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ABSTRACT

Light-cone string diagrams have been used to reproduce the orbifold Euler characteris-
tic of moduli spaces of punctured Riemann surfaces at low genus and with few punctures.
Nakamura studied the meromorphic differential introduced by Giddings and Wolpert to
characterise light-cone diagrams and introduced a class of graphs related to this differential.
These Nakamura graphs were used to parametrise the cells in a light-cone cell decomposition
of moduli space. We develop links between Nakamura graphs and realisations of the world-
sheet as branched covers. This leads to a development of the combinatorics of Nakamura
graphs in terms of permutation tuples. For certain classes of cells, including those of top
dimension, there is a simple relation to Belyi maps, which allows us to use results from
Hermitian and complex matrix models to give analytic formulae for the counting of cells at
arbitrarily high genus. For the most general cells, we develop a new equivalence relation
on Hurwitz classes which organises the cells and allows efficient enumeration of Nakamura
graphs using the group theory software GAP.
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1 Introduction

The light-cone gauge in string theory involves only physical degrees of freedom and leads
to a manifestly unitary S-matrix, while Lorentz invariance appears non-trivially [1, 2]. The
computation of string amplitudes uses light-cone diagrams, parametrised by string length
and twist parameters along with interaction times, where the lengths of the strings are
proportional to the light-cone momenta. The covariant gauge has manifest Lorentz invariance
but unitarity is non-trivial. String amplitudes are calculated by integration over the moduli
space of Riemann surfaces Mg,n, for surfaces of genus g and n punctures.
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In the paper [3], Giddings and Wolpert showed that each closed string light-cone diagram
determines a worldsheet equipped with a meromorphic one-form with purely imaginary pe-
riods and residues that sum up to zero. The meromorphic one-form (or Giddings-Wolpert
differential) was constructed by disassembling the light-cone diagram into a number of strips
on each of which the meromorphic one-form is trivial, and then making identifications on
the boundaries of the strips. It was explained there that light-cone string diagrams lead
to a single cover of moduli space, which is important for an equivalence of the light-cone
formulation to the covariant formulation.

In the paper [4], Nakamura developed the work of [3] and showed how to compute the
orbifold Euler characteristic of Mg,n using the cell decomposition coming from light-cone
diagrams. The key step was the introduction of graphs, embedded on the worldsheet, whose
vertices are the zeroes and poles of the GW differential, and whose real trajectories form
the edges of the graph. The embedded graph (or ribbon graph) inherits a cyclic order at
the vertices - a familiar property which also arises in large N expansions of gauge theories.
Each such graph - which we call a Nakamura graph - corresponds to a cell in the space of
GW differentials on a surface of genus g with n punctures. These cells are quotiented by
the symmetry group of the graph to obtain cells inMg,n. The dimension of each cell in this
light-cone cell decomposition can easily be read off from the structure of the Nakamura graph.
The graphs were counted for low values of g and n, and the dimensions and symmetries of
the graphs were used to calculate the orbifold Euler characteristic of the moduli spaceMg,n.
These results agreed with the result for general g and n computed by Harer and Zagier [5].

There is, as yet, no proof that the light-cone approach reproduces the orbifold Euler
characteristic in general. However the evidence that this is true is highly non-trivial: a large
number of graphs were counted to verify this in [4]. This is a very important result, since it
implies that the Nakamura graphs contain all the information needed to describe precisely
how light-cone diagrams can be used to give a single cover of moduli space. This approach
implicitly resolves the technical issue [3, 6] of giving a precise specification of the region in the
space of light-cone (LC) string parameters which covers every point in Mg,n precisely once.
A naive integration without restrictions would lead to an overcounting problem discussed
in [3] and, as anticipated there, its solution should involve systematics similar to those
encountered in Feynman graphs. The work of [4] associates a cell of moduli space to each
Nakamura graph. The use of graphs in the LC cell decomposition is analogous to the graphs
in the Kontsevich-Penner (KP) cell decomposition of decorated moduli space [7, 8]. Indeed,
the KP cell decomposition has been used to compute homology groups and intersection
numbers of Mumford-Morita classes on moduli space. The LC and KP cell decompositions
both involve graphs with cyclic orientation at the vertices (ribbon graphs). However, the
Nakamura graphs are much more restricted because of certain causality relations controlling
the connectivity of the vertices. As a result the LC cell decomposition requires fewer cells,
and so is much more economical [4].

Moreover the Giddings-Wolpert differential and the Nakamura decomposition of Riemann
surfaces into strips is an essential ingredient of the newly formulated metastring [9]. Since
the metastring is chiral, it is necessary for its formulation to provide a parametrisation of the
moduli space of Riemann surfaces that includes a notion of worldsheet time while preserving
modular invariance. The Nakamura graphs and their implied strip decomposition do exactly
this.
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A detailed understanding of the topology of Mg,n is fundamental both to mathematics
and string theory. The KP cell decomposition is well studied in mathematics and has also
been used recently in describing the link between string theory integrals and Feynman in-
tegrals [10]. In another line of development, the systematics of a variety of Feynman graph
counting problems of quantum field theory and ribbon graphs of large N matrix theories
have found a unifying description in terms of permutations in [11, 12], with group theoretic
structures such as double cosets playing a central role. The present paper initiates a sys-
tematic study of Nakamura’s cell decomposition. We develop a general description of the
combinatorics of Nakamura graphs in terms of tuples (finite sequences) of permutations. We
present three descriptions of the graphs in terms of permutations in this paper. Two of them
involve triples of permutations, and are closely related to the known fact that ribbon graphs
can be described in terms of triples [13, 14]. Since a Nakamura graph is not a generic ribbon
graph, but rather a ribbon graph subject to non-trivial causality conditions, the associated
permutation triples satisfy some non-trivial constraints. The third description of a Nakamura
graph involves a tuple of up to (l + 2) permutations, where l is the number of interaction
vertices in the light-cone diagram. This description requires more permutations in general
to describe the graph than in the other two descriptions, but has the advantages that the
permutations live in a permutation group of smaller degree, and also that the causality con-
ditions are much simpler. The permutations in this description are elements of Sd, where d is
the number of faces of a Nakamura graph, or equivalently the number of edges of the graph
connecting to poles of the GW differential with positive residues. We call this description
the Sd description.

For Nakamura graphs corresponding to the top-dimensional cells of moduli space, the
Sd description can be simplified further. In this case, d has to be even and the tuple has
exactly three permutations. The counting of Nakamura graphs for these cells is a counting
of permutation triples, where one of the permutations consists of d/2 cycles of length 2. This
permutation counting is exactly the one that arises in correlators of the Hermitian matrix
model, which have been related to branched covers of the sphere [15, 16, 17]. This allows us
to draw upon exact results on generating functions for Matrix model correlators [5] to give
analytic expressions for the contribution to the Euler characteristic from the top-dimensional
cells, for any g and n. The combinatorics of non-zero codimension cells is more non-trivial.
A precise permutation description is nevertheless possible. We expect it to lead to analytic
results in the future. For the current paper, we have developed a computer algorithm based
on this description, which reproduces all the tables from Nakamura and extends them to
higher g and n.

We now describe the content of the paper in more detail. In Section 2, we start by
recalling the properties of the Giddings-Wolpert differential [3] and explaining how Nakamura
associated a graph to each differential [4]. The parameters describing the cells in light-cone
cell decompositions are introduced. For fixed g and n, the integer d gives the total number
of edges incident on the poles of the GW differential with positive residue (which we call
incoming poles). It is also the number of strips which can be glued together to produce the
worldsheet; each strip is incident on one incoming pole and one outgoing pole. The branching
constant ∆ is an integer describing the combined orders of all the zeroes and their departure
from simplicity; when all the zeroes are simple, then ∆ = 0. The number of internal edges is
denoted by I; these are the edges of the Nakamura graph which connect zeroes of the GW
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differential directly to zeroes. The top dimensional cells of the LC cell decomposition only
involve simple zeroes of the GW differential and their associated Nakamura graphs have no
internal lines, so ∆ = I = 0 for cells at top dimension. Lower dimensional cells can involve
higher order zeroes as well as real trajectories connecting the zeroes.

In Section 3 we relate Nakamura graphs to dessins d’enfants and Belyi maps. A dessin
d’enfant is a bipartite graph embedded on a surface with a cyclic ordering of the edges at each
vertex. Bipartite graphs have two types of vertices, which can be coloured in black or white,
in which each edge connects to two vertices of different colours. We can convert a Nakamura
graph to a dessin by introducing auxiliary vertices along the edges of the graph in such a
way that the graph becomes bipartite. The structure of these graphs can then be described
by a triple of permutations, which also allow the graphs to be related to branched covers
of the Riemann sphere known as Belyi maps [18, 13, 14]. The simplest way to convert a
Nakamura graph to a bipartite graph is to subdivide every edge; this graph has 4d+2I edges,
so can be described by a triple of permutations in the symmetric group S4d+2I . There is also
another general way to convert a Nakamura graph into a bipartite graph which requires fewer
subdivisions of edges, which allows a description in terms of a triple of S2d+2I permutations.
While every Nakamura graph has a description in terms of these triples of permutations, not
all permutation triples give Nakamura graphs; in Section 3.4, we state the required properties
that a permutation triple must satisfy to give a Nakamura graph.

In Section 4, we develop a new permutation description of Nakamura graphs by consid-
ering branched covering maps from the worldsheet onto the infinite cylinder - equivalently,
by composing with a conformal map, branched covering maps to the Riemann sphere. The
section starts with a review of branched covers, and their description in terms of equivalence
classes of tuples of permutations which we call Hurwitz classes. The branched covers can
be constructed by a gluing construction on the d faces (strips) of the Nakamura graph. The
degree of the branched cover of the sphere associated to a graph is d. The branch points
of the cover are related to the vertices of the Nakamura graph. Each Hurwitz class deter-
mines a unique Nakamura graph, but there can be multiple Hurwitz classes corresponding
to a given Nakamura graph. To solve this redundancy, we introduce an equivalence relation
on the space of Hurwitz classes which we call slide-equivalence. This equivalence relation
is related to the fact that the connectivity of a Nakamura graph does not determine the
relative time-ordering of the zeroes (interaction vertices) of the GW differential. There is a
one-to-one correspondence between slide-equivalence classes and Nakamura graphs.

In Section 5 we explore some links between the counting of cells in the moduli space
and the correlators of matrix models. Cells of top dimension in the LC decomposition are
specified by Nakamura graphs with simple zeroes and no internal edges. Within the slide-
equivalence class of a top-dimensional graph, there is a unique Hurwitz class consisting of
a tuple of three permutations. This permutation triple naturally corresponds to a Belyi
map (a covering of the sphere branched at three points), without the need to introduce new
vertices or subdivide edges of the Nakamura graph. The counting of Belyi maps is known to
be related to correlators of the Hermitian matrix model [15, 16, 17]. This allows us to use
known exact results from Hermitian matrix models [5] to obtain all orders analytic formulae
for the contribution to the Euler characteristic from the top-dimensional cells of the LC cell
decomposition. These results agree with the tables given by Nakamura for small g and n. We
can also consider cells with lower dimension with branching constant ∆ > 0 and no internal
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edges (I = 0). In this case, we can use complex matrix models to derive analytic formulae
for the contributions to the Euler characteristic from lower-dimension cells. (At the present
stage, we have no map to matrix models for the counting of the most general cells involving
I > 0.)

Finally, in Section 6, we test computationally the validity of the LC cell decomposition
and its description in terms of slide-equivalences of Hurwitz classes. Using the group theory
software GAP [19], we use the Sd description to enumerate the cells and their dimensions
in terms of Nakamura graphs, reproducing and extending the tables found in [4]. The
computation is significantly facilitated by the introduction of the concept of an I-structure,
which contains some coarse information about the internal edges of a Nakamura graph. It is
an invariant of the slide-equivalence classes of Hurwitz-classes. Double cosets of Sd also play
a role in the computation. We conclude with some discussion of our results and possible
future directions.

2 Review: Giddings, Wolpert and Nakamura

2.1 The Giddings-Wolpert differential

Let Σ be a Riemann surface with n marked points P1, P2, . . . , Pn and genus g, where n ≥ 2.
Associate a set of real numbers r1, r2, . . . rn respectively to the n marked points, which satisfy∑

i ri = 0. Giddings and Wolpert proved in [3] that there exists a unique abelian differential
ω on the Riemann surface Σ such that ω has n simple poles at the points Pi with respective
residues ri, and pure imaginary periods on any closed integral on the surface.

The Giddings-Wolpert differential ω yields a global time coordinate on the surface, up
to an overall constant representing the time translation symmetry. If we fix a point z0 on
the surface which is not a pole of ω, then we can define the global time coordinate of a
generic point z on the surface to be T := Re(

∫ z
z0
ω). This expression does not depend on the

choice of integration contour from z0 to z, since any two paths from z0 to z differ only by
a closed contour, and the integral of the differential along any closed contour is imaginary.
The global time coordinate tends to positive infinity as we approach the poles with negative
residues, and to negative infinity as we approach the poles with positive residue. We call
the poles with positive residue the incoming poles, and the poles with negative residue the
outgoing poles.

