13 research outputs found

    Finite element model of MEMS accelerometer for accurate prediction of dynamic characteristics in biomechanical applications

    Get PDF
    This paper presents the developed 3D finite element model of a MEMS accelerometer with clearly defined geometry and properties, which were adjusted so as to accurately reproduce the dynamic behavior of the actual commercial seismic microsensor. Experimental characterization of the response of the actual microsensor on a vibro-stand confirmed the validity of the proposed modeling approach. Consequently, the developed numerical model enables convenient and fast determination of response of the accelerometer subjected to the real-world excitation. Implementation of the model is highly beneficial in industrial R&D applications, e.g. during testing of performance of biomechanical devices used for registration of movements of persons during fitness training, rehabilitation, etc

    Experimental study on RSS based indoor positioning algorithms

    Get PDF
    This work compares the performance of indoor positioning systems suitable for low power wireless sensor networks. The research goal is to study positioning techniques that are compatible with real-time positioning in wireless sensor networks, having low-power and low complexity as requirements. Map matching, approximate positioning (weighted centroid) and exact positioning algorithms (least squares) were tested and compared in a small predefined indoor environment. We found that, for our test scenario, weighted centroid algorithms provide better results than map matching. Least squares proved to be completely unreliable when using distances obtained by the one-slope propagation model. Major improvements in the positioning error were found when body influence was removed from the test scenario. The results show that the positioning error can be improved if the body effect in received signal strength is accounted for in the algorithms.Helder D. Silva is supported by the Portuguese Foundation for Science and Technology under the grant SFRBD/78018/2011.info:eu-repo/semantics/publishedVersio

    Reliable Data Collection from Mobile Users for Real-Time Clinical Monitoring

    Get PDF
    Real-time patient monitoring is critical to early detection of clinical patient deterioration in general hospital wards. A key challenge in such applications is to reliably deliver sensor data from mobile patients. We present an empirical analysis on the reliability of data collection from wireless pulse oximeters attached to users. We observe that most packet loss occur from mobile users to their first-hop relays. Based on this insight we developed the Dynamic Relay Association Protocol (DRAP), a simple and effective mechanism for dynamically discovering the right relays for wireless sensors attached to mobile users. DRAP enables highly reliable data collection from mobile users without requiring any change to complex routing protocols. We have implemented DRAP on the TinyOS platform and a prototype clinical monitoring system. Empirical evaluation showed DRAP delivered at least 96% of pulse oximetry data from multiple users, while maintaining a radio duty cycle below 2.8% and reducing the RAM footprint by 65% when compared to CTP. Our results demonstrates the feasibility and efficacy of wireless sensor network technology for real-time clinical monitoring

    JamLab: Augmenting Sensornet Testbeds with Realistic and Controlled Interference Generation

    Get PDF
    Radio interference drastically affects the performance of sensor-net communications, leading to packet loss and reduced energy-efficiency. As an increasing number of wireless devices operates on the same ISM frequencies, there is a strong need for understanding and debugging the performance of existing sensornet protocols under interference. Doing so requires a low-cost flexible testbed infrastructure that allows the repeatable generation of a wide range of interference patterns. Unfortunately, to date, existing sensornet testbeds lack such capabilities, and do not permit to study easily the coexistence problems between devices sharing the same frequencies. This paper addresses the current lack of such an infrastructure by using off-the-shelf sensor motes to record and playback interference patterns as well as to generate customizable and repeat-able interference in real-time. We propose and develop JamLab: a low-cost infrastructure to augment existing sensornet testbeds with accurate interference generation while limiting the overhead to a simple upload of the appropriate software. We explain how we tackle the hardware limitations and get an accurate measurement and regeneration of interference, and we experimentally evaluate the accuracy of JamLab with respect to time, space, and intensity. We further use JamLab to characterize the impact of interference on sensornet MAC protocols

    Body attenuation and path loss exponent estimation for RSS-based positioning in WSN

