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Abstract: This work compares the performance of indoor positioning systems suitable for 
low power wireless sensor networks. The research goal is to study positioning 
techniques that are compatible with real-time positioning in wireless sensor 
networks, having low-power and low complexity as requirements. Map matching, 
approximate positioning (weighted centroid) and exact positioning algorithms 
(least squares) were tested and compared in a small predefined indoor 
environment. We found that, for our test scenario, weighted centroid algorithms 
provide better results than map matching. Least squares proved to be completely 
unreliable when using distances obtained by the one-slope propagation model. 
Major improvements in the positioning error were found when body influence 
was removed from the test scenario. The results show that the positioning error 
can be improved if the body effect in received signal strength is accounted for in 
the algorithms.  
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 1. INTRODUCTION 

Localization capability in wireless sensor networks (WSN) brings spatial 
information to sensor data and enables numerous added value applications. 
Localization can be used in the most various contexts, from geodesic routing 
to antenna beam forming, or to detect soil temperature and pinpoint the 
origin of a wildfire.  

In outdoors environment, the global positioning system (GPS) is capable 
of offering an adequate service to the majority of applications. Device size is 
no longer an issue in WSN due to the miniaturization of GPS hardware. 
Remaining disadvantages of this approach relate to energy consumption and 
node price when using this technology in WSN.  

Regarding indoors environment, GPS is not reliable due to the signal 
attenuation. Ultra-wideband is a technology with potential to solve the 
problem of indoor location due to its high accuracy when inferring distances 
between devices [1]. However, and despite large standardization efforts 
(e.g., the IEEE 802.15.4a standard), a fully compliant commercial device for 
sale is unavailable. Since no mass market is currently in place, prices for 
available proprietary hardware are very high. 

Received signal strength (RSS) based positioning is a popular approach in 
WSNs since RSS is readily available with the radio module. Due to typical 
WSN energy and computational profiles, low complexity positioning 
solutions are desired. As such, researchers seek to find balance between 
accuracy and computational complexity. 

This work, which is a revised and extended version of our previous work 
[2], concerns the implementation of positioning systems (PS) in WSN that 
best fit the indoor scenario. We experimentally compare positioning 
calculation using map matching, approximate positioning and exact 
positioning algorithms in an indoor test scenario. We also study the effect of 
the body in the performance indicators. 

Map matching solutions are mainly used in large areas, such as office 
settings and warehouses with several divisions. Our work differs from the 
usual approach, since the fingerprinting solution is implemented in a smaller 
predefined space of a room, without walls in between access points. 

2. BACKGROUND 
2.1 RSS Based Indoor Positioning Systems 

An overview of technologies used in positioning systems is available in 
[3]. Ultrasound, ultra-wideband, radio-frequency identification (RFID) and 
RSS based systems are among the most used technologies for indoor 
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 positioning. Accuracies span from 5 meters (RSS) to a few centimeters 
(ultrasound).  

RSS systems are known for the low reliability when inferring distances 
from measurements. Filtering techniques are a solution for dealing with RSS 
reliability under noisy environment conditions. These techniques also stand 
as the common solution for integration of heterogeneous positioning 
systems, in order to provide more accurate location estimation. Kalman 
filters [4] and particle filters [5] are the usual approaches; however, since 
these solutions need high computational capacity, they are usually not 
compatible with WSNs. Instead, filtering is typically accomplished by 
averaging multiple measurements, thus positioning accuracy is sacrificed in 
the tradeoff for lower computational demands, longer lifespan of sensor 
nodes and faster positioning update rates when desired. 