For the cases of the sphere and the torus, it is straightforward to construct the GW
differential of a given marked surface and its time coordinate explicitly. Take a sphere with
n marked points Pi and associated reals ri, where

∑
i ri = 0. We can choose coordinates z

on the sphere such that the marked points Pi are located at z = pi for some pi ∈ C. In this
chart, the GW differential can be explicitly written as

ω(z; pi) :=
n∑
i=1

ridz

z − pi
. (1)

It is clear that this differential has residues ri at the points Pi, and that the integral of the
differential along any closed contour C is

∮
C ω = 2πi

∑
Pi∈C ri, which is purely imaginary.
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The global time coordinate is

T (z) = ln

(∏
i

|z − pi|ri
)

+ T0, (2)

where T0 is an arbitrary constant.
Now consider a torus with n marked points Pi, associated real values ri with

∑
i ri = 0,

and modular parameter τ with Im(τ) > 0. This torus can be realised as the quotient of
the complex plane C by the equivalence relation z ∼ z + n + mτ , where n and m are
integers. In these coordinates, the marked points Pi are located respectively at z = pi for
some pi = ai + biτ , where 0 ≤ ai, bi < 1. To define the GW differential on this surface, we
introduce the Jacobi theta function θ11(z; τ), which is a holomorphic quasi-periodic function
on the complex z plane satisfying

θ11(z + 1; τ) = θ11(z; τ), θ11(z + τ ; τ) = e−2πi(z+1/2)θ11(z; τ), (3)

θ11(z; τ + 1) =
√
iθ(z; τ), θ11(z/τ ;−1/τ) = (−i)

√
iτeiπz

2/τθ11(z; τ), (4)

and behaves like θ11(z; τ) ≈ z for small values of z. The GW differential on this surface is

ω(z; pi, τ) := dz
n∑
i=1

ri

(
−2πi

Im(pi)

Im(τ)
+
θ′11(z − pi; τ)

θ11(z − pi; τ)

)
, (5)

and the associated global time coordinate on the surface is

T (z) =
∑
i

ri

[
2π

Im(pi)

Im(τ)
Im(z) + log |θ11(z − pi; τ)|

]
+ T0, (6)

where T0 is an arbitrary constant. It can be shown from the above properties and relations
of the Jacobi theta function that ω(z; pi) and T (z) are well-defined on the torus, i.e. these
definitions are invariant under the coordinate shifts z → z+m+ nτ and under the modular
transformations (τ, pi) → (τ + 1, pi), (τ, pi) → (−1/τ, pi/τ). It can also be seen that the
integrals of the differential along the cycles a : z → z + 1 and b : z → z + τ are imaginary
and equal to −2iπra and −2iπrb respectively. Also each pole pi has a residue ri, and so
all periods of the differential are pure imaginary. It can be checked that they satisfy the
relations

rb − τra =
∑
i

ripi. (7)

Formulae for Giddings-Wolpert differentials in terms of theta functions at genus one and
higher can be found in recent work [20].

2.2 Nakamura graphs

The Giddings-Wolpert differential associated to a marked Riemann surface naturally gives
rise to an embedded ribbon graph on the surface. This construction was developed by
Nakamura in [4], and leads to a cell decomposition of the moduli space of Riemann surfaces
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Figure 1: Two examples of Nakamura graphs.

in which each cell is specified by a graph. In this section we review the basic properties of
these graphs, which we call Nakamura graphs.

Consider a marked Riemann surface Σ with GW differential ω. The GW differential has
poles at the n marked points Pi with residues ri. For any unmarked point on Σ, we can
choose local complex coordinates z around that point such that ω = d(zm+1) for some m.
A zero of order m of the GW differential is a point at which m > 0. For each point on the
surface, there exists a set of directions in which zm+1 is real - these are the real trajectories
that extend out from the point. A zero of order m has 2(m+ 1) real trajectories extending
out from the zero. If m = 1, the zero is called simple. Real trajectories extending out from
the zeroes of the GW differential will only meet at poles and zeroes of the differential.

The set of real trajectories that extend out from all the zeroes of the GW differential define
a ribbon graph embedded onto the surface, with the vertices of the graph corresponding to
the poles and zeroes of ω, and the edges of the graph corresponding to the real trajectories.
The edges also inherit an orientation from the GW differential: they are oriented in the
direction along which the global time coordinate increases. Some examples of Nakamura
graphs are shown in Figure 1.

The Nakamura graph associated to a marked Riemann surface is uniquely determined by
its Giddings-Wolpert differential. It was shown by Nakamura in [4] that such a graph always
has the following properties:

• The graph is connected, oriented, and cyclically ordered at the vertices.

• The edges connecting to a pole are either all oriented towards the pole or all oriented
away from the pole.

• A zero connects to cyclically alternating incoming and outgoing edges, and has a
valency of at least four.

• No edge connects to the same end point twice, and no edge has only poles as its end
points.

• Every face of the ribbon graph contains on its boundary exactly two poles, one incoming
and one outgoing.

7



Figure 2: A Riemann surface can be decomposed into glued strips via a Nakamura graph.

Each face of the graph is bounded by two extended real trajectories of the GW differential.
It is possible to choose local coordinates z on each face such that ω = dz within the face,
and where z lies in the range 0 < Im(z) < bi for some bi. This means that each face of the
graph is holomorphic to a strip R× (0, bi) in the complex plane, and each strip has a width
bi which is determined by the GW differential. The combination of the Nakamura graph, the
widths of the strips, the time coordinates of the zeroes, and the residues around the poles, is
enough to reconstruct the Giddings-Wolpert differential on a surface, and hence to specify
its complex structure.

An example of the gluing of strips to give a surface with an embedded Nakamura graph
is shown in Figure 2. A Riemann sphere with three punctures is conformally equivalent to a
‘pants’ diagram, with the boundaries extended out to infinity. The GW differential on this
surface traces out a Nakamura graph, given on the right of the figure, which partitions the
pants diagram into two infinite strips. The poles of the GW differential are represented by
black vertices of the Nakamura graph, and correspond to the boundaries of the strips located
at positive and negative infinity. In this case, the widths of the strips are determined by the
residues of the marked points.

If we take some Nakamura graph arising from a Giddings-Wolpert differential and consider
all possible strip widths that are consistent with the specified residues at the poles, and all
possible time coordinates of the zeroes that are consistent with the causal ordering of the
zeroes, then we will in general find a family of inequivalent GW differentials that can arise
from a single Nakamura graph. As each GW differential corresponds to a unique Riemann
surface, this means that each Nakamura graph specifies a cell in Mg,n, the moduli space
of inequivalent Riemann surfaces of genus g with n marked points.It was shown in [4] that
counting all such possible graphs can give information about the moduli space of Riemann
surfaces. Nakamura successfully found all the graphs corresponding to surfaces with Euler
characteristic χ := −(2g − 2 + n) ≥ −6, and used this to calculate the orbifold Euler
characteristic of moduli space in many different cases.
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2.3 Parameters of Nakamura graphs and moduli space

We conclude this section by presenting some relevant relations between the parameters of
Nakamura graphs and their associated cells in moduli space.

A Nakamura graph consists of V vertices, E edges, and d faces. The V vertices are
separated into l zeroes and n poles. All edges connect to zeroes, and no edge connects
two poles together. There are exactly two poles on the boundary of each of the d faces of
the graph, one incoming and one outgoing. Hence, there are d external edges of the graph
connecting incoming poles to zeroes, d external edges connecting outgoing poles to zeroes,
and I internal edges that connect only to zeroes. Summarising, we have

V = l + n,

E = 2d+ I,

F = d.

The Euler characteristic of a surface with an embedded graph is 2− 2g = V −E +F , which
gives the relation

d+ I − l = 2g − 2 + n. (8)

Next, we consider the valencies of the vertices. As all faces have on their boundary
exactly one incoming pole, the valencies of the incoming poles sum up to d, and similarly for
the outgoing poles. As the zeroes always border an equal number of incoming and outgoing
edges, the valencies of the zeroes are always even. The zeroes correspond to the points where
at least two real trajectories meet, and so the valency of a zero is always greater than four.
We define the branching number ∆ to be

∆ =
l∑

j=1

[(vj
2

)
− 2
]
, (9)

where the vj are the valencies of each of the l zeroes. The branching number is a non-negative
integer for every Nakamura graph. This sum rearranges to

2∆ + 4l =
l∑

j=1

vj. (10)

Now, adding the sum of the valencies of the poles to this equation give us the sum over the
valencies of all vertices, which must equal twice the number of edges. We thus have

2∆ + 4l + 2d = 2E = 2(2d+ I), (11)

and hence we have the relation

∆ = d+ I − 2l. (12)

We can use (8) and (12) to find a bound on the number of faces d for Nakamura graphs
of any genus g and number of poles n. Using the equations to eliminate l, we write

2(2g − 2 + n)− d = (∆ + I). (13)
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The constants ∆ and I are always non-negative integers, so d is bounded from above by
dmax, where

dmax := 2(2g − 2 + n) = 2|χ|. (14)

This is the maximum number of faces of a Nakamura graph of genus g with n fixed points.
To find Nakamura graphs computationally, it is helpful to first fix |χ| and then to find all
the graphs of genus g, n such that |χ| = (2g − 2 + n).

We can eliminate the number of internal edges I from (8) and (12) to find a relation
between the branching number ∆, the number of zeros l, and the Euler characteristic |χ|:

∆ = |χ| − l. (15)

As ∆ ≥ 0, this equation gives us a bound on the number of zeroes of a Nakamura graph.
Since a Nakamura graph always has at least one zero, we have the bounds on the number of
zeros of a Nakamura graph,

1 ≤ l ≤ |χ|. (16)

The dimension of a cell associated to a Nakamura graph was derived in [4]. For a given

graph with l zeroes, d faces and n poles, we have d width parameters. The widths b
(i)
k of the

faces bordering a given pole Pi satisfy a relation
∑

k b
(i)
k = ri. These residue relations specify

(n − 1) independent constraints on the strip widths (since we have the total conservation
equation

∑n
i=1 ri = 0). There are (l − 1) real parameters corresponding to the independent

time coordinates labelling the positions of the zeroes, modulo the overall time translation
symmetry. So we can see that the dimension of the cell in moduli space corresponding to a
Nakamura graph is (l − 1) + d − (n − 1). The above equations can be rearranged to show
that the real dimension of a cell is

dimR(C) = l + d− n = 6g − 6 + 2n− (2∆ + I). (17)

This means that for a given genus and number of points n, the top dimension of the moduli
space of graphs is 6g − 6 + 2n, and the codimension of a given cell is

dimR(Mg,n)− dimR(C) = 2∆ + I. (18)

3 Nakamura graphs as dessins d’enfants

In Section 2, it was discussed that for a given g, n, and set of real numbers r1, . . . , rn that
sum to zero, there is a cell decomposition ofMg,n, the moduli space of inequivalent Riemann
surfaces, in which each cell is specified by a Nakamura graph G. Different points in the same
cell in moduli space correspond to inequivalent Riemann surfaces with the same Nakamura
graph but different Giddings-Wolpert differentials.

In this section we introduce a method to categorise the cells in moduli space by classify-
ing the possible Nakamura graphs using permutation groups and dessins d’enfants. We first
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review the notion of a dessin and discuss two distinct prescriptions for converting graphs
into dessins. In each prescription, we show that there is a unique equivalence class of permu-
tation triples corresponding to each Nakamura graph. We show that the necessary defining
properties of Nakamura graphs can be encapsulated in the language of permutation groups,
and hence equivalence classes of permutation triples can be used to catalogue the cells in
moduli space.

3.1 Review: dessins d’enfants

A dessin d’enfant is a cyclically-ordered graph (a ribbon graph) that is also bipartite: each
graph vertex is coloured in black or white in such a way that black vertices only connect
directly to white vertices, and white vertices only connect to black vertices. Given a bipartite
graph with r edges, we can assign an arbitrary labelling of r objects to each edge, such as the
integers {1, 2, . . . r}. Each vertex can be associated to a permutation cycle in Sr, representing
the cyclic ordering of the edges connecting to the vertex. As each edge connects to exactly
one black and one white vertex, each integer in {1, 2, . . . , r} appears in exactly one cycle
corresponding to a black vertex and in exactly one cycle corresponding to a white vertex. We
can collate all the cycles corresponding to the black vertices to a single permutation σ1 ∈ Sr,
and likewise collate all the cycles corresponding to the white vertices to a permutation
σ2 ∈ Sr. The pair of permutations (σ1, σ2) is enough to completely reconstruct the original
dessin. In addition, we can introduce a third permutation σ3, defined by the relation

σ1σ2σ3 = 1. (19)

This third permutation describes the structure of the faces of the dessin.
A triple of Sr permutations determines a unique dessin, but there will be other triples in

Sr that specify the same graph, due to the arbitrariness of our original choice of labelling of
the edges. This relabelling symmetry is described by an equivalence relation of conjugation
on the permutation triples: two triples (σ1, σ2, σ3) and (σ′1, σ

′
2, σ

′
3) are equivalent if there

exists some permutation γ ∈ Sr acting on the edge labels of the graph such that

(σ′1, σ
′
2, σ

′
3) = (γσ1γ

−1, γσ2γ
−1, γσ3γ

−1). (20)

This means that each dessin d’enfant with r edges corresponds to an equivalence class of Sr
permutations under conjugation by Sr.

An automorphism of a dessin d’enfant is a mapping of the edges and vertices of the graph
into itself such that the connections of the edges to the vertices, the colours of the vertices,
and the cyclic ordering of the edges at the vertices are all preserved. For a dessin described
by a triple, these mappings are precisely the subgroup of Sr consisting of elements γ that
satisfy

(γ−1σ1γ, γ
−1σ2γ, γ

−1σ3γ) = (σ1, σ2, σ3). (21)

A dessin d’enfant is said to be clean if each white vertex is bivalent (has valency two).
Any ribbon graph can be converted into a clean bipartite graph by colouring all the vertices
in black and introducing a new white vertex on each edge. The new graph has twice as many
edges as the original graph. This means that it is always possible to associate a dessin, and
hence an equivalence class of permutation triples, to a ribbon graph. An example of a clean
dessin d’enfant is included below on the right of Figure 3.

11



Figure 3: Converting a Nakamura graph with d = 3 and I = 1 to a dessin d’enfant described
by an S4d+2I triple.

3.2 Nakamura graphs as S4d+2I-triples

Nakamura graphs are oriented ribbon graphs satisfying a list of properties given in Section
2.2. Every graph has d edges connecting to positive poles, d edges connecting to negative
poles, and I edges connecting only to zeroes, and so each graph has 2d+ I edges in general.
As Nakamura graphs are not bipartite in general, they can only be described by permutation
triples after cleaning (introducing new vertices). Cleaning a graph doubles the number of
edges of a graph, so a Nakamura graph dessin has 4d+ 2I edges in general. This means that
every Nakamura graph can be described as a triple of S4d+2I permutations with overall con-
jugation equivalence by S4d+2I . The poles and zeroes of the Nakamura graph all correspond
to the black vertices.