    Get PDF
    The influence of the human body in antenna systems has significant impact in the received signal strength (RSS) of wireless transmissions. Accounting for body effect is generally considered as being able to improve position estimation based on RSS measurements. In this work we perform several experiments with a wireless sensor network, using a sensor node equipped with an inertial measurement unit (IMU), in order to obtain the relative orientation between the sensor node and multiple anchor nodes. A model of the RSS attenuation induced by the body was created using experimental measurements in a controlled environment and applied to a real-time positioning system. A path loss exponent (PLE) estimation method using RSS information from neighbor anchors was also implemented and evaluated. Weighted centroid localization (WCL) algorithm was the positioning method used in this work. When the sensor node was placed on the user’s body, accounting for body effect produced negligible improvements (6%) in the best-case scenario and consistently degraded accuracy under real conditions, whether the node was placed on the user’s body (in the order of 3%), 10 cm away (from 14% to 35%) or 20 cm away from the body (from 42% to 105%) for results in the 70th percentile. The PLE estimation method showed improvements (in the order of 11%) when the sensor node is further away from the body. Results demonstrate that the distance between sensor node and the body has an extremely important influence on the accuracy of the position estimate.This work has been supported by FCT (Fundação para a Ciência e Tecnologia) in the scope of the project UID/EEA/04436/2013. Helder D. Silva is supported by FCT under the grant SFRH/BD/78018/2011info:eu-repo/semantics/publishedVersio

    On-body device localization for health and medical monitoring applications

    Full text link
    Abstract—We present a technique to discover the position of sensors on the human body. Automatic on-body device localization ensures correctness and accuracy of measurements in health and medical monitoring systems. In addition, it pro-vides opportunities to improve the performance and usability of ubiquitous devices. Our technique uses accelerometers to capture motion data to estimate the location of the device on the user’s body, using mixed supervised and unsupervised time series analysis methods. We have evaluated our technique with extensive experiments on 25 subjects. On average, our technique achieves 89 % accuracy in estimating the location of devices on the body. Keywords-On-body device localization, Unsupervised activity discovery, Motion analysis I

    Exploring Link Correlation for Performance Improvements in Wireless Networks

    Get PDF
    University of Minnesota Ph.D. dissertation. February 2017. Major: Computer Science. Advisor: Tian He. 1 computer file (PDF); x, 96 pages.In wireless communication, many technologies, such as Wi-Fi, BlueTooth and ZigBee, operate in the same ISM band. With the exponential growth of wireless devices, the ISM band becomes more and more crowded. These wireless devices compete with each other to access spectrum resources, generating cross-technology interference (CTI). Since cross-technology interference may destroy wireless communication, the field is facing an urgent and challenging need to investigate the packet reception quality of wireless links under CTI. In this dissertation, we propose an in-depth systematic study from empirical measurement, theoretical analysis, modeling, to design and implementation of protocols that exploit packet reception patterns of wireless links under cross-technology interference. Based on extensive measurements, we exploit link correlation phenomenon that packet receptions from a transmitter to multiple receivers are correlated. We then propose link correlation model which contradicts the widely made link independent assumption. The proposed model has a broad impact on network designs that utilize concurrent wireless links, which include (i) traditional network protocols such as broadcast, and (ii) diversity-based protocols such as network coding and opportunistic routing. In the study of the impact of link correlation model on traditional network protocols, we present the design and implementation of CorLayer, a general supporting layer for energy efficient reliable broadcast that carefully blacklists certain poorly correlated wireless links. We integrate CorLayer transparently with sixteen state-of-the-art broadcast protocols specified in thirteen publications on three physical testbeds running TelosB, MICAz, and GreenOrbs nodes, respectively. The experimental results show that CorLayer remarkably improves energy efficiency across a wide spectrum of broadcast protocols and that the total number of packet transmissions can be reduced consistently by 47% on average. In the study of the impact of link correlation model on diversity-based protocols, we propose link correlation aware network coding and link correlation aware opportunistic routing. In link correlation aware network coding, we introduce Correlated Coding which seeks to optimize the transmission efficiency by maximizing necessary coding opportunities. In link correlation aware opportunistic routing, we propose a novel candidate forwarder selection algorithm to help opportunistic routing fully exploit the diversity benefit of the wireless broadcast medium. Testbed evaluation and extensive simulation show that the traditional network coding and opportunistic routing protocols’ transmission efficiency is significantly improved with our link correlation model

    Performance assessment of mobility solutions for IPv6-based healthcare wireless sensor networks