Propagation models are an important topic in RSS based systems, for 
which [6] presents a general overview. Several efforts have been made to 
characterize radio signal propagation [7], developing many propagation 
models. For indoor settings, the one-slope [8] and the multiwall [9] models 
are frequently used in state-of-the-art. Several types of fading affect these 
signals [10], where attenuations as high as 15 dBm are reported [11] due to 
the human body. We refer the reader to our previous work [2] for a more 
detailed description of this topic concerning the context of this work. 
2.2 Map Matching 

Two phases compose the system originally implemented by Bahl et al. 
[12]. In the offline phase, data relating position and RSS from access points 
(AP) is gathered from the site on to a database, in order to create a radio map. 
In the online phase, mobile nodes report to a server the RSS from APs in 
range. The server compares signatures so a match (or the closest to) can be 
found, thus pinpointing the mobile node’s position. 

In [13], a comprehensive study on fingerprinting is presented. Authors 
conclude that map density translates to higher accuracy with a nonlinear 
behavior in increasing the number of calibration points. The direction faced 
when collecting samples, also studied [12], is crucial and greatly improves 
system accuracy.  

Approaches to facilitate creation of radio map in the offline phase have 
been conducted. Authors in [14] use propagation models to ease the process 
of creating the radio map. Ray-tracing modeling is another solution to obtain 
the attenuation values of signal propagation [15]. 
2.3 Approximate Positioning 

The approximate positioning method uses parameters or metrics that can 
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 be used to infer proximity to a known location. The weighted centroid 
localization (WCL) is a well-known approximate positioning method, which 
presents low complexity and good robustness to noise. Bulusu et al. 
implemented this method in [16], where node connectivity was the metric 
used to infer distance. Given a set of beacon nodes in the network possessing 
knowledge of their location, the position of sensor nodes can be estimated by 
calculating the centroid of all beacon node coordinates for which the sensor 
is in range of.  

LANDMARC [17] uses RSS readings in their approximate positioning 
method. Tag readers report RSS from moving RFID tags, along with RSS 
from reference tags. Reference tags are fixed and their RSS is used as means 
of comparison between that of the movable tags to infer proximity. In a more 
recent work [18] authors further improve LANDMARC’s positioning error 
to a 1-meter accuracy with a signal reporting cycle of 2 seconds. 

Hop count positioning algorithms such as DV-Hop [19] can use RSS as a 
metric to infer distance for each hop. In [20], authors achieve less than 10 
percent radio coverage error. 
2.4 Exact Positioning 

The exact positioning method involves the determination of angles or 
distances between a sensor node and multiple known reference points. 
Triangulation and trilateration (or multilateration) are the typical methods 
employed to determine the sensor position. Distance estimates are usually 
obtained by measuring the time of arrival (TOA), time difference of arrival 
(TDOA) or the round trip time of flight (RTOF) [21]. 

The linear least squares method (LLS) [22] is the most used exact 
positioning algorithm in WSNs, due to the simple closed form solution.  

Measuring the propagation time of a transmission is a more robust method 
when compared to measuring the signal strength. However, in WSN this 
generally involves adding extra hardware, increasing energy consumption. 
The main goal in this work is the implementation of low power and real-time 
sensor node positioning in indoor environment. As such, addition of extra 
hardware is avoided and RSS measurements are performed for distance 
estimates. 

3. MATERIALS AND METHODS 
3.1 Hardware 

Texas Instruments CC2530DK development kit was used in this work. We 
refer the readers to our previous work [2] for a more detailed description.  
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 The test scenario is composed by four anchor nodes and one sensor node. 
Each anchor node is composed by a CC2530 evaluation module and a 
battery board powered by two AA batteries. The sensor node is composed by 
a development board and an evaluation module. 
3.2 Experimental Setup 

The anchor’s role is to broadcast beacon messages periodically, so sensor 
nodes can receive these messages and locate themselves. Our main test bed 
is a room with 10×4.7 m free space area, as shown in fig. 1. 

 Fig. 1.  Experimental setup. Anchor locations are depicted as green circles, along with 
distances to walls. Black dots indicate calibration points. A calibration point was also taken at 
each anchor location. The three supporting beams on the bottom right side of the figure are 
depicted as squares. 
 Anchors are placed in the corners of the mentioned area on top of a stand, 
1.2 meters above ground. The stands used are made of plastic, so no extra 
interferences affect the radio messages. 

