68.09± 0.29

gLTP 83.75± 0.77 88.14± 1.15 67.51± 0.68 78.48± 0.42

Table 4.3: Comparison of LBP, LTP, SILTP and gLTP, showing that gLTP gives
competitive or better results than the baselines.
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4.5 Conclusions and discussion

In this chapter I presented a generalised version of LBP, LTP and SILTP descriptor

called the generalised LTP (gLTP). LBP are sensitive to noise as well as illumination

changes; LTP are robust to noise but not to illumination changes; SILTP are robust

to illumination changes but not to noise. Instead the proposed gLTP are robust to both

noise and illumination changes. I experimentally showed on two datasets, colonoscopy

and cell images, where the colonoscopy images were taken under different illumination

conditions and the cell images were severely affected by noise, that neither LTP nor

SILTP gives better performance on either dataset. On the other hand, the proposed

gLTP gives competitive performance compared to the best performing descriptors on the

datasets, confirming that the gLTP is robust to noise and illumination changes.

Since there are two parameters in the gLTP, tuning those based on cross

validation is a time consuming process. This could limit the use of gLTP on larger

datasets. Although gLTP is robust to illumination and noise, it is also affected by

information-loss - a common property of the LBP and its variants usually observed due

to binarisation. To overcome these limitations the next chapter (Chapter 5) proposes

a novel descriptor called the Extended Multi-Resolution Local Patterns (xMRLP) and

proposes an unsupervised learning approach to learn its parameters.



5

EXTENDED MULTI-RESOLUTION

LOCAL PATTERNS AND

UNSUPERVISED FEATURE

LEARNING

Local Binary Patterns (LBP) and its variants lose information due to binarisation

involved in the descriptor construction. This chapter proposes a novel descriptor

called the Extended Multi-Resolution Local Patterns (xMRLP) inspired by the

generalised Local Ternary Patterns (gLTP) descriptor proposed in Chapter 4.

Unlike LBP and its variants xMRLP avoids information loss and captures larger

local image neighbourhood (e.g. 16 × 16). Since xMRLP contains a set of

parameters, this chapter proposes an unsupervised approach to learn them. A

simplified variant of the xMRLP feature, the Multi-Resolution Local Patterns, was

also proposed, where the parameters were assigned fixed values, hence avoiding

the learning stage. Experiments on colonoscopy as well as the ICPR cell image

datasets show that MRLP gives improved performance compared to LBP and its

variants, and that the learned descriptor xMRLP gives considerable improvements

over MRLP on the colonoscopy datasets.

5.1 Introduction

LBP and its variants are widely applied for image classification in various domains,

e.g. face recognition [56] and medical image classification [113, 190]. However,
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they have a few limitations.

• Information loss : LBP-based descriptors lose information due to the binarisation

procedure involved in the descriptor building stage.

• High dimensionality of the image-level representation when the number of

sampling points is large : the standard LBP with d sampling points leads to an

image representation of size 2d. Increasing d will lead to a larger dimensionality

of the image-level histogram representation, hence increasing the computational

complexity of the classification. E.g. when d = 16 there will be 2d = 65, 536

possible LBP labels, leads to a histogram of dimension 65, 536.

• LTP, SILTP and gLTP double the size of the image-level representation: these

variations make the standard LBP robust to noise and/or illumination changes

by introducing free-parameters and produce a set of ternary patterns. Usually

the image representation is obtained by splitting each ternary pattern into two

binary patterns and obtaining histograms from these binary patterns. Splitting

each ternary code into two binary codes and histogramming them doubles the size

of the image-level representation compared to the one obtained by LBP.

• Difficulty with defining the uniform patterns: uniform LBP uses heuristics to define

the commonly occurring LBP patterns in the images. This heuristic process makes

it difficult to define the uniform patterns when d is large.

To overcome these limitations and to capture larger local image neighbourhoods, I

propose a novel descriptor called the Extended Multi-Resolution Local Patterns (xMRLP)

which is a multi-resolution and non-binarised version of gLTP proposed in Chapter

4. xMRLP avoids information loss by avoiding the binarisation step which is always

included in LBP based descriptors. Since the xMRLP descriptor contains a set of

parameters, I propose an unsupervised approach to learn them. Also I propose

a simplified variant called the Multi-Resolution Local Patterns (MRLP), where the

parameters are fixed to their default values (explained in Section 5.2.2), hence avoiding

the learning stage. The final image-level representation using MRLP or xMRLP can be

obtained using feature encoding approaches such as bag-of-words.
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In the following first the xMRLP descriptor is introduced, and then the unsupervised

approach to learn the parameters of xMRLP is explained, finally experiments and the

results are reported.

5.2 Extended Multi-Resolution Local Patterns

First I introduce the single-resolution version of the descriptor called the Extended Local

Patterns (xLP) and then I extend it to multi-resolution version called the Extended

Multi-Resolution Local Patterns (xMRLP).

5.2.1 Extended Local Patterns

Let’s assume Ii is the ith image in the training dataset D = {(Ii, yi)}, i = 1, . . . , N ,

where N is the number of images in D, yi ∈ {1, . . . , C} is the label of image Ii, and C

represents the number of classes. Let’s consider a circular sampling pattern shown in

Figure 5.1, where Iij represents the intensity value at the jth location of Ii (to reduce

the notation cluttering I use a single index j to represent the pixel at a location I(x, y)),

and Isij is the intensity value at the sth sampling point around Iij , where s = 1, . . . , d,

and d is the number of sampling points in the local neighbourhood (d = 8 in Figure

5.1). The intensity values at the sampling points are bilinearly interpolated whenever a

sampling point does not coincide with a pixel of Ii.

Figure 5.1: An example sampling pattern with 8 sampling points.

As explained in Section 4.3.1 of Chapter 4 the difference D between two pixels, Iij

and its sth neighbour Isij , can be written using the following equation:

D(Iij , I
s
ij) = [a1Iij + τ1]−

[
a2I

s
ij + τ2

]
∝ Iij + aIsij + τ, (5.1)
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where a1 and a2 represent the non-uniform illumination applied to the pixels Iij , Isij

and τ1, τ2 model the sensor noise due to the image capturing device at those pixels,

and a = −a2
a1

, τ = τ1−τ2
a1

. Unlike gLTP which assumes a common value for each of the

parameters a and τ for all the images, xLP relaxes this constraint by assuming a set of

values a = [a1, . . . , ad]
T and τ = [τ1, . . . , τd]

T each for each of the sampling points.

I define xij ∈ Rd which describes the local neighbourhood around the jth pixel of

image Ii as a concatenation of the differences D(Iij , I
s
ij) , s = 1, ..., d, as follows:

xij(a, τ) =


D(Iij , I

1
ij)

...

D(Iij , I
d
ij)

 =


Iij + a1I

1
ij + τ1

...
...

...

Iij + adI
d
ij + τd

 . (5.2)

In the above equation, a = [a1, . . . , ad] weight the importance of the

neighbourhood pixels, while τ are the biases in different directions. Unlike LBP and its

variants, the descriptor defined in Equation (5.2) is a real valued descriptor, hence the

bias parameters ([τ1, . . . , τd]) may not capture much information. I experimentally found

that adding these biases does not significantly improve the classification performance,

but it increases the computational complexity and the number of parameters to be

learned. Therefore I discarded these bias parameters and define xLP descriptor as

follows:

xij(a) =


Iij + a1I

1
ij

...
...

Iij + adI
d
ij

 . (5.3)

5.2.2 Extension to multi-resolution version

Usually LBP based descriptors operate on a small neighbourhood (e.g. 3 × 3). To

effectively capture a larger context with a reduced number of sampling points, I adopt a

sampling pattern inspired by the spatial structure of receptive fields of the human retina,

widely adopted in recent work on visual descriptors, e.g. FREAK [9], BRISK [87], and

DAISY [159].

Figures 5.2(i) and 5.2(ii) show two examples of sampling patterns, where the local

neighbourhood is quantised radially into three resolutions (radii), and at each resolution
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(i) Sampling pattern with α = 1 (ii) Sampling pattern with α = 1.5

Figure 5.2: A three-resolution sampling pattern (Q = [8, 8, 8]).

8 sampling points are considered. At each sampling point, a Gaussian filter is applied to

capture a local neighbourhood which is larger than one pixel.

I propose the parameters in Table 5.1 to define the sampling pattern. The equations

in Table 5.1 are obtained such that the circles (support regions of Gaussian filters at the

sampling points) at resolution r and r+ 1 touch each other when α = 1 (Figure 5.2(i)),

or they overlap when α > 1 (Figure 5.2(ii)), where α determines the overlap between

the support regions around two adjacent sampling points. I set R1 = 1 and α = 1.5 for

all the experiments reported in this thesis. Note that throughout this thesis, the support

regions are fixed to µ ± 2σ in both x and y directions, where µ is the location of the

centre pixel. However, future work will focus on analysing the sensitivity of these values

for classification.

Parameter Description

Qi The number of sampling points at resolution i. (Q = [8, 8, 8] in
Figure 5.2(i) and 5.2(ii))

Ri = Qi(Qi−1+π)
Qi−1(Qi−π)Ri−1 The distance between the centre of the sampling pattern and any

sampling point at resolution i. (R1 is set to 1)

ri = αRiπ
Qi

The radius of the circle around a sampling point at resolution i.

Wi = 2drie − 1 The window size of the Gaussian filter around a sampling point
at resolution i

σi = max(1,Wi/4) The standard deviation of the Gaussian filter around a sampling
point at resolution i. When σi ≤ 1 no smoothing is performed.

α determines the overlap of the Gaussian filtering regions.

Table 5.1: The parameters of the multi-resolution sampling patterns.
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When xLP (Equation (5.3)) is combined with this multi-resolution sampling

pattern, I call the resultant descriptor the Extended Multi-Resolution Local Patterns

(xMRLP).

When the parameters in Equation (5.3) are fixed to their default values, which

assigns equal importance to the neighbourhood pixels, i.e. a = [−1, . . . ,−1] I call the

resulting descriptor the Multi-Resolution Local Patterns (MRLP).

5.2.3 Image-level representation using xMRLP

I use a feature encoding approach (such as BOW, SC) to aggregate the xMRLP features

to get an image-level representation. As explained in Section 2.2 the major steps to

get an image representation using a BOW based model include feature extraction and

feature encoding.

I use a dense feature extraction strategy to compute the xMRLP features as they

show improved performance for classification compared to the feature extraction based

on interest points detectors [125]. From each image I extract overlapping small

patches (e.g. 16 × 16). The sampling patterns shown in Figure 5.2(ii) are rescaled

so that the sampling points in the external ring lie inside the patch. The xMRLP

descriptors extracted from each colour channel of a particular patch (whenever the

colour information is available) are concatenated to get the final description of that

patch. For example, using the sampling patterns of Figure 5.2(ii) with Q = [8, 8, 8] from

a RGB colour patch and a gray scale patch will yield xMRLP descriptors of size 72 (i.e.

3× 24) and 24 respectively.

After extracting the xMRLP features from an image, I use the feature encoding

methods explained in Section 2.2.2 to obtain an image-level representation from them.

The normalisation procedure given in Equation (3.2) was applied to get the final image

representation.

5.3 Parameter learning: unsupervised approach

This section proposes an unsupervised approach to learn the parameters of xMRLP

(Equation (5.3)), by modifying the optimisation function of the k-means clustering
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algorithm.

Clustering refers to the task of partitioning unlabelled data into meaningful groups

(clusters) [53]. K-means is a classic clustering algorithm, extensively studied and

applied due to its simplicity and robustness. Cluster compactness is one of the

quantitative criteria to measure the quality of the result [53]. K-means maximizes

compactness in terms of the summed squared distance between the features and the

cluster centres to which they are assigned.

5.3.1 The objective function

Let X = {xij} be a set of M descriptors sampled from the training images. I learn the

xMRLP parameters a using the following optimisation promoting resulting clusters more

compact than the initial ones (i.e. the ones obtained when parameters are fixed).

arg min
{µk},a

1

M

K∑
k=1

∑
xij∈Ck

‖xij − µk‖22. (5.4)

where µk ∈ Rd is the centre of the kth cluster Ck, and K is the number of clusters. Note

that xij ≡ xij(a). The objective in Equation (5.4) along with a regularisation term can

be rewritten as:

L(a, {µk}) =
1

M

K∑
k=1

∑
xij∈Ck

‖xij − µk‖22 + β‖a+ 1‖22. (5.5)

where 1 = [1, 1, . . . , 1]T ∈ Rd. The first term in Equation (5.5) is exactly the same as

the k-means objective function which maximizes the compactness of the clusters when

the parameters a are fixed. The last term is inspired by the LBP and its variants, which

makes the values of a close to −1.

5.3.2 Optimisation

The partial derivatives of Equation (5.5) w.r.t. to the parameters a and {µk} can

be written using Equation (5.7), where Jij =
[
I1
ij , . . . , I

d
ij

]T
and � represent the

element-wise multiplication (Hadamard product) between two vectors.
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∇aL =
2

M

K∑
k=1

∑
xij∈Ck∧
xij∈X

(xij − µk)� Jij + 2β(a+ 1). (5.6)

∇µk
L = − 2

M

K∑
k=1

∑
xij∈Ck∧
xij∈X

(xij − µk). (5.7)

Algorithm 1 Parameter learning

Input:unlabelled training set {Ii}, i = 1, . . . , N
size of the dictionary K

Output: a, {µk}, k = 1, . . . ,K
1: initialize : a = [−1, . . . ,−1]T

2: while not converged do
3: a← learn a using Algorithm 2
4: µk ← learn µk, k = 1, . . . ,K using Algorithm 3
5: end while

Algorithm 2 Learn a

Input: images {Ii}, a, size of the dictionary K
Output: a

1: while not converged do
2: compute xij using Equation (5.3)
3: calculate ∇aL using Equation (5.6)
4: a← a− ηa∇aL
5: end while

Algorithm 3 Update the dictionary

Input: {xij}, {µk}, k = 1, . . . ,K.
Output: {µk}, k = 1, . . . ,K.

1: while not converged do
2: for k = 1, . . . ,K do
3: calculate ∇µk

L using Equation (5.7)
4: µk ← µk − ηµ∇µk

L
5: end for
6: end while

I use an iterative alternating optimizing technique described in Algorithm 1 to

optimize Equation (5.5), whereby I iteratively optimize one parameter (e.g. a) at a time

while keeping the other (e.g. {µk}) constant. ηa in Algorithm 2 and ηµ in Algorithm 3

are the learning rates for a and {µk} respectively. At each iteration I use a line search

method to determine these learning rates. The learning was stopped when there is no
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further reduction in the cost function (i.e. |Li − Li−1| < 10−4, where Li and Li−1 are

the objective values at the ith and i− 1th iterations respectively).

5.4 Experiments

In this section, first I investigate the effect of learning the parameters of xMRLP

features using the proposed unsupervised approach and then compare xMRLP features

with LBP based features such as LBP, LTP, SILTP and gLTP. Three datasets (2-class

Normal/Abnormal colonoscopy, 3-class Normal/Abnormal/Uninformative colonoscopy

and ICPR cell image dataset) were used to compare the proposed features with others.

5.4.1 Experimental setup

To guarantee a fair comparison, all the local descriptors were computed from patches of

size 16 × 16 pixels with an overlap of 4 pixels in horizontal and vertical directions for

colonoscopy and 12 × 12 pixels with an overlap of 2 pixels for ICPR cell datasets. In all

the following experiments, the final image representation is normalised as explained in

Section 3.2.2.

5.4.2 Effect of parameter learning

Let xMRLPu denotes the xMRLP descriptor with the parameters learned using the

unsupervised approach proposed. In this section I compare the xMRLPu features with

its direct baseline MRLP, where the parameters a were fixed to its default values

(a = [−1, . . . ,−1]T ).

I use 100, 000 local descriptors sampled randomly from training images to learn the

dictionary and the feature parameters for xMRLP features. The β value in Equation (5.5)

was set to β = 10 for the colonoscopy datasets and β = 1000 for the ICPR cell dataset

(Section 5.4.2.3 reports the sensitivity of the β values). The size of the dictionary was

set to 200.
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5.4.2.1 Cluster compactness

Figure 5.3 shows the ordered standard deviation of clusters (Equation (5.9)) using

k-means and the proposed approach (Algorithm 1) to construct the clusters.

(i) 2-class colonoscopy (ii) 3-class colonoscopy (iii) ICPR cells

Figure 5.3: The ordered standard deviation of each cluster by the proposed method
and k-means for the (a) 2-class colonoscopy, (b) 3-class colonoscopy and the (c) ICPR
cells image datasets.

Dataset
Cluster compactness
K-means proposed

2-class colonoscopy 1.0042 0.4631

3-class colonoscopy 1.0897 0.6564

ICPR cells 0.6263 0.5437

Table 5.2: Cluster compactness using the K-means and the proposed approach.

The proposed approach gives lower intra-cluster standard deviation compared to

k-means, suggesting that the resulting clusters are more compact compared to k-means.

Further, I use the cluster compactness measure proposed in [53] to measure the quality

of the clustering by the proposed algorithm. Cluster compactness evaluates how well

the output clusters are redistributed by the clustering system, compared to the input set,

in terms of the data homogeneity reflected by the distance metric used by the clustering

system, and can be defined as [53]:

Cm =
1

K

K∑
k=1

σ(ck)

σ(X )
. (5.8)



Chapter 5. xMRLP & unsupervised learning 71

where σ(ck) is the standard deviation of the cluster ck, and v(X ) is the standard

deviation of all the features in the data set X . σ(ck) can be defined as:

σ(ck) =

√√√√ 1

Nk

∑
xij∈Ck

‖xij − µk‖22 (5.9)

where Nk is the number of features which are assigned to cluster Ck. By fixing K = 200,

the proposed approach gives more compact clusters compared to k-means (Table 5.2).

5.4.2.2 xMRLP vs MRLP descriptors

After learning the parameters a of xMRLPu, I use the BOW encoding method described

in Section 2.2.2 to compute the feature representation of images and use a SVM classifier

for classification.

(i) 2-class colonoscopy (ii) 3-class colonoscopy (iii) ICPR cells

Figure 5.4: xMRLP vs MRLP for different datasets (size of the dictionary vs MCA). The
vertical bars show the standard deviations calculated over the repeated experiments
(experimental setup is described in Section 3.2).

Figure 5.4 reports the performance of xMRLPu and MRLP descriptors with

different dictionary sizes. It’s clear that learning the feature parameters improves the

classification performance for the colonoscopy datasets. For the 2-class colonoscopy

dataset the xMRLPu feature gives about 2% improvement compared to the MRLP

features (92.18±0.9 by xMRLPu compared to 89.73±1.0 by MRLP), when the dictionary

size is 4000. But this unsupervised feature learning gives similar performance for the

ICPR dataset, suggesting that MRLP already captures discriminative information needed

for classification, and learning the parameters or apply different weights to different

neighbourhood pixels does not improve the performance.
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In this experiment a SVM classifier with exponential Chi-square kernel was used

for the colonoscopy dataset. For the ICPR cell image dataset I use a SVM classifier with

linear kernel as the number of training images in the ICPR cell dataset is high which

increases the computational complexity of the kernel matrix computations.