    Get PDF
    This thesis focuses on the study of mobile wireless sensor networks applied to healthcare scenarios. The promotion of better quality-of-life for hospitalized patients is addressed in this research work with a solution that can help these patients to keep their mobility (if possible). The solution proposed allows remote monitoring and control of patients’ health in real-time and without interruptions. Small sensor nodes able to collect and send wirelessly the health parameters allow for the control of the patients' health condition. A network infrastructure, composed by several access points, allows the connection of the sensor nodes (carried by the patients) to remote healthcare providers. To ensure continuous access to sensor nodes special attention should be dedicated to manage the transition of these sensor nodes between different access points’ coverage areas. The process of changing an access point attachment of a sensor node is called handover. In that context, this thesis proposes a new handover mechanism that can ensure continuous connection to mobile sensor nodes in a healthcare wireless sensor network. Due to the limitations of sensor nodes’ resources, namely available energy (these sensor nodes are typically powered by small batteries), the proposed mechanism pays a special attention in the optimization of energy consumption. To achieve this optimization, part of this work is dedicated to the construction of a small sensor node. The handover mechanism proposed in this work is called Hand4MAC (handover mechanism for MAC layer). This mechanism is compared with other mechanisms commonly used in handover management. The Hand4MAC mechanism is deployed and validated through by simulation and in a real testbed. The scenarios used for the validation reproduces a hospital ward. The performance evaluation is focused in the percentage of time that senor nodes are accessible to the network while traveling across several access points’ coverage areas and the energy expenditures in handover processes. The experiments performed take into account various parameters that are the following: number of sent messages, number of received messages, multicast message usage, energy consumption, number of sensor nodes present in the scenario, velocity of sensor nodes, and time-to-live value. In both simulation and real testbed, the Hand4MAC mechanism is shown to perform better than all the other handover mechanisms tested. In this comparison it was only considered the most promising handover mechanisms proposed in the literature.Fundação para a Ciência e a Tecnologia (FCT