Numbered from 0 to 3, each anchor broadcasts one beacon message 
periodically. Using the sequence number in the beacon messages, the sensor 
node detects lost beacons during data collection and inserts a value of -127, 
indicating an invalid RSS sample. Calculations are performed in an offline 
phase. 

The one-slope propagation model used in this scenario was calibrated on 
site. Details on the calibration method used can be found in [2]. 
3.3 Map Matching 

The radio map was created with a grid resolution of one squared meter. 
Since our positioning area is 4.7 meters wide, the last column of the grid has 
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 a smaller resolution of 0.7 squared meters. A total of 66 grid points covered 
our test field. A calibration point was collected at each grid point and for 
each body orientation (e.g., north, west, south and east), amounting to a total 
of 264 calibration points. Each point is composed by true position (x and y 
with origin on anchor 0), body orientation and average RSS obtained from 
100 RSS samples from all four anchor nodes. 

During the online phase, the sensor node obtains and stores RSS samples. 
At the end of a test run (e.g.: after collecting 100 samples), data is uploaded 
to a PC running MATLAB and the position is computed. The weighted k-
nearest neighbor (WKNN) algorithm [12] uses (1) to find the distance in 
signal space between a RSS sample and each calibration point. 

DSS = Rmap (i)- Rs (i) p
i=1Nåéë ùû

1
p  (1) 

N is the number of anchor nodes in range and p is the norm used. The 
Rmap(i) is the RSS stored for anchor i in a calibration point of the radio map 
and Rs(i) is the RSS sampled in the online phase for anchor i. After 
computing the distances for all calibration points, the K smallest distances 
are used to estimate the node’s position using (2), where pi is the coordinates 
of each calibration point. 

x̂ = wi ´ pii=1Kå
wii=1Kå ;  wi = 1

D1
 (2) 

The weight applied to each neighbor found in the search process is simply 
the inverse of the signal space distance. 
3.4 Approximate Positioning 

In this type of positioning, the only information needed by a node to 
calculate its position is the coordinates of each anchor node in range. The 
position estimate is calculated using (3): 

x̂ = wi ´ Lii=1Bå
wii=1Bå ;  wi = 1

(Rp )e  (3) 

Where Li is the coordinates of each anchor node and Rp is the radio 
parameter used to calculate the weight. In this work, both the RSS and the 
distance using a propagation model were used to calculate the weights, in 
two different approaches. The exponent e allows an adjustment of the 
importance of the weight applied to each anchor node’s RSS. 
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 3.5 Exact Positioning 

The Linear Least Squares method is an exact positioning technique, which 
computes the position of a node using a set of three or more non-collinear 
distance measurements (in the two dimensional case). Each measurement 
produces an equation of the form illustrated in (4): 

(x - xn )2 + (y - yn )2 = dn
2  (4) 

Several measurements produce a system of equations, which has no 
solution when circles don’t intersect. To find a solution to this system, first a 
linearization of the system of equations is obtained by subtracting the 
location of the first anchor node from other locations. This cancels the 
unknown squared terms, and a linear system of the form Av = b is obtained, 
as shown in (5), (6) and (7): 

A = 2 ´
x1 - x2x1 - x3

y1 - y2y1 - y3...x1 - xn
...y1 - yn

æ
è
ççç

ö
ø
÷÷÷
 (5) 

b =
d2

2 - d1
2 + x1

2 - x2
2 + y1

2 - y2
2

d3
2 - d1

2 + x1
2 - x3

2 + y1
2 - y3

2
...dn

2 - d1
2 + x1

2 - xn
2 + y1

2 - yn
2

æ

è

çççç

ö

ø

÷÷÷÷
 (6) 

v = xy( ) (7) 

Since the vector b may be located outside the plane defined by matrix A, 
the solution is to find the projection of b onto A, thus minimizing the 
Euclidean distance (or squared error), using (8). 

v = (AT ´A)-1 ´ (AT ´ b) (8) 