5.4.2.3 Sensitivity of the regularisation

The cost function in Equation (5.5) contains a regularisation parameter β which makes

the values of a close to −1 (as in LBP). This section investigates the sensitivity of the

results to this parameter.

(i) 2-class colonoscopy (ii) 3-class colonoscopy (iii) ICPR cells

Figure 5.5: Sensitivity of the regularisation: different β values (horizontal axis) vs
MCA (vertical axis).

Figure 5.5 reports the performance (MCA) for different value of β when the

dictionary size = 200. Small β values give higher performance than large β (=1000)

values for the 2-class colonoscopy dataset, on the other hand, large β value (= 1000)

gives better performance than small values (β ∈ {1, 10, 100}) for the ICPR cell dataset.

This is expected as β controls the parameter a which weights the importance of the

neighbourhood pixels; a close to −1 (as = −1, ∀s) are preferable for the images which

are less affected by illumination changes and contains no edge-like structures. ICPR cell

images does not have significant edge-like structures and less affected by illumination.

On the other hand colonoscopy dataset contains images which are severely affected by

illumination and contain many edge-like structures.

The parameter β is not sensitive in a large range ({0 − 100}) for the 2-class

colonoscopy dataset. But it is sensitive for the ICPR dataset; larger β value (β = 1000)

gave better performance than smaller values.



Chapter 5. xMRLP & unsupervised learning 73

5.4.2.4 The learned parameters

Figure 5.6 visualizes the value of the learned parameters (a) for the two datasets.

The horizontal axis of Figure 5.6 shows different sampling points of the descriptor

(Section 5.2.2) and the vertical axis reports their learned values. For example, in Figure

5.6(i) the first 24 sampling points correspond to the first resolution, and the next 24

(25-48) correspond to the second resolution, and so on; and first 8 sampling points

(1-8) corresponds to the points at the first resolution and computed from the red colour

channel.

(i) 2-class colonoscopy (γ = 10−5, β = 10) (ii) ICPR cell dataset (γ = 10−5, β = 1000)

Figure 5.6: Visualisation of the learned parameters: The values (vertical axis) of the
learned parameters a at different sampling points (horizontal axis).

From Figure 5.6 it is clear that the learning applies different weights ([a1, . . . , ad])

to different sampling points, and it also weights the importance of the colour channels

as well as the local neighbourhoods (resolutions) differently.

5.4.3 Comparison with LBP based features

This section compares the xMRLPu features with LBP based features such as standard

LBP, LTP, SILTP and gLTP with the sampling patterns shown in Figure 5.2(ii) and

shows that MRLP and xMRLPu features give improved performance over the LBP based

features.

Experimental setup with multi-resolution sampling patterns

For each image I compute LBP, LTP, SILTP and gLTP descriptors using a three-resolution

version (Q = [8, 8, 8]) of the sampling patterns described in Section 5.2.2 (Figure
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Feature
2-class colonoscopy ICPR cells

exp chi2 kernel chi2 kernel linear kernel

MR-LBP 87.18± 1.07 69.73± 0.47 69.17± 0.43

MR-LTP 88.87± 1.04 83.43± 0.25 83.29± 0.50

MR-SILTP 90.8± 1.31 77.55± 0.38 77.12± 0.33

gMR-LTP 90.26± 1.01 83.61± 0.30 83.00± 0.73

MRLP (BOW, dict size 500) 90.32± 0.95 − 87.39± 0.35

xMRLPu (BOW, dict size 500) 92.56± 0.90 − 86.96± 0.37

Table 5.3: Classification performance (MCA ± std) of MR-LBP, MR-LTP, MR-SILTP,
gMR-LTP and xMRLPu features on 2-class colonoscopy and ICPR cell image datasets.

5.2(ii)). Since the multi-resolution sampling points were applied for LBP, LTP, SILTP

and gLTP they are referred to henceforth as MR-LBP, MR-LTP, MR-SILTP and gMR-LTP.

In all cases I consider the uniform pattern histogram representation [127], as it captures

meaningful patterns such as edges, corners, etc. and reduces the dimensionality of the

final histogram representation.

For the colonoscopy dataset I compute these descriptors independently from each

colour channel of RGB colour space, then concatenate their histogram representation

to get the final image description. The size of the histogram features for MR-LBP is nc

colours × 3 resolutions × 59 histogram bins, and the size for MR-LTP, MR-SILTP and

gMR-LTP is double (2 × nc × 3 × 59). nc is the number of colour channels, nc = 3 for

colonoscopy and nc = 1 for the cell dataset. In each experimental run the parameters of

MR-LTP, MR-SILTP and gMR-LTP were learned based on a 3-fold cross validation on the

training set.

In this experiment, an exponential Chi-square kernel was used for the colonoscopy

dataset, and linear as well as Chi-square kernel (explicit feature mapping [164]) was

used for the ICPR dataset.

Observations: Table 5.3 shows the classification performance of the LBP based

descriptors on 2-class colonoscopy and the ICPR cells datasets. Mainly there are three

observations.

1. Overall the multi-resolution sampling patterns (Figure 5.2(ii)) improve the

performance of LBP based descriptors compared to the sampling patterns used
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in the experiments of Chapter 4 (Table 4.3), as the multi-resolution sampling

patterns (Figure 5.2(ii)) capture larger local context and reduce the noise in the

neighbourhood by applying Gaussian filters as explained in Section 5.2.2.

2. Similar observations as in Chapter 4 apply: neither MR-LTP nor MR-SILTP

gives the highest performance on either dataset. But gMR-LTP descriptors give

competitive performance compared to the best performing descriptors (among

MR-LBP, MR-LTP and MR-SILTP) in the datasets.

3. MRLP and xMRLPu improves the performance of LBP based descriptors as they

avoid information loss due to binarisation in the descriptor construction. The ICPR

dataset shows about 4% improvement by MRLP features compared to gMR-LTP

descriptors with reduced size of the image representation (500 by MRLP vs 1064

by gMR-LTP), proving that MRLP features capture more information than the

gMR-LTP features.

5.5 Conclusions and discussion

Inspired by the success of LBP and its variants, a novel descriptor called the xMRLP and

its simplified variant the MRLP were proposed in this chapter. xMRLP was designed

to overcome the limitations of LBP and its variants (e.g. information loss). Since the

xMRLP descriptor contains a set of parameters, an unsupervised learning approach was

proposed to learn those parameters. MRLP uses a set of default parameters, hence is

parameter free and has no need for the learning step.

I experimentally showed that MRLP descriptor gives competitive performance

compared to LBP and its variants on the colonoscopy dataset, and gives a significant

improvement of ∼ 4% over LBP and its variants on the ICPR cells dataset.

The xMRLP features give considerable improvements compared to MRLP features

(92.18±0.9 vs 89.73±1.0) and LBP based descriptors on the 2-class colonoscopy dataset.

But for the ICPR cells dataset xMRLP descriptor gives similar performance to the MRLP

descriptor suggesting that the additional parameters add no further information for this

specific type of images. This would require further investigations into the suitability of

the descriptor for specific image characteristics.
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To improve the performance of xMRLP descriptors, the next chapter proposes a

discriminative learning approach, where the parameters of xMRLP are learned using a

set of training images with image-level labels.



6
DISCRIMINATIVE FEATURE

LEARNING USING WEAK LABELS

In the previous chapter I proposed a novel descriptor called the Extended

Multi-Resolution Local Patterns (xMRLP) and an unsupervised learning approach

to learn its parameters. In this chapter I propose a discriminative approach based

on the Naïve Bayes Nearest Neighbour (NBNN) classifier to learn the parameters

of xMRLP features.

In contrast to existing discriminative feature learning approaches, in which a set

of labelled data is available for learning in the form of region-level annotations

or matching and non-matching feature pairs, I use weakly labelled data, i.e.

training data with image-level labels, to learn the local image features which

are discriminative for image-level classification. Requiring image-level instead

of region-level labels or matching and non-matching image patch pairs makes

annotations less expensive to generate, hence more feasible in practice.

6.1 Introduction

As explained in Section 1.1, the current approaches proposed for automated

colonoscopy image analysis have been mainly focussing on identifying appropriate

features; various hand-crafted features such as Root-SIFT (rSIFT) [13, 113], colour

histograms [70], LBP [113], and LTP [113] have been explored. For example LBP and

GLCM features was used for normal/abnormal classification [98, 113], CWC features

was explored for polyp detection [67], and for classification [98], colour histograms

and other statistics was used for bleeding detection [70].
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All these approaches deploy sets of hand-crafted features. However, hand-crafted

features may not be optimally discriminative for classifying images from particular

domains (e.g. colonoscopy), as not necessarily tuned to the domain’s characteristics.

Since I learn the features from the colonoscopy images I expect them to be more

discriminative than the hand-crafted ones for colonoscopy image classification. I show

experimental evidence in support of this claim in Section 6.5.

Recently feature learning approaches [19, 26, 132, 151, 174, 175] have become

popular as they learn domain-specific discriminative features and have been shown

to improve the performance of medical image segmentation [19], image retrieval

[132, 151], and interest point matching [26, 174, 175]. These approaches assume

that region-based annotations or a training set consisting of matching and non-matching

pairs of image patches are available to learn the feature descriptors (reviewed in Chapter

2).

Convolutional neural nets (CNN) [79] have also been used to learn local features.

In CNN, a set of filters as well as the image-level classifiers are learned in a unified

framework. Usually CNN require a very large amount of training data [122]; when this

is not available, CNN gives worse performance than traditional, hand-crafted features

and BOW-based feature encoding methods [122].

None of these feature learning approaches have been explored for colonoscopy

image classification. Since generating annotations for any medical training

set (region-level, or matching and non-matching feature pairs) is a difficult,

time-consuming task, and clinical time is notoriously at a premium I propose

a novel feature learning approach which uses only weakly-labelled data, namely

image-level labels. Requiring image-labels instead of region-level labels or matching

and non-matching image patch pairs makes annotations less expensive, and closer to the

data normally available from normal clinical practice, hence more feasible in practice.

Unlike CNN, the proposed approach does not require large amounts of training data,

hence it is more suitable for images from the medical domain.

In the following, first I introduce the notation, then review concisely I2CD distances

and NBNN classifier. Finally I report experiments based on the proposed descriptor and

comparisons with different features for colonoscopy and cell images.
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6.2 Notation

Let Ii be the ith image in the training set characterised by a set of local features

{xij}, j = 1, . . . , Ni, where Ni is the number of local features in Ii and xij ∈ Rd.

Let’s consider the case of weak labels, whereby an image Ii is associated with a single

image-level label, yi, indicating its class membership. The goal of this chapter is to learn

the local features (the parameters of xMRLP) based on the given training data, which

is formed by the set of tuples D = {(Ii, yi)}, i = 1, . . . ,M , where M is the number

of images in D, and yi ∈ {1, . . . , C} corresponds to the label of the ith training image

associated with the C classes.

6.3 Image-to-class distances

Image-to-class distance (I2CD) was first introduced by Boiman et al. [23] in the NBNN

classifier, and subsequently used, among others, for distance metric learning [171] and

discriminative subspace learning [191]. This section explains the motivation and the

derivation of NBNN, its extensions and applications.

6.3.1 Learning-based and non-learning based classifiers

Image classification methods can be roughly divided into two broad families of

approaches: (1) learning-based classifier, where the classifier contain a set of parameters

which have to be learned based on the training data, e.g. SVM, (2) classifiers without

a learning stage, for which the classification decision depends directly on the data,

and requires no training phase, e.g. nearest neighbour (NN) classifier with fixed

parameters. The classifiers without a learning stage have several advantages compared

to the classifiers with a learning stage: (1) they can naturally handle a huge number

of classes; (2) they avoid overfitting of parameters, which is a central issue with the

learning-based classifiers; (3) and they require no training or learning phase [23].

On the other hand, however, classifiers without a learning stage show reduced

performance for BOW-based classification compared to ones with a learning stage

[23]. In BOW-based approaches first the local features extracted from images are
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clustered to generate a dictionary, then this dictionary is used to compute compact

image representations for each image [152]. Although vector quantisation gives

a significant dimensionality reduction, it also degrades the discriminative power of

the resulting image representation as some information is lost. After obtaining an

image representation, image-to-image distances are often employed in connection with

kernel-based methods such as SVM for image classification. As argued by Boiman et al.

[23], the errors in the feature quantisation stage and the image-to-image comparisons

make the classifiers which have no learning stage less useful than the classifiers which

have a learning stage. The learning-based classifiers, since, they have a learning stage,

can compensate for the information loss, leading to good classification results.

To improve the performance of classifiers without a learning stage, Boiman et al.

[23] suggest using image-to-class distances rather than image-to-image distances.

6.3.2 Image-to-class vs image-to-image distances

Usually image-to-image distances (I2ID) are fundamental for the kernel based methods

such as SVM. When the images are represented by BOW histograms, I2ID becomes the

distance between the descriptor distributions of two images. Such distances can be

measured via histogram intersection, Chi-square distance, or KL divergence [23]. An

I2ID based classifier compares the query image with the labelled images in the training

set; when the query image is similar to one of the training images, the I2ID becomes

small, hence it provides good classification results. The performance of I2ID-based

classification depends significantly on the number of training images and on intra-class

variations. Therefore to get a better generalisation Boiman et al. propose image-to-class

distances (I2CD) which compares the descriptor distribution of an image I and the

descriptor distributions of different classes (using all the images in each class).

Figure 6.1 shows an example of image-to-image and image-to-class comparisons:

even though the features of two images are not very similar according to the

image-to-image distance, their distances to the class distribution are similar, enabling

correct classification.
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Figure 6.1: The image-to-class concept: even though the features of the two images
are not very similar (close), their distances to the class distribution are similar, and that
is what counts for NBNN (adapted from [162]).

6.3.3 The Naïve Bayes Nearest Neighbour classifier

The NBNN classifier uses the I2CD to classify a test image Ii into one of the predefined

class {1, . . . , C}, where C is the number of classes [23]. The label ŷi of a test image Ii is

found according to maximum-a-posteriori (MAP) estimation:

ŷi = arg max
c

p(c|Ii). (6.1)

Assuming a uniform prior p(c) over classes and applying Baye’s rule, the MAP classifier

reduces to maximum-likelihood (ML):

ŷi = arg max
c

log(p(Ii|c)). (6.2)

Let {xij}, j = 1, . . . Ni denotes the local features from image Ii, where Ni is the number

of local features extracted from Ii. Assuming local features are independent, and taking

the log-likelihood,

ŷi = arg max
c

log

 Ni∏
j=1

p(xij |c)

 (6.3)

= arg max
c

Ni∑
j=1

log p(xij |c). (6.4)
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Assuming a Parzen window estimator with kernel K which approximates p(xij |c):

p̂(xij |c) =
1

Lc

Lc∑
l=1

K
(
xij ,x

cl
ij

)
. (6.5)

where K is typically a Gaussian K(a, b) = exp−
‖a−b‖2

h2 , Lc represents the number of local

descriptors in the training set for class c, and xclij is the lth nearest neighbour (NN) of xij

in class c. When Lc approaches infinity and h (width of K) reduces accordingly, p̂(xij |c)

converges to the true density p(xij |c) [23].

Since most of the local features are far away from each other in the feature

space, most of the terms in the summation of Equation (6.5) become negligible as K

exponentially reduces with the distance. Therefore Equation (6.5) can be accurately

approximated by the few, say R, largest elements in the sum [23]. These R largest

elements correspond to the R nearest neighbours of xij in class c. Hence, Equation

(6.5) can be rewritten as:

p̂(xij |c) =
1

Lc

R∑
l=1

K
(
xij ,x

cl
ij

)
. (6.6)

As shown by Boiman et al. [23], even when using a small R (as small as R = 1) a

very accurate approximation of the complete Parzen window estimate can be obtained.

When R = 1, using the Equation (6.4) and dropping constants which do not influence

the optimisation gives,

ŷi = arg max
c

Ni∑
j=1

log
1

Lc
exp−

‖xij−xcij‖
2

h2 (6.7)

= arg min
c

Ni∑
j=1

‖xij − xcij‖2 (6.8)

= arg min
c

Dic. (6.9)

where, xcij is the 1st NN descriptor of xij in class c and Dic is the I2CD between an image

Ii to class c.

Dic =

Ni∑
j=1

‖xij − xcij‖2. (6.10)
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The I2CD distance Dic in Equation (6.10) between image Ii and a class c is the

sum of the Euclidean distances between each local feature in that image and its NN in

c. NBNN identifies the class ŷi of an image Ii by the class which minimises Dic.

6.3.4 Extensions of NBNN

Various extensions have been proposed to improve the performance of NBNN/I2CD, for

example, the NBNN kernel [162], discriminative projection learning [191], and distance

metric learning [171].

6.3.4.1 The relaxed version of I2CD

Since some noisy local features may affect the NN calculations (Equation (6.10)), a

relaxed version of the I2CD distance considering a set of NN instead of one was proposed

in [191], showing improved performance over the original version for complex datasets.

The relaxed version of I2CD is given as:

Dic =

Ni∑
j=1

R∑
r=1

‖xij − xcrij ‖22. (6.11)

where xcrij is the rth NN of xij in the cth class, R is the number of considered neighbours

and Ni is the number of local features in the image Ii.

6.3.4.2 The NBNN kernel

BOW-based approaches compute the overall distribution of the local features in an

image and uses I2ID comparisons in the classification stage. Unlike BOW, the I2CD

are considered in NBNN. Hence BOW and NBNN could be complementary to each other,

and to combine the advantages of BOW and NBNN a kernelised version of NBNN, called

the NBNN kernel, was proposed in [162]. This NBNN kernel can be easily incorporated

with other kernels and can be trained discriminatively with SVM classifiers. State-of-the

art classification performance for different natural datasets have been reported in [162]

by combining BOW based and NBNN based kernels.
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6.3.4.3 Discriminative projection learning

Computing I2CD is time consuming especially when the number of local features

and their dimensionality are high. The performance of I2CD based classifier can be

easily affected by the noisy features in the training set. To reduce the computational

burden and to improve the performance of I2CD distances, a discriminative subspace

learning method was proposed in [191]. A projection matrix was learned such that

in the projected low-dimensional space the I2CD between an image and its own class

will be minimum compared to the I2CD between that image and any other classes.

This approach showed improved performance over other dimensionality reduction

approaches such as PCA and LDA for different action recognition datasets (e.g. KTH

[147], and UCF YouTube dataset [99] for action recognition in videos) with reduced

time complexity.

6.3.4.4 Distance metric learning

The I2CD in Equation (6.10) assumes that the local features are in a Euclidean space. To

improve the performance of I2CD, a distance metric learning approach was proposed in

[171]. Class-specific Mahalanobis distance metrics were learned using a max-margin

framework, where the I2CD distance between an image Ii and its own class c was

minimised while maximizing its distance to all other classes. When classifying a

testing image the class which gives the smallest Mahalanobis distance is selected as

the predicted class. However, due to the class-specific metrics the number of parameters

to be learned becomes high (= d × d × C, where d is the dimensionality of the local

features and C is the total number of classes) which may make the learning complex

and require a large amount of data.

