13,749 research outputs found
RAKE Receiver
U radu je dan teorijski opis CDMA sustava i njegovih osnovnih načela rada. Uz
tehniku raspršenog spektra, opisana je i kontrola snage te ortogonalni kodovi. Objašnjen je
dizajn RAKE prijemnika, njegova funkcija i način rada. Na temelju simulacije napravljena je
analiza utjecaja parametara prijemnika na kvalitetu detektiranog signala u različitim
propagacijskim scenarijima.The paper presents a theoretical description of the CDMA system and it's basic
principles of operation. The spread spectrum technique is described along with power control
and orthogonal codes. The design of RAKE receiver is explained as it's function and
operation technique. Analysis of influence of different parameters of receiver on the quality of
detected signal in different propagation scenarios is made on the base of simulation
A Robust Adaptive MMSE Rake Receiver for DS-CDMA System in a Fast Multipath Fading Channel
In this paper, we propose a robust adaptive minimum mean square error (MMSE) Rake receiver for asynchronous DS-CDMA systems. The receiver uses the modified MMSE criterion that incorporates the differential detection and the amplitude compensation for interference cancellation in a time-varying multipath fading channel. We investigate that the proposed Rake receiver can achieve the higher output signal to interference plus noise ratio (SINR) than the conventional adaptive Rake receiver, since the modified MMSE criterion does not attempt to track the time-varying MMSE solution. Computer simulations verify that the performance of the proposed Rake receiver is better than those of the conventional and the adaptive Rake receiver
Chip equalized adaptive rake receiver for DS-CDMA UWB systems
Conventional Rake receiver is a popular and effective method of utilizing the diversity offered by a DS-CDMA and multipath communication channel. The proposed Rake receiver is useful for suppression of multiple access interference in a multipath channel. The receiver works on chip level equalization on each Rake finger to cancel multi-access interference. Simulation results show that the convergence, diversity gain and bit error probability performance of the proposed receiver is much better than conventional adaptive Rake receiver in multipath channels
Performance Evaluation of Adaptive Continuous Wavelet Transform based Rake Receiver for UWB Systems
This paper proposes an adaptive continuous wavelet transform (ACWT) based Rake receiver to mitigate interference for high speed ultra wideband (UWB) transmission. The major parts of the receiver are least mean square (LMS) adaptive equalizer and N-selective maximum ratio combiner (MRC). The main advantage of using continuous wavelet rake receiver is that it utilizes the maximum bandwidth (7.5GHz) of the UWB transmitted signal, as announced by the Federal Communication Commission (FCC). In the proposed ACWT Rake receiver, the weights and the finger positions are updated depending upon the convergence error over a period in which training data is transmitted. Line of sight (LOS) channel model (CM1 from 0 to 4 meters) and the Non line of sight (NLOS) channel models (CM, CM3 and CM4) are the indoor channel models selected for investigating in this research . The performance of the proposed adaptive system is evaluated by comparing with conventional rake and continuous wavelet transform (CWT) based rake. It showed an improved performance in all the different UWB channels (CM1 to CM4) for rake fingers of 2, 4 and 8. Simulations showed that for 8 rake fingers, the proposed adaptive CWT rake receiver has shown an SNR improvement of 2dB, 3dB, 10dB and 2dB respectively over CWT rake receiver in different UWB channels CM1, CM2, CM3 and CM4
Interference Suppression in WCDMA with Adaptive Thresholding based Decision Feedback Equaliser
WCDMA is considered as one of the 3G wireless standards by 3GPP. Capacity calculation shows that WCDMA systems have more capacity compared to any other multiple access technique such as time division multiple access (TDMA) or frequency division multiple access (FDMA). So it is widely used. Rake receivers are used for the detection of transmitted data in case of WCDMA communication systems due to its resistance to multipath fading. But rake receiver treat multiuser interference (MUI) as AWGN and have limitation in overcoming the effect of multiple access interference (MAI) when the SNR is high. A de-correlating matched filter has been used in this thesis, which eliminates and improves system performance. But the given receiver works well only in the noise free environment. A DFE, compared to linear equaliser, gives better performance at severe ISI condition. The only problem in this equalisation technique is to select the number of symbols that are to be fed back. This thesis gives an idea on multiple symbol selection, based on sparity where an adaptive thresholding algorithm is used that computes the number of symbols to feedback. Simulated results show a significant performance improvement for Regularised Rake receiver along with thresholding in terms of BER compared to a rake receiver, de-correlating rake receiver and regularised rake receiver. The performance of the receiver in different channels is also analysed
RAKE receiver for the UMTS system
Tato práce se zabývá teoretickým popisem dějů probíhajících v systému UMTS při práci se signálem, jeho rozprostřením za použití modulační techniky DS SS(direct sequence spread spectrum) a následným zpracováním signálů v RAKE přijímači. Popisem jeho základních funkcí: přizpůsobeným filtrováním, deskramblováním, derozprostřením a integrací. Navíc je práce doplněna o výsledky simulace přijímače pro nízký počet vzorků v programu MATLAB, dále vytvoření aplikace simulující RAKE přijímač a její výsledky.This thesis is focused on theoretical description of procedures which take place in the UMTS system when processing a signal, its spreading with modulation technique DS SS(direct sequence spread spectrum), and subsequent processing in the RAKE receiver. Another focus is made in the basic functions of a RAKE receiver: match filtering, descrambling, despreading and integration. Aditionally, this thesis is suplemented with the results of a RAKE receiver simulation for a small number of samples in the MATLAB software and creation of aplication that simulates the receiver and its results.
Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems
The capacity of a cellular system is limited by two different phenomena, namely
multipath fading and multiple access interference (MAl). A Two Dimensional (2-D)
receiver combats both of these by processing the signal both in the spatial and temporal
domain. An ideal 2-D receiver would perform joint space-time processing, but at the
price of high computational complexity. In this research we investigate computationally
simpler technique termed as a Beamfom1er-Rake. In a Beamformer-Rake, the output of a
beamfom1er is fed into a succeeding temporal processor to take advantage of both the
beamformer and Rake receiver. Wireless service providers throughout the world are
working to introduce the third generation (3G) and beyond (3G) cellular service that will
provide higher data rates and better spectral efficiency. Wideband COMA (WCDMA)
has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake
receiver can be an effective solution to provide the receivers enhanced capabilities
needed to achieve the required performance of a WCDMA system.
We consider three different Pilot Symbol Assisted (PSA) beamforming techniques,
Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square
(RLS) adaptive algorithms. Geometrically Based Single Bounce (GBSB) statistical
Circular channel model is considered, which is more suitable for array processing, and
conductive to RAKE combining. The performances of the Beam former-Rake receiver are
evaluated in this channel model as a function of the number of antenna elements and
RAKE fingers, in which are evaluated for the uplink WCDMA system. It is shown that,
the Beamformer-Rake receiver outperforms the conventional RAKE receiver and the
conventional beamformer by a significant margin. Also, we optimize and develop a
mathematical formulation for the output Signal to Interference plus Noise Ratio (SINR)
of a Beam former-Rake receiver.
In this research, also, we develop, simulate and evaluate the SINR and Signal to Noise
Ratio (Et!Nol performances of an adaptive beamforming technique in the WCDMA
system for downlink. The performance is then compared with an omnidirectional antenna
system. Simulation shows that the best perfom1ance can be achieved when all the mobiles
with same Angle-of-Arrival (AOA) and different distance from base station are formed in
one beam
Raking the Cocktail Party
We present the concept of an acoustic rake receiver---a microphone beamformer
that uses echoes to improve the noise and interference suppression. The rake
idea is well-known in wireless communications; it involves constructively
combining different multipath components that arrive at the receiver antennas.
Unlike spread-spectrum signals used in wireless communications, speech signals
are not orthogonal to their shifts. Therefore, we focus on the spatial
structure, rather than temporal. Instead of explicitly estimating the channel,
we create correspondences between early echoes in time and image sources in
space. These multiple sources of the desired and the interfering signal offer
additional spatial diversity that we can exploit in the beamformer design.
We present several "intuitive" and optimal formulations of acoustic rake
receivers, and show theoretically and numerically that the rake formulation of
the maximum signal-to-interference-and-noise beamformer offers significant
performance boosts in terms of noise and interference suppression. Beyond
signal-to-noise ratio, we observe gains in terms of the \emph{perceptual
evaluation of speech quality} (PESQ) metric for the speech quality. We
accompany the paper by the complete simulation and processing chain written in
Python. The code and the sound samples are available online at
\url{http://lcav.github.io/AcousticRakeReceiver/}.Comment: 12 pages, 11 figures, Accepted for publication in IEEE Journal on
Selected Topics in Signal Processing (Special Issue on Spatial Audio
- …