4. RESULTS 
Two sets of samples were collected, with one set being obtained with the 

user’s body near the receiving antenna (BP set), the other set without the 
body influence (BNP set). A set is composed by several test runs; each test 
run contains 100 RSS samples. Position estimation is computed for each 
sample in a test run, thus no averaging was used in the results presented. 
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 All sample sets were taken in positions where a calibration point exists. 
The BP set is composed by 79 test runs, from which 66 were taken facing 
the north direction. The remaining 13 test runs were randomly chosen across 
the positioning area, with different orientations. The BNP set is composed by 
12 test runs randomly chosen and do not have an orientation associated since 
the body is not present. 

The height of the sensor nodes is the same as the anchor nodes (1.2 meters 
above ground). The mean error (ME) and standard deviation (STD) of the 
absolute error (Euclidean distance between the calculated position and the 
true position) were the metrics chosen as primary performance indicators. 
4.1 Map Matching 

The radio map is a representation of the propagation conditions that the 
algorithms were subject to. Fig. 2 illustrates the average RSS for each of the 
anchor nodes obtained from all calibration points. 

 Fig. 2. Average RSS fingerprint map. Top left: anchor 0; top right: anchor 1, bottom left: 
anchor 2 and bottom right: anchor 3. 
 The RSS values from fig. 2 were obtained by averaging all calibration 
points in a given x and y position for all four directions. The values depicted 
clearly correlate with the position of the anchor nodes, where the strongest 
RSS values appear in the area where the anchor is located. 

Two parameters were tested in the map matching solution: the number of 
neighbors K and the norm used p. The ME and STD are presented in fig. 3. 

The body influence is presented for each of the p-norms tested. In the BP 
case, the ME variation between K=1, equivalent to nearest neighbor (NN) 
algorithm, and the other values of K is not significant. This can be explained 
due to the positioning system area and calibration point density. Since the 
area is small and the density of calibration points is high, the NN algorithm 
tends to perform as good as WKNN. Other works, such as [13], also pointed 
out this outcome, yet under a different environment. Note that a map 
matching solution with NN as the positioning algorithm only needs to find 
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 one nearest neighbor, which is computationally faster than the WKNN case. 

 Fig. 3. ME (left side) and STD (right side) for different values of K and p. At the top is 
displayed the BP case, at the bottom is displayed the BNP case. 
 In the BNP case, the value K has a more important influence than in the 
BP case, where for p=2 and K=5, ME reaches a minimum of approximately 
2.2 meters. This scenario where body influence is not present is, of course, a 
best-case scenario, which does not happen when the system is to be used by 
a person. Yet, it shows a boundary of positioning error that deterministic 
frameworks can provide in this environment, if accounting the body 
influence in the position calculation. 

The STD values exhibit a monotonic decrease, with the increase of K in 
the BP case. Differences between norms are negligible. In the BNP case, 
STD values reach a minimum of 0.8 meters for p=1 and K=4. 
4.2 Approximate Positioning 

RSS (RWCL) and distance using the one-slope path loss model (DWCL) 
are tested as weights in the WCL algorithm. In the RWCL, the exponent e 
was varied. Results are presented in fig. 4. 

 Fig. 4. ME and STD for different values of exponent e, for both BP and BNP case.  
In contrast with other works [23], [24], we found the optimum e parameter 
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 between 2 (BP) to 6 (BNP), where a tradeoff between the ME and STD 
exists. As the parameter e increases beyond 4 in the BP case, and beyond 6 
in the BNP case, ME and STD also increase. With a high e value, the 
position is strongly influenced by the anchor node with the greater RSS 
reading. In limit conditions, the calculated position would be the same as 
that of the anchor node with higher RSS in the field. Again, body influence 
plays a very important role. As an example, for an exponent of e=4, the ME 
in the BNP case is approximately half of the ME in the BP case. In the case 
of STD, an improvement of more than 50% in the BNP case is also achieved. 