6.4 Discriminative max-margin parameter learning

This section proposes a discriminative weakly-supervised max-margin approach to learn

the parameters of xMRLP features using the I2CD. Note that, unlike existing feature

learning approaches where a set of labelled data in the form of region level labels [19]
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or matching and non-matching feature pairs [26, 174, 175] is used to learn the features,

I use only image-level labels, which makes the annotation process less expensive.

Unlike the discriminative projection learning or distance metric learning

approaches reviewed in Section 6.3.4, my work focusses on learning discriminative

local features (particularly the parameters of the proposed xMRLP features) using weak

labels. Since my feature contains only a few parameters, the number of parameters to

be learned is much smaller than the one required by discriminative projection learning

[191] or distance metric learning approaches. Let d be the dimensionality of the local

features; then the number of parameters to be learned in discriminative projection

learning is d×D (whereD < d is the dimensionality of the new discriminative subspace),

and d × d in metric learning approaches; instead I need to learn only d parameters

(Equation (5.3)).

6.4.1 The objective function

Motivated by the soft-margin loss function of SVM and the distance metric learning

framework [171], I propose the optimisation framework in Equation (6.12), such that

the I2CD from image Ii to its class c is smaller than the distance to any other class c̄ with

a large margin:

arg min
a

C∑
c=1

1

Nc

[∑
i∈c

λDic + ξicc̄

]

s.t. Dic̄ −Dic ≥ 1− ξicc̄

ξicc̄ ≥ 0.

(6.12)

Since the number of local features in different images is different I use a normalised

variant of the I2CD given in Equation (6.10) for Dic:

Dic =
1

Ni

Ni∑
j=1

‖xij − xcij‖22. (6.13)

In Equation (6.12) the non-negative slack variable ξicc̄ is introduced to

accommodate the degree of misclassification as in SVM. Nc represents the number of

images in class c. The constraints and objective function in Equation (6.12) along with
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the regularisation terms can be rewritten as:

L(a) =
C∑
c=1

1

Nc

∑
i∈c

[
λDic + max (0, 1− (Dic̄ −Dic))

]
+ β‖a+ 1‖22. (6.14)

where the first and the second terms in Equation (6.14) make the intra-class distances

(the distances between images and their own classes) small, while maximizing their

inter-class distances (the difference between Dic and Dic̄). The last term makes the

parameters a close to −1 as in LBP. The parameters λ and β control the effects of

different terms in the cost function given in Equation (6.14). Section 6.5.3 reports

the sensitivity of these parameters to the classification results. These parameters can be

selected based on e.g. cross validation experiments.

6.4.2 Optimisation

The gradients w.r.t. to the parameter a can be written as:

∇aL =
C∑
c=1

 λ

Nc

∑
i∈c
∇aDic +

1

Nc

∑
i∈c∧
i∈Sc

(∇aDic −∇aDic̄)

 + 2β(a+ 1). (6.15)

where Sc is the set of images from class c which are around the margin, i.e.

Sc = {i|Dic̄ −Dic < 1}. ∇aDic can be written as:

∇aDic =
2

Ni

Ni∑
j=1

(xij − xcij)�
(
Jij −∇axcij

)
. (6.16)

where Jij =
[
I1
ij , . . . , I

d
ij

]T
, and � represents the element-wise multiplication

(Hadamard product) between two vectors.

I use a gradient descent approach to optimize Equation (6.12). The overall

algorithm to learn a is given in Algorithm 4, where ηa is the learning rate. The learning

rates for different datasets are given in Section 6.5.1. The learning is stopped when

there is no further reduction in the cost function (i.e. ‖Li−Li−1‖ < 10−2, where Li and

Li−1 are the objective values at the ith and (i− 1)th iterations respectively).
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Algorithm 4 Update a: supervised learning

Input: image-level labelled data {Ii, yi}, i = 1, . . . , N
Output: a

1: initialize a = [−1, . . . ,−1]T

2: while not converged do
3: compute xij using (a, {Ii}) Eqn. (5.3)
4: compute the I2CD Dic and Dic̄ using Eqn. (6.11)
5: calculate ∇aL using Eqn. (6.15)
6: a← a− ηa∇aL
7: end while

6.5 Experiments

Let MRLP denote the descriptor where the parameters are fixed to their default values

(a = [−1, . . . ,−1] in Equation (5.3)) and xMRLPs denote the learned descriptor using

the discriminative approach proposed in this chapter.

In this section, first I investigate the effect of learning the parameters of xMRLPs

using the proposed learning approach and the effect of different regularisation terms

in the cost function given by Equation (6.12). Then I compare the MRLP, MRLPu, and

xMRLPs features using the NBNN classifier and show that xMRLPs outperforms MRLP.

I follow the same experimental setup explained in Section 5.4.1 in Chapter 5. I use

the kd-tree implementation from Vlfeat [163] for the NN search.

6.5.1 Effect of parameter learning

This section investigates the effect of parameter learning by comparing the learned

xMRLPs features with its direct baseline MRLP, and shows that the learned features

(xMRLPs) give considerably improved performance compared to MRLP using the NBNN

classifier.

To learn the parameters I randomly sample (from the training set of each

experimental run) 70, 50 and 70 images respectively from each of the classes of three

datasets, 2-class colonoscopy, 3-class colonoscopy and ICPR cells. The value of β was set

to 1, 1 and 1000 respectively for the 2-class colonoscopy, 3-class colonoscopy and the

ICPR cells datasets. The parameter λ was set to λ = 1× 10−5 for all the datasets.
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I2CD calculations are computationally expensive due to the NN search. To reduce

the computational burden, I extract features using large step sizes (both at the training

and testing phase); the step sizes for the colonoscopy and the cells datasets were set to

16 and 4 respectively. In the classification stage, at each experimental run I randomly

sample a maximum number of 150,000
Nc

features (where Nc is the number of classes) from

the training set to perform the classification. The learning rate in Algorithm 4 was

experimentally fixed to 2×10−3 and 1×10−4 for the colonoscopy datasets and the ICPR

cell dataset respectively, and the maximum number of iterations for convergence was

set to 100 for both datasets.

Dataset
Feature

MRLP xMRLPu xMRLPs

2-class colonoscopy 82.68± 0.93 86.55± 1.26 86.63± 0.99

3-class colonoscopy 80.80± 0.83 86.01± 0.82 85.73± 1.16

ICPR cells 67.90± 0.73 68.17± 0.57 69.01± 0.94

Table 6.1: Classification performance (MCA ± std) using MRLP, xMRLPu and xMRLPs
features with NBNN classifier.

Table 6.1 reports the performance (MCA and standard deviation over different

experimental runs) of the MRLP as well as the learned features (xMRLPu and xMRLPs)

for all three datasets. For the colonoscopy datasets the learned features considerably

improve (∼ 4%) the performance compared to MRLP. Modest improvement was

observed for the ICPR dataset, indicating that weighting the neighbourhood pixels

captures less additional information. There are two main reasons for this: (1) Edge-like

structures can be emphasised by weighting the neighbourhood pixels. Unlike the

colonoscopy datasets, the cell images have fewer/no edge-like structures, hence no

improvement in the classification results; (2) The cell image dataset contains more

classes than the colonoscopy dataset. Therefore, the number of local features from

the background regions are higher than the colonoscopy dataset. The higher amount of

background features may dominate the I2CD calculations, leading to no improvement

in the classification. It is interesting to see that the unsupervised approach performs

similarly to the supervised one, even though it is not designed to discriminate different

classes. This suggests that when making the clusters compact by learning the feature

parameters, the feature distributions of different classes are moving from each other.
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6.5.2 Example classification results

Figure 6.2 shows some example images from the 2-class colonoscopy dataset which

were correctly classified by both MRLP and xMRLPs features with the NBNN classifier.

Although some images (see examples in Figures 6.2(d-f) and Figures 6.2(j-l)) are

difficult to classify as they are genuinely borderline even for experts, the MRLP and

xMRLPs features were able to correctly classify them.

Figure 6.3 shows some example images which were mis-classified by MRLP and

xMRLPs features. This may be due to some local features in the normal images (Figure

6.3) which show similar properties to the local features in the abnormal images (Figure

6.2). For example, the abnormal image in Figure 6.2(g) and the normal images in Figure

6.3(b)(c) contains similar local features. The abnormal regions in the Figures 6.3(g),

6.3(i) and 6.3(k) are small compared to the normal regions; which make the I2CD bias

to normal class, hence the images were wrongly classified.

Figure 6.4 shows some example images which were wrongly classified by MRLP

features but correctly classified by xMRLPs features. This is due to the properties

captured by xMRLPs features during learning: such features are able to capture better

discriminative properties of the images compared to MRLP.

6.5.3 Sensitivity of the regularisation parameters

The cost function defined in Equation (6.14) contains two parameters, λ and β; λ

controls the contribution of the intra-class distances and β prevents the parameters

a from becoming arbitrary high and makes their values close to −1 (as in LBP). This

experiment was run to investigate the sensitivity of these parameters.

The 2-class colonoscopy and the ICPR cells datasets were used in this experiment.

A small subset of images (30 and 40 images from each class of colonoscopy and ICPR

cells respectively) from the training set of a particular experimental run was used as

the training set to learn the parameters a. The test images from that run were used to

evaluate the performance using the NBNN classifier.

Figure 6.5 reports the MCA for different parameter settings. For both datasets,

assigning λ to any of the values {0, 1 × 10−5, 1 × 10−3} does not affect the MCA
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(i) (ii) (iii) (iv) (v) (vi)

(vii) (viii) (ix) (x) (xi) (xii)

Figure 6.2: Example of correctly classified Normal (top) and Abnormal (bottom)
images by both MRLP and xMRLPs features.

(i) (ii) (iii) (iv) (v) (vi)

(vii) (viii) (ix) (x) (xi) (xii)

Figure 6.3: Examples of images mis-classified by both MRLP and xMRLPs. i.e. Top
row: examples of normal images misclassified as abnormal. Bottom row: examples of
abnormal images which misclassified as normal.

(i) (ii) (iii) (iv) (v) (vi)

(vii) (viii) (ix) (x) (xi) (xii)

Figure 6.4: Example of normal (top) and abnormal (bottom) images which are
correctly classified by xMRLPs but wrongly classified by MRLP features.



Chapter 6. Discriminative feature learning using weak labels 91

(i) 2-class colonoscopy (ii) ICPR cells

Figure 6.5: Sensitivity of the regularisation parameters: λ and β (Equation (6.14)) vs
MCA.

significantly, but setting it to larger values reduces the MCA; suggesting that the

discriminative term in Equation (6.14) is more important than the term which minimises

the intra-class distances. On the other hand, changing the parameter β affects MCA;

small values for the colonoscopy dataset and larger values for the ICPR cells dataset

give good classification. This is because unlike the ICPR cells dataset, the colonoscopy

dataset contains images which are severely affected by illumination changes (argued in

Section 5.4.2.2). Similar observations were also observed in the experiments reported

in Section 5.4.2.2 of Chapter 5.

6.5.4 The learned xMRLPs parameters

(i) 2-class colonoscopy (ii) 3-class colonoscopy (iii) ICPR cells

Figure 6.6: Visualisation of the learned xMRLPs parameters: The learned parameter
values (vertical axis) at different sampling points (horizontal axis) (Figure 5.2(ii)).
Different colours correspond to different experimental runs.

Figure 6.6 visualizes the learned parameters of the xMRLPs feature for three

randomly selected experimental runs for different datasets. For all the datasets the

learning adds different weights to different sampling points (Sampling points of the



Chapter 6. Discriminative feature learning using weak labels 92

xMRLPs are shown in Figure 5.2(ii)). The discriminative approach gives different

parameter values than the ones given by the unsupervised approach described in

Chapter 5.

6.6 Conclusions and discussion

In this chapter I presented a weakly-supervised approach for learning the parameters

of the xMRLP features (xMRLPs) and showed improved classification performance in

terms of MCA over the MRLP features using the NBNN classifier. Unlike existing feature

learning approaches, where a set of labelled data in the form of region-level annotations

or matching and non-matching feature pairs are used for learning the features, I use only

weak labels, which makes annotations less expensive, hence more feasible in practice.

Although the learned features show considerable improvement on the colonoscopy

datasets, these give modest improvement on the ICPR cells dataset. I identified a few

limitations associated with the proposed approach.

1. For the ICPR cells dataset I experimentally found that small values of a (close to

0) lead to small Dic (Equation 6.13). This results in a smaller objective value for

the objective function defined by Equation 6.14 compared to the objective value

when a = 1. The parameter learning tries to reduce the objective value, hence it

reduces the values of a instead of maximizing the discriminative term defined in

Equation (6.14) (the second term in Equation (6.14)).

2. The regularisation parameter β in Equation (6.14) is sensitive for the ICPR cells

dataset as shown in Figure 6.5. This is mainly due to the reason explained in 1.

3. The margin which separates Dic and Dic̄ is fixed to 1 in Equation 6.14. However

this is a free parameter that has to be tuned for different datasets.

4. The ICPR cells dataset contains more classes than the colonoscopy datasets (6

classes in ICPR cells vs 2 and 3 classes in 2-class and 3-class colonoscopy datasets

respectively). Hence the background features (the features which are common to

different classes) in the cell dataset are high compared to the colonoscopy datasets.

The noisy local features as well as the background features can easily dominate
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the I2CD calculations (explained in Section 7.1 of Chapter 7), leading to wrong

classifications.

To overcome these limitations, the next chapter (Chapter 7) proposes an approach

which learns the parameters by maximizing the posterior probability of the images; it

applies weights to different classes, and learns these weights and the features together,

and shows improved performance compared to the method reported in this chapter for

the ICPR cells dataset.



7

DISCRIMINATIVE FEATURE

LEARNING WITH WEAK-LABELS

AND WEIGHTED I2CD

In Chapter 6 I presented a weakly-supervised approach to learn discriminative

local features based on I2CD. As argued by Zhen et al. [191] noisy local features

as well as the local features from the background may degrade the performance of

I2CD calculations. To overcome this I propose an approach which applies weights

to different classes. I propose a joint learning approach to learn these weights as

well as the local features. Our approach uses weak-labels for learning the local

features, supports multi-class classification, and has probabilistic outputs. Using

the proposed approach I show improved performance on the ICPR cells dataset

with the NBNN classifier compared to the results reported in Chapter 6.

7.1 Introduction

Chapter 6 presented a weakly-supervised approach to learn discriminative local features

(the parameters of the xMRLP feature) based on I2CD. I2CD is the key element of the

NBNN classifier proposed by Boiman et al. [23]. NBNN is a non-parametric approach: it

classifies an image by comparing the distance between that image and different classes,

and assigning the class which gives the smallest I2CD as the label of that image. But as

argued by Zhen et al. [191] noisy local features as well as the local features from the

background may degrade the performance of I2CD calculations.



Chapter 7. Discriminative feature learning with weighted I2CD 95

Figure 7.1: Example abnormal images from the 2-class colonoscopy dataset (abnormal
regions are indicated by red).

Figure 7.1 shows some example abnormal images from the 2-class colonoscopy

dataset. The abnormal colonoscopy images contain not only abnormal regions, but

also normal regions. These may cover the majority of the image, so that the normal

regions in the abnormal images may dominate the I2CD calculations and lead to wrong

classification.

Figure 7.2: The I2CD between an imaginary normal (left) and an abnormal (right)
image and to different classes. In the abnormal image the number of abnormal features
are less compared to the normal features; it biases the NBNN classifier towards the
normal class and classified the abnormal as normal.

Figure 7.2 illustrates this in a simple feature space. It shows a set of local features from

normal and abnormal images. In the abnormal test image (Figure 7.2 right) the number

of normal features is higher than the number of abnormal features, and this biases the

NBNN classifier towards the normal class, predicting the abnormal image as normal.

To overcome this, I apply different weights to different classes. I propose a

learning approach to learn these weights as well as the local features (the parameters
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of the xMRLP feature). Our approach uses weak labels for learning local features,

and supports multi-class classification, and probabilistic outputs. Importantly, I show

improved performance compared to the results reported in Chapter 6.

7.2 The proposed joint learning framework

First I introduce the notation and then propose the learning framework to learn the class

weights and the local image features.

7.2.1 Notation

Let Ii be the ith image in the training set characterised by a set of local features

Xi = {xij}, j = 1, . . . , Ni, where Ni is the number of local features in Ii. Let’s consider

the general case of weak labels, whereby an image is associated with an image-level

soft label indicating, for e.g. class probabilities. The goal of this chapter is to learn the

local features, as well as a probabilistic multi-class classifier based on the given training

data, which is formed by the set of tuples D = {(Ii, p̃i)}, i = 1, . . . ,M , where M is

the number of images in D, and p̃i ∈ [0, 1]C corresponds to a C-dimensional vector of

soft labels (∈ R) of the ith training image associated with the C classes. I assume that∑C
c=1 p̃(yi = c) = 1, where p̃(yi = c) is the latent class assignment of the image Ii to

class c.

7.2.2 Weighted I2CD

The normalised variant of the I2CD between image Ii and class c can be given as

(Equation (6.10)):

Dic(a) =
1

Ni

Ni∑
j=1

‖xij − xcij‖22. (7.1)

where, xcij is the nearest neighbour of xij in class c. The NBNN classifier identifies the

class ŷi of an image Ii by the class which minimises Dic:

ŷi = arg min
c

Dic. (7.2)
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The NBNN classifier with weighted I2CD can be defined as:

ŷi = arg min
c

wcDic. (7.3)

where, wc is the weight applied to class c.

7.2.3 Discriminative probabilistic softmax classifier

Equation (7.4) below defines a discriminative probabilistic classifier. This classifier

outputs the posterior probability of an image Ii belonging to a class c based on weighted

I2CD.

p(yi = c|Xi) =
exp−γwcDic∑C
l=1 exp−γwlDil

. (7.4)

where γ is a decay parameter. In Equation (7.4) the maximum probability for an

image belonging to a class c will be obtained for the class which gives small weighted

I2CD compared to other classes. Equation (7.4) can be rewritten as:

p(yi = c|X) =
exp−γcDic∑C
l=1 exp−γlDil

. (7.5)

where γc = γwc, which has to be learned from the training data.

7.2.4 The objective function

Assuming iid data, I use a maximum a posteriori (MAP) approach to learn the feature

parameter a, and the classifier parameters γc, c = 1, . . . , C such that the posterior

probabilities (Equation (7.5)) of the images in the training data is maximised.

arg max
γ,a

N∑
i=1

C∑
l=1

p̃(yi = l) log p(yi = l|X). (7.6)

where γ = [γ1, . . . , γC ]T .
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The objective function in Equation (7.6) along with regularisation terms can be

given using the following functional:

L(γ,a) =
1

M

M∑
i=1

C∑
l=1

p̄(yi = l) [ λDil − log p(yi = l|X) ]

+ β‖a+ 1‖22.

