2,124 research outputs found

    Reasoning about Action: An Argumentation - Theoretic Approach

    Full text link
    We present a uniform non-monotonic solution to the problems of reasoning about action on the basis of an argumentation-theoretic approach. Our theory is provably correct relative to a sensible minimisation policy introduced on top of a temporal propositional logic. Sophisticated problem domains can be formalised in our framework. As much attention of researchers in the field has been paid to the traditional and basic problems in reasoning about actions such as the frame, the qualification and the ramification problems, approaches to these problems within our formalisation lie at heart of the expositions presented in this paper

    Metatheory of actions: beyond consistency

    Get PDF
    Consistency check has been the only criterion for theory evaluation in logic-based approaches to reasoning about actions. This work goes beyond that and contributes to the metatheory of actions by investigating what other properties a good domain description in reasoning about actions should have. We state some metatheoretical postulates concerning this sore spot. When all postulates are satisfied together we have a modular action theory. Besides being easier to understand and more elaboration tolerant in McCarthy's sense, modular theories have interesting properties. We point out the problems that arise when the postulates about modularity are violated and propose algorithmic checks that can help the designer of an action theory to overcome them

    When Causal Intervention Meets Adversarial Examples and Image Masking for Deep Neural Networks

    Full text link
    Discovering and exploiting the causality in deep neural networks (DNNs) are crucial challenges for understanding and reasoning causal effects (CE) on an explainable visual model. "Intervention" has been widely used for recognizing a causal relation ontologically. In this paper, we propose a causal inference framework for visual reasoning via do-calculus. To study the intervention effects on pixel-level features for causal reasoning, we introduce pixel-wise masking and adversarial perturbation. In our framework, CE is calculated using features in a latent space and perturbed prediction from a DNN-based model. We further provide the first look into the characteristics of discovered CE of adversarially perturbed images generated by gradient-based methods \footnote{~~https://github.com/jjaacckkyy63/Causal-Intervention-AE-wAdvImg}. Experimental results show that CE is a competitive and robust index for understanding DNNs when compared with conventional methods such as class-activation mappings (CAMs) on the Chest X-Ray-14 dataset for human-interpretable feature(s) (e.g., symptom) reasoning. Moreover, CE holds promises for detecting adversarial examples as it possesses distinct characteristics in the presence of adversarial perturbations.Comment: Noted our camera-ready version has changed the title. "When Causal Intervention Meets Adversarial Examples and Image Masking for Deep Neural Networks" as the v3 official paper title in IEEE Proceeding. Please use it in your formal reference. Accepted at IEEE ICIP 2019. Pytorch code has released on https://github.com/jjaacckkyy63/Causal-Intervention-AE-wAdvIm

    Let's plan it deductively!

    Get PDF
    AbstractThe paper describes a transition logic, TL, and a deductive formalism for it. It shows how various important aspects (such as ramification, qualification, specificity, simultaneity, indeterminism etc.) involved in planning (or in reasoning about action and causality for that matter) can be modelled in TL in a rather natural way. (The deductive formalism for) TL extends the linear connection method proposed earlier by the author by embedding the latter into classical logic, so that classical and resource-sensitive reasoning coexist within TL. The attraction of a logical and deductive approach to planning is emphasized and the state of automated deduction briefly described

    The Qualification Problem: A solution to the problem of anomalous models

    Get PDF
    AbstractIntelligent agents in open environments inevitably face the Qualification Problem: The executability of an action can never be predicted with absolute certainty; unexpected circumstances, albeit unlikely, may at any time prevent the successful performance of an action. Reasoning agents in real-world environments rely on a solution to the Qualification Problem in order to make useful predictions but also to explain and recover from unexpected action failures. Yet the main theoretical result known today in this context is a negative one: While a solution to the Qualification Problem requires to assume away by default abnormal qualifications of actions, straightforward minimization of abnormality falls prey to the production of anomalous models. We present an approach to the Qualification Problem which resolves this anomaly. Anomalous models are shown to arise from ignoring causality, and they are avoided by appealing to just this concept. Our theory builds on the established predicate logic formalism of the Fluent Calculus as a solution to the Frame Problem and to the Ramification Problem in reasoning about actions. The monotonic Fluent Calculus is enhanced by a default theory in order to obtain the nonmonotonic approach called for by the Qualification Problem. The approach has been implemented in an action programming language based on the Fluent Calculus and successfully applied to the high-level control of robots

    Permutation combinatorics of worldsheet moduli space

    Get PDF
    52 pages, 21 figures52 pages, 21 figures; minor corrections, "On the" dropped from title, matches published version52 pages, 21 figures; minor corrections, "On the" dropped from title, matches published versio