We can fix some of the conjugation symmetry of Nakamura graphs by taking a canon-
ical choice of the labelling of the edges. The number of edges of a dessin originating
from cleaning a Nakamura graph is always even, so we can choose to label the edges by
{1+, 1−, 2+, 2−, . . . , (2d + I)+, (2d + I)−}. Each edge of a Nakamura graph has an orien-
tation, and so each edge of the cleaned Nakamura graph has an orientation. There are
d edges connected to the incoming poles, and d edges connected to outgoing poles, so we
can label the edges connecting to incoming poles with the integers {1+, . . . , d+}, and the
edges going into the outgoing poles by {(d+ 1)−, . . . , 2d−}. These edges connect to bivalent
white vertices: we can label the other connecting edges with the labels {1−, . . . , d−} and
{(d + 1)+, . . . , 2d+} such that each white vertex connects to edges labelled with the same
integer but with different superscripts. We label the edges connecting between the zeroes by
integers from (2d + 1)± to (2d + I)±, assigning integers with a ‘+′-superscript to the edges
oriented from a black vertex to a white vertex, and a ‘−′-superscript to the edges oriented
from white to black, such that each white vertex connects to edges labelled with the same
integer but with different superscripts.

Each of the l zeroes of a Nakamura graph connects to edges with cyclically alternating
orientation. This is reflected in the structure of their corresponding cycles; each cycle as-
sociated to a zero consists of a string of alternating + and −-superscripted labels. These
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cycles appear in the permutation σ1. Also, all cycles in the permutation σ2 are 2-cycles
of the form (i+i−) for some i ∈ {1, . . . , 2d + I}. The permutation σ3 consists of d cycles,
corresponding to the d faces of the ribbon graph. Each cycle in σ3 consists of a string of
consecutive +-superscripted integers, followed by a string of −-superscripted integers, which
reflects the fact that each face is holomorphic to a strip. An example of a dessin with this
kind of labelling arising from a Nakamura graph is given above in Figure 3.

With this choice of labelling, we can always uniquely decompose the permutation σ1 into

σ1 = σ+σ−σZ , (22)

where σ+ describes the incoming poles and acts on the set {1+, 2+, . . . , d+}, σ− describes the
outgoing poles and acts on the set {(d+ 1)−, (d+ 2)−, . . . , 2d−}, and σZ describes the zeroes
of the graph and acts on the remaining 2d+ 2I edges. The permutation σ2 can be written

σ2 =
2d+I∏
i=1

(i+i−), (23)

and, schematically, σ3 is of the form

σ3 =
d∏

k=1

αk, αk = (i+1 , i
+
2 , . . . , i

+
p , j

−
1 , j

−
2 , . . . , j

−
q ). (24)

Our choice of labelling ‘breaks’ the S4d+2I conjugation symmetry down to a smaller subgroup.
Two permutation descriptions of a graph (σ+, σ−, σZ , σ2) and (σ′+, σ

′
−, σ

′
Z , σ

′
2) with the above

conventions for labellings are equivalent if there is some γ ∈ S4d+2I satisfying

(γ−1σ+γ, γ
−1σ−γ, γ

−1σZγ, γ
−1σ2γ, ) = (σ′+, σ

′
−, σ

′
Z , σ

′
2). (25)

If we wish to find which conventionally-labelled permutation triples are equivalent, we need
only consider equivalence of the triples under those permutations in an S4d+2I subgroup that
preserve the required forms of σ+, σ−, σZ , and σ2 separately. We can thus just consider
conjugation of conventionally-labelled permutation tuples under

γ ∈ (Sd × Sd × S2d+2I) ∩ S2d+I [S2], (26)

where S2d+I [S2] is the wreath product.
The automorphisms of a Nakamura graph are the ribbon graph automorphisms which

also preserve the orientation of the edges. In particular, this means that Nakamura graph
automorphisms map positive poles to positive poles, negative poles to negative poles, and
zeroes to zeroes. Automorphisms are allowed to permute poles of the same sign. In the S4d+2I

picture, we can decompose the permutation σ1 = σ+σ−σZ . For the orientations of the graph
to be preserved, the automorphisms must preserve these three constituent permutations
separately. Hence the automorphism group of a Nakamura graph in the S4d+2I picture is a
subgroup Aut({σi}) ⊂ S4d+2I such that γ ∈ Aut({σi}) if

(γ−1σ+γ, γ
−1σ−γ, γ

−1σZγ, γ
−1σ2γ, ) = (σ+, σ−, σZ , σ2). (27)
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Figure 4: The S4d+2I dessin associated to a Nakamura graph with an automorphism group
of order 4.

(The condition γ−1σ3γ = 1 is automatically satisfied by the fact that σ1σ2σ3 = 1.)
An example of a conventionally-labelled dessin d’enfant in the S4d+2I description is given

in Figure 4. This graph is described by a triple of permutations acting on the set of 16
elements {1+, 1−, . . . , 8+, 8−}:

σ1 = (1+2+3+4+)(5−6−7−8−)(1−6+3−8+)(2−7+4−5+),

σ2 = (1+1−)(2+2−)(3+3−)(4+4−)(5+5−)(6+6−)(7+7−)(8+8−),

σ3 = (1+8+7−2−)(2+5+8−3−)(3+6+6−4−)(4+7+6−1−). (28)

The black vertices correspond to σ1, the white vertices correspond to σ2, and the faces of the
graph correspond to σ3. The automorphism group of this graph is isomorphic to Z4, and is
generated by

γ = (1+2+3+4+)(5+6+7+8+)(1−2−3−4−)(5−6−7−8−). (29)

3.3 Nakamura graphs as S2d+2I-triples

The description of a general Nakamura graph in terms of a triple of permutations is possible
because the graph can be made into a clean bipartite graph by adding extra vertices. Without
the addition of extra vertices, Nakamura graphs are not bipartite in general. However,
the property that no pole connects to another pole allows us to find a permutation tuple
description requiring fewer labelled edges, and hence requiring permutation groups of smaller
degree.

Starting from a Nakamura graph, colour the poles in black and the zeroes in white.
Subdivide only the internal edges connecting zeroes to zeros by adding in extra vertices. As
there are no edges connecting poles to poles, this graph must be bipartite. Label the edges
going out of the incoming poles by {1+, . . . , d+}, and the edges going into the outgoing poles
by {1−, . . . , d−}. Label the edges bordering each zero with integers from (d+1)± to (d+I)±,
such that the edges oriented towards a zero are assigned a −-superscripted integer, and the
edges oriented away from a zero are assigned the corresponding +-superscripted integer.

As in the S4d+2I description, this bipartite graph can be described by a triple of permu-
tations σ1, σ2, and σ3 satisfying σ1σ2σ3 = 1. The permutation σ1 describes the structure of
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Figure 5: Converting a Nakamura graph with d = 3 and I = 1 to a dessin d’enfant described
by an S2d+2I triple

the graph at the poles and at the new vertices added in the internal edges, σ2 describes the
graph at the zeroes, and σ3 describes the faces of the graph. We can decompose σ1 into three
permutations with σ1 = σ+σ−σI , where σ+ acts on {1+, . . . , d+} and describes the incoming
poles, σ− acts on {1−, . . . , d−} and describes the outgoing poles, and σI =

∏d+I
i=d+1(i

+i−)
describes the I internal edges. The permutation σ2 now describes the l zeroes, and so each
of the l cycles consists of a string of alternating +, −-superscripted labels. As in the S4d+2I

description, σ3 is of the form

σ3 =
d∏

k=1

αk, αk = (i+1 , i
+
2 , . . . , i

+
p , j

−
1 , j

−
2 , . . . , j

−
q ). (30)

This new descriptions requires only 2d + 2I labelled edges for each graph. The choice of
labelling of the edges allows us to state that two tuples of permutations (σ+, σ−, σI , σ2) and
(σ′+, σ

′
−, σ

′
I , σ

′
2) are equivalent if they are conjugate by a permutation γ, where

γ ∈ Sd × Sd × SI [S2]. (31)

The automorphisms of a Nakamura graph in the S2d+2I picture are the automorphisms of
the S2d+2I dessin that preserve the orientation of the edges in the dessin. The permutation
σ1 decomposes as σ+σ−σI , and so the automorphisms of the graph in this picture are the
subgroup Aut({σi}) ⊂ S2d+2I such that γ ∈ Aut({σi}) if

(γ−1σ+γ, γ
−1σ−γ, γ

−1σIγ, γ
−1σ2γ, ) = (σ+, σ−, σI , σ2). (32)

The example of a Nakamura graph with automorphism group of order four given in the
previous section can be described in the S2d+2I picture. The graph drawn in Figure 6 is
described by a triple of permutations acting on the set of 8 elements {1+, 1−, . . . , 4+, 4−}:

σ1 = (1+2+3+4+)(1−2−3−4−)

σ2 = (1+2−3+4−)(2+3−4+1−)

σ3 = (1+3−)(2+4−)(3+1−)(4+2−) (33)
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Figure 6: The S4d+2I dessin associated to a Nakamura graph with an automorphism group
of order 4.

The automorphism group of the S2d+2I dessin is necessarily isomorphic to the automorphism
group of the S4d+2I dessin, as they are both descriptions of the same Nakamura graph. In
this case, the automorphism group Z4 is generated by

γ = (1+2+3+4+)(1−2−3−4−). (34)

3.4 From permutation triples to cells in moduli space

Given a Nakamura graph with d faces and I internal edges, it is always possible to construct
a triple of permutations from the group S4d+2I or S2d+2I that describes the graph. Not every
triple of permutations in these groups corresponds to a Nakamura graph, though. For a
given triple of permutations to describe a Nakamura graph, it must satisfy a particular set
of conditions.

A triple of S4d+2I permutations (σ1, σ2, σ3) specifies a conventionally-labelled Nakamura
graph if it satisfies the following properties:

• The subgroup generated from σ1 and σ2 acts transitively on X = X+ ∪X−, where

X+ = {1+, 2+, . . . , (2d+ I)+}, (35)

X− = {1−, 2−, . . . , (2d+ I)−}. (36)

(This is the condition that a Nakamura graph is connected.)

• The permutation σ1 can be written as

σ1 = σ+σ−σZ , (37)

where σ+, σ− and σZ are disjoint, and:

– σ+ acts on {1+, 2+, . . . , d+} and fixes all other elements,

– σ− acts on {(d+ 1)−, (d+ 2)−, . . . , 2d−} and fixes all other elements,

– σZ has no cycle of length less than 4, σZ(X+) = X−, and σZ(X−) = X+.
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(This is the condition that a Nakamura graph decomposes into positive poles, negative
poles, and zeroes, and that the orientations of the connecting edges are outgoing,
incoming and alternating respectively.)

• σ2 = (1+1−)(2+2−) . . . ((2d + I)+(2d + I)−). (This is the condition that the S4d+2I

dessin is clean.)

• The permutation σ3 decomposes into d disjoint cycles as σ3 = σ
(1)
3 σ

(2)
3 . . . σ

(d)
3 , where

for each σ
(i)
3

|σ(i)
3 (X+) ∩X−| = 1 = |σ(i)

3 (X−) ∩X+|. (38)

(This is the condition that each disjoint cycle in σ3 corresponding to a face of the graph
is of the form (+ + . . .+−− . . .−), and so corresponds to a strip.)

• For any sequence of non-negative integers (k1, k2, . . . , kr) and some i+ ∈ X+, if all the
elements of the sequence

i+, σ2σ
2k1+1
Z (i+), σ2σ

2k1+1
Z σ2σ

2k2+1
Z (i+), . . . (39)

are contained in X+, then this sequence has no repeated element. (This condition
forbids closed oriented loops on the graph, and permits time orderings to be assigned
to the zeroes of the graph.)

Similarly, a triple of S2d+2I permutations (σ1, σ2, σ3) specifies a conventionally-labelled
Nakamura graph if it satisfies the following properties:

• The edges can be assigned labels from the set X = X+ ∪X−, where

X+ = {1+, 2+, . . . , (d+ I)+}, (40)

X− = {1−, 2−, . . . , (d+ I)−}. (41)

• The subgroup generated from σ1 and σ2 acts transitively on X.

• The permutation σ1 can be written as

σ1 = σ+σ−σI , (42)

where σ+, σ− and σI are disjoint, and:

– σ+ acts on {1+, 2+, . . . , d+} and fixes all other elements,

– σ− acts on {1−, 2−, . . . , d−} and fixes all other elements,

– σI = ((d+ 1)+(d+ 1)−) . . . ((d+ I)+(d+ I)−).

• The permutation σ2 has no cycle of length less than 4, σ2(X
+) = X−, and σ2(X

−) =
X+.

17



• The permutation σ3 decomposes into d disjoint cycles as σ3 = σ
(1)
3 σ

(2)
3 . . . σ

(d)
3 , where

for each σ
(i)
3

|σ(i)
3 (X+) ∩X−| = 1 = |σ(i)

3 (X−) ∩X+|. (43)

• For any sequence of non-negative integers (k1, k2, . . . , kr) and some i+ ∈ I+, where
I+ = {(d+ 1)+, . . . , (d+ I)+}, if all the elements of the sequence

i+, σIσ
2k1+1
Z (i+), σIσ

2k1+1
Z σIσ

2k2+1
Z (i+), . . . (44)

are contained in I+, then this sequence must not have a repeated element.

4 Nakamura graphs as Hurwitz classes

In the previous section we introduced two methods of describing Nakamura graphs with
triples of permutations which multiply to the identity by converting the Nakamura graphs
to bipartite graphs with extra vertices. These triples of permutations are elements of either
S2d+2I or S4d+2I , where d is the number of strips (faces) of a graph and I is the number of
internal edges in the graph connecting zeroes to zeroes. However, in this description, the
conditions that a general permutation triple must satisfy to be a Nakamura graph are rather
cumbersome, and can be tricky to check computationally.

In this section we present a new description of a Nakamura graph in terms of a tuple of
m+2 permutations in Sd which multiply to the identity, where m ≤ l, and l is the number of
zeroes of the graph. This approach has two main advantages over the triples description: the
necessary permutation group Sd is smaller than S2d+2I or S4d+2I , and the set of conditions
that a generic tuple must satisfy to give a Nakamura graph is much simpler. Both conditions
mean that it is easier to implement Nakamura graphs computationally with the group Sd
than with the groups S2d+2I or S4d+2I .