(7.7)

Here, the first term (Dil) can be seen as an intra-class distance measure, which

minimises the I2CD between an image Ii to a class l weighted by its membership

assignments (p̄(yi = l)). The second term minimises the negative log energy defined by

Equation (7.6), and the last term, a regularisation term, prevents the feature parameters

from becoming arbitrarily large, and keeps them closer to as = −1, ∀s as in LBP and its

variants.

7.2.5 Optimisation

Letting pic = p(yi = c|X), the partial derivative of Equation (7.7) w.r.t the parameters a

and γ can be given as:

∇aL =
1

M

M∑
i=1

C∑
l=1

p̄(yi = l)

[
(λ+ γl)∇aDil −

C∑
c=1

picγc∇aDic

]
+ β(a+ 1).(7.8)

∂L

∂γc
= − 1

M

M∑
i=1

p̄(yi = c)
1

pic

∂pic
∂γc

− 1

M

M∑
i=1

C∑
l=1
l 6=c

p̄(yi = l)
1

pil

∂pil
∂γc

. (7.9)

where,

∇aDic =
2

Ni

Ni∑
j=1

P∑
p=1

(xij − xcpij )�
(
Jij −∇axcpij

)
. (7.10)

∂pil
∂γc

=


pic (pic − 1)Dic, if l = c

picpilDic, if l 6= c.

(7.11)

∂pic
∂a

= −pic

[
γc∇aDic −

C∑
l=1

γl pil ∇aDil

]
. (7.12)
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Algorithm 5 Parameter learning

Input: training data with image-level labels ({Ii, p̄(yi)}, i = 1, . . . ,M)
Output: a,γ

1: initialize :

a = [−1, . . . ,−1]T

γl = 1× 10−2, l = 1, . . . , C

2: while not converged do
3: γl ← learn γl, l = 1, . . . , C
4: a← learn a using Algorithm (6)
5: end while

Algorithm 6 Update a

Input:{Ii, ~̄p(yi)}, i = 1, . . . ,M ,
a, γ

Output: a
1: while not converged do
2: compute xij using Equation (7.1)
3: compute p(yi = l|X), l = 1, . . . C using Equation (7.5)
4: calculate ∇aL using Equation (7.8)
5: a← a− ηa∇aL
6: end while

The overall algorithm to learn the feature parameter a and the classifier parameters

γ is given in Algorithm 7. Algorithm 6 provides the steps for learning a, where ηa is

the learning rate (learning rates for different datasets are given in Section 7.3.1). The

classifier parameters γ can be learned in a similar manner illustrated by Algorithm 6.

The learning rates for different datasets are reported in Section 7.3.1. The learning is

stopped when there is no further reduction in the cost function (i.e. ‖Li−Li−1‖ < 10−1,

where Li and Li−1 are the objective values at the ith and (i−1)th iterations respectively).

Figure 7.3 shows the convergence of Algorithm 5 for an example experimental run.

Algorithm 5 takes about 4 hours to converge (Matlab 2014b and Windows 7 running on

a machine with a Core i7 processor and 8GB RAM).

7.3 Experiments

Let MRLP denote the descriptor where the parameters are fixed to their default values

(a = [−1, . . . ,−1] in Equation (5.3)). Let xMRLPs and xMRLPs2 denote the learned

descriptors using the approaches proposed in chapter 6 and this chapter respectively.
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Figure 7.3: The convergence of the Algorithm 5 for an example experimental run
(objective value vs iteration number).

I use three datasets, 2-class colonoscopy, 3-class colonoscopy, and the ICPR cell

images to evaluate the proposed approach. These datasets were introduced in Chapter

3. In the following, I investigate the effect of learning parameters for both features and

classifier, and the sensitivity of the regularisation parameters given in Equation (7.7).

Then I compare different features using the NBNN classifier, and show that the proposed

features give better performance than the widely-used features in the computer vision

such as SIFT and RP, with reduced computational time for classification.

7.3.1 Effect of learning

This section intends to show that learning both the features (a of Equation (5.3)) and

the classifier (γ of Equation (7.5)) using the proposed cost function (Equation (7.7))

gives better performance compared to: (1) no learning (MRLP using NBNN classifier),

and (2) learning only the γ while keeping the features (MRLP) unchanged.

Dataset
no learning learned classifier learned features &

(MRLP + NBNN) (γ) classifier (a, γ)

2-class colonoscopy 82.93± 0.92 82.74± 1.05 86.35± 0.87

3-class colonoscopy 81.42± 0.88 81.78± 2.25 85.45± 1.66

ICPR cells 68.11± 0.35 69.89± 0.49 70.86± 0.37

Table 7.1: Performance (MCA ± std over experimental runs, refer Section 3.2 for
experimental settings) of joint learning: learning both features and the classifier
(learning both a and γ using Equation (7.7)) improves the performance compared
to no learning (MRLP + NBNN classifier) and learning only the classifier (MRLP +
learning γ using Equation (7.7)).

Table 7.1 reports the classification accuracy for different datasets. Learning both

the features (a of Equation (5.3)) and the classifier ({γc}, c = 1, . . . , C of Equation
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(7.5)) considerably improves the MCA for all the datasets. It should be noted that for

the colonoscopy datasets learning the classifier does not improve the classification. But

for the ICPR dataset, as it contains more classes than colonoscopy, learning the classifier

gives modest improvements and learning both the features as well as the classifier

improves the MCA by ∼ 2%.

In this experiment I followed the same setup given in Section 6.5.1. The learning

rate for features (ηa in Algorithm 6) and the classifier was set to 0.5 and 0.01 respectively.

The parameters β and λ in Equation (7.7) was set to β = 1 × 10−3 and λ = 1 × 10−5

respectively.

7.3.2 Sensitivity of the regularisation parameters

The cost function defined in Equation (7.7) contains two free parameters, λ and β,

where λ controls the contribution of the intra-class distances between images to different

classes weighted by their membership values, and β prevent the feature parameters a

from becoming arbitrarily large, and keeps them closer to as = −1,∀s. This section

evaluates the sensitivity of these parameters.

(i) 2-class colonoscopy (ii) 3-class colonoscopy (iii) ICPR cells

Figure 7.4: Sensitivity of the regularisation parameters: λ and β (Equation (6.14) ) vs
MCA.

A subset of images (30 and 40 images from the colonoscopy and the ICPR cells

dataset respectively) from training set of a particular experimental run was used to

learn the feature and classifier parameters. The testing set of that experimental run was

used to evaluate the classification performance.
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Figure 7.4 reports the MCA for different parameter settings. For all the datasets,

setting λ to larger values (λ = 1 × 10−1) produces worse performance in comparison

with smaller values (= {1× 10−3, 1× 10−5, 0}), suggesting that the intra-class distance

term in Equation (7.7) is not important. However in Equation (7.7) minimising

intra-class distances (Dic) in addition to maximizing the posterior probabilities may

reduce overfitting.

Varying β in the range {0, 1 × 10−2} in Equation (7.7) does not affect the

classification performance significantly. However setting β to larger values {0.1, 0.5}

reduces the performance for the colonoscopy datasets. This is because when β getting

larger values, the values of a cannot be learned, and will remain closer to initialisation

values.

7.3.3 The learned parameters

Figure 7.5 visualizes the learned parameters of the xMRLPs2 features for 3 randomly

selected experimental runs for different datasets. As observed in Chapter 6, learning

applies different weights to different sampling points. The parameters which were

learned at different experimental runs give different values because they were learned

using different training dataset.

(i) 2-class colonoscopy (ii) 3-class colonoscopy (iii) ICPR cells

Figure 7.5: Visualisation of the learned parameters: The learned parameter values
(vertical axis) at different sampling points (horizontal axis) (Figure 5.2(ii)). Different
colours correspond to different experimental runs.

7.3.4 Example probabilistic output

Since the proposed framework can also provide probabilistic outputs for the test images,

Figure 7.6 and 7.7 show examples of images from the 3-class colonoscopy dataset which
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were correctly and wrongly classified with high confidence.

Figure 7.6: Examples of images from the 3-class colonoscopy dataset which were
correctly classified with high confidence (P (ŷi = yi) > 0.9, where, ŷi is the predicted
probability and yi is the label of Ii). Abnormal, normal and uninformative images are
shown in the top, middle and the last rows respectively.

Figure 7.8 shows some example wrongly classified images with low confidence

and their confidence values based on the probabilistic soft-max classifier given in

Equation (7.5). As can be seen from Figure 7.8 the probabilistic outputs and the wrong

classification results are reasonable, as it is hard to assign the difficult images to only

one class since they have very similar visual appearance to different classes.

7.3.5 Comparison of different features using the NBNN classifier

Table 7.2 compares the widely used features in computer vision, such as rSIFT and RP

with the proposed MRLP, xMRLPu, xMRLPs, and xMRLPs2 features for the colonoscopy

and the ICPR cells datasets, using the NBNN classifier. xMRLPu, xMRLPs and xMRLPs2

performs considerably better than other features for the colonoscopy datasets.

For the colonoscopy datasets we could also observe that the MCA obtained

by the weakly-supervised approaches (xMRLPs and xMRLPs2) are similar to the

MCA obtained by the unsupervised approach (xMRLPu). The main reason could

be the amount of training data used for learning the features. Note that due to

computational reasons only 70 and 50 images respectively from the 2-class and 3-class
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(i) (0.1, 0.9, 0.0) (ii) (0.1, 0.1, 0.8) (iii) (0.1, 0.8, 0.1) (iv) (0.1, 0.9, 0.0) (v) (0.0, 1.0, 0.0)

(vi) (1.0, 0.0, 0.0) (vii) (1.0, 0.0, 0.0) (viii) (0.9, 0.1, 0.0) (ix) (1.0, 0.0, 0.0) (x) (0.9, 0.1, 0.0)

(xi) (0.4, 0.6, 0.0) (xii) (0.4, 0.6, 0.0) (xiii) (0.3, 0.7, 0.0) (xiv) (0.5, 0.5, 0.0) (xv) (0.5, 0.5, 0.0)

Figure 7.7: Examples of images wrongly classified with high confidence
(P (ŷi = yi) < 0.1, where, ŷi is the predicted probability and yi is the label of Ii) and
their predicted probabilities approximated to first decimal place. The top row shows the
abnormal images which are wrongly classified into other classes. The middle and the
last rows show the wrongly classified normal and uninformative images respectively.
The values in the brackets are correspond to P (ŷi = abnormal), P (ŷi = normal) and
P (ŷi = uninfomative) respectively.

colonoscopy datasets were used to learn the parameters (Section 7.3.1 and Section

6.5.1). Although the weakly-supervised approaches give similar performance compared

to the unsupervised approach, in Section 8.2.2.2 I show that the learned features using

the weakly-supervised and the unsupervised approaches are complementary to each

other, hence improved classification performance can be obtained when combining them

using a feature encoding method (experiments can be found in Chapter 8).

The dimensions of the features as well as the computational times required

to classify an image for the colonoscopy dataset are reported in Table 7.3. The

computational time includes the time needed for feature extraction and NBNN-based

classification. Since the dimension of the xMRLP-based features are smaller compared

to RP and rSIFT features (Table 7.3), the computational complexity required for

feature extraction and I2CD calculations is reduced. It is interesting to note that

although the dimension of the MRLP-based features are same, the xMRLPu features

give very low computational time compared to others. This is because the kd-tree
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(i) (0.4, 0.5, 0.1) (ii) (0.3, 0.4, 0.3) (iii) (0.5, 0.5, 0.0) (iv) (0.3, 0.4, 0.3) (v) (0.5, 0.5, 0.0)

(vi) (0.2, 0.4, 0.4) (vii) (0.5, 0.5, 0.0) (viii) (0.6, 0.4, 0.0) (ix) (0.1, 0.4, 0.5) (x) (0.5, 0.2, 0.3)

(xi) (0.3, 0.5, 0.2) (xii) (0.3, 0.4, 0.3) (xiii) (0.1, 0.5, 0.4) (xiv) (0.0, 0.5, 0.5) (xv) (0.2, 0.5, 0.3)

Figure 7.8: Examples of wrongly classified images which are around the classification
boundary, and their predicted probabilities approximated to first decimal place. The
top row shows the abnormal images which are wrongly classified into other classes.
The middle and the last row show the wrongly classified normal and uninformative
images respectively. The values in the brackets are correspond to P (ŷi = abnormal),
P (ŷi = normal) and P (ŷi = uninfomative) respectively.

Feature type
Dataset

2-class colonoscopy 3-class colonoscopy ICPR cells

rSIFT 79.78± 1.29 83.49± 1.74 63.69± 0.50

RP 84.32± 1.62 84.91± 1.20 59.63± 0.46

MRLP 82.68± 0.93 80.80± 0.83 67.90± 0.73

xMRLPu 86.55± 1.26 86.01± 0.82 68.17± 0.57

xMRLPs 86.63± 0.99 85.73± 1.16 69.01± 0.94

xMRLPs2 86.35± 0.87 85.45± 1.66 70.86± 0.36

Table 7.2: Classification performance (MCA± std over experimental runs, refer Section
3.2 for experimental settings) using different features with NBNN classifier.

rSIFT RP MRLP xMRLPu xMRLPs xMRLPs2

time (in sec) 10.42 3.99 1.89 0.52 1.20 1.31

feature dimension 384 200 72 72 72 72

Table 7.3: Average computational time required to classify an image using different
features with NBNN classifier for the 2-class colonoscopy dataset. Computational time
includes time for feature extraction and classification.
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A N

A 96.3± 1.1 3.7± 1.1
N 36.7± 2.4 63.3± 2.4

(i) rSIFT

A N

76.4± 3.4 23.6± 3.4
7.7± 1.6 92.3± 1.6

(ii) RP

A N

90.2± 1.8 9.8± 1.8
24.4± 2.5 75.6± 2.5

(iii) MRLP

A N

A 88.4± 2.2 11.6± 2.2
N 15.3± 1.5 84.7± 1.5

(iv) xMRLPu

A N

91.1± 1.4 8.9± 1.4
17.8± 2.3 82.2± 2.3

(v) xMRLPs

A N

86.0± 4.0 14.0± 4.0
13.3± 3.0 86.7± 3.0

(vi) xMRLPs2

Table 7.4: Confusion matrices for different features for the 2-class colonoscopy dataset
using the NBNN classifier. (A - Abnormal, N - Normal)

A N U

A 96.2± 1.7 3.8± 1.7 0.1± 0.1
N 33.4± 5.1 64.6± 4.9 2.0± 0.4
U 4.3± 1.7 5.9± 1.0 89.8± 2.1

(i) rSIFT

A N U

A 72.3± 4.7 25.8± 4.4 1.9± 0.5
N 7.5± 2.0 87.8± 2.1 4.6± 0.7
U 1.8± 1.0 3.7± 0.9 94.6± 1.6

(ii) RP

A N U

A 86.4± 2.3 13.6± 2.4 0.1± 0.1
N 23.4± 3.0 75.8± 3.0 0.8± 0.4
U 6.4± 1.2 11.5± 2.0 82.1± 2.8

(iii) MRLP

A N U

A 86.8± 2.9 12.0± 3.0 1.2± 0.4
N 16.4± 2.0 80.3± 2.1 3.3± 0.7
U 3.2± 0.9 5.8± 1.0 90.9± 1.4

(iv) xMRLPu

A N U

A 87.5± 3.1 12.1± 3.0 0.3± 0.3
N 17.7± 3.6 80.6± 3.6 1.7± 0.6
U 3.8± 1.0 7.4± 1.5 88.8± 2.1

(v) xMRLPs

A N U

A 79.6± 6.2 20.1± 6.2 0.3± 0.3
N 11.3± 4.5 86.0± 5.1 2.7± 1.0
U 2.3± 1.0 7.0± 2.9 90.7± 3.5

(vi) xMRLPs2

Table 7.5: Confusion matrices for different features for the 3-class colonoscopy dataset
using the NBNN classifier. (A - Abnormal, N - Normal, U - Uninformative)

algorithm [163] is used for efficient NN retrieval using the clustered features (recall that

xMRLPu features are learned by maximizing cluster compactness). As demonstrated by

Maneewongvatana et al. [110, 111] the low-dimensional clustering improves the time

needed for kd-tree-based NN search. For the colonoscopy dataset, the learned features

not only give improved classification performance but also reduce the computational

time required for classification.