    A common framework for learning causality

    Full text link
    [EN] Causality is a fundamental part of reasoning to model the physics of an application domain, to understand the behaviour of an agent or to identify the relationship between two entities. Causality occurs when an action is taken and may also occur when two happenings come undeniably together. The study of causal inference aims at uncovering causal dependencies among observed data and to come up with automated methods to find such dependencies. While there exist a broad range of principles and approaches involved in causal inference, in this position paper we argue that it is possible to unify different causality views under a common framework of symbolic learning.This work is supported by the Spanish MINECO project TIN2017-88476-C2-1-R. Diego Aineto is partially supported by the FPU16/03184 and Sergio Jimenez by the RYC15/18009, both programs funded by the Spanish government.Onaindia De La Rivaherrera, E.; Aineto, D.; Jiménez-Celorrio, S. (2018). A common framework for learning causality. Progress in Artificial Intelligence. 7(4):351-357. https://doi.org/10.1007/s13748-018-0151-yS35135774Aineto, D., Jiménez, S., Onaindia, E.: Learning STRIPS action models with classical planning. In: International Conference on Automated Planning and Scheduling, ICAPS-18 (2018)Amir, E., Chang, A.: Learning partially observable deterministic action models. J. Artif. Intell. Res. 33, 349–402 (2008)Asai, M., Fukunaga, A.: Classical planning in deep latent space: bridging the subsymbolic–symbolic boundary. In: National Conference on Artificial Intelligence, AAAI-18 (2018)Cresswell, S.N., McCluskey, T.L., West, M.M.: Acquiring planning domain models using LOCM. Knowl. Eng. Rev. 28(02), 195–213 (2013)Ebert-Uphoff, I.: Two applications of causal discovery in climate science. In: Workshop Case Studies of Causal Discovery with Model Search (2013)Ebert-Uphoff, I., Deng, Y.: Causal discovery from spatio-temporal data with applications to climate science. In: 13th International Conference on Machine Learning and Applications, ICMLA 2014, Detroit, MI, USA, 3–6 December 2014, pp. 606–613 (2014)Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artif. Intell. 153(1–2), 49–104 (2004)Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach. Part I: Causes. Br. J. Philos. Sci. 56(4), 843–887 (2005)Heckerman, D., Meek, C., Cooper, G.: A Bayesian approach to causal discovery. In: Jain, L.C., Holmes, D.E. (eds.) Innovations in Machine Learning. Theory and Applications, Studies in Fuzziness and Soft Computing, chapter 1, pp. 1–28. Springer, Berlin (2006)Li, J., Le, T.D., Liu, L., Liu, J., Jin, Z., Sun, B.-Y., Ma, S.: From observational studies to causal rule mining. ACM TIST 7(2), 14:1–14:27 (2016)Malinsky, D., Danks, D.: Causal discovery algorithms: a practical guide. Philos. Compass 13, e12470 (2018)McCain, N., Turner, H.: Causal theories of action and change. In: Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference, AAAI 97, IAAI 97, 27–31 July 1997, Providence, Rhode Island, pp. 460–465 (1997)McCarthy, J.: Epistemological problems of artificial intelligence. In: Proceedings of the 5th International Joint Conference on Artificial Intelligence, Cambridge, MA, USA, 22–25 August 1977, pp. 1038–1044 (1977)McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intelligence. Mach. Intell. 4, 463–502 (1969)Pearl, J.: Reasoning with cause and effect. AI Mag. 23(1), 95–112 (2002)Pearl, J.: Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University Press, Cambridge (2009)Spirtes, C.G.P., Scheines, R.: Causation, Prediction and Search, 2nd edn. The MIT Press, Cambridge (2001)Spirtes, P., Zhang, K.: Causal discovery and inference: concepts and recent methodological advances. Appl. Inform. 3, 3 (2016)Thielscher, M.: Ramification and causality. Artif. Intell. 89(1–2), 317–364 (1997)Triantafillou, S., Tsamardinos, I.: Constraint-based causal discovery from multiple interventions over overlapping variable sets. J. Mach. Learn. Res. 16, 2147–2205 (2015)Yang, Q., Kangheng, W., Jiang, Y.: Learning action models from plan examples using weighted MAX-SAT. Artif. Intell. 171(2–3), 107–143 (2007)Zhuo, H.H., Kambhampati, S: Action-model acquisition from noisy plan traces. In: International Joint Conference on Artificial Intelligence, IJCAI-13, pp. 2444–2450. AAAI Press (2013

    Possible Spontaneous Breaking of Lorentz and CPT Symmetry

    Get PDF
    One possible ramification of unified theories of nature such as string theory that may underlie the conventional standard model is the possible spontaneous breakdown of Lorentz and CPT symmetry. In this talk, the formalism for inclusion of such effects into a low-energy effective field theory is presented. An extension of the standard model that includes Lorentz- and CPT-breaking terms is developed. The restriction of the standard model extension to the QED sector is then discussed.Comment: Talk presented at Non-Accelerator New Physics, Dubna, Russia, July 199
    • …
    corecore