We begin this section with a review of Hurwitz theory, which describes how equivalence
classes of branched covers of Riemann surfaces correspond to equivalence classes of permuta-
tion tuples multiplying to the identity. We will call such an equivalence class of permutations
a Hurwitz class. More on this standard subject of algebraic topology can be found, for
example, in [21, 22, 23] or in a physics context in [24, 25]. The equivalence classes of per-
mutations triples discussed in Section 3 are examples of Hurwitz classes. We then discuss
how to construct branched covers from a Riemann surface with a Giddings-Wolpert differ-
ential to an infinite cylinder, with the ramification points of the surface being exactly the
poles and zeroes of the GW differential. The Hurwitz class corresponding to this cover is an
equivalence class of a tuple of m + 2 permutations in Sd, and contains enough information
to reconstruct the Nakamura graph associated to the domain Riemann surface.

Each Hurwitz class corresponds to a single Nakamura graph, but a Nakamura graph may
correspond to many distinct Hurwitz classes. This makes it difficult to find the automorphism
group of a Nakamura graph from a generic Hurwitz class associated to the graph. To solve
this issue, we introduce a new equivalence relation on the set of Hurwitz classes - which
we call slide-equivalence - such that the equivalence classes of this relation are in one-to-
one correspondence with the Nakamura graphs. Within the slide-equivalence class of any
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Figure 7: The preimages of a cut disc on S2 are a set of cut discs, whose gluing is specified
by a permutation σi.

Nakamura graph, there is a unique canonical choice of a Hurwitz class - whose elements we
call reduced tuples - that yields in a simple way the automorphism group of the associated
graph. This description gives a computationally powerful method of finding the Nakamura
graphs and their automorphism groups.

4.1 Review: Branched covers, Hurwitz classes, and Belyi maps

A continuous surjective map f : Σ→ S2 is a branched cover of the Riemann sphere if every
point Q on S2 has some open neighbourhood UQ such that f−1(UQ) is a collection of disjoint
open sets, and on each set f is topologically equivalent to the complex map z 7→ zr for some
positive integer r. For most points on the sphere, there are d preimages on the surface Σ,
where d is the degree of the map. There is a finite set of points on the target space S2 which
each have fewer than d preimages. These are the branch points of the map f . Consider
a point Q on the surface S2. If Q is not a branch point, then for each of its preimages P
on Σ, there exist complex coordinate patches z about P and w about Q such that f maps
z 7→ w = z. However, if Q is a branch point, then for at least one of its preimages P there
exist coordinate patches z about P and w about Q where f maps z 7→ w = zr for r ≥ 2.
Such a point P is called a ramification point of the map f . For a given branch point Q,
each preimage Pi of the branch point has an associated unique positive integer ri such that
f maps z 7→ w = zri about that point. The tuple of integers (r1, r2, . . .) is the ramification
profile of the branch point Q.

The neighbourhoods of ramification points can be described in terms of a gluing con-
struction. Take a disc around a branch point Q with coordinates |w| < 1, and cut the disc
along the real interval w ∈ [0, 1). The preimages of the cut disc on the surface Σ are d
identical copies of the cut disc. The cuts along the intervals can be identified to recover the
neighbourhoods on Σ around the ramification points. If we choose a labelling of the cut discs
with the integers {1, 2, . . . , d}, then the gluing of the cut discs corresponds to a mapping
from the set {1, 2, . . . , d} to itself: the lower edge of the cut on disc i is glued to the upper
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Figure 8: The target space S2 is drawn on the right and the d preimages on the surface
Σ of a disc about a marked unbranched point on the sphere are drawn on the left. The
preimages of a loop drawn around one of the branch points on the sphere are a set of
trajectories connecting the d labelled preimages of the marked point on Σ, and this specifies
a permutation in Sd.

edge of the cut on disc σ(i). This gluing is shown on the left of Figure 7. Each cut disc is
biholomorphic to a ‘wedge’ of a disc subtending an angle 2π/r for some r, as can be seen on
the right of Figure 7.

There is another way of arriving at the permutation description of branch points by
considering the preimages of loops on the target space S2. Choose a marked unbranched
point on the sphere, and label its preimages with integers from 1 to d. For each of the l branch
points on the sphere, draw a directed closed path starting and ending on the marked point,
which can be contracted to a neighbourhood of the branch point without passing through
a branch point. The preimages of each of the l directed loops on the sphere are directed
closed paths on the Riemann surface Σ which connect the d distinct labelled preimages of
the marked point. Each branch point gives a bijective mapping from the set {1, . . . d} to
itself which we obtain by following the paths of the preimages of the loops. We associate a
permutation σi ∈ Sd, i = 1, . . .m to each branch point of the map f . On the sphere, the
path constructed by following all m loops around is contractible. Hence, the permutations
σ1, . . . , σm multiply together to give the identity,

σ1σ2 . . . σm = 1. (45)

The permutation tuple (σ1, σ2, . . . σm) describes the branching profile of a branched cover f
from a Riemann surface Σ on to the sphere S2. This is demonstrated in Figure 8.

There is an arbitrariness in the way we label the preimages of the marked point from 1
to d: any relabelling of these points yields the same branching profile. Hence, we consider
two permutation tuples to be equivalent if there is a permutation γ ∈ Sd which conjugates
one sequence to the other. That is, the tuples (σ1, . . . , σm) and (σ′1, . . . , σ

′
m) are equivalent if

(σ′1, . . . , σ
′
m) = (γσ1γ

−1, . . . , γσmγ
−1). (46)
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Figure 9: Any dessin d’enfant on a Riemann surface can be realised as the preimage of [0, 1]
on some branched covering of the sphere.

We call an equivalence class of tuples under conjugation a Hurwitz class.
There is also a notion of equivalence of branched coverings in terms of bijective maps. Two

branched covers of the sphere f and f ′ are equivalent if there exists some homeomorphism
φ : Σ → Σ such that f ′ = f ◦ φ. In other words, f and f ′ are equivalent if the following
diagram commutes:

Σ
φ−−→ Σ

f ′ ↘ ↙ f
S2 (47)

This definition of equivalence coincides with the Sd conjugation equivalence: two branched
covers of a Riemann surface are equivalent if they have the same Hurwitz class. The genus of
the covering surface can be expressed, according to the Riemann-Hurwitz relation, in terms
of the branching numbers Bi = d− Cσi of the branch points as

2g − 2 = −2d+
m∑
i=1

Bi (48)

Dessins d’enfants can be realised as branched coverings of the sphere. If we take a
branched cover of the sphere with branch points located at {0, 1,∞}, and consider the real
interval [0, 1] on the target sphere, then the preimage of this interval on the Riemann surface
is an embedded ribbon graph. Colouring the preimages of the point w = 0 on the sphere
in black and the preimages of w = 1 in white, it can be seen that the embedded ribbon
is bipartite and is therefore a dessin. If we choose a labelling of the d preimages of the
real interval, then we can find a Hurwitz class associated to the branched covering. This
Hurwitz class coincides exactly with the defining equivalence class of a dessin d’enfant. A
branched covering of the sphere with three branch points is called a Belyi map, and we
call a representative element of its associated Hurwitz class a Belyi triple. The Nakamura
graph descriptions from Section 3 are examples of Belyi triples which correspond to Belyi
maps of degree 2d+ 2I or 4d+ 2I.
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4.2 Nakamura graphs and branched coverings

Consider a Riemann surface with a Giddings-Wolpert differential and embedded Nakamura
graph. The Nakamura graph partitions the surface into d faces, each of which is holomorphic
to an infinite complex strip, such as in Figure 2. The zeroes of the differential lie on the
boundaries of the strips, and the poles are located at the negative and positive infinities
of the strips. The surface can be reconstructed from the strips by a gluing of the edges
determined by the Nakamura graph.

First, let us consider a Riemann surface with a GW differential in which the d strips are
of equal width 2π. The strips can then be viewed as copies of a single template strip of
width 2π. There is a trivial map from each of the d worldsheet strips on to the target strip,
in which all the preimages of a point on the target strip have the same time coordinate. On
identifying the upper and lower edges of the target space strip, the map extends to a branched
covering from the surface onto the cylinder. All the real trajectories of the Nakamura graph
are mapped on to a single infinite line on the cylinder, and all the zeroes are mapped on to
this line. The positive (incoming) poles of the graph are mapped on to negative infinity, and
the negative (outgoing) poles of the graph are mapped on to positive infinity. The map has
m + 2 branch points, where m ≤ l is the number of distinct time coordinates of the zeroes.
If the time coordinates of all the zeroes are distinct, then m = l.

An infinite cylinder of circumference 2π can be mapped bijectively to the Riemann sphere
with the exponential map z 7→ exp z. This means that the composition of the cylinder
covering and the exponential map is a holomorphic branched covering f of the Riemann
sphere with m + 2 branch points. The positive poles of the Nakamura graph map on to
0, the negative poles of the graph map on to ∞, and the remaining l zeroes map on to m
branch points along the real axis on the sphere. The Giddings-Wolpert differential on the
worldsheet is df

f
.

Now consider a more general GW differential where the strips are no longer of equal
width. We can construct a bijective mapping from each strip onto a single template strip of
width 2π in such a way that the preimages of a point on the template strip have the same
time coordinate. However, this mapping will not be holomorphic in general. Applying the
exponential map to this template strip, we have a map f from a general Riemann surface
onto the sphere. The GW differential cannot be written in the form df

f
in this more general

case, but the map f is still a branched cover of the sphere, with ramification points at the
poles and zeros of the differential.

This branched cover of the sphere has an associated permutation tuple describing the
branching. We mark an unbranched point on the sphere and label the preimages of this
point with the integers from 1 to d. The preimage of a small loop starting and ending on
this marked point that encloses a branch point on the Riemann sphere is a collection of
closed paths connecting the labelled preimages of the unbranched point. Each branch point
determines a permutation σ ∈ Sd, and so the branched covering determines a tuple consisting
of m+ 2 permutations

(σ+, σ1, σ2, . . . , σm, σ−), (49)

that describes the gluing of the different strips. Here, the permutation σ+ describes the
branching about 0, σ− describes the branching around ∞, and σi describes the branching
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Figure 10: Nakamura graph strips naturally form a branched cover of the cylinder and the
sphere.

around the ith branch point on the real line. As this is a branched covering of the sphere,
this set of permutations multiplies to one,

σ+σ1σ2 . . . σmσ− = 1. (50)

There is also an overall conjugacy equivalence of the tuple due to the arbitrary choice of
labelling of the d inverse images of the marked point,

(γσ+γ
−1, γσ1γ

−1, γσ2γ
−1, . . . , γσmγ

−1, γσ−γ
−1) ∼ (σ+, σ1, σ2, . . . , σm, σ−), (51)

where γ ∈ Sd. This construction is shown in Figure 10, where the marked point is chosen
to lie on the real axis of the Riemann sphere, and the preimages of this point lie on the
boundaries of the strips. For the case m = l, the Riemann-Hurwitz relation (48) can be
written as

(2g − 2) = −n+ l + ∆ (52)

This also follows from the previous discussion of Nakamura graph parameters in Section 2.3,
in particular by eliminating I from equations (8) and (12).

The boundaries of the strips are the real trajectories of the GW differential, which form
the Nakamura graph of the surface. We can choose to label the real trajectories bounding the
upper edge of each strip with the same integer that was assigned to the marked point lying
on the upper edge of this strip. This gives us a labelling of the Nakamura graph associated
to the surface, in which all the edges corresponding to the upper boundary of the same
strip have the same label. We call this labelling of a Nakamura graph the Sd description,
or the Hurwitz class description, as the Nakamura graph associated to this surface can be
reconstructed from the Hurwitz class of the branched covering and vice versa.

The labelling of the edges glued to the lower boundary of a strip are determined by
the Hurwitz tuple. On a strip in which the upper boundary is labelled by some integer
i ∈ {1, 2, . . . , d}, the edge preceding the preimage of the first branch point is labelled by
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Σ ΣΣ0 Σ Σ-1

Figure 11: The gluing of the strips can be read off from the Hurwitz tuple.

Σ0(i), where Σ0 := σ+. The edge proceeding the next branch point is labelled Σ1(i), where
Σ1 = σ+σ1; the next edge is labelled Σ2(i), with Σ2 = σ+σ1σ2, and so on. This is shown in
Figure 11.

Given a Nakamura graph associated to a surface, we can read off the Hurwitz tuple
associated to a branched covering of the sphere as constructed above. The cyclic ordering
of the edges at the incoming and outgoing poles correspond to σ+ and σ− respectively, and
the cyclic ordering of the incoming (or the outgoing) edges at the ith zero corresponds to
σi. Each outgoing edge at a zero has the same label as the incoming edge located in the
next clockwise position at the zero. An example of a Nakamura graph with Hurwitz class
labellings is given in Figure 12 with the associated Hurwitz tuple description.

Figure 12: A labelling of a Nakamura graph with an Sd tuple.

Conversely, a Hurwitz tuple (σ+, σ1, . . . , σ−) is enough to completely specify a Nakamura
graph. As each Nakamura graph defines a cell in the light-cone cell decomposition of moduli
space, we see that each Hurwitz class determines a cell in the LC cell decomposition. In
general, extra data is required to specify a particular point within this cell, as the permutation
tuple alone does not encode the continuous data of the strip widths and the time coordinates
of the zeroes.

One major advantage of the Hurwitz class description for Nakamura graphs is that there
are only two conditions required for a permutation tuple to give a valid Nakamura graph.
For a general Sd tuple of m+ 2 permutations to describe a Nakamura graph:
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• Each integer in {1, 2, . . . , d} is permuted by at least one of ther permutations associ-
ated with the zeroes {σ1, σ2, . . . , σm}. (This ensures that no trajectories connect poles
directly to poles.)

• The tuple (σ+, σ1, . . . , σm, σ−) acts transitively on {1, 2, . . . , d}. (This ensures that all
associated Riemann surfaces are connected.)

All the other conditions given in Section 2.2 that a Nakamura graph must satisfy are guar-
anteed by the structure of the permutation tuple.

Figure 13: A Nakamura graph in the Sd picture, drawn embedded on the torus with the
closed imaginary trajectories drawn in grey.

Figure 14: The strip decomposition of the above graph in both the S4d+2I and the Sd
descriptions.