Tables 7.4, 7.5 and 7.6 report the confusion matrices for different features for the

2-class colonoscopy, 3-class colonoscopy and the ICPR cells dataset respectively. For the
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Homo. Spec. Nucl. Cent. NuMe. Golgi

Homo. 71.0± 1.5 17.6± 1.5 9.0± 1.4 0.0± 0.0 2.4± 0.6 0.0± 0.0
Spec. 17.4± 1.5 62.0± 1.5 8.9± 0.9 0.0± 0.0 11.7± 1.0 0.0± 0.0
Nucl. 4.1± 0.5 7.7± 1.1 80.4± 1.3 1.4± 0.6 6.3± 0.7 0.0± 0.0
Cent. 0.4± 0.1 9.2± 0.5 10.2± 0.8 72.2± 0.5 8.0± 0.9 0.0± 0.0

NuMe. 7.6± 1.1 0.3± 0.1 0.1± 0.1 0.0± 0.0 92.1± 1.2 0.0± 0.0
Golgi 2.7± 0.8 10.1± 1.5 53.8± 2.5 9.3± 1.6 19.7± 1.8 4.4± 0.9

(i) rSIFT

Homo. Spec. Nucl. Cent. NuMe. Golgi

Homo. 87.7± 2.7 9.9± 2.2 0.3± 0.1 0.0± 0.0 2.2± 0.8 0.0± 0.0
Spec. 34.8± 1.8 49.5± 1.6 8.4± 1.2 0.1± 0.1 7.2± 1.4 0.1± 0.0
Nucl. 1.9± 0.5 2.9± 1.2 77.3± 2.9 0.6± 0.2 17.2± 2.8 0.1± 0.1
Cent. 1.5± 0.4 12.2± 0.4 25.6± 0.7 58.9± 0.9 1.8± 0.3 0.0± 0.0

NuMe. 23.7± 1.7 3.9± 1.4 1.9± 0.3 0.0± 0.0 70.2± 2.8 0.3± 0.1
Golgi 1.5± 0.6 10.0± 1.7 47.3± 2.4 7.9± 1.5 19.1± 2.6 14.2± 1.5

(ii) RP

Homo. Spec. Nucl. Cent. NuMe. Golgi

Homo. 91.3± 1.5 5.1± 1.4 3.1± 0.8 0.0± 0.0 0.4± 0.1 0.0± 0.1
Spec. 33.8± 1.9 51.5± 1.9 12.3± 0.8 1.4± 0.3 0.9± 0.2 0.0± 0.0
Nucl. 3.0± 0.6 3.1± 0.6 85.9± 0.8 6.9± 1.0 0.9± 0.3 0.2± 0.1
Cent. 1.1± 0.2 8.4± 0.7 7.1± 0.7 83.1± 0.6 0.4± 0.1 0.0± 0.0

NuMe. 19.4± 1.7 1.3± 0.4 1.8± 0.3 0.0± 0.0 77.5± 1.4 0.1± 0.1
Golgi 7.1± 1.0 7.8± 2.2 34.4± 2.6 23.4± 1.9 7.7± 2.1 19.5± 2.2

(iii) MRLP

Homo. Spec. Nucl. Cent. NuMe. Golgi

Homo. 93.8± 1.0 4.6± 1.1 1.2± 0.3 0.0± 0.0 0.3± 0.2 0.1± 0.1
Spec. 36.7± 2.0 48.8± 2.4 12.0± 1.0 1.2± 0.3 1.2± 0.3 0.1± 0.1
Nucl. 4.0± 0.8 3.1± 0.8 85.0± 0.9 6.4± 0.7 1.2± 0.4 0.3± 0.1
Cent. 1.3± 0.3 8.3± 0.5 7.6± 0.7 82.3± 0.9 0.5± 0.3 0.0± 0.0

NuMe. 20.4± 1.5 1.1± 0.3 1.5± 0.3 0.0± 0.0 76.8± 1.5 0.2± 0.1
Golgi 7.2± 0.8 8.0± 1.4 32.7± 2.7 20.3± 2.5 9.4± 1.4 22.3± 2.2

(iv) xMRLPu

Homo. Spec. Nucl. Cent. NuMe. Golgi

Homo. 93.9± 0.9 4.2± 0.6 1.3± 0.4 0.0± 0.0 0.4± 0.2 0.1± 0.1
Spec. 35.7± 1.5 49.5± 1.7 12.2± 1.0 1.4± 0.3 1.1± 0.3 0.1± 0.1
Nucl. 3.5± 0.9 2.9± 0.6 85.9± 1.0 6.3± 1.0 1.2± 0.4 0.2± 0.1
Cent. 1.3± 0.3 8.2± 0.4 7.4± 1.1 82.7± 0.9 0.4± 0.2 0.0± 0.0

NuMe. 18.3± 1.7 1.0± 0.3 1.7± 0.4 0.0± 0.0 78.8± 1.8 0.1± 0.1
Golgi 5.4± 1.0 7.3± 1.5 34.4± 2.6 23.4± 4.0 8.8± 1.4 20.7± 2.8

(v) xMRLPs

Homo. Spec. Nucl. Cent. NuMe. Golgi

Homo. 80.1± 4.1 15.9± 4.3 2.5± 1.1 0.0± 0.0 1.4± 0.9 0.1± 0.1
Spec. 18.5± 4.0 63.8± 4.5 13.8± 0.9 3.1± 0.9 0.8± 0.2 0.1± 0.1
Nucl. 1.1± 0.4 2.6± 0.7 86.8± 1.8 8.3± 1.1 0.7± 0.2 0.4± 0.2
Cent. 0.2± 0.2 8.7± 0.8 6.9± 0.9 84.1± 1.0 0.1± 0.1 0.0± 0.0

NuMe. 12.9± 1.5 1.0± 0.6 2.8± 0.5 0.2± 0.1 82.7± 1.7 0.4± 0.2
Golgi 1.5± 0.7 4.2± 1.6 33.1± 3.0 27.7± 3.6 5.9± 2.0 27.7± 2.2

(vi) xMRLPs2

Table 7.6: Confusion matrices for different features for the ICPR cells dataset using the
NBNN classifier.
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2-class colonoscopy dataset rSIFT provides a higher TP and a lower TN rate, and RP

provides a higher TN and a lower TP rate. On the other hand MRLP, MRLPu and MRLPs

features give similar TP and TN rates. rSIFT has 36.7% FP, and RP 23.6% FN. MRLPs,

although not beating the best results taken in individual categories (TP, TN, FP, FN),

seem to be, numerically, a good compromise at a cheaper computational cost. For the

ICPR cells dataset MRLP, MRLPu and MRLPs features give higher accuracy for the Golgi

classes compared to RP and rSIFT.

7.4 Conclusions and discussion

The I2CD can be easily affected by the noisy local features and the features which are

common to different classes (background features). To overcome this problem I propose

an approach which applies weights to different classes. I propose a joint learning

approach to learn these weights as well as the local features together using data with

image-level labels. I experimentally showed that the joint learning framework improves

the NBNN-based MCA compared to the approach proposed in Chapter 6 for the ICPR

dataset, and gives similar MCA for the colonoscopy datasets, as class weighting is not

important for the datasets with small number of classes.

The NBNN classifier is computationally expensive due to the NN search, which

limits the amount of local features which should be used for classification. Note that

to reduce the computational time required for I2CD calculations I use larger step sizes

(16 for colonoscopy and 4 for the ICPR cells datasets) in the training and the testing

stages. Extracting features in this way may not capture the discriminative local image

properties well. On the other hand, feature encoding approaches are widely used

by the computer vision community (e.g. [168, 178]) to get an image-level feature

representation. Usually, feature encoding approaches are computationally more efficient

than the I2CD calculations. Therefore, after learning the features using the proposed

approach, any feature encoding approach could be applied to get a rich image-level

representation. The next chapter investigates this together with a learned image-level

classifier (e.g. SVM) and shows improved MCA compared to the ones reported in

this chapter. The next chapter gives extended experiments with different features as

well as different feature encoding approaches. A comparison with the state-of-the-art

approaches is also given in Chapter 8.



8

MRLP AND XMRLP FOR

COLONOSCOPY AND CELL IMAGE

CLASSIFICATION: EXPERIMENTAL

EVALUATION

In Chapters 5 and 6 we proposed a feature, the MRLP, and its extended version

called the xMRLP. Chapter 5 and Chapter 7 respectively proposed an unsupervised

and a weakly-supervised approach to learn the parameters of xMRLP features. In

Chapter 7 we experimentally showed that xMRLP performs considerably better

than the hand-crafted features such as MRLP, rSIFT and RP using the NBNN

classifier.

In this chapter, we propose two systems based on the proposed features to

classify colonoscopy images and cell images into predefined categories. Extended

experiments with different features and different encoding methods are given.

Comparative experiments with various state-of-the-art systems proposed for

colonoscopy and cell image classification show that the proposed approaches

outperform the state-of-the art.

8.1 Introduction

In this chapter I describe the automatic systems developed to classify colonoscopy and

cell images using the proposed descriptors. I compare the proposed features (MRLP

and xMRLP) with widely used features in computer vision for image classification, such
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as root-SIFT [13], random projection (RP) [22] and local colour/intensity histograms

(LCH) [170], with different feature encoding approaches such as Bag-of-Words (BOW),

Locality constrained Linear Coding (LLC), Vector of Locally Aggregated Descriptors

(VLAD) and Fisher Vectors (FV). I show that the proposed descriptors (MRLP, xMRLPu

and xMRLPs2) give better or competitive MCA compared to these baselines. I

also compare my approach with various state-of-the-art approaches proposed for

colonoscopy and cell image classification and show that the proposed approaches

performs better than the state-of-the-art. The datasets used in this chapter are described

in Chapter 3.

In the following, first we briefly explain the rSIFT, RP and LCH features, and then

we propose an automatic system to classify colonoscopy and cell images respectively

and report various comparative experiments.

8.1.1 Root-SIFT

Root-SIFT (rSIFT) is an enhanced variant of SIFT, reported to perform better than

SIFT for some image retrieval tasks [13]. The standard SIFT descriptor is a histogram

representation of local image derivatives and was originally designed to support

comparisons with Euclidean distance. Using the Euclidean distance to compare

histograms often yields inferior performance compared to other distance measures

such as Chi-squared or Hellinger kernels [21] for texture classification and image

categorisation [13]. Therefore, standard SIFT was modified in [13] to create rSIFT

so that comparing rSIFT descriptors using Euclidean distance is equivalent to using the

Hellinger kernel to compare SIFT vectors.

8.1.2 Random Projection

Random Projection (RP) is a simple yet powerful method for dimensionality

reduction [22]. In the case of image analysis, it projects vectors of intensities taken

from an image patch from the original patch-vector space RD to a compressed space

Rd (d < D), using randomly chosen projection directions in the feature space. Such a

scheme has been successfully applied, for instance, to texture image classification [100].
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Let x be a D-dimensional patch vector and x̂ be its d-dimensional representation in

the compressed space. The RP method simply maps these vectors linearly using a D× d

random projection matrix R, such that:

x̂ = Rx. (8.1)

Each element in R is sampled from a Gaussian distribution with zero mean and unit

variance. The key point of RP is that, when projecting the patch-vectors from the original

space to the compressed space, their relative distances are approximately preserved.

This allows one to compare distances directly in the compressed space, at a much

reduced computational cost.

8.1.3 Local Colour Histogram

Existing approaches for colonoscopy image classification (Section 2.1) use global colour

histograms (GCH), i.e. the histogram computed from the whole image as the image

representation, which does not capture the local colour information efficiently. Instead,

we compute the colour histogram from overlapping local image patches to capture local

image properties. Figure 8.1 shows two synthetic images as well as their global and

local histogram representations. It is clear that even though the local colour structures

are different, the GCH representation gives similar image features. On the other hand,

Local Colour Histogram (LCH) gives different image features.

8.2 Colonoscopy image classification

First we explain the proposed system for colonoscopy image classification and then

report various comparative experiments.

8.2.1 The proposed system

In Chapter 7 we experimentally showed that the learned xMRLP (xMRLPu, xMRLPs

and xMRLPs2) features perform considerably better than the hand-crafted features such

as MRLP, rSIFT and RP using the NBNN classifier. However, the NBNN classifier is
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(i) image 1 (ii) The GCH
representation of
image 1

(iii) The LCH
representation of
image 1

(iv) image 2 (v) The GCH
representation of
image 2

(vi) The LCH
representation of
image 2

Figure 8.1: Two synthetic images with different local structures and their
corresponding GCH and LCH.

computationally expensive due to NN search, which limits the number of features

extracted from each image for classification. On the other hand, feature encoding

approaches together with the SVM classifier are widely applied in computer vision

[168, 178] and medical image analysis literature [120]. Therefore, in this chapter we

use a feature encoding approach to get image-level representations based on the local

features, and we use a SVM classifier for classifying different image categories.

Since the xMRLPu and xMRLPs2 features are optimised based on different criteria,

they could be complementary to each other, as well as to the MRLP features. Therefore,

concatenating the image-level representations obtained by MRLP, xMRLPu and xMRLPs2

features may give a richer image-level representation than the one obtained individually

from any of these. Therefore, in the training stage of the system, first the xMRLPu and

xMRLPs2 features are learned as explained in Chapter 5 and Chapter 7 respectively.

Then for each feature type, the image-level representation of a given image is computed

based on any feature encoding approach explained in Section 2.2. The normalisation

explained in Section 3.2.2 is then applied to normalise each image-level representation.

The resultant normalised image-representations computed from the MRLP, xMRLPu and

xMRLPs2 features are then concatenated to obtain the final image-level representation,

on which the classification is performed. I call the image-level representation obtained

in this way xMRLPall.
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8.2.2 Experiments

This section reports the experiments based on various features, encoding methods and

state-of-the-art approaches for the 2-class colonoscopy dataset. Some comparative

experiments based on the 3-class colonoscopy dataset are also given in Section 8.2.2.8.

8.2.2.1 Experimental setup

The rSIFT features extracted (patch size 16 × 16, overlap 12 pixels) from 3 colour

channels were concatenated to get a descriptor of size 3 × 128. RP descriptors were

extracted in a similar manner. The concatenated vectorised patch representations

(3 × 16 × 16) were projected by a RP matrix to obtain a feature representation of size

200 for each patch. The histograms computed from different colour channels of each

patch were concatenated to get a patch-based colour representation for LCH. I applied

PCA to reduce the dimensionality of the LCH computed from each patch to 400 as the

initial dimension is high (the size of the LCH computed from a 8-bit RGB colour patch

is 3× 256). The dimension-reduced LCHs were then used for feature encoding.

The k-means algorithm was used for dictionary learning for BOW, LLC and VLAD

encoding methods, using a random sample of 200, 000 local features from each dataset

and feature type. I used the public library, vlfeat[163], for dictionary learning and

feature encoding for BOW, VLAD and FV. For LLC we used the public code provided by

the authors of [168]. I used a linear SVM (Lib-Linear [45]) classifier for FV and VLAD as

they produce larger image representations (e.g. larger than 5,000). For BOW and LLC

approaches we used a SVM with exp-Chi-square kernel [187], and for VLAD and FV we

used a SVM with a linear kernel. The parameters of SVM and the kernel were learned

based on a 5-fold cross validation on the training data.

8.2.2.2 Comparison of xMRLP-based features

In this section we compare the learned xMRLPu and xMRLPs2 features with the MRLP

features based on different feature encoding approaches and a SVM classifier. I also

compare the image-level representation obtained by xMRLPall with any individual
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features (MRLP, xMRLPu and xMRLPs2) and show that xMRLPall outperforms other

feature types.

Figure 8.2 reports the performance of the xMRLP-based features. Regardless

of the feature encoding approach, the discriminatively learned features xMRLPs2

perform better than the hand-crafted one (MRLP). On the other hand, xMRLPu feature

gives improved performance compared to MRLP with BOW and SC, but gives lower

performance with VLAD and FV. This is mainly due the additional statistics captured

by the VLAD and FV encodings and the features were not learned discriminatively. On

the other hand, the combination xMRLPall gives considerable improvement compared

to any individual feature type. Particularly, when the dictionary size is small, xMRLPall

outperforms any individual feature type.

BOW and LLC with sum pooling give better performance than other feature

encoding approaches. LLC with max pooling gives worse performance than BOW and

LLC with sum pooling for smaller dictionary sizes (<1000). VLAD and FV perform

similarly to each other when the dictionary size is large (≥ 32), and FV performs better

than VLAD for smaller dictionary sizes (< 32) as it captures additional information

compared to VLAD (Section 2.2). However, BOW and LLC with sum pooling performs

considerably better than VLAD and FV, and with much smaller image-level feature

representation. For example, when xMRLPs is considered, BOW with dictionary size

of 200 gives a MCA of ∼ 91%. On the other hand, for the same feature type FV gives

similar MCA but with much larger size of the image-level representation (note that, for

FV when the dictionary size is 64, the size of the image-level representation is 2×64×72,

where 72 is the dimensionality of the xMRLPs features).

8.2.2.3 Comparison of different features and encoding methods

Figure 8.3 reports the MCA of rSIFT, RP, LCH, and xMRLPall features for different

encoding methods.

When BOW and LLC encodings are considered, rSIFT performs similar to RP, and

both give modest MCA compared to LCH and xMRLPall. LCH features give competitive

performance compared to the proposed descriptors xMRLPu and xMRLPs2 (Figure

8.2 and Figure 8.3), but, importantly, with much larger patch representations (the
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(i) BOW

(ii) LLC sum (iii) LLC max

(iv) VLAD (v) FV

Figure 8.2: Performance (MCA ± std) of xMRLP-based features with different feature
encodings and SVM classifier (size of the dictionary vs MCA).
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(i) BOW

(ii) LLC sum (iii) LLC max

(iv) VLAD (v) FV

Figure 8.3: Performance (MCA ± std) of various features with different feature
encodings (size of the dictionary vs MCA, COLOR represents the LCH features).
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dimensionality of each patch represented by LCH is 400 and of the patch representation

by xMRLPu/xMRLPs2 is only 72). On the other hand, regardless of the dictionary size

is used with BOW, LLC (with sum pooling), VLAD and FV, xMRLPall outperforms LCH,

suggesting that the learned features capture discriminative information for classification.

Overall, regardless of the feature type, BOW performs better than LLC when the

dictionary size is small; when the dictionary size is large (e.g. 4000) LLC gives similar

MCA than BOW. Sum pooling always performs better than max pooling for LLC. FV

performs better than VLAD for smaller dictionary sizes (≤ 32) as they capture additional

(second-order statistics) information for each cluster.

8.2.2.4 Local vs global colour histograms

This experiment is intended to show that local colour histograms (LCH) for colonoscopy

image classification are better than the global one (the histogram obtained from the

whole image).

Figure 8.3 reports the classification performance of LCH. Colour histograms

computed from whole images (GCH) are widely used for colonoscopy image

classification as mentioned in Section 2.1. Therefore we consider this GCH

representation as the baseline. I computed colour histograms from each RGB colour

channel and concatenated them to represent images. This yields a feature vector of

dimension 3 × 256. The normalised global histograms computed from training images

are used for classifier (SVM with exp-Chi-square kernel) training.

GCH gives a MCA of 86.5± 0.7, which is considerably worse than the MCA

92.3± 0.80 (Figure 8.3) obtained by LCH (BOW with dictionary size 2000), suggesting

that LCH is more discriminative than GCH as expected, as it captures local information.

8.2.2.5 Computational time required for feature extraction and encoding

Table 8.1 reports the time (in seconds, averaged over 100 images) required for

extracting the features and encoding them using a BOW with a dictionary size of 1000.

These timings were obtained using Matlab 2014b and Windows 7 running on a machine

with a Core i7 processor and 8GB RAM.
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Feature type MRLP xMRLPu xMRLPs2 LCH rSIFT RP

Time in sec. for feature extraction 0.10 0.10 0.10 1.79 0.57 0.56

Time in sec. for feature encoding 0.16 0.16 0.16 0.69 0.67 0.36

Table 8.1: Average computational time (averaged over 100 images) required for
different features for feature extraction and encoding (BOW with dictionary size of
1000).

For the individual feature types, LCH and the learned features (xMRLPu , xMRLPs

and xMRLPs2 ) perform better than other features. It should be noted that the

dimensionality of the learned features are much less compared to the dimensionality

of LCH (dimensionality of the learned features = 72 vs LCH = 400), which makes

computationally efficient for feature extraction and encoding (Table 8.1). The learned

features (xMRLPu and xMRLPs2) not only give better performance compared to rSIFT

and RP, but also allow processing ∼ 5 frames per second. On the other hand, LCH gives

competitive performance compared to the learned features but with much increased

computational complexity.

8.2.2.6 Combining features for classification

Since different descriptors may capture complementary information, combining them

may improve the MCA. In this experiment we combine different descriptors with

each other to check whether they carry complementary information or not. BOW

together with the exp-Chi-squared kernel was used in this experiment. The normalised

BOW representations computed from different features are combined to get the final

image-level feature representation, on which the classification is based on.