    Indoor positioning system for wireless sensor networks

    Get PDF
    Tese de Doutoramento - Programa Doutoral em Engenharia Electrónica e ComputadoresPositioning technologies are ubiquitous nowadays. From the implementation of the global positioning system (GPS) until now, its evolution, acceptance and spread has been unanimous, due to the underlying advantages the system brings. Currently, these systems are present in many different scenarios, from the home to the movie theatre, at work, during a walk in the park. Many applications provide useful information, based on the current position of the user, in order to provide results of interest. Positioning systems can be implemented in a wide range of contexts: in hospitals to locate equipment and guide patients to the necessary resources, or in public spaces like museums, to guide tourists during visits. They can also be used in a gymnasium to point the user to his next workout machine and, simultaneously, gather information regarding his fitness plan. In a congress or conference, the positioning system can be used to provide information to its participants about the on-going presentations. Devices can also be monitored to prevent thefts. Privacy and security issues are also important in positioning systems. A user might not want to be localized or its location to be known, permanently or during a time interval, in different locations. This information is therefore sensitive to the user and influences directly the acceptance of the system itself. Concerning outdoor systems, GPS is in fact the system of reference. However, this system cannot be used in indoor environment, due to the high attenuation of the satellite signals from non-line-of-sight conditions. Another issue related to GPS is the power consumption. The integration of these devices with wireless sensor networks becomes prohibitive, due to the low power consumption profile associated with devices in this type of networks. As such, this work proposes an indoor positioning system for wireless sensor networks, having in consideration the low energy consumption and low computational capacity profile. The proposed indoor positioning system is composed of two modules: the received signal strength positioning module and the stride and heading positioning module. For the first module, an experimental performance comparison between several received signal strength based algorithms was conducted in order to assess its performance in a predefined indoor environment. Modifications to the algorithm with higher performance were implemented and evaluated, by introducing a model of the effect of the human body in the received signal strength. In the case of the second module, a stride and heading system was proposed, which comprises two subsystems: the stride detection and stride length estimation system to detect strides and infer the travelled distance, and an attitude and heading reference system to provide the full three-dimensional orientation stride-by-stride. The stride detection enabled the identification of the gait cycle and detected strides with an error percentage between 0% and 0.9%. For the stride length estimation two methods were proposed, a simplified method, and an improved method with higher computational requirements than the former. The simplified method estimated the total distance with an error between 6.7% and 7.7% of total travelled distance. The improved method achieved an error between 1.2% and 3.7%. Both the stride detection and the improved stride length estimation methods were compared to other methods in the literature with favourable results. For the second subsystem, this work proposed a quaternion-based complementary filter. A generic formulation allows a simple parameterization of the filter, according to the amount of external influences (accelerations and magnetic interferences) that are expected, depending on the location that the device is to be attached on the human body. The generic formulation enables the inclusion/exclusion of components, thus allowing design choices according to the needs of applications in wireless sensor networks. The proposed method was compared to two other existing solutions in terms of robustness to interferences and execution time, also presenting a favourable outcome.Os sistemas de posicionamento fazem parte do quotidiano. Desde a implementação do sistema GPS (Global Positioning System) até aos dias que correm, a evolução, aceitação e disseminação destes sistemas foi unânime, derivada das vantagens subjacentes da sua utilização. Hoje em dia, eles estão presentes nos mais variados cenários, desde o lar até́ à sala de cinema, no trabalho, num passeio ao ar livre. São várias as aplicações que nos fornecem informação útil, usando como base a descrição da posição atual, de modo a produzir resultados de maior interesse para os utilizadores. Os sistemas de posicionamento podem ser implementados nos mais variados contextos, como por exemplo: nos hospitais, para localizar equipamento e guiar os pacientes aos recursos necessários, ou nas grandes superfícies públicas, como por exemplo museus, para guiar os turistas durante as visitas. Podem ser igualmente utilizados num ginásio para indicar ao utilizador qual a máquina para onde se deve dirigir durante o seu treino e, simultaneamente, obter informação acerca desta mesma máquina. Num congresso ou conferência, o sistema de localização pode ser utilizado para fornecer informação aos seus participantes sobre as apresentações que estão a decorrer no momento. Os dispositivos também podem ser monitorizados para prevenir roubos. Existem também questões de privacidade e segurança associados aos sistemas de posicionamento. Um utilizador poderá não desejar ser localizado ou que a sua localização seja conhecida, permanentemente ou num determinado intervalo de tempo, num ou em vários locais. Esta informação é por isso sensível ao utilizador e influencia diretamente a aceitação do próprio sistema. No que diz respeito aos sistemas utilizados no exterior, o GPS (ou posicionamento por satélite) é de facto o sistema mais utilizado. No entanto, em ambiente interior este sistema não pode ser usado, por causa da grande atenuação dos sinais provenientes dos satélites devido à falta de linha de vista. Um outro problema associado ao recetor GPS está relacionado com as suas características elétricas, nomeadamente os consumos energéticos. A integração destes dispositivos nas redes de sensores sem fios torna-se proibitiva, devido ao perfil de baixo consumo associado a estas redes. Este trabalho propõe um sistema de posicionamento para redes de sensores sem fio em ambiente interior, tendo em conta o perfil de baixo consumo de potência e baixa capacidade de processamento. O sistema proposto é constituído por dois módulos: o modulo de posicionamento por potência de sinal recebido e o módulo de navegação inercial pedestre. Para o primeiro módulo foi feita uma comparação experimental entre vários algoritmos que utilizam a potência do sinal recebido, de modo a avaliar a sua utilização num ambiente interior pré-definido. Ao algoritmo com melhor prestação foram implementadas e testadas modificações, utilizando um modelo do efeito do corpo na potência do sinal recebido. Para o segundo módulo foi proposto um sistema de navegação inercial pedestre. Este sistema é composto por dois subsistemas: o subsistema de deteção de passos e estimação de distância percorrida; e o subsistema de orientação que fornece a direção do movimento do utilizador, passo a passo. O sistema de deteção de passos proposto permite a identificação das fases da marcha, detetando passos com um erro entre 0% e 0.9%. Para o sistema de estimação da distância foram propostos dois métodos: um método simplificado de baixa complexidade e um método melhorado, mas com maiores requisitos computacionais quando comparado com o primeiro. O método simplificado estima a distância total com erros entre 6.7% e 7.7% da distância percorrida. O método melhorado por sua vez alcança erros entre 1.2% e 3.7%. Ambos os sistemas foram comparados com outros sistemas da literatura apresentando resultados favoráveis. Para o sistema de orientação, este trabalho propõe um filtro complementar baseado em quaterniões. É utilizada uma formulação genérica que permite uma parametrização simples do filtro, de acordo com as influências externas (acelerações e interferências magnéticas) que são expectáveis, dependendo da localização onde se pretende colocar o dispositivo no corpo humano. O algoritmo desenvolvido permite a inclusão/exclusão de componentes, permitindo por isso liberdade de escolha para melhor satisfazer as necessidades das aplicações em redes de sensores sem fios. O método proposto foi comparado com outras soluções em termos de robustez a interferências e tempo de execução, apresentando também resultados positivos
    corecore