As an example of the strip decomposition of a surface via a Nakamura graph, and its
description with an Sd tuple, we consider again the example of a Nakamura graph with no
internal lines and degree four, shown on the left of Figure 13. This graph corresponds to a
genus one surface with two marked points, drawn with the embedded Nakamura graph on
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the right of Figure 13. This graph was described with S4d+2I and S2d+2I Belyi triples in (28)
and (33). With the Sd labellings, this graph has the associated Hurwitz class description

(σ+, σ1, σ2, σ−) = ((1234), (13), (24), (1234)). (53)

The strip decomposition of the surface is shown in Figure 14, with the S4d+2I and the Sd
labellings respectively. The cell associated to this graph in moduli space has real dimension
l+ d− n = 4, which can be understood in terms of the continuous parameters of the strips.
The residues of the poles are fixed to be ±r. There is an overall time translation symmetry
of the strips, so we can set the first zero to have the time coordinate t = 0: the remaining
zero has some time coordinate t1 > 0. We denote the widths of the strips with upper edges
labelled 1, 2, 3, 4 by b1, b2, b3, and b4 respectively. The sum of the widths of the strips is
constrained to be r due to the fact that the GW differential is simply dz on each strip. This
gives four independent real parameters for the cell in moduli space, as required.

Figure 15: A ∆ = 1 Nakamura graph in the Sd picture, and its embedding on the torus.

In Figure 15 we have given another example of a Nakamura graph with Sd labellings and
its embedding on the torus. This graph has a non-zero branching constant ∆ = 1, as the
zero has a valency greater than four. Its associated Sd permutation tuple is

(σ+, τ1, σ−) = ((123), (123), (123)). (54)

4.3 Redundancies in the Hurwitz class description

Given a Riemann surface with a Giddings-Wolpert differential, then there exists a unique
branched covering of the sphere as constructed above up to equivalence, and so there exists
a unique Hurwitz class associated to the surface. The cycles of the permutations in the
Hurwitz class correspond to the vertices of the Nakamura graph. However, there may be
more than one Hurwitz class that can describe the same Nakamura graph. This is because
a Hurwitz class has a well-defined total ordering of the branch points, derived from the time
coordinates of the zeroes, but a Nakamura graph generally only has a partial ordering on its
zeroes derived from the orientation of the edges.

Consider the previous example of a Nakamura graph shown in Figure 13 and described
by the Sd tuple

(σ+, σ1, σ2, σ−) = ((1234), (13), (24), (1234)). (55)
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The time coordinates of the zeroes associated to the permutations (13) and (24) satisfy
t(13) < t(24). If we were to consider a surface with a different GW differential in which the
time coordinates of the zeroes were interchanged and t(24) < t(13), then the Sd description of
the graph would be

(σ+, σ1, σ2, σ−) = ((1234), (24), (13), (1234)). (56)

In addition, if we considered instead a surface where the time coordinates of the zeroes
were identical, then the ramification of the branched cover of the sphere would no longer be
simple, and the Sd description of the graph would be

(σ+, σ1, σ−) = ((1234), (13)(24), (1234)). (57)

In all three of these cases, the Nakamura graph corresponding to the surface is identical. A
Nakamura graph only encodes an ordering on the time coordinates of the zeroes if there is
an oriented sequence of internal edges connecting the zeroes.

This redundancy makes the automorphisms of a Nakamura graph harder to determine in
the Hurwitz class description than in the Belyi triples descriptions. The set of permutations
γ ∈ Sd such that

(γ−1σ+γ, γ
−1σ1γ, . . . , γ

−1σmγ, γ
−1σ−γ) = (σ+, σ1, . . . , σm, σ−) (58)

are indeed automorphisms of the Nakamura graph, but they are not the only automorphisms.
In some cases, there are permutations which map the σi to each other upon conjugation,
which can preserve the structure of the associated Nakamura graph. The example given
above in Figure 13 has an automorphism group generated by the cycle γ = (1234), which
interchanges the permutations σ1 and σ2 in the Hurwitz class given in (55).

To solve this redundancy in the Hurwitz class description, we introduce a new equivalence
relation on the Hurwitz classes. For a general tuple of (m+2) permutations (σ+, σ1, . . . , σm, σ−)
describing a Nakamura graph arising from a branched covering of the sphere, each permuta-
tion σi represents a set of zeroes with the same time coordinate. If there are two subsequent
permutations σi and σi+1 which are disjoint (the intersection of their moved-point sets is
empty), then there are no internal edges directly connecting any of the zeroes which corre-
spond to the cycles in the permutations. Any other branched covering with the (m + 1)-
permutation tuple

(σ+, σ1, . . . , σiσi+1, . . . , σm, σ−), (59)

would have an identical Nakamura graph.
We define a binary relation on the set of permutation tuples by relating

(σ+, σ1, . . . , σi, σi+1, . . . , σm, σ−) ∼ (σ+, σ1, . . . , σiσi+1, . . . , σm, σ−). (60)

whenever σi and σi+1, 1 ≤ i < m are disjoint. This relation extends to an equivalence relation
on the set of tuples. The overall product of a tuple of permutations is unchanged by this
relation, and the overall action of conjugacy on tuples commutes with this relation, which
means that this relation is a well-defined equivalence relation on the set of Hurwitz classes
describing Nakamura graphs. We call this relation slide-equivalence, as it represents the
ability to ‘slide’ around the orderings of the zeroes of a Nakamura graph when there are no
internal edges connecting the zeroes. With this equivalence relation, each slide-equivalence
class corresponds to a unique Nakamura graph.
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4.4 The ‘reduced tuple’ Sd picture

There is a one-to-one correspondence between the Nakamura graphs and the slide-equivalent
Hurwitz classes. Up to conjugacy equivalence, we can canonically choose a representative
element for each slide-equivalence class, which we call the reduced tuple description of a
Nakamura graph, and denote by (σ+, τ1, . . . , τm, σ−). Each slide-equivalence class has exactly
one Hurwitz class specified by a representative tuple (σ+, τ1, . . . , τm, σ−) with the property
that every cycle in τi+1 shares a moved point with τi, for each i = 1, 2, . . . , (m−1). Intuitively,
this is the Sd tuple gained from taking a Nakamura graph and placing as many cycles as
possible in the earliest permutation. Graphically, this tuple is gained by sliding the zeroes
around so that as many zeroes as possible are vertically adjacent in the earliest position, and
then subsequently as many zeroes as possible are arranged in the second earliest position,
and so on.

The reduced tuple has the property that the graph automorphisms do not exchange cycles
between different τi. This means that the automorphisms of a Nakamura graph described
by a reduced tuple are precisely those γ ∈ Sd such that

(γ−1σ+γ, γ
−1τ1γ, . . . , γ

−1τmγ, σ−) = (σ+, τ1, . . . , τm, σ−). (61)

Figure 16: A Nakamura graph in the Sd picture.

As an example, consider the slide-equivalence class describing the Nakamura graph given
in Figure 16. With the labelling shown in the figure, this graph can be described by the
tuples

(σ+, σ1, σ2, σ3, σ−) = ((1234), (34), (12), (12), (142)), (62)

(σ+, σ1, σ2, σ−) = ((1234), (12)(34), (12), (142)), (63)

(σ+, σ1, σ2, σ3, σ−) = ((1234), (12), (34), (12), (142)), (64)

(σ+, σ1, σ2, σ−) = ((1234), (12), (12)(34), (142)), (65)

(σ+, σ1, σ2, σ3, σ−) = ((1234), (12), (12), (34), (142)). (66)

All these tuples lie in different Hurwitz classes, but their associated classes lie in the same
slide-equivalence class. This slide-equivalence is associated to the sliding the time coordinate
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of the zero associated to the transposition (34). Of the five elements of the slide-equivalence
class, the reduced tuple is

(σ+, τ1, τ2, σ−) = ((1234), (12)(34), (12), (142)), (67)

as it is the only element which has the property that every cycle in τi+1 shares a moved point
with τi for all i.

5 Counting of graphs with matrix models

In this section we consider graphs with no internal edges and a single incoming pole, described
by triples of permutations in the reduced Sd description. Any such graph is described by
a triple (σ+, τ, σ−), with σ+τσ− = 1, where σ+ consists of a single d-cycle, τ consists of l
disjoint cycles corresponding to the internal vertices, and σ− consists of (n−1) disjoint cycles
corresponding to the outgoing poles. There are correlators in the Gaussian and the complex
matrix models that directly correspond to counting triples of permutations multiplying to
one. This allows us to apply known explicit expressions for matrix model correlators to the
counting of Nakamura graphs.

In Section 3, we stated that a Nakamura graph is associated to a cell C in the LC cell
decomposition of Mg,n with real dimension

dimR(C) = 6g − 6 + 2n− (2∆ + I). (68)

The genus of the graph is g, the number of poles is n, the number of internal edges connecting
zeroes to zeroes is I, and the branching number ∆ is defined in terms of the valencies of the
l zeroes by the formula

∆ =
l∑

i=1

1

2
(vi − 4). (69)

The degree d is given in terms of g, n, ∆, and I by the formula

d = 2(2g − 2 + n)− (∆ + I). (70)

The total dimension of moduli space is 6g−6+2n, and so the codimension of a cell in moduli
space associated to a graph G is (2∆ + I).

The top-dimensional cells of moduli space are associated to graphs with ∆ = 0 and
I = 0. The zeroes of these graphs have valency four, and each zero can be described in the
Sd description by a cycle permuting two labels (a transposition). The permutation triples
corresponding to graphs in the codimension zero cell are of the form (σ+, τ, σ−), where τ
is in T = [2l], the Sd conjugacy class consisting of elements that are composed of l = d/2
disjoint 2-cycles. For graphs with I = 0 and ∆ > 0, some of the zeroes will have valency
greater than four, which correspond to cycles with size greater than two. For example, a
graph with ∆ = 1 is described by some τ in the conjugacy class of elements with (l − 1)
2-cycles and one 3-cycle, T = [2l−1, 3]. A graph with ∆ = 2 is described by some τ in either
the conjugacy class T1 = [2l−2, 32] or in T2 = [2l−1, 4].
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The counting of permutation triples where two permutations are in the classes [d] and
[2d/2] respectively is known to correspond to a correlator in the Gaussian matrix model. In
Section 5.1, we use this link to find the contribution to the orbifold Euler characteristic
that comes from graphs in the top-dimensional cell. This can be checked explicitly against
the tables derived in [4]. Also, the counting of permutation triples in more general classes
is known to correspond to correlators in the complex matrix model. In Section 5.2, we
can find the contributions to the orbifold Euler characteristic coming from graphs of higher
codimension. This is checked against graphs counted directly by the software GAP.

5.1 The Gaussian Hermitian matrix model

Triples of permutations of the form (σ+, τ, σ−), where σ+τσ− = 1, σ+ ∈ [2l] and τ ∈ [2l],
arise in the combinatorics of the Gaussian Hermitian matrix model. We can develop a link
between the counting of top-dimensional graphs in moduli space with a single incoming pole
and Gaussian matrix model correlators as follows.

First, note that a single-trace correlator in the Gaussian Hermitian matrix model can be
written as

trXd = X i1
iσ(1)
· · ·X id

iσ(d)
(71)

with σ = (1, 2, · · · , d). In other words, when we have a single trace, the lower indices are
a cyclic permutation of the upper indices. Now when we perform the Wick contraction on
the correlator, we are summing over pairings of d objects, e.g. (1, 2)(3, 4) · · · (d− 1, d). Each
pairing corresponds to a permutation τ in the class [2l] where l = d/2. The Matrix model
correlator of a single trace trXd can be written in terms of these two permutations rather
simply:

〈trXd〉 =
∑
τ∈[2l]

∑
α∈Sd

δ(στα)NCα , (72)

where the delta function imposes the condition that the three permutations multiply to 1,
and Cα is the number of cycles in the product α = (στ)−1. We can also introduce a sum over
the conjugacy class of single-cycles of length d accompanied by a factor of |[d]| = (d − 1)!
without changing value of the correlator:

〈trXd〉 =
1

(d− 1)!

∑
σ∈[d]

∑
τ∈[2l]

∑
α∈Sd

δ(στα)NCα . (73)

Now, consider the equivalence classes of triples (σ, τ, α), where

(σ′, τ ′, α′) ∼ (γσγ−1, γτγ−1, γαγ−1). (74)

These equivalence classes correspond precisely to the Nakamura graphs with a single incom-
ing pole, no internal edges, and ∆ = 0 in the Sd description. The permutation σ corresponds
to the single incoming pole, τ corresponds to the zeroes, and α to the outgoing poles. The
number of poles in a Nakamura graph given by such a tuple is Cσ +Cα, which is equal to n.
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As Cσ = 1, and we are interested in graphs corresponding to surfaces with n marked points,
we can consider just the permutation tuples with Cα = n− 1, and so consider the coefficient
of Nn−1 in the correlator:

Coefficient(〈trXd〉, Nn−1) =
1

(d− 1)!

∑
σ∈[d]

∑
τ∈[2l]

∑
α∈Sd

Cα=(n−1)

δ(στα). (75)

We can split the sum over α into a sum over distinct conjugacy classes [α̂], each consisting
of (n− 1) cycles, and a sum over each individual class with (n− 1) cycles [α̂],

Coefficient(〈trXd〉, Nn−1) =
1

(d− 1)!

∑
classes
[α̂]

∑
σ∈[d]

∑
τ∈[2l]

∑
α∈[α̂]

δ(στα). (76)

Now the sum
1

d!

∑
σ∈[d]

∑
τ∈[2l]

∑
α∈[α̂]

δ(στα) (77)

can be written in terms of equivalence classes of permutation triples. By the Orbit-Stabiliser
theorem, the number of times each equivalence class appears in the sum is

d!

|Aut({σ, τ, α})|
(78)

where Aut({σ, τ, α}) is the order of the automorphism group of the triple. Each equivalence
class corresponds to a distinct bipartite graph. This means that

1

d!