Combining different features easily boosts the MCA compared to any individual

feature type. Combining xMRLP-based features (xMRLPall) boosts the performance of

individual feature types even with much smaller size of the dictionary; MCA of ∼ 93%

was obtained with a dictionary size of 100. Although combining other descriptors

with LCH improves the MCA, the computational time required by LCH is much higher

compared to the time required by xMRLP-based features. The proposed features not

only give improved performance but also allow processing more frames compared to

LCH (Table 8.1). When combining all the features, the MCA improves by 1% compared

to the MCA obtained by xMRLPall (BOW with dictionary size of 100). This is a
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Features
Dictionary size

100 1000 4000

Single feature type

rSIFT 88.33± 0.48 89.47± 0.84 89.26± 0.56

RP 87.95± 1.02 90.82± 1.10 90.44± 0.86

LCH 90.63± 0.70 92.14± 0.99 92.09± 1.34

MRLP 87.57± 1.08 90.30± 0.81 89.73± 1.02

xMRLPu 90.78± 1.22 92.48± 1.46 92.19± 0.96

xMRLPs 90.50± 1.49 91.38± 1.10 91.74± 0.79

xMRLPs2 89.31± 1.38 92.15± 1.63 92.07± 0.96

Combined features

xMRLPu + xMRLPs2 92.74± 0.79 93.51± 0.86 93.14± 0.67

xMRLPall 93.16± 0.92 93.98± 0.65 93.43± 0.68

RP + rootSIFT 92.40± 0.83 92.68± 0.89 92.09± 0.52

LCH + xMRLPs2 92.79± 1.08 93.71± 0.73 93.46± 0.85

LCH + xMRLPall 93.86± 0.75 94.11± 0.65 93.68± 0.69

LCH + RP + rootSIFT 93.96± 0.64 93.81± 0.74 93.38± 0.48

LCH + rootSIFT + RP + xMRLPall 94.52± 0.75 94.15± 0.72 93.88± 0.51

Table 8.2: Classification performance (MCA ± std) of feature combinations (BOW with
exp-chi2 kernel).

modest improvement if one considers the computational efforts required. Whether

the improvement is worth achieving is ultimately decided in the context of the clinical

application, eg, screening for malignant tumours, but this goes beyond the scope of

our investigation. When all the features are considered increasing the dictionary size

from 1000 to 4000 slightly decreases the MCA, this may be due to the fine partition

of the feature space leading to the formation of some noisy clusters, and the hard

descriptor-to-cluster assignments of BOW framework.

8.2.2.7 Comparison with state-of-the-art approaches

I considered the following as the baseline features for colonoscopy image classification:

global colour histograms (GCH), CWC [67], CWC with higher order statistics (CWC2)

[66], GLCM [44], GLCM on wavelet bands (WGLCM) [121] and concatenated colour

histograms (CCH) [70]. CWC , CWC2 and CCH are explained in Section 2.1.
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Feature GCH CCH CWC CWC2 GLCM WGLCM MR-LBP

M 768 225 216 240 144 144 531

MCA 86.5± 0.7 85.1± 0.9 76.5± 1.0 78.3± 1.3 76.7± 1.4 77.7± 0.9 87.2± 1.1

MR-LTP MR-SILTP gMR-LTP rSIFT RP xMRLPall LCH + rSIFT +
RP + xMRLPall

1062 1062 1062 1000 1000 300 600

88.8± 1.0 90.8± 1.3 90.3± 1.0 89.5± 0.8 90.8± 1.1 93.2± 0.9 94.52± 0.75

Table 8.3: Experimental results (MCA ± std) of the proposed xMRLP-based features
and various other features for colonoscopy image classification. M represents the size
of the image representation.

GLCM features (energy, entropy, correlation and homogeneity) were extracted

from each colour channel (in 4 different directions {0◦, 45◦, 90◦, 135◦} and 3 different

distances {1, 2, 3}) and concatenated into one vector to get the image representation

for GLCM [44]. GLCM (4 directions and 3 distances) features computed on wavelet

images were used as the feature for WGLCM [121]. I used our own implementations

for the above descriptors, taking care to select parameters to achieve the fairest possible

comparison.

I observed that the exponential Chi-squared kernel gave worse performance for

most of the baseline approaches. Therefore we used two different kernels, RBF and

exponential Chi-square (Equation (4.7)), and report the best performance. The RBF

kernel is defined as:

K(z1, z2) = exp

(
−
‖z1 − z2‖22

2σ2

)
(8.2)

where z1 and z2 are d-dimensional representation of two images. σ is a parameter,

which were learned based on a 5-fold cross validation on the training set. For all features

other than GCH and CCH, we found that the RBF kernel outperforms the exponential

Chi-square kernel.

Table( 8.3) reports the results of the approaches considered. The proposed learned

descriptors (xMRLPall) outperform all the others with a considerable margin and gave

state-of-the art results on the 2-class colonoscopy dataset.
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8.2.2.8 Experiments on the 3-class colonoscopy dataset

This section compares different features and their combinations on the 3-class

colonoscopy dataset. BOW was used for feature encoding.

(i) Comparison of MRLP, xMRLPu, xMRLPs2 and
xMRLPall

(ii) Comparison of different features with
xMRLP-based features

(iii) Performance of feature combinations.

Figure 8.4: Performance (MCA ± std) of various features for the 3-class colonoscopy
dataset (size of the dictionary vs MCA).

Figure 8.4(a) reports the MCA for xMRLP-based features. The learned features

xMRLPu, xMRLPs2 performs better than the MRLP features. The combined xMRLP-based

features xMRLPall performs better than any individual feature type.

Figure 8.4(b) compare xMRLPs2 and xMRLPall features with other features such as

LCH, RP and rSIFT. It is clear that xMRLPs2 and xMRLPu performs better than any other

individual features, and the combination xMRLPall outperform any other features.



Chapter 8. Extended & comparative experiments with the state-of-the-art 122

Figure 8.4(c) reports the MCA for different feature combinations. xMRLPall

performs similar to the MCA obtained by combining LCH + RP + rSIFT features,

however, obtaining an image representation using the xMRLPall features takes

considerably less time compared to any other individual feature type (Table 8.1).

8.3 Cell image classification

In this section first we compare the performance of xMRLP-based features with other

features such as rSIFT, LCH, and RP, and then explain the proposed system for cell

image classification. Finally we report experiments investigating the effect of different

system components and choice of feature representation and encoding.

8.3.1 xMRLP-based features for cell image classification

This section compares different features and their combinations on the ICPR cells

dataset.

In this experiment, features were extracted densely from 12 × 12 patches with an

overlap of 10 pixels in the horizontal and vertical directions, and the features were

extracted from the entire cell images, i.e. the cell masks were not used. BOW was used

for feature encoding.

Figure 8.5(a) reports the MCA for xMRLP-based features. The discriminatively

learned features xMRLPs2 gives modest improvements over the MRLP features, and the

unsupervised feature learning (xMRLPu) gives similar/reduced performance compared

to the MRLP features. However combining them (xMRLPall) outperforms any individual

feature type. Figure 8.5(b) compare xMRLPs2 and xMRLPall features with other features

such as LCH, RP and rSIFT. It is clear that xMRLPs2 and xMRLPall outperform any other

features.

Figure 8.5(c) reports the MCA for different feature combinations. xMRLPall

performs similar to the MCA obtained by combining LCH + RP + rSIFT features,

but, note that, obtaining an image representation using the xMRLPall features takes

considerably less time compared to any other individual feature type.
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(i) Comparison of MRLP, xMRLPu, xMRLPs2

and xMRLPall

(ii) Comparison of different features with
xMRLP-based features

(iii) Performance of feature combinations.

Figure 8.5: Performance (MCA ± std) of various features for the ICPR cells dataset
(size of the dictionary vs MCA).

In our proposed system for cell image classification we use MRLP features instead

of xMRLPall. Future work will explore the combination of xMRLPall and other features

for cell image classification.

8.3.2 The proposed system

The system to classify ICPR cell images into 6 predefined classes (homogeneous,

speckled, nucleolar, centromere, nuclear membrane, golgi) has been developed as a

team with other members of the CVIP group. I sincerely thank Wenqi Li, Shazia Akbar,

Ruixuan Wang, Jianguo Zhang and Stephen J. McKenna for this collaborative work.

Figure 8.6 gives an overview of the system used for generating a feature

representation from an image of a cell for input to a classifier. Each cell image is

intensity-normalised. Sets of local features are then extracted and a feature encoding
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Figure 8.6: An overview of the system for generating the image-level feature
representation using only one feature type: Learning dictionary from training images
(first row) and feature encoding to obtain the image-level feature representation
(second row). The final image representation is a concatenation of the image level
representations obtained by different types of features.

method (e.g. LLC) is employed to aggregate the local features into a cell image

representation. A two-level cell pyramid is used to the capture spatial structure of cell

images. An ensemble of SVM classifiers is then used to classify images of cells. The

following sections describe these system components in detail.

8.3.2.1 Local feature extraction

Prior to feature extraction, each cell image is intensity normalised; specifically, the

segmentation mask is dilated (using a 5×5 structuring element) and the intensity values

within each cell’s dilated mask region are then linearly rescaled so that 2% of pixels in

each cell became saturated at low and high intensities (Figure 8.7).

Local features are extracted densely from each pre-processed cell image. Four types

of local features are considered, MRLP, rSIFT, RP and LCH. Since the size of the images

in this dataset is small (∼ 70 × 70) and all the images are in grayscale, we use a set of

patch sizes (Section 8.3.3) to capture the local image properties.
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Figure 8.7: Image preprocessing: (a) an example cell image and its mask, (b)
histogram of intensity values inside cell region in (a), (c) normalised histogram, (d)
preprocessed image.

8.3.2.2 Feature encoding

For each feature type we learn separate dictionaries of size M (a parameter which

is varied in our experiments to investigate its effect, Section 8.3.3) using randomly

sampled 300, 000 local features from training images. Experiments with different feature

encoding methods are reported in Section 8.3.3.2.

8.3.2.3 Cell pyramids

Unlike the colonoscopy image dataset, the cell dataset contains some classes which

have spatial structure, e.g. Golgi class. This means that the relative position of image

elements may be useful for classification; in video colonoscopy images, instead, the

unpredictable motion and orientation of the scope, and the unpredictable location of

the lesions in the image, make it impossible to use spatial structure for detection and

frame classification.

To capture spatial structure within a cell, a 2-level cell pyramid is used in a similar

fashion to the dual-region in [172, 173].

After learning the dictionaries, the dictionary-encoded local features are pooled to

get an image representation. At the first level of the cell pyramid, the encoded features

from the whole cell are pooled to get a feature vector of size P (e.g. for BOW P = M).

At the second level, feature vectors are pooled from the inner region and from the

border region of each cell respectively (see Figure 8.6 and 8.8). The inner cell region

and the border region are identified based on eroding and dilating the provided masks
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(i) (ii) (iii) (iv)

Figure 8.8: Identification of inner and border regions for cell pyramid: (a) an example
mask, (b) the inner-region identified by dilating (a) using a structuring element of size
8× 8 pixels, (c) erosion of (a), (d) the border-region identified by subtracting (c) from
(b).

of the cell images (Figure 8.8). These three feature vectors are concatenated to give a

3P -dimensional vector. Finally, encoded features from each of the four feature types are

concatenated to give a 12P -dimensional vector on which classification was based.

8.3.2.4 Ensemble classifier

Augmenting the classifier’s training set with rotated versions of the images may improve

the MCA, but it also increases memory requirements to train a multi-class SVM classifier.

Instead we used an ensemble of one-vs-rest, multi-class, linear SVMs; the ensemble

consisted of four SVMs, one trained on the original training set images, and others

trained on images after they are rotated through 90◦, 180◦, and 270◦ respectively. The

overall system which includes data augmentation as well as the ensemble training is

shown in Figure 8.9.

Figure 8.9: An overview of the system for data augmentation and training SVM
ensemble. Each image can be encoded as shown in Figure 8.6
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At test time, each test image was rotated by 0◦, 90◦, 180◦, and 270◦, and each

rotated image was then given to the ensemble. This resulted in a set of 16 classification

scores for each class (4 rotations × 4 SVMs in the ensemble). Scores were treated as

probabilities using Platt rescaling [134]. The final classification decision was made by

averaging these probabilistic scores and selecting the highest scoring class. Figure 8.10

illustrates the process of classifying a cell image in detail.

Figure 8.10: Testing an image using the SVM ensemble for single cell classification.

8.3.3 Experiments

8.3.3.1 Experimental setup

From each cell image, each of the feature types was densely extracted from patches of

size 12 × 12, 16 × 16, and 20 × 20 pixels with a step-size of 2 pixels. For the RP feature

the dimension D of each linearised patch was reduced to d = 300 whenever D > 300.

For LCH histograms of 256 bins were used.

8.3.3.2 Comparison of different features and encoding methods

To compare the MCA of different features and encoding methods two-fold

cross-validation experiments were carried out, and each was repeated 10 times. Figure

8.11 reports the MCAs for different dictionary sizes. rSIFT gave a slightly better MCA

than the other features. LCH gave the worst results. For all encoding methods, larger

dictionaries gave higher MCA. LLC with sum pooling always gave better MCA than other
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encoding and pooling methods. For all features except LCH, FV performed better than

VLAD indicating that the additional (2nd order) information it captured was useful.

When the dictionary size was 64, FV obtained similar MCA to LLC with sum pooling with

a dictionary size of 4000, but with an increased feature dimensionality. For example,

using rSIFT the dimensionality of an FV image representation was 16, 384 compared to

4000 using LLC with sum pooling.

8.3.3.3 Combined features for classification

I investigated the performance of combinations of different features. I used BOW and

LLC encodings for this purpose as they gave better MCA than VLAD and FV in Experiment

8.3.3.2. The dictionary size was fixed to 1, 500. Table 8.4 reports the results (see columns

2-4). Similar MCA was observed using BOW and LLC when combining all four types

of feature. An improvement of more than 3% was obtained when combining other

features with rSIFT (Figure 8.11 and Table 8.4 columns 2-4). Table 8.6 reports the

confusion matrix obtained when combining all the features and encoding with LLC and

max-pooling. The Golgi class was the least accurately classified; about 8% of Golgi

images were misclassified as nucleolar.

8.3.3.4 Effect of Cell Pyramids

To improve classification accuracy, particularly of the Golgi class, we incorporated spatial

structure into the feature encoding process via cell pyramids (CPM). Table 8.4 reports

the MCA of different feature combinations with and without CPM using BOW and LLC

approaches (see columns 5-7). When combining all the features and using CPM, the

overall MCA was improved by about 1%. In particular, CPM improves the classification

accuracy of the Golgi images by about 3% (see Tables 8.6 and 8.7). However this

increases the computational time required for feature encoding (Table 8.5).

8.3.3.5 Effect of data augmentation

I investigated the effect of augmenting the training set by including rotated images as

explained in Section 8.3.2.4. An ensemble SVM was used for classification. Augmenting

the dataset improved the classification accuracy (see Table 8.4 columns 8-10 vs. columns



Chapter 8. Extended & comparative experiments with the state-of-the-art 129

BOW & LLC VLAD & FV

rSIFT

RP

LCH

MRLP

Figure 8.11: Performance (MCA ± std) of various features with different encodings for
the ICPR cells dataset (size of the dictionary vs MCA).

5-7, and Table 8.8 vs. Table 8.7). When combining all the features, the overall MCA was

further improved by about 1%. BOW and LLC gave similar MCA; the MCA saturated at

about 95%.
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Features
original dataset without CPM original dataset with CPM augmented dataset with CPM

BOW LLC-sum LLC-max BOW LLC-sum LLC-max BOW LLC-sum LLC-max

rSIFT + MRLP 90.4± 0.4 91.0± 0.4 90.2± 0.4 91.1± 0.4 92.0± 0.5 91.9± 0.4 93.6± 0.4 94.1± 0.3 94.0± 0.5

rSIFT + RP 89.6± 0.3 90.6± 0.3 89.7± 0.4 90.6± 0.4 91.9± 0.4 91.6± 0.3 93.1± 0.3 93.9± 0.3 93.7± 0.3

rSIFT + LCH 91.0± 0.4 91.2± 0.3 89.9± 0.4 92.6± 0.4 93.2± 0.3 92.7± 0.4 94.2± 0.3 94.3± 0.3 94.1± 0.3

all 92.6± 0.3 93.1± 0.5 92.6± 0.4 93.6± 0.4 94.1± 0.4 94.1± 0.4 95.2± 0.3 95.2± 0.2 95.2± 0.2

Table 8.4: Two-fold cross-validation results (MCA ± std) for different feature
combinations with and without CPM and data augmentation (dictionary size of 1500).

Features
original dataset without CPM original dataset with CPM augmented dataset with CPM

feature
extraction

feature
encoding

total
feature

extraction
feature

encoding
total

feature
extraction

feature
encoding

total

MRLP 0.02 0.47 0.49 0.02 0.88 0.91 0.10 3.54 3.64

LCH 0.79 0.54 1.33 0.79 1.06 1.85 3.16 4.15 7.31

SIFT 0.06 0.55 0.61 0.06 1.02 1.08 0.23 4.19 4.42

RP 0.55 0.49 1.04 0.54 0.93 1.46 2.16 3.72 5.88

Table 8.5: Computational time (in sec. averaged over 500 cell images) required for
different descriptors for feature extraction and encoding (SC, max pooling, dictionary
size of 1500)

8.3.3.6 Computational time for feature extraction and encoding

Table 8.5 reports comparisons of the computational time required for feature extraction

and encoding in order to compute the cell-level representations. This was by far the most

time consuming part of the proposed system. These timings were obtained using Matlab

2014b and Windows 7 running on a machine with a Core i7 processor and 8GB RAM.

LCH took more time than other features while resulting in lower MCA (see Figure 8.11).

On the other hand, MRLP took the least time and resulted in competitive MCA. When

all feature types were used along with data augmentation and CPM, the system took

approximately 21 seconds to compute the cell-level representation for one image.

8.3.3.7 Leave-one-specimen-out experiments

The above experiments discarded the identities of the specimens from which cells

had been extracted. To test the generalisation performance of our system across

different specimens, we conducted an experiment in a leave-one-specimen-out setting.

Specifically, we used the specimen IDs to split the data into training and validation sets.

Since 83 different specimens were available, we used images from 82 specimens for
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Homo. Spec. Nucl. Cent. NuMe. Golgi

Homo. 93.5 05.1 00.3 00.1 00.8 00.1
Spec. 04.6 90.6 01.7 02.2 00.6 00.3
Nucl. 01.0 02.1 94.8 01.0 00.6 00.5
Cent. 00.2 03.4 01.6 94.5 00.1 00.1

NuMe. 02.2 01.1 00.8 00.1 95.1 00.6
Golgi. 01.3 01.3 07.7 01.3 01.5 87.0

Table 8.6: Confusion matrix obtained using all features combined,
LLC with max pooling, and dictionary size of 1500. (neither CPM
nor data augmentation were used here).

Homo. Spec. Nucl. Cent. NuMe. Golgi

94.7 04.2 00.3 00.1 00.6 00.1
04.0 91.9 01.4 01.7 00.8 00.2
00.9 01.7 95.5 00.9 00.6 00.5
00.1 02.8 01.5 95.5 00.0 00.1
01.9 00.8 00.6 00.1 96.0 00.6
00.9 00.8 05.2 00.6 01.7 90.9

Table 8.7: Confusion matrix obtained using all features combined,
LLC with max pooling, dictionary size of 1500, and CPM. No data
augmentation was used here).

Homo. Spec. Nucl. Cent. NuMe. Golgi

95.5 03.3 00.3 00.1 00.5 00.3
04.1 92.1 01.3 01.4 00.8 00.4
00.8 01.2 96.2 00.5 00.5 00.8
00.1 02.3 01.5 96.0 00.0 00.1
01.7 00.4 00.6 00.1 96.5 00.8
00.4 00.3 03.1 00.1 01.0 95.0

Table 8.8: Confusion matrix obtained using all features combined,
LLC with max pooling, dictionary size of 1500, CPM, and data
augmentation

training in each split, and the images from the remaining specimen for testing. In this

experiment we used the combination of all feature types,the augmented dataset, CPM,

LLC, max-pooling, and dictionary size of 1, 500. Table 8.9 reports the confusion matrix.

An MCA of 81.1% was obtained. The Golgi class had poor results (66.7%). This class

exhibits high intra-class variability and was poorly represented in the available data set;

only 4 Golgi specimens were in the training set.

8.3.3.8 Performance on images extracted from Task 2 dataset

As explained in Section 3.1 the ICPR image cell dataset was obtained from the ICPR 2014

HEp-2 cell and specimen image classification challenge1. In that challenge two tasks
1http://i3a2014.unisa.it/

http://i3a2014.unisa.it/
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Homo. Spec. Nucl. Cent. NuMe. Golgi

Homo. 81.8 14.8 00.8 00.2 02.0 00.4
Spec. 09.0 75.5 03.7 10.6 00.8 00.4
Nucl. 01.1 03.4 89.4 02.5 01.3 02.3
Cent. 00.3 10.7 03.4 85.4 00.0 00.2

NuMe. 05.8 01.9 01.5 00.0 87.9 02.8
Golgi. 04.8 02.1 17.4 01.5 07.5 66.7

Table 8.9: Confusion matrix for leave-one-specimen-out experiment. (All features,
CPM, data augmentation, LLC, max pooling, dictionary size of 1500).

(Task 1 and Task 2) were proposed to the participants: Task 1 (cell classification) was

to classify pre-segmented immunofluorescence images of individual HEp-2 cells into six

classes (homogeneous, speckled, nucleolar, centromere, golgi, and nuclear membrane)

and Task 2 (specimen classification) was to classify HEp-2 specimen images into seven

classes (homogeneous, speckled, nucleolar, centromere, golgi, nuclear membrane and

mitotic spindle). Two example specimen images are shown in Figure 8.12(a) and

8.12(c).

(i) A centromere specimen (ii) The segmentation mask for (a)

(iii) A speckled specimen (iv) The segmentation mask for (c)

Figure 8.12: Sample specimen images from ICPR Task-2 dataset. The red bounding
boxes indicate the cell images which are automatically extracted from these specimen
images.

In this experiment we made use of cell images segmented from the Task 2 dataset

to investigate the performance of our system on those images (we did not use the mitotic
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Homo. Spec. Nucl. Cent. NuMe. Golgi

65.4 28.5 01.5 00.0 03.8 00.7
04.5 90.8 00.6 01.7 02.2 00.2
01.2 01.9 95.7 00.0 00.3 00.9
00.1 11.1 06.5 82.0 00.2 00.1
03.7 01.9 00.3 00.0 92.0 02.2
00.0 01.4 03.1 00.2 05.1 90.2

Table 8.10: Confusion matrix of the system trained on Task 1 images and tested on the
cell images extracted from Task 2 (LLC with max pooling, dictionary size of 1500).

spindle images in the experiment reported in this Section). An automatic procedure was

used to select cells from the Task 2 dataset given the segmentation masks provided with

that dataset. Firstly, all disjoint regions were identified in the segmentation mask images

using connected component analysis. Secondly, eccentricity values were calculated

for each connected component. Finally, low-eccentricity components that could be

bounded by an 80×80 square with which no other component overlapped were selected.

Approximately 5000 isolated cells were selected in this way. This is illustrated in Figure

8.12 where red bounding boxes denote cell images that were extracted.

I trained an ensemble classifier using all the images from Task 1 training dataset

and then tested it on the cell images extracted from the Task 2 dataset. I used the

combination of all feature types with the augmented dataset, CPM, LLC and max-pooling

(dictionary size of 1, 500). The results are reported in Table 8.10; an MCA of 86% was

obtained.

8.3.3.9 Comparison with state-of-the-art approaches

The test data of the ICPR challenge was withheld by the organisers. I participated in

the ICPR cell image classification challenge by submitting two systems for Task 1; the

first system used only data made available in the Task 1 training set; the second system

trained on a data set consisting of the Task 1 training set together with the additional

5000 cell images extracted from the Task 2 training set (see Section 8.3.3.8). Both

systems used all the features together with LLC (max-pooling, dictionary size 1, 500),

the rotated versions of the images, and CPM.

Figure 8.13 reports the MCAs obtained by all of the methods submitted to the

contest on the Task 1 test set. Our first submission which made use of only the Task 1

training data obtained an MCA of 84.2%, higher than all the other teams’ entries. Our
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Figure 8.13: The MCA at cell level attained by each method on the test set of Task 1.

Cent. Golgi Homo. Nucl. NuMe. Spec.

Cent. 97.5 00.1 00.5 00.8 00.2 00.9
Golgi. 00.1 82.0 05.4 03.6 08.2 00.7

Homo. 00.2 00.8 82.6 05.7 04.5 06.1
Nucl. 00.8 00.5 01.4 94.8 01.3 01.3

NuMe. 00.1 00.6 04.9 00.7 92.2 01.4
Spec. 10.3 00.5 12.0 02.0 01.5 73.6

(i) Proposed method (trained with cell images from Task 1 and Task 2
training sets)

Cent. Golgi Homo. Nucl. NuMe. Spec.

Cent. 95.5 00.4 00.2 01.2 00.1 02.7
Golgi. 00.0 71.8 04.7 07.3 14.6 01.6

Homo. 00.1 00.8 78.6 04.9 08.1 07.6
Nucl. 00.8 01.6 02.0 92.5 01.7 01.5

NuMe. 00.1 00.8 03.1 00.9 93.3 01.8
Spec. 13.4 00.7 11.1 02.7 02.2 70.0

(ii) Gragnaniello et al. [48]

Table 8.11: Confusion matrices for the proposed method and that of Gragnaniello et
al. [48] on the Task 1 test set.

second submission which used additional data (cells extracted from the Task 2 dataset)

achieved an MCA of 87.1%. The next best entry, that of Gragnaniello et al. [48], obtained

an MCA of 83.6%. Table 8.11 reports confusion matrices from our method and the

method of Gragnaniello et al. The reader is referred to the I3A report [102] for detailed

results of other entries.

8.4 Conclusions and discussion

In this chapter we proposed a system to classify colonoscopy images into two classes

(normal, abnormal) as well as a system to classify HEp-2 cell images into six classes

(homogeneous, speckled, nucleolar, centromere, golgi, and nuclear membrane). Our



Chapter 8. Extended & comparative experiments with the state-of-the-art 135

system for colonoscopy image classification make use of the proposed features (MRLP,

xMRLPu or xMRLPs2), and the system for cell image classification use the MRLP

features. I empirically studied different local feature extraction and encoding methods

for colonoscopy as well as cell image classification.

I found that:

• The learned features xMRLPu and xMRLPs2 perform better than the baseline

features MRLP, rSIFT and RP for colonoscopy images.

• For both datasets, a combination of different features improves performance (i.e.

MCA) compared to using only individual features.

• LLC with sum pooling performs better than LLC with max pooling, particularly for

smaller size of the dictionaries.

• FV and VLAD could achieve similar accuracies to BOW and LLC but only with

feature representations of much higher dimensionality.

• For the cell image classification adding spatial information from the cell images via

the use of cell pyramids improves MCA (an improvement of ∼ 3% was observed

for Golgi images) and augmenting the training set by the use of rotated training

images further improves the MCA.

Overall, comparative experiments with state-of-the-art approaches for colonoscopy

and cell images show that our approach outperforms the state-of-the-art.



9
INTER-CLUSTER FEATURES FOR

IMAGE CLASSIFICATION

Feature encoding plays an important role for image classification. Such

representations are based on the statistical information within each cluster of local

features and therefore fail to capture the inter-cluster statistic, such as how the

visual words co-occur in images. This information brings further discriminative

power to a feature-based representation. This chapter proposes a new method

to choose a subset of cluster pairs based on Latent Semantic Analysis (LSA),

and proposes a new inter-cluster statistic which captures richer information than

the traditional co-occurrence information. Since the cluster pairs are selected

based on image patches rather than the whole images, the final representation

also captures local structures. Experiments on medical datasets (ICPR cells and

IRMA radiographs, Chapter 3) show that explicitly encoding inter-cluster statistics

in addition to intra-cluster statistics significantly improves the classification

performance.

9.1 Introduction

The BOW approach is widely applied as a feature encoding method for medical [113]

as well as non-medical [180, 181] image classification. In BOW, local features such

as SIFT [104] extracted from training images are used to build a dictionary. This

dictionary represents a set of visual words (or clusters of features) which are then

used to compute a BOW frequency histogram as a feature vector for any given image.

BOW captures the simplest intra-cluster statistics of each cluster by just counting the



Chapter 9. Inter-cluster features for image classification 137

number of local features falling into that cluster (0th-order statistics). VLAD [60] and

Fisher Vectors (FV) [129] represent the intra-cluster information by a richer statistical

representation compared to BOW. In VLAD, a distance measure between the cluster

centre and the features in that cluster is used as the intra-cluster information (1st-order

statistics). In addition to the 0th and 1st order statistics, FV also considers 2nd order

statistics (i.e. variance for each feature component) [129] within each cluster. All the

above encoding methods (BOW, VLAD and FV) consider that local features extracted

from images independently from each other; none of them captures (1) the inter-cluster

statistical information (e.g. how two visual words co-occur in each image) and (2) the

local structure information of images. Such information can add useful discriminative

power to a representation.

Various methods have been proposed in the computer vision literature to add

information to these representations. For example, spatial pyramids (SPM) capture

spatial information in the images by partitioning the images into fine grids and

computing a feature vector from each grid [146]. In this representation, an image is

represented as a concatenated feature vector which is obtained from each partition.

SPM shows promising performance on natural images. SPM has been adapted by other

researchers, e.g. [61] by learning the relevant regions for classification instead of using

the fixed partitions as in SPM.

Recently, co-occurrence between visual words have been considered for

classification in [180, 181]. Here, co-occurrence of visual words at different partitions

of the spatial pyramids are used as the feature vector to capture the co-occurrence as

well as the spatial information. In this representation co-occurrence between all the

visual words are used as features, leading to a very high-dimensional feature vector

(e.g. co-occurrence features from a dictionary of size 100 leads to a dimensionality

of (100−1)∗100
2 ). A mutual information criterion is used to select the pairs in [31] and

the number of co-occurrence of each pairs is used for classification. This method

only considers the dependency between two visual words and does not consider

any dependency based on higher-order co-occurrence (discussed in Section 9.2). In

co-occurrence based methods, the inter-cluster information is represented as the number

of co-occurrences between two clusters. In comparison, I show that adding richer

inter-cluster statistics performs better than only considering the co-occurrence frequency

information as the inter-cluster statistic feature. Beside inter-cluster information,
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there is an additional advantage in co-occurrence image representations: since the

co-occurrence is obtained from local image regions, the final representation captures

some local structure information present in the images, which is not captured by the

standard feature encoding approaches.

The co-occurrence of visual words within local image regions has been considered

by other researchers as well (e.g. [71] [46]). However, their work focuses on

representing objects as a set of parts by building a mid-level feature representation,

while ours focuses on extracting inter-cluster statistics.

To capture inter-cluster information, co-occurrences between all pairs of visual

words are considered as features for classification [180, 181]. However, this leads

to a very high-dimensional feature vector. Including inter-cluster features from pairs

of clusters which do not have relevant information for classification may decrease

classification performance. Recently a mutual information based criterion has been used

to select cluster pairs whose co-occurrence information was then used for classification

[31]. However, all these methods [31, 180, 181] only consider the dependency between

two visual words (first-order co-occurrence) and failed to consider any higher-order

dependencies (discussed in section 9.2). The inter-cluster information in these methods

is represented merely as the number of co-occurrence between two clusters. In contrast,

I make use of higher-order co-occurrence information to select the informative cluster

pairs and encode the inter-cluster features using a richer representation.

As a summary, I propose the following: (1) a new method to select a

subset of cluster pairs based on Latent Semantic Analysis (LSA), by considering

higher-order co-occurrence of visual words; (2) a patch-based method to construct

the term-document matrix in the LSA framework, which can capture structural

information of objects in images; (3) A new inter-cluster feature to capture rich

statistical information between selected pairs of clusters, which performs better than

co-occurrence frequency. I experimentally show that adding inter-cluster statistics

(even from a small subset of cluster pairs) improves the performance of medical image

classification (ICPR cells and the IRMA radiology images).
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9.2 Inter-cluster features

This section focuses on adding inter-cluster statistical information to intra-cluster

statistics (e.g. BOW) to represent images. A new method is proposed to choose a

subset of cluster pairs by considering the higher-order co-occurrence of visual words

within local image regions and introduces an inter-cluster feature which captures rich

statistical information between any chosen cluster pairs.

9.2.1 Selection of cluster pairs based on LSA

Latent Semantic Analysis (LSA) is a well-known technique applied to a wide range of

tasks such as search and retrieval [43] and classification [186].

Let A be a term-document matrix with t rows (terms) and d columns (documents),

where the element a(i, j) represents the frequency of the occurrence of term i in

document j. In image analysis, terms correspond to visual words and documents often

(but not always, see Section 9.2.2) to images. In this chapter terms and words are used

interchangeably. An example term-document matrix is shown in Figure 9.2. In LSA,

a low-rank (e.g. rank k) approximation Ak of matrix A is obtained by keeping the k

largest non-zero singular values in the SVD of A (A = TSDT), i.e.

Ak = TkSkD
T

k. (9.1)

where the t-by-k matrix Tk, the k-by-k diagonal matrix Sk, and the d-by-k matrix Dk

are, respectively, the truncated versions of the original matrices T, S, and D. Then the

i-th row in TkSk can be used to represent the meaning of the i-th term (or word) in the

so-called k-dimensional latent semantic space, where noise can be largely suppressed by

discarding the smaller singular values in S. Based on such semantic representation of

terms, the similarities (correlations) between terms can be captured by the term-term

(co-occurrence) matrix [73]:

Ck = TkSk(TkSk)
T. (9.2)

where each element Ck(i, j) represents the similarity between the i-th and the

j-th terms, with higher positive value representing stronger similarity (or positive
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correlation) between terms and the lower negative value representing stronger

anti-similarity (or negative correlation) between terms.

More importantly, it has been shown that term-term matrix Ck from the truncated

matrix TkSk can additionally capture higher-order co-occurrence information (Figure

9.1) between terms compared to the original co-occurrence matrix (i.e. a matrix

where each element (i, j) represents how many times the words i and j co-occur in

a document) which is obtained directly from documents [73]. As shown in Figure

9.1, terms t1 and t2, t2 and t3, and t3 and t4 respectively co-occur in three different

documents. With the original co-occurrence matrix, only the first order co-occurrence

was captured and therefore the similarity between terms t1 and t3 (also t2 and t4, and

t1 and t4) will be zero. But there is a relationship between t1 and t3 via t2. Such

higher-order co-occurrence can be captured by the term-term matrix Ck where the

corresponding entries won’t be zero.

Figure 9.1: High-order co-occurrence.

I propose to select a subset of cluster (or term) pairs which have corresponding

larger values in the term-term matrix Ck. As explained above, the use of the

truncated term-term matrix Ck instead of the original co-occurrence matrix can help

choose the cluster pairs which are semantically similar. In addition, by using a small

subset of cluster pairs for inter-cluster feature extraction, richer (in general with

higher-dimensional) inter-cluster statistics can be extracted from the selected pairs.

Instead, if all the cluster pairs are used for inter-cluster feature extraction as in [181],

richer inter-cluster statistics will make feature dimensionality too high to be practically

applicable for classifier training.
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(i)

(ii)

Figure 9.2: Term-document matrix obtained from images (a) and patches (b).

9.2.2 Construction of the term-document matrix

Note that the truncated term-term matrix Ck is obtained from the term-document

matrix A. To construct A, in general, each image corresponds to one document

and the occurrence of each visual word is counted within the whole image (Figure

9.2a). However, such term-document matrix construction does not consider any spatial

relationship (e.g. far from or close to each other) between the corresponding image

regions to any two visual words. As a result, the term-term matrix Ck won’t contain

any information about the spatial relationships between any two visual words. In order

to make Ck capture spatial relationship between visual words, I propose to use each

image patch (with a certain size) as one document (Figure 9.2b). In this way, the

term-term matrix only considers the co-occurrence information between visual words

whose corresponding image regions are within the same image patches (therefore close

to each other in the image).
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By selecting word pairs (i, j) for which the corresponding absolute values of

Ck(i, j) are larger in the patch-based term-term matrix Ck, I expect that the selected

highly co-occurring word pairs within image patches (i.e. local image regions) will

capture certain structural information of objects in an image (e.g. teeth and nose in

radiographic images of heads are often close to each other and therefore more likely

appear within an image patch). The statistical information between such cluster (word)

pairs may implicitly convey such structural information which cannot be captured within

each cluster. What’s more, the patch-based term-term matrix Ck can also capture

the larger-scale structural information (if it exists) by the higher-order co-occurrence

information within Ck (e.g. eye balls with teeth via nose).

9.2.3 Inter-cluster statistics

After selecting a subset of word (or cluster) pairs, I need to extract the inter-cluster

information based on these pairs. Let W denote the dictionary which contains K visual

words {wi}, and Π denote the selected subset of word pairs. Given any image, a number

of L local descriptors (e.g. SIFT) X = {xl, l = 1, . . . , L} will be extracted from each

image patch. Let cluster Ci denote the subset of X such that the nearest visual word for

each xl in Ci is wi. I consider the two measures explained in the following subsection

to capture these inter-cluster statistics.

9.2.3.1 Co-occurrence of visual words

Co-occurrence is a simple measure of how many times a pair of visual words co-occur

locally in each image. Consider an image patch within which visual word wi occurs a

times and visual word wj occurs b times, and the word pair (i, j) is in the selected subset

Π. The co-occurrence statistics f(i, j) of these two visual words inside the image patch

will be f(i, j) = min(a, b).

9.2.3.2 Statistical difference between two clusters

For each cluster Ci, the VLAD [60] descriptor vi is first computed using

vi =
∑

x∈Ci
(x − wi). Then for every word pair (i, j) in Π, the inter-cluster statistics

is computed as f(i, j) = ||vi
σi
− vj

σj
||2 , where σi and σj are the standard deviations of
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the clusters i and j which are computed in the dictionary learning phase. || · ||2 is

a component-wise squared distance measure, and therefore f(i, j) is a vector and will

contain richer statistical information than the scalar co-occurrence value.

9.2.4 Feature encoding

Given an image, I encode the image using both intra-cluster and inter-cluster statistics.