∑
classes
[α̂]

∑
σ∈[d]

∑
τ∈[2l]

∑
α∈[α̂]

δ(στα)

=
∑
classes
[α̂]

∑
equiv classes
of triples

1

|Aut(σ, τ, α)|

=
∑
graphs

1

|Aut(σ, τ, α)|
. (79)

This sum is taken over all the graphs specified by a permutation triple (σ, τ, α) with one
incoming pole and n− 1 outgoing poles. This is exactly the sum that Nakamura performed
to find the contribution of the top-dimensional cells to the orbifold Euler characteristic of
Mg,n. We conclude that the contribution of the top cell of Mg,n to the orbifold Euler
characteristic is

χtop(g, n) =
1

d
× Coefficient(〈trXd〉, Nn−1). (80)

There is a generating function for correlators of single traces in the Gaussian Hermitian
matrix model, due to Harer and Zagier:

C(x,N) =
∞∑
l=1

〈tr(X2l)〉 x2l

(2l − 1)!!
(81)

=
1

2x2

((
1 + x2

1− x2

)N
− 1

)
. (82)
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This means that the contribution to the top-dimensional cell can be read off:

χtop(g, n) =
(d− 1)!!

d
Coefficient(C(x,N), xdNn−1). (83)

We can calculate exactly the coefficient of Nn−1 in this expression. Noting that

C(x,N) =
1

2x2

[
exp

(
N log

(
1 + x2

1− x2

))
− 1

]
, (84)

we differentiate this (n− 1) times with respect to N to see that

Coefficient (C(x,N), Nn−1) =
1

2x2(n− 1)!

[
log

(
1 + x2

1− x2

)]n−1
. (85)

The contribution to the Euler characteristic is therefore

χtop(g, n) =
(d− 1)!!

2d(n− 1)!
Coefficient

(
1

x2

[
log

(
1 + x2

1− x2

)]n−1
, xd

)
(86)

=
(d− 1)!!

2d(n− 1)!
Coefficient

([
log

(
1 + w

1− w

)]n−1
, w(n−1)+2g

)
, (87)

where d = 2(2g − 2 + n), and we have substituted w = x2 in the final equation. Written
purely in terms of g and n, the expression for the Euler characteristic contribution is

χtop(g, n) =
(4g − 5 + 2n)!

22g−3+n(n− 1)!(2g − 2 + n)!
Coefficient

(
log

(
1 + w

1− w

)n−1
, w(n−1)+2g

)
. (88)

This expression matches the values found by counting graphs in Nakamura’s paper.
In the case n = 2, the series expansion of the generating function can be found exactly.

We have

log

(
1 + w

1− w

)
= 2

∞∑
g=0

w2g+1

(2g + 1)
, (89)

so we deduce that

χtop(g, 2) =
(4g)!

22g(2g)!

1

4g

1

2g + 1
=

(4g − 1)!

22g(2g + 1)!
. (90)

This sequence, starting at g = 1 is :

1

4
,
21

8
,
495

4
,
225225

16
· · · (91)

The first three terms in this sequence correspond to the tables of data in Nakamura. The
case (g, n) = (4, 2) was not provided in Nakamura, so the value 225225

16
is a prediction, as are

the infinite series of coefficients (90). However, the top-cell contribution in the (g, n) = (4, 2)
case was confirmed directly by counting the graphs using the software GAP.
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5.2 The complex matrix model

Let T be the conjugacy class of Sd elements [2k23k3 . . . dkd ]. Choose a representative element
σ̂+ ∈ [d] and τ̂ ∈ T . The complex matrix model correlator of a holomorphic trace and an
antiholomorphic product of traces corresponding to these classes is

〈tr(σ̂+Z⊗d)tr(τ̂Z†⊗d)〉 := 〈trZd(trZ†2)k2(trZ†3)k3 . . . (trZ†d)kd〉 (92)

=
d

|T |
∑
σ+∈[d]

∑
τ∈T

∑
σ−∈Sd

NCσ−δ(σ+τσ−). (93)

As in the Hermitian matrix model, this correlator is a sum over conjugacy classes of permu-
tation triples that multiply to one. Splitting up the sum over σ− ∈ Sd, we can write

〈tr(σ̂+Z⊗d)tr(τ̂Z†⊗d)〉 =
d

|T |

d−1∑
n=2

Nn−1
∑
σ+∈[d]

∑
τ∈T

∑
σ−∈Sd

Cσ−=n−1

δ(σ+τσ−). (94)

This expression is a sum over the Nakamura graphs with n external points and internal
vertex structure given by T :

〈tr(σ̂+Z⊗d)tr(τ̂Z†⊗d)〉 =
d!d

|T |

d−1∑
n=2

Nn−1
∑
G

1

|Aut(G)|
. (95)

The sum over G is taken over all graphs with (n− 1) outgoing poles with internal structure
given by T . This sum appears in the orbifold Euler characteristic of moduli space of genus g
with n marked points: defining the contribution to the orbifold Euler characteristic coming
from a class T by the formula

χT (g, n) =
∑
G

1

Aut(G)
, (96)

we can state that the contribution to the Euler characteristic coming from graphs with class
T is

χT (g, n) =
|T |
d!d

Coefficient(〈tr(σ̂+Z⊗d)tr(τ̂Z†⊗d)〉, Nn−1). (97)

It is useful to recall that the parameters ki defining T relate to the parameters in section 2
by

l =
d∑
i=2

ki

∆ =
d∑
i=2

(i− 2)ki = d− 2l (98)
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The complex matrix model correlator can be calculated by using character sums. In [26],
it is shown that

〈trZd(trZ†2)k2(trZ†3)k3 . . . (trZ†d)kd〉 = d!
d∑
t=0

∑
S⊂{1,2,...l}
|S|=t

(−)l−t
(
N +

∑
i∈S ki

d+ 1

)
.

= d!

k1∑
r1=0

k2∑
r2=0

. . .

kd∑
rd=0

(−)k1+...+kd−r1−...−rd
(
k1
r1

)
. . .

(
kd
rd

)(
N +

∑d
j=1 jrj

d+ 1

)
. (99)

The size of the conjugacy class T is

|T | = d!

k2!2k2k3!3k3 . . . kd!dkd
. (100)

This gives us an explicit expression for the orbifold Euler characteristic contribution from
the class T = [2k23k3 . . . dkd ]:

χT (g, n) =
(d− 1)!

k2!2k2k3!3k3 . . . kd!dkd

k1∑
r1=0

. . .

kd∑
rd=0

(−)k1+...+kd−r1−...−rd
(
k1
r1

)
. . .

(
kd
rd

)
×

× Coefficient

[(
N +

∑d
j=1 jrj

d+ 1

)
, Nn−1

]
. (101)

This formula can reproduce the Euler characteristic contributions for cells of codimension
zero. For fixed g, n with ∆ = 0, then the degree d is 2(2g − 2 + n), the number of zeroes is
l = d/2 = 2g + n− 2, and the contribution to the Euler characteristic is

χ[2l](g, n) =
(2l − 1)!

l!2l

l∑
r2=0

(−)l−r2
(
l

r2

)
Coefficient

[(
N + 2r2
2l + 1

)
, Nn−1

]

=
(4g + 2n− 5)!

(2g + n− 2)!22g+n−2

2g+n−2∑
r2=0

(−)2g+n−2−r2
(

2g + n− 2

r2

)
Coefficient

[(
N + 2r2

4g + 2n− 3

)
, Nn−1

]
.

(102)

This formula has been checked numerically for graphs of degree d ≤ 9 against the tables
in Nakamura. We have quoted the relevant top-cell graphs in Table 1, using the notation
[a] × n to denote n graphs with cyclic automorphism groups of order a. The contribution
to the Euler character calculated by counting the graphs and using the formula (79) exactly
matches the results derived from (102).

For graphs with ∆ = 1, the conjugacy class T is of the form T = [2l−1, 3] for some l. We
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(g, n) χ[2l](g, n) ∆ = 0 Graphs

(0, 5) 5
6

[2]× 1, [3]× 1

(0, 6) 7
4

[1]× 1, [2]× 1, [4]× 1

(0, 7) 21
5

[1]× 3, [2]× 2, [5]× 1

(1, 3) 5
3

[1]× 1, [2]× 1, [6]× 1

(1, 4) 35
4

[1]× 7, [2]× 3, [4]× 1

(1, 5) 42 [1]× 38, [2]× 8

(2, 2) 21
8

[1]× 2, [2]× 1, [8]× 1

(g, n) χ[2l−13](g, n) ∆ = 1 Graphs

(0, 5) 1 [1]× 1

(0, 6) 3 [1]× 3

(0, 7) 28
3

[1]× 9, [3]× 1

(1, 3) 3 [1]× 3

(1, 4) 20 [1]× 20

(1, 5) 350
3

[1]× 116, [3]× 2

(2, 2) 7 [1]× 7

Table 1: The number of graphs and their automorphism group sizes against χ[2l](g, n) and
χ[2l−13](g, n) for different values of g and n. The notation [a]×n denotes n graphs with cyclic
automorphism group of order a.

have d = 3 + 2(l− 1) = 2(2g− 2 + n)− 1, so l = 2g+ n− 3. The Euler characteristic sum is

χ[2l](g, n) =
2l!

(l − 1)!2l−13

l−1∑
r2=0

1∑
r3=0

(−)l−r2−r3
(
l − 1

r2

)(
1

r3

)
Coefficient

[(
N + 2r2 + 3r3

2l + 2

)
, Nn−1

]

=
(4g + 2n− 6)!

(2g + n− 4)!22g+n−43

2g+n−4∑
r2=0

1∑
r3=0

(−)2g+n−3−r2−r3
(

2g + n− 4

r2

)(
1

r3

)
Coefficient

[(
N + 2r2 + 3r3
4g + 2n− 4

)
, Nn−1

]
. (103)

A program was written in GAP to count all the graphs with I = 0 and ∆ = 1 for a given
genus g and number of external points n; the results are tallied in Table 1. The formula
(103) precisely matches the calculation of the contribution to the Euler character produced
by using the explicit graph counting and (96).

6 Counting Nakamura graphs in the Sd picture using

GAP

Nakamura was able to confirm that the graphs gave a valid cell decomposition of moduli
space by finding all the graphs in a given moduli spaceMg,n, and showing that the orbifold
Euler characteristic

χ(g, n) =
∑
G

(−1)dim
1

|Aut(G)|
(104)

matches the orbifold Euler characteristic predicted by Harer and Zagier. In the above ex-
pression, the sum is taken over all inequivalent graphs G, each with automorphism group
Aut(G), and ‘dim’ is the dimension of the cell in moduli space associated to each graph.
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Each Nakamura graph corresponds to a slide-equivalence class of Hurwitz classes, in each
of which there is a unique Hurwitz class of reduced tuples. In this section, we describe how we
can use the reduced Sd tuple description of graphs to count Nakamura graphs algorithmically.
We were able to implement this algorithm with the software GAP to reproduce the tables
of Nakamura’s paper, in which the graphs with a single incoming pole were counted with
their automorphism groups. For computational efficiency, the algorithm works by taking
as input a maximum value of the degree d of the permutation groups Sd, and fixing the
incoming pole to be of the form (1, 2, . . . , d). The algorithm then considers in turn every
conjugacy class of the reduced permutations τ1, . . . , τm that can yield a Nakamura graph,
and calculates the automorphisms of the allowed graphs. The permutation σ− is determined
by σ− = (σ+τ1 . . . τm)−1, and the number of cycles in this permutation gives the number of
outgoing poles n− 1.

The algorithm proceeds as follows:

• First, fix a value of the (graph) Euler characteristic χ = 2−2g−n. From 14, this gives
the maximum number of faces of the associated Nakamura graphs. It also gives an
upper bound on the degree dmax = 2|χ| of the permutation groups Sd that can describe
graphs of this Euler characteristic.

• Allow l to scroll over the range (16), 1 ≤ l ≤ (−χ). For each l, (15) gives us ∆.

• Given l and ∆, find all the possible valencies of the internal vertices. These valencies
can be described by an unordered tuple of Sd conjugacy classes [[σ1], . . . , [σl]]. Each
conjugacy class is of the form [i] for some ik > 1; that is, each permutation in the
conjugacy class consists of a cycle of length i and (d− i) cycles of length one. We call
these the ‘unreduced class tuples’.

In the Sd picture of describing Nakamura graphs, a zero with valency 2k is described
by a k-cycle. The branching number ∆ is related to the zeroes connecting to more
than four edges. More precisely, the possible valencies of the vertices correspond to
the possible ways of partitioning ∆ + 2l indistinguishable objects into l sets with at
least 2 elements. (For example, if we had dmax = 10, L = 3, and ∆ = 2, then the only
possible unreduced class tuples are [[3], [3], [2]] and [[4], [2], [2]].)

• For each unreduced class tuple, find all the possible ‘reduced class tuples’. A reduced
class tuple is an ordered list of Sd conjugacy classes (T1, T2, . . . , Tm), where m ≤ l,
formed by merging together the classes from an unreduced class tuple in some way.
Each Ti is of the form [a1, a2, . . . , aki ], where the ai are lengths of cycles from the
unreduced class tuple which are greater than one. Each cycle length from the unreduced
class tuple appears in exactly one Ti.
For example, the unreduced tuple ([3], [3], [2]) can be combined as T1 = [3, 3, 2] with
m = 1, or as (T1, T2) ∈ {([3, 3], [2]), ([2], [3, 3]), ([3, 2], [3]), ([3], [3, 2])} for m = 2, or as
(T1, T2, T3) ∈ {([3], [3], [2]), ([3], [2], [3]), ([2], [3], [3])} for m = 3.

We are only interested in the reduced class tuples which can give valid Nakamura
graphs in the reduced tuple picture. This means we should discard any sequence of
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class tuples in which there is some i ∈ {1, . . .m− 1} such that τi ∈ Ti permutes fewer
integers than the number of disjoint cycles in τi+1 ∈ Ti+1.

As another example, we could partition the unreduced tuple ([2], [2], [2], [2]) into re-
duced tuples with m = 1, 2, 3, 4. The only possible m = 1 reduced tuple is T1 =
[2, 2, 2, 2]; the m = 2 reduced tuples are (T1, T2) ∈ {([2, 2, 2], [2])([2, 2], [2, 2])}; the
m = 3 reduced tuples are (T1, T2, T3) ∈ {([2, 2], [2], [2]), ([2], [2, 2], [2]), ([2], [2], [2, 2])},
and the only m = 4 reduced tuple is (T1, T2, T3, T4) = ([2], [2], [2], [2]). Note that
(T1, T2) = ([2], [2, 2, 2]) is not an allowed reduced tuple: a permutation τ1 ∈ T1 moves
two points while all permutations in T2 have three non-trivial cycles, so there are no
permutations with this structure that can give a valid Nakamura graph in the reduced
tuple description.