First I compute the intra-cluster statistics using the existing approaches such as BOW

or VLAD. Then I compute the inter-cluster statistics for image patches in the image

as described above. Finally I apply sum pooling over all image patches for the

inter-cluster statistics, obtaining a feature vector which represents the inter-cluster

statistical information for the whole image. The feature vectors obtained based on the

intra and inter-cluster statistics are normalised individually (I use the power and L2

normalisations as in [131]) and concatenated together as the final image descriptor.

9.3 Experiments

ICPR cells and the IRMA datasets were used to evaluate the proposed method. The

datasets and the experimental settings were explained in Chapter 3.

I used one-vs-rest multi-class SVM with linear and intersection kernels [45] for

classification. SVM parameters were learned using 5-fold cross-validation on the training

set. The value of k is chosen such that the Ak keeps 95% of its column-wise variance.

BOW and VLAD features were respectively used as two intra-cluster features

based on the local descriptor SIFT, where for each image, dense SIFT descriptors were

extracted from each small regions of size 16 × 16 pixels over a grid with spacing of 4

pixels along both directions, and every 7 × 7 neighbouring regions compose one image

patch (i.e. 49 SIFT features in each patch).

9.3.1 Effect of the inter-cluster features

When using BOW as intra-cluster feature and co-occurrence frequency of visual words

as inter-cluster features, Figures 9.3(a) and (b) show that adding inter-cluster features
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(i) ICPR dataset (BOW + co-occurrence) (ii) IRMA dataset (BOW + co-occurrence)

(iii) ICPR dataset (VLAD + co-occurrence)

Figure 9.3: Effect of the inter-cluster features. P = 0 corresponds to intra-cluster
feature (e.g. BOW), and P > 0 corresponds to inter-cluster feature plus intra-cluster
feature. (a-b) BOW with co-occurrence, (c) VLAD with statistical cluster difference.

significantly increase the classification performance for both datasets (e.g. around 78%

when P = 0 vs. 86% when P > 0 for ICPR dataset, and around 91% vs. 94% for IRMA

dataset, both with dictionary size 200 and using intersection kernel). It also shows that

the classification accuracy is not significantly different between selecting 10% (when

P = 10) and all (when P = 100) cluster pairs, which indicates that only a small subset

of cluster pairs are sufficient enough to capture the inter-cluster information. Figure

9.3(a)(b) also show that intersection kernel for intra-cluster feature cannot capture

high-order information encoded in inter-cluster features, otherwise adding inter-cluster

features would not improve the accuracy.

Similar findings have been confirmed when using VLAD as the intra-cluster feature

and the VLAD-based inter-cluster statistics for the inter-cluster features (Figure 9.3(c)).

By comparing the classification performance from Figures 9.3(a) and (c), it becomes
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clear that, even using a smaller dictionary (N = 32) and a smaller subset of cluster

pairs (P = 10 percent), VLAD plus VLAD-based inter-cluster features outperforms the

corresponding BOW plus co-occurrences based inter-cluster features, i.e. 86.8% vs.

84.4% for ICPR dataset. Similar finding were found for IRMA dataset. This indicates

that both VLAD intra-cluster feature and the VLAD-based inter-cluster feature captures

richer statistical information than the BOW intra-cluster feature and the co-occurrence

based inter-cluster feature.

To further confirm the effect of inter-cluster features, in Figure 9.4(a) the sizes of

the dictionaries are varied and only 20% cluster pairs are chosen based on corresponding

dictionaries. It shows a significant performance improvement when adding inter-cluster

features, no matter what the dictionary size is.

(i) BOW + co-occurrence features for different
dictionary sizes; the co-occurrence features
were extracted from the corresponding
dictionary.

(ii) BOW + co-occurrence features for different
dictionary sizes; the co-occurrence features
were extracted from a separate dictionary of size
100.

Figure 9.4: Classification performance (MCA + std) on ICPR dataset with BOW and
co-occurrence based inter-cluster features using intersection kernel. See text for more
details.

Since adding inter-cluster features for larger dictionaries tremendously increases

the dimensionality of the final image representation, in another test, I capture

inter-cluster features by considering only 20% pairs from a fixed small dictionary of

size 100. Adding these fixed inter-cluster features to the traditional intra-cluster BOW

features computed from any larger dictionary still increases the overall performance

(Figure 9.4(b)). Notice that adding inter-cluster features from a fixed smaller dictionary

not only increases the classification accuracy but also reduces the feature dimensionality.
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9.3.2 Patch-based vs. image-based methods

This test is to compare the performance of patch-based with the image-based cluster

pair selection for inter-cluster feature encoding on the IRMA dataset. For both methods,

BOW was used as intra-cluster feature and co-occurrence of selected visual words as

inter-cluster feature. The dictionary size was fixed to 200 and only 10% of pairs are

selected to encode inter-cluster features. As expected, patch-based method gives the

accuracy of 93.4%, much better than the accuracy 87.0% from image-based method (with

standard deviation about 0.7%), supporting that patch-based method helps capture local

structural information encoded in inter-cluster features.

9.3.3 LSA-based pair selection

In this section the LSA-based truncated term-term matrix is compared with the original

co-occurrence matrix for pair selection. In this experiment a dataset containing

radiographs of heads taken from four different angles collected from the IRMA dataset

is considered. This dataset contains 50 images in each of the four classes. By keeping

all the other factors (e.g. patch-based term-document construction and VLAD based

inter-cluster feature encoding) unchanged, I found that when selecting a small subset

(P = 5) of pairs for inter-cluster features, the pair selection based on the truncated

term-term matrix performs significantly better than based on the original co-occurrence

matrix (78.3% vs. 87.2%). This confirms the potential function of LSA-based pair

selection in reducing noise and capturing high-order co-occurrence statistics.

9.3.4 Inter-cluster features for Fisher Vector

Some initial experiments with FV were also performed on the ICPR dataset to observe

the effect of inter-cluster features for FV. Given an image, Fisher vector Fi for each

cluster Ci was computed based on soft-assignments (see [129] for details). The

inter-cluster feature between any chosen cluster pair (i, j) was computed as ||Fi − Fj||2

(component-wise, as for VLAD). With a total of 16 clusters being used, accuracy of

85.2% was obtained by FV. In comparison, adding inter-cluster features (P = 20) to FV

significantly improves the performance to 88.7%.
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9.4 Conclusions and discussion

This chapter showed that adding inter-cluster features to the intra-cluster features

significantly improves medical image classification. A new method was proposed to

select a subset of cluster pairs to get the inter-cluster features. Experiments showed

that adding rich inter-cluster statistics performs better than only considering the

co-occurrence frequency information as the inter-cluster statistical feature. In future

work I plan to select cluster pairs based on discriminative information (i.e. class labels)

and add spatial information to final representation.



10
CONCLUSION, DISCUSSION AND

FUTURE WORK

In this chapter, I review and summarize the work presented in this thesis,

highlighting the key contributions of my research. I also identify the limitations

of my system, with their possible causes, before discussing possible extensions and

future directions of my research.

10.1 Summary of the thesis

The main aim of this thesis is to build a state-of-the-art automated system to classify

colonoscopy images into two classes, normal (healthy, containing no lesions) and

abnormal (unhealthy, containing various lesions including polyps, cancers, bleeding,

etc.). I mainly focussed on learning discriminative local features as well as computing

discriminative image-level representations for classifying images into predefined classes.

Our approach to accomplish this task uses data comprising images as well as annotations

in the form of image-level labels. Since the proposed techniques are not specific to

colonoscopy images, I also reported experiments based on other datasets (see Chapter

3 for the detail of the datasets used), including histology. The following sections

summarize the thesis.

10.1.1 Novel feature learning approaches

Chapters 4, 5, 6 and 7 focussed on learning efficient image descriptors for image

classification. A comparison with the proposed features and other widely used features
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was given in Chapter 8.

Inspired by the success of the LBP descriptor and its variants, in Chapter 4 I

proposed a generalisation of LBP called generalised Local Ternary Patterns (gLTP). LBP

variants such as LTP and SILTP are designed to make LBP resilient to noise and

illumination changes respectively, but neither are resilient to both noise and illumination

changes. gLTP, on the other hand, was designed to make LBP resilient to both noise

and illumination changes. I experimentally showed on two datasets (normal/abnormal

colonoscopy and ICPR cell images) that the proposed gLTP descriptor gives competitive

performance for image-level classification compared to the best performing descriptors

(LBP, LTP or SILTP) in these datasets, confirming that gLTP is resilient to both noise and

illumination simultaneously.

LBP and its variants, including gLTP, have some limitations, which can be

summarised as follows. (1) Losing information due to the binarisation procedure

involved in the feature extraction stage; (2) the dimensionality of the LBP-based

histogram representation increases with the number of sampling points which is used to

compute the LBP-based descriptor; (3) uniform-LBP patterns (see Chapter 5 for details)

describe the commonly occurring patterns in the images such as edges, bright and

dark spots, and reduce the dimensionality of the image-level representation. However,

uniform patterns are identified based on some heuristics; identifying these patterns will

be difficult, particularly when the number of sampling points is high.

To overcome these problems Chapter 5 proposed a novel descriptor called

the Multi-Resolution Local Patterns (MRLP), and its extended version, the Extended

Multi-Resolution Local Patterns (xMRLP). MRLP gives equal importance to different

sampling points. On the other hand, xMRLP treats different sampling points (or

neighbourhood pixels) differently by weighing them. Hence, in Chapter 5 I proposed

an unsupervised approach to learn these weights, and showed improved performance

over LBP-based descriptors.

In Chapter 6 I proposed a weakly-supervised approach to discriminatively learn the

parameters of the xMRLP features. This weakly-supervised approach uses image-level

labels to learn the local features. Although this approach uses the training labels to learn

the feature parameters, the learned descriptor shows similar performance compared to

the unsupervised learning approach proposed in Chapter 5.
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The approach proposed in Chapter 6 uses the NBNN classifier [23] to learn the

parameters of the xMRLP features. The NBNN classifier uses I2CD as the basic element

for classification. I2CD can be easily affected by the noisy local features as well as

the features from the image background (the features which are common to different

classes). To overcome this problem, in Chapter 7 I proposed a feature learning approach

based on weighted I2CD, where the I2CD calculated from different classes are weighted

differently to learn the local features as well as an image-level classifier. This approach

shows similar performance compared to the approaches proposed in Chapters 5 and 6

for the colonoscopy datasets, and improved performance for the cell dataset.

In Chapter 8 I showed that the proposed features perform better than recent,

popular features in computer vision such as root-SIFT and Random Projections with

BOW-based approaches. Since the parameters of the xMRLP features are learned based

on different objectives defined in Chapters 5 and 7, computing an image representation

from them could capture complementary information. I showed in Chapter 8 that the

image representation obtained in this way outperforms the baseline features (e.g. SIFT,

RP, LCH) and with reduced time complexity.

10.1.2 Experimental evaluation

In Chapter 8 I provided extensive comparative experiments using various state-of-the-art

features as baselines. Also I proposed two automated systems to classify colonoscopy

and cell images into predefined classes, and showed that my systems outperform the

state-of-the-art. Unlike existing work reported for colonoscopy, to my best knowledge,

I investigated different feature encoding approaches, and found that the BOW and SC

often perform better than VLAD and FV with much reduced size of the image-level

representations. For the cells dataset I investigated different components of the

proposed system in detail (the discussion can be found in Chapter 8).

10.1.3 Inter-cluster statistics for feature encoding

The traditional feature encoding approaches, such as BOW, SC, VLAD and FV capture

statistical information within each cluster of local features (intra-cluster features), and

do not capture the inter-cluster statistics, such as how the visual words co-occur in
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images or image regions. This information could be discriminative for classification.

In the computer vision literature, this inter-cluster information is considered for

BOW merely based on co-occurrence of visual words [180, 181]. In Chapter 9

I proposed a new approach to choose a subset of cluster pairs to capture the

co-occurrence information, and proposed a new inter-cluster statistics which capture

richer information than the traditional co-occurrence information. Unlike [180, 181],

my approach can be easily extended to other feature encoding approaches such as

SC, VLAD and FV, and can capture rich inter-cluster statistical information compared

to the frequency-based information used in [180, 181]. I experimentally showed on

two medical datasets (ICPR cells and IRMA radiology images) that explicitly encoding

inter-cluster statistics in addition to intra-cluster statistics significantly improves the

classification performance, and adding the rich inter-cluster statistics performs better

than the frequency(co-occurrence)-based inter-cluster statistics. For example, adding

inter-cluster statistics for FV representation improves the overall MCA by ∼ 3% for the

ICPR cells dataset.

10.2 Key contributions

In this thesis I contributed to the existing literature of colonoscopy image analysis by

introducing a novel descriptor and learning algorithms to learn the parameters of the

descriptor. I also proposed an approach to improve the traditional feature encoding

approaches.

The main contribution of this thesis can be summarised as follows,

• A novel feature, the Generalised Local Ternary Patterns (gLTP), which is a

generalised version of LBP and its variants such as LTP and SILTP (Chapter 4).

• Novel descriptors, the Multi-Resolution Local Pattern (MRLP), and its extended

version, the Extended Multi-Resolution Local Pattern (xMRLP). An unsupervised

(Chapter 5) and weakly-supervised learning algorithms (Chapters 6, and 7) to

learn the parameters of xMRLP descriptors.

• Application of feature learning approaches to colonoscopy and histology image

classification (Chapters 5, 6, 7, and 8).
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• A novel approach to improve traditional feature encoding by adding rich

inter-cluster statistical features (Chapter 9).

10.3 Limitations and analysis

In this section, I report the two main limitations of my system, and suggest the

possible reasons for these weakness. The limitations are mainly due, arguably, to the

characteristics of the colonoscopy datasets.

10.3.1 Classifying colon images from new videos

For the cell image dataset I experimentally showed that the proposed system can work

well even for images taken from unseen specimens. However, the colonoscopy datasets

used in this thesis are small compared to the cell dataset; they were collected from

short video segments (<1 min. long) as well as images obtained from the internet.

The images in this dataset do not have video or patient ID information. Without

patient characterisation and consequent stratification, my system is trained on randomly

sampled set of the colon datasets, which guarantees similar characteristics of the images

from the test set present in the training set. It proved impossible, in the course of the

work, to evaluate the performance of the proposed colonoscopy image classification

system on additional and well-characterised datasets.

10.3.2 Multiple annotations

It is not uncommon that inter-observer variability of annotations on medical images is

high. This is due to various factors, including the clinician’s expertise and experience.

Due to this variability, it is well known that an automated system has to be trained and

evaluated on a dataset annotated by multiple human experts. However, obtaining such

annotations particularly for medical images is a difficult and time consuming task. Our

colonoscopy datasets were annotated by only one clinician. Hence the results reported in

this thesis may be biased towards the expert who annotated the datasets. This limitation

was caused by clinician availability, and well beyond the author’s control.
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10.4 Future work

In this thesis, I mainly focussed on computing discriminative local features, and

image-level representations for individual frame-level classification. This section

suggests some possible future directions for colonoscopy image analysis.

10.4.1 Incorporating temporal information for classification

Our approach and the existing approaches for classifying colonoscopy images assume

that the frames are independent of each other, and label each frame independently,

without considering the temporal consistency between adjacent frames. Temporal

consistency, however, can improve the classification accuracy in the presence of

unclear/uncertain images.

There are reasons to expect that temporal consistency will improve the

classification. First, some frames are genuinely ambiguous, and a single view will

not be sufficient for reliable classification even for experts, whose decisions are based

on multiple observations generated by moving the scope. Second, the colonic wall

may not be clearly visible in specific frames due to poor illumination, blur due to

fast camera movements, and surgical smoke. Third, the appearance of lesions (e.g.

scale, orientation) varies in different frames. Fourth, frame-level representations for

classification are often obtained by aggregating the statistics of the local features

extracted from that frame (e.g. bag-of-visual-words). Such representations may

not capture small lesions sufficiently well, vis-à-vis the volume and appearance of

background features (extracted from normal tissue).

Therefore, future systems should investigate ways to incorporate temporal

consistency in frame classification; this can be either done at the (1) classifier level,

where the final decision of a classifier will not only rely on the classification score

of a particular frame, but also rely on the scores of adjacent frames; or, at the (2)

feature level, where the image-level representation could not only capture the statistics

of the local features from a particular frame, but also capture some temporal context

information, i.e. the statistics of the local features from adjacent frames. In turn, this

could be done by a weighted pooling approach, where the pooled features (e.g. BOW
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histograms) from a particular frame, and the pooled features from the adjacent frames

are weighted to get the final representation of an image, on which the classification will

be done. Again, this system will heavily depend on the characteristics of the training

dataset, especially whether consisting of a set of videos or of consecutive frames. I

carried out an initial investigation in collaboration with the University of Texas at Austin,

and results are being published at MICCAI CARE 2015. These results were not included

in this thesis as they are not part of the central objective.

10.4.2 Discriminative inter-cluster features for classification

In Chapter 9 I proposed an approach to capture inter-cluster statistical information

in addition to the intra-cluster statistics which is often used by the traditional feature

encoding approaches. This information is very useful, particularly for medical images,

e.g. the distribution of different cells in cancer as well as in healthy regions may be

different. This region-level co-occurrence information cannot be captured by traditional

feature encoding approaches, but it can by my approach. However, the latter selects

the most frequently co-occurring cluster pairs and encodes their statistics. Although I

showed improved performance based on this approach, the most co-occurring cluster

pairs, may not be discriminative for classification and may come from background

regions. Therefore selecting the cluster pairs which discriminate different classes, and

computing statistics from them to get the final image-level representation could improve

the classification performance compared to my proposed approach (Chapter 9).

10.4.3 I2CD prototype learning

In Chapters 7 and 6 I proposed weakly-supervised approaches to learn discriminative

local features. Our approaches use I2CD as the key element for feature learning.

However, as argued in Chapter 7, I2CD can be easily affected by noisy local

features, as well as the features from the image background (the features which are

common to different classes, and carry no discriminative information). I2CD are also

computationally expensive as they require NN search. For this reason, I used only few

images (e.g. 70 images from each class for colonoscopy) to learn the local features. This

limits the use of the I2CD. On the other hand, a set of discriminative prototypes which

describe the discriminative local features from the training images could be learned in
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a weakly-supervised manner. Prototype learning approaches based on the supervised

training set as well as discriminative dictionary learning approaches are well explored

in the computer vision literature (e.g. [30, 143]). Since I learn only a few prototypes,

the learned prototypes could dramatically reduce the computational time required for

I2CD calculations, and could be robust to noisy local features as well as the features

from the image backgrounds.

10.4.4 Lesion localisation and multiple instance learning

Supervised approaches for lesion detection require region-level annotations. e.g.

detecting abnormal regions in colonoscopy [91]. Multiple instance learning (MIL)

approaches are becoming popular to detect objects [166] or lesions [93] in a

weakly-supervised manner. MIL uses image-level labels for lesion detection, hence

reduces the region-level annotation efforts needed. To my best knowledge, MIL has

not been explored yet for colonoscopy image analysis. Our feature learning approaches

can be integrated within MIL settings, where the features together with a MIL classifier

can be learned from the weakly-labelled data for lesion detection.
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