• For each reduced class tuple, scroll over all the tuples (τ1, . . . , τm) in the conjugacy
classes (T1, . . . , Tm). Keep the tuples with the following two properties:

– For all i ∈ {1, . . .m − 1}, there is no cycle in τi+1 that is disjoint from all cycles
in τi.

– The set of points moved by at least one of the τi is exactly {1, 2, . . . , d} for some
d.

The value d is the degree of the Nakamura graph associated to the tuple.

• Act on the set of τ -tuples with the same degree and same reduced class tuple with
the group 〈(1, 2, . . . d)〉. Each conjugacy class, together with σ+ = (1, 2, . . . d), gives a
distinct Nakamura graph. Each graph has a cyclic automorphism group generated by
(1, 2, . . . , d)k, where k is the size of the conjugacy class of the τ -tuple, and the size of
the automorphism group is d/k.

• Collate the graphs by genus g, the number of poles n, and the dimension of its cell in
moduli space. The number of disjoint cycles in σ− = (σ+τ1 . . . τm)−1 is equal to n− 1,
the number of outgoing poles of the graph. The graph has genus g, where

g = −1

2
χ− n

2
+ 1. (105)

The dimension of the cell in moduli space associated to the graph is l + d− n.

This procedure can quickly generate all Nakamura graphs for dmax ≤ 10 or so, and is
capable of generating all Nakamura graphs for dmax = 12, given sufficient time. However,
the step of scrolling over all tuples in (T1, . . . , Tm) is very resource-intense, as a relatively
small percentage of the trial tuples give a valid Nakamura graph. (For d = 10, about 6%
of trial tuples satisfy the two properties given above.) In addition, the vast majority of
Nakamura graphs have trivial automorphism group, so there is virtually a d-fold degeneracy
in the graphs counted. For these reasons, we introduce in the next section a new structure
within the reduced Sd tuple description that circumvents both these issues and results in a
much more powerful method of counting Nakamura graphs.
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6.1 I-structures

A Nakamura graph has I internal edges that connect zeroes to zeroes. In the reduced Sd
tuple picture, these edges are labelled by precisely those integers in {1, 2, . . . d} which are
permuted by more than one of the τi in the tuple (τ1, τ2, . . . τm). The integers which are
permuted by exactly one τi correspond to the external edges, which connect zeroes only
to poles. We can describe the structure of the internal edges of the graph by creating a
diagram that shows which permuted points are shared between the different τi, which we
call an I-structure.

An I-structure is a diagram consisting ofm parallel vertical edges, which we call ‘columns’,
and several rows of horizontal edges, which we call ‘I-rows’. Each I-row is a connected line
of horizontal edges and vertices, with the vertices connecting columns and horizontal edges.
An I-structure may contain the same I-row multiple times, and the I-rows of an I-structure
are taken to be interchangeable. All pairs of adjacent columns are connected by at least one
edge of an I-row. An example of an I-structure is given in Figure 17.

Figure 17: An I-structure with five I-rows and three columns.

There is a unique I-structure corresponding to each reduced tuple of permutations τi,
which represents the internal edges of the associated Nakamura graph. The m columns cor-
respond to the m permutations in the tuple (τ1, . . . , τm). From the definition of a Nakamura
graph, each integer in the set {1, 2, . . . d} is permuted by at least one of the τi. If an integer
j is permuted by two or more of the τi, then there is an I-row associated to this integer. The
vertices of this I-row are drawn on the columns corresponding to the τi which permute the
integer j. There is a horizontal edge associated to every consecutive pair of vertices along
the I-row; these edges correspond to the internal edges of the Nakamura graph. Each vertex
of the I-structure corresponds to a zero (internal vertex) of the Nakamura graph, but there
will in general be zeroes which do not correspond to vertices of the I-structure.

The I-structure constructed from a permutation tuple is unique, but there will be many
different permutation tuples that have the same I-structure. For example, the I-structure
given in Figure 17 could be generated by the tuple of S6 permutations

τ1 = (1, 2)(3, 4), τ2 = (1, 3)(4, 5), τ3 = (1, 2)(5, 6). (106)
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The integers {1, 2, 3, 4, 5} correspond to internal edges, and the integer ‘6’ corresponds to
external edges. If we conjugate the above tuple by some γ ∈ S6, then we have the new tuple

(τ̃1, τ̃2, τ̃3) = (γτ1γ
−1, γτ2γ

−1, γτ3γ
−1), (107)

which is just a relabelling of the τi and so has the same I-structure. In general, conjugate
permutation tuples have the same I-structure, but there can also be distinct tuples which
are not conjugate which have the same I-structure. An example of a permutation tuple that
also generates the I-structure in Figure 17 and is not conjugate to the above tuple is

τ1 = (1, 2, 3, 4), τ2 = (1, 3, 4, 5), τ3 = (1, 2, 5). (108)

6.2 I-structures for small I

For small values of I, we can explicitly list all the possible I-structures. We start by con-
sidering I = 0. Any graph with no internal edges must have m = 1 in the reduced Sd
description, and so the tuples of these graphs take the form

σ+τσ− = 1. (109)

The Nakamura graphs with I = 0 have no I-structure. These graphs were counted using
matrix models in Section 5.

Figure 18: The only possible I-structure for I = 1.

Now consider the graphs where I = 1, which have exactly one internal edge. From the
definition of the reduced Sd tuple description, the zeroes of an I = 1 graph must be described
by a pair of permutations τ1 and τ2, and for each such pair of permutations there exists a
unique j ∈ {1, 2, . . . d} such that

τ1(j) 6= j
τ2(j) 6= j. (110)

In other words, j belongs to the moved-point sets of both τ1 and τ2. The associated I-
structure consists of two columns and a single I-row with two vertices. This is given in
Figure 18.

In the case that I = 2, there are three distinct I-structures, as drawn in Figure 19.
The first I-structure has three columns and one I-row with three vertices. This corresponds
to tuples in which there is a single integer j ∈ {1, 2, . . . , d} that is permuted by all three
permutations τ1, τ2, τ3, and no other integer in the set {1, 2, . . . , d} is permuted by any two
of the τi. The second I-structure has two columns and two identical I-rows, each with
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Figure 19: The I-structures for I = 2.

two vertices. This structure corresponds to graphs for which there are exactly two integers
j1, j2 ∈ {1, 2, . . . , d} that are mutually permuted by the pair of permutations τ1 and τ2.
The third I-structure has three columns and two distinct I-rows with two vertices. This
corresponds to a triple τ1, τ2, τ3, with the property that there is some pair j1, j2 ∈ {1, 2, . . . , d}
such that

τ1(j1) 6= j1, τ2(j1) 6= j1, τ3(j1) = j1
τ1(j2) = j2, τ2(j2) 6= j2, τ3(j2) 6= j2 (111)

Figure 20: The I-structures for I = 3.

For I = 3, there are eleven I-structures that can be drawn that correspond to tuples in
the reduced Sd description. These are shown in Figure 20.
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6.3 An algorithm utilising I-structures

A Nakamura graph corresponds to a slide-equivalence class of permutation tuples. Within
each slide-equivalence class, there is a Hurwitz class of reduced Sd tuples, which is an equiv-
alence class under Sd conjugation of permutation tuples (σ+, τ1, . . . , τm, σ−). If we consider
just Nakamura graphs with a single incoming pole, then the permutation σ+ is a d-cycle, and
we can use the Sd symmetry to choose a representative element of the Hurwitz class with
σ+ = (1, 2, . . . , d). The elements of the Hurwitz class with σ+ = (1, 2, . . . , d) are permutation
tuples conjugate to each other by elements in

Aut(σ+) = 〈(1, 2, . . . , d)〉 = Zd. (112)

This means that a Nakamura graph corresponds to an equivalence class of reduced tuples
(τ1, . . . , τm) under the equivalence

(τ1, . . . , τm) ∼ (γ−1τ1γ, . . . , γ
−1τmγ), (113)

for γ ∈ 〈(1, 2, . . . , d)〉 = Zd. Each Nakamura graph has an associated class structure Ti = [τi],
i = 1, . . . ,m, and an associated I-structure, describing which integers in the set {1, 2, . . . , d}
are permuted by more than one permutation τi.

There is an efficient algorithm that counts Nakamura graphs by using I-structures. As
in the original algorithm outlined above, the I-structures algorithm starts by finding all the
unreduced and reduced class tuples. For each reduced class tuple (T1, . . . , Tm), the algorithm
finds all possible I-structures that are consistent with this class tuple. Each I-structure must
have one edge connecting columns i− 1 and i for each cycle in τi ∈ Ti, where i = 2, . . . ,m.
Also, there must be no more edges connecting each column i = 1, 2, . . .m in an I-structure
than the total number of labels permuted by any τi ∈ Ti.

The algorithm considers each reduced class tuple and I-structure in turn. All Nakamura
graphs with this reduced class tuple have the same values of ∆ and I, and all Nakamura
graphs with this chosen I-structure have the same value of I, and so all graphs with this
I-structure and class tuple have the same degree d, where

d = ∆ + 2l − I. (114)

Let ΩI,T be the set of tuples (τ1, . . . , τm) with a given I-structure I and class structure
(T1, . . . , Tm). The Nakamura graphs with the specified I-structure and class structure are
the equivalence classes of this set under the Zd conjugation action (113). However, the set
ΩI,T can be very large in general, so it is computationally very expensive to split this set
into Zd conjugacy classes directly. One way of circumventing this difficulty is to break the
problem into stages: we first split ΩI,T into conjugacy classes under the equivalence relation

(τ1, τ2, . . . , τm) ∼ (α−1τ1α, α
−1τ2α, . . . , α

−1τmα), (115)

where α ∈ Sd. Once we have found the Sd-equivalence classes of ΩI,T , we can act on the
elements of each Sd-class individually with the group Zd by conjugation and hence find the
Zd-equivalence classes of ΩI,T , which are the distinct Nakamura graphs. Also, rather than
directly constructing the very large set ΩI,T and then splitting it into Sd equivalence classes,
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it is more efficient to construct these equivalence classes directly by finding a representative
element of each class.

We find the representative elements of the Sd-classes by using the I-structure and breaking
the Sd symmetry. Let k be the number of rows in the I-structure I, where k ∈ {0, 1, . . . , d}.
For any tuple (τ1, . . . , τm) ∈ ΩI,T , there are exactly k integers in {1, 2, . . . , d} that are per-
muted by more than one τi. These integers correspond to the internal edges of the Nakamura
graph. By adding the length of the cycles in the class Ti for some i ∈ {1, 2, . . . ,m} and sub-
tracting the number of vertices in the ith column of the I-structure, we have the number
of integers ei that are permuted by only the permutation τi within the tuple (τ1, . . . , τm).
These integers correspond to the external edges of the graph. Consider the set of ‘canonically-
labelled’ τi-tuples Ω̃I,T ⊂ ΩI,T which consists of those tuples in which the permuted integers
1 to k correspond to the rows of the I-structure, the integers k+ 1, . . . , k+ e1 are permuted
only by τ1, the labels k + e1 + 1, . . . , k + e1 + e2 are permuted only by τ2, and so on. Each
Sd-equivalence class of ΩI,T contains at least one such canonically labelled τi-tuple. A pair
of canonically-labelled tuples are in the same Sd equivalence class if and only if they are
conjugate to each other by an element of the group Sk × Se1 × . . . Sem . This means that
the orbits of the canonically-labelled tuples under the action by conjugation of the group
Sk × Se1 × . . . Sem are in direct correspondence with the equivalence classes of ΩI,T under
conjugation by Sd. As the set Ω̃I,T is usually much smaller than ΩI,T , it is relatively cheap
computationally to construct the set of canonically-labelled tuples, find their orbits under
Sk × Se1 × . . . Sem , and choose a representative element from each orbit. In this way, we can
construct a set of representative elements of the Sd classes of ΩI,T .

Consider each Sd-equivalence class of ΩI,T in turn, specified by a representative τ -tuple
(τ1, . . . , τm). All the elements of this Sd equivalence class are of the form (α−1τ1α, . . . , α

−1τmα),
where α ∈ Sd. Let Aut(τ) be the automorphism group of the representative τ -tuple
(τ1, . . . , τm); that is, the set of elements γ ∈ Sd that satisfy γ−1τiγ = τi for all i = 1, 2, . . . ,m.
If two permutations α, α̃ satisfy α̃ = γα for some γ ∈ Aut(τ), then

(α−1τ1α, . . . , α
−1τmα) = (α̃−1τ1α̃, . . . , α̃

−1τmα̃). (116)

We can therefore see that each right coset Aut(τ)α ∈ Aut(τ)\Sd specifies a unique element
in the Sd equivalence class of the τ -tuple.

We wish to split this Sd equivalence class into Zd equivalence classes. A pair of elements
of the Sd equivalence class (α−1τ1α, . . . , α

−1τmα) and (α̃−1τiα̃, . . . , α̃
−1τmα̃) are in the same

Zd equivalence class if and only if

(α̃−1τiα̃, . . . , α̃
−1τmα̃) = (z−1α−1τ1αz, . . . , z

−1α−1τmαz) (117)

for some z ∈ Zd = 〈(1, 2, . . . , d)〉. This means that two right cosets Aut(τ)α and Aut(τ)α̃
are in the same Zd-equivalence class if Aut(τ)α̃ = (Aut(τ)α)z for some z ∈ Zd. We deduce
that the double cosets

Aut(τ)αZd ∈ Aut(τ)\Sd/Zd (118)

parametrise the Zd-equivalence classes of a given Sd-equivalence class of ΩI,T , and so give
the Nakamura graphs associated to a given Sd-equivalence class of ΩI,T .
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We can read off the size of the automorphism group of each graph by looking at the size
of its associated double coset. The product group Aut(τ)×Zd acts on the elements in Sd by
left and right multiplication. The orbits of this action are the double cosets Aut(τ)\Sd/Zd.
The stabiliser group of an element α ∈ Sd under this action consists of the pairs of elements
(γ, z) which satisfy γαz = α, or equivalently α−1γα = z−1. As γ and z can be any elements
of the groups Aut(τ) and Zd, the stabiliser of α is precisely the intersection of the groups
α−1Aut(τ)α and Zd. These are exactly the elements which fix under conjugation every
element in the tuple (σ+, α

−1τ1α, . . . , α
−1τmα, σ−), and so the stabiliser of α is the automor-

phism group of the graph. By the orbit-stabiliser theorem, we therefore deduce that the size
of the automorphism group of a Nakamura graph given by the double coset Aut(τ)αZd is

d|A|
|Aut(τ)αZd|

. (119)

The software GAP can efficiently count double cosets and find their representative elements
and sizes. The algorithm we have devised is therefore able to quickly find all the Nakamura
graphs that arise from a given representative τ -tuple in the Sd-equivalence classes of ΩI,T ,
and to read off their automorphism group sizes.

As an example of this procedure, we consider the reduced class tuple (T1, T2, T3) =
([2, 2], [3], [2]) with |χ| = 5. This class tuple contains only one cycle with cycle size greater
than 2, so its branching number is ∆ = 1. From the relation

2|χ| − d = ∆ + I, (120)

we know that the degree and the number of internal edges are related by d + I = 9. Per-
mutations in the class T1 permute four integers, so the degree is bounded from below by 4.
There are three classes in this reduced class tuple, so there are at least two internal edges.
This means that the number of internal edges I lies in the range {2, 3, 4, 5}.

Figure 21: An example of an I-structure of (T1, T2, T3) = ([2, 2], [3], [2]) with dmax = 10.

One of the I-structures found by the algorithm is given in Figure 21. This structure has
I = 3 internal edges, and degree d = 6. Let ΩI,T be the set of tuples corresponding to this
I-structure and reduced class structure. This I-structure has two rows, so there are k = 2
integers corresponding to internal edges in each tuple. The first column has two vertices,
and corresponds to the class T1 = [2, 2] of permutations which permute four integers. This
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means that there are e1 = 2 integers permuted by the first permutation in each tuple which
correspond to external edges. Similarly, there are e2 = 1 integers permuted only by the
permutation τ2 within each tuple and e3 = 1 integers permuted by the permutation τ3.

To find the Sd-equivalence classes of ΩI,T , we first find the ‘canonically-labelled’ tuples
(τ1, τ2, τ3) in which τ1 permutes the integers {1, 2, 3, 4}, τ2 permutes {1, 2, 5}, and τ3 permutes
{1, 6}. There are six such elements, and the set of canonically-labelled tuples is

Ω̃I,T = {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} × {(1, 2, 5), (1, 5, 2)} × {(1, 6)}. (121)

Next, we consider the orbits in ΩI,T generated by this set under the action of the group
Sk × Se1 × Se2 × Se3 = 〈(1, 2), (3, 4)〉. Note that the set Ω̃I,T is not closed under this group
action. The tuples ((1, 3)(2, 4), (1, 2, 5), (1, 6)) and ((1, 4)(2, 3), (1, 2, 5), (1, 6)) are conjugate,
as are the tuples ((1, 3)(2, 4), (1, 5, 2), (1, 6)) and ((1, 4)(2, 3), (1, 5, 2), (1, 6)), and so a set of
representatives for the orbits of the canonically-labelled tuples (τ1, τ2, τ3) is

((1, 2)(3, 4), (1, 2, 5), (1, 6)),

((1, 2)(3, 4), (1, 5, 2), (1, 6)),

((1, 3)(2, 4), (1, 2, 5), (1, 6)),

((1, 3)(2, 4), (1, 5, 2), (1, 6)). (122)

These are representative elements of the Sd-equivalence classes of ΩI,T .
For each representative tuple, the Nakamura graphs are given by the double cosets

Aut(τ)\Sd/Zd. The representative tuple (τ1, τ2, τ3) = ((1, 2)(3, 4), (1, 2, 5), (1, 6)) has the
automorphism group Aut(τ) = 〈(3, 4)〉, and so the Nakamura graphs are the double cosets
〈(3, 4)〉\S6/〈(1, 2, . . . , 6)〉. There are 60 distinct double cosets, all consisting of 12 elements,
and so there are 60 Nakamura graphs in this Sd-class. All these graphs have trivial auto-
morphism group. For the representative tuple (τ1, τ2, τ3) = ((1, 3)(2, 4), (1, 2, 5), (1, 6)), the
automorphism group Aut(τ) is trivial, and so the double cosets are {()}\S6/〈(1, 2, . . . , 6)〉.
There are 120 distinct double cosets in this case, and so there are 120 Nakamura graphs in
this Sd-equivalence class.

6.4 GAP results for |χ| = 7

The I-structure counting algorithm produces a complete catalogue of the Nakamura graphs
for any given genus. In Appendix A, we have presented the output for the graphs with graph
Euler characteristic |χ| = 7, catalogued by genus g, number of poles n, the dimensions of
their associated cells in moduli space, and their automorphism groups. This extends the
data found in [4].

We can perform a non-trivial check on the validity of this approach and of the cell-
decomposition of moduli space by comparing these tables with the orbifold Euler character-
istic of moduli space. Harer and Zagier [5] give the following formulae for the orbifold Euler
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characteristic of Mg,n:

χ(0, n) =
(−)n−1

(n− 1)(n− 2)
, n ≥ 3,

χ(1, n) =
(−)n

12
, n ≥ 2,

χ(g, n) =
(−)2g

2g

(
2g + n− 3

n− 1

)
B2g g ≥ 2, n ≥ 0, (123)

where B2g is a Bernoulli number. (The formulae given in [5] are a factor of (n − 1)! larger
than the formulae given here, since we have allowed the outgoing poles of the graphs to be
interchanged by automorphisms.)

Using these tables, and the defining formula for an orbifold Euler characteristic

χ(g, n) =
∑
G

(−1)dim
1

|Aut(G)|
(124)

we find

χ(0, 9) =
1

56
,

χ(1, 7) = − 1

12
,

χ(2, 7) =
1

8
,

χ(3, 3) = − 5

84
.

This is consistent with the formulae (123) from Harer and Zagier.

7 Summary and future directions

Nakamura [4] gave a description of light-cone string diagrams in terms of embedded graphs
on the worldsheet, which are constructed from the Giddings-Wolpert differential on the
worldsheet. He used it to describe a cell decomposition of the space of GW-differentials.
These cells can be quotiented by the automorphism groups of the graphs to obtain cells in
Mg,n. This allowed a computation of the orbifold Euler characteristics of Mg,n for small
values of g and n. We have developed connections between Nakamura graph combinatorics,
branched covers and permutation tuples. By considering the light-cone diagrams with a
single incoming string, we used known results on hermitian matrix model correlators to give
analytic results for the contribution of the top-dimensional cells in the LC decomposition.
This could be generalised to cases with two or more incoming strings by using [27] and
generalisations thereof. Beyond the top-dimensional cells, we related the contributions to
the orbifold Euler characteristic from lower-dimensional cells with ∆ > 0 and I = 0 to
analytic expressions in complex matrix models.

As observed in [4], the numbers of cells in the LC cell decomposition for given g and n are
smaller than the corresponding number in the KP cell decomposition. This is because the
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Nakamura graphs, which corresponds to the cells, are embedded graphs, but with restrictions
related to the fact that the edges are real trajectories of the GW differential. The fact that
there is a well-defined global time coordinate imposes restrictions on the connectivity of
embedded graphs which can be Nakamura graphs. These restrictions are detailed in the
language of permutations in Section 3.4. This suggests that it would be worthwhile to
revisit mathematical questions on the topology of Mg,n using the LC cell decomposition.
The computation of all the homology groups is still an open question. For a recent paper,
see for example [28], and for associated discussion [29]. From a physics perspective, an
immediate goal would be to use the improved understanding of the LC cell decomposition
in the computation of string amplitudes in the light-cone gauge, either in the first quantised
or second quantised string field formalism.

The LC cell decomposition gives precise information about the topology of Mg,n. The
codimension of a cell is 2∆ + I, with ∆ increasing when the zeroes of the GW differential
have higher order. The parameter I is the number of internal edges of the Nakamura graph,
connecting the zeroes of the differential. An improved understanding of the structure of the
lower dimensional cells in the LC decomposition can be expected to shed light on the issue of
“contact terms” in the light-cone approach to string amplitudes. It is believed that second
quantised bosonic light-cone string field theory requires no contact terms, but superstrings
require contact terms (see for example the review [30]). Contact terms related to higher order
ramification points have been discussed in [31] in connection with DVV matrix string theory
[32]. As pointed out in [34] there is no direct superstring analogue of the bosonic worldsheet
moduli space, but rather superstring theory requires integration over an appropriate cycle
in a product ML ×MR of moduli spaces, with ML and MR closely related to Mg,n. It
would be interesting to investigate how an improved understanding of the combinatorics
of cell decompositions in Mg,n can lead to cell decompositions for the integration cycles
appropriate for superstring theory amplitudes.

A very interesting problem is to give a precise description of the cell decomposition of
Mg,n arising from the light-cone approach. We know that there is a cell for every Nakamura
graph. The Nakamura graph has parameters which are interaction times and strip widths.
These are related to the more traditional parametrisation in terms of times, internal string
momenta (widths) and twist angles [1, 2, 6, 20]. The automorphism group of the Nakamura
graphs should have a natural action on the strip widths and time parameters, which would
allow the space of these parameters associated to a given graph to be quotiented out by
the group. Clarifying this in generality (i.e. for any graph at any genus g, any number of
punctures n > 1 and for any choice of external momenta) will be a very useful step in better
understanding the geometry of the light-cone cell decomposition. It would solve the problem
(discussed in [3, 6]) of giving the precise restrictions on the light-cone diagram parameters to
ensure that every Riemann surface appears precisely once and should lead to progress in the
computation of string amplitudes in the light-cone. The results of the present paper suggest
that the general permutation group descriptions of Nakamura graphs will be the right set-up
to approach this question. We hope to return to this problem in the near future.

Belyi maps, and the related equivalence classes of permutation triples, have played an
important role in this paper. A general Nakamura graph is related to permutation triples in
S4d+2I or S2d+2I , albeit only those equivalence classes of triples subject to intricate causality
conditions. It is known that Belyi maps have deep connections to number theory and as

46



such form an active subject of research in mathematics [13, 14, 33]. Investigation of the link
between light cone cell decompositions of Mg,n and Belyi maps can lead to a new interplay
between string theory and number theory. One of the themes of interest in the number theory
context is that Belyi maps form complete orbits of the absolute Galois group. It is also known
that certain restricted classes of Belyi maps, e.g. those related to tree-like dessins, form
complete orbits [14]. Is the same true of the restricted classes related to Nakamura graphs?
Belyi maps came up again in the Sd description of Nakamura graphs, when we specialised
to top-dimensional cells of the LC cell decompositions and related the counting of the cells
to Hermitian matrix models. This link between Belyi maps and Hermitian matrix models
has been investigated as an avenue towards a topological string description of the Hermitian
matrix model [15, 36, 37, 38], as the simplest model of gauge-string duality. It is also an
example of the ubiquity of combinatoric low dimensional topological field theories, based on
Dijkgraaf-Witten models with permutation groups, in gauge theoretic correlators [11, 12,
39, 40, 41]. The present work extends these topological field theory and topological string
structures to the fundamentals of string amplitudes and moduli spaceMg,n. It is likely that
future developments will see a deeper interplay between simple models of gauge-string duality,
combinatoric topological field theories and traditional string amplitude computations.

Nakamura graphs, with the construction of general closed string worldsheets at any point
in Mg,n in terms of flat strips glued together, are central to the metastring, a new foun-
dational approach to the geometry of string theory and spacetime being developed in [42].
This relationship is developed in more detail in the upcoming paper [9].
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A Tables of Nakamura graphs with |χ| = 7

Table 2: (g, n)=(0,9)

dimension 12 11 10 9 8 7

Graphs
([Aut]× Number)

[1] 28
[2] 5
[7] 1

[1] 297
[1] 1324
[2] 25

[1] 3675
[1] 6795
[2] 52
[4] 1

[1] 8892

6 5 4 3 2 1 0

[1] 8169
[2] 57

[1] 5250
[1] 2226
[2] 29
[4] 2

[1] 595
[1] 85
[2] 6

[1] 6 [8] 1

Table 3: (g, n)=(1,7)

dimension 14 13 12 11 10 9 8

Graphs
([Aut]×#)

[1] 838
[2] 40

[1] 9702
[1] 51870
[2] 210

[1] 174090

[1] 404059
[2] 471
[3] 1
[4] 2
[6] 1

[1] 680960
[1] 843976
[2] 574

7 6 5 4 3 2 1

[1] 766000
[3] 5

[1] 497046
[2] 378
[4] 4

[1] 222057

[1] 64087
[2] 124
[3] 5
[6] 2

[1] 10820
[1] 863
[2] 15
[4] 1

[1] 18
[3] 2
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Table 4: (g, n)=(2,5)

dimension 16 15 14 13 12

Graphs
([Aut]×#)

[1] 4680
[2] 78

[1] 59598
[1] 359771
[2] 485

[1] 1374975

[1] 3688668
[2] 1322
[3] 9
[4] 2

11 10 9 8 7 6

[1] 7291788
[1] 10799810
[2] 1995

[1] 11954262
[3] 30

[1] 9708622
[2] 1671
[4] 5

[1] 5611630
[1] 2204212
[2] 695
[3] 36

5 4 3 2

[1] 548779

[1] 76822
[2] 101
[4] 3
[8] 1

[1] 4814
[3] 12

[1] 84

Table 5: (g, n)=(3,3)

dimension 18 17 16 15 14

Graphs
([Aut]×#)

[1] 4013
[2] 63
[7] 2
[14] 1

[1] 55143
[1] 360892
[2] 421

[1] 1502760

[1] 4420204
[2] 1236
[3] 7
[4] 5
[6] 1

13 12 11 10 9 8

[1] 9649120
[1] 15910334
[2] 2031

[1] 19771176
[3] 25

[1] 18191095
[2] 1891
[4] 11

[1] 12042490

[1] 5502643
[2] 940
[3] 29
[6] 2

7 6 5 4

[1] 1632983

[1] 284718
[2] 203
[4] 4
[8] 2

[1] 24312
[3] 10

[1] 680
[2] 12
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