In the DWCL algorithm, two parameters can be varied: exponent e and the 
path loss exponent n. Results are presented in fig. 5. 

 Fig. 5. DWCL ME (left side) and STD (right side) for different values of path loss exponent n 
and parameter e. 
 The minimum ME of 1.36 meters is achieved (n=2.2, e=1.4) in the BNP 
case, while in the BP case, minimum ME was 2.92 meters (n=3.4, e=1). 
Body influence increases the error by a factor slightly higher than 2.  

There is a balance between parameters, due to n and e balancing each 
other, which can be seen as the “saddle” effect in fig. 5. 

The value of n=2.2 obtained in the BNP case is also very similar to the 
value obtained in [2] of n=2.19, which validates the use of linear regression 
as an appropriate method of determining path loss exponent when in LOS 
conditions. 
4.3 Exact Positioning 

The influence of the parameter n of the one-slope model, used in the RSS 
to distance conversion, was tested. Results for the LLS algorithm are 
depicted in fig. 6.  

Increasing the value of n produces a dampening effect on the error, since 
the estimated circumferences around each anchor node become smaller. 
Even though the ME and the STD decrease as n increases, the algorithm 
exhibits a saturated behavior, has can be seen for values of n higher than 6.  
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 Fig. 6. LLS ME and STD for different values of path loss exponent n. 
 Positioning error increases rapidly for values of n smaller than 4. For a 
value of n=2.19, as obtained for the one-slope model used in this work, the 
ME rises to around 1000 meters, many orders higher than the positioning 
area itself, which renders the algorithm useless. 
4.4 Algorithm Comparison 

For the algorithm comparison, the best parameter values for each of the 
algorithms were considered. To have a frame of reference, a fictitious 
positioning algorithm, called static center position (SCP) was added to each 
CDF plot. This algorithm simply returns the center position of the PS area, 
for any input. The CDF plots for WKNN (k=5 p=2 for BNP case, k=1 p=2 
for BP case) and LLS (n=6 for BNP case, n=9 for BP case) algorithms; 
RWCL (e=6 for BNP case, e=3.4 for BP case) and DWCL (n=2.2 e=1.4 for 
BNP case, n=3.4 e=1 for BP case) are presented in fig. 7. 

 Fig. 7. Cumulative Distribution Functions for WKNN and LLS algorithms (left side), RWCL 
and DWCL algorithms (right side).  

Regarding the WKNN algorithm, the body influence is evident, with a 30 
percent improvement for an error of 3 meters. The body has a bigger impact 
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 on WCL than in the map matching solution, yet the WCL algorithms present 
slightly better results than WKNN when under body influence. When body 
is not present, WCL produces the best position estimates of all algorithms 
tested. Considering a probability of around 70 percent, WCL improves from 
an accuracy of 4 meters (BP case) to approximately 1.8 meters (BNP case). 

RWCL and DWCL obtained equivalent performances, which implies that 
RSS is the best weighting solution in WCL for our setup, since it is simpler 
than using a propagation model.  

LLS had the worst performance, where the BNP case performed at the 
same level of the BP case for the other algorithms. When compared with 
SCP, LLS can even sometimes perform worse. 
4.5 Body Influence On RSS 

We collected two sets of measurements inside an anechoic chamber. 
These measurements were obtained by placing an anchor node and a sensor 
node two meters apart. In the first set of measurements, which we will call 
static mode, the node is placed on top of a plastic stand and there is no body 
influence; in the second set of measurements, which we will call dynamic 
mode, the node is attached to the user’s body.  

In the static mode, several readings are obtained in different sensor node 
orientations (approximately 15 degrees between readings). In the dynamic 
mode, the user performs a 360-degree turn for approximately 60 seconds. 
The module of the RSS values for both modes is presented in fig. 8. 

 Fig. 8. Module of RSS values obtained inside the anechoic chamber.  
The user is facing the anchor node in the 0-degree direction. From fig. 8, 

despite the attenuation peaks that occurred between 30 and 60 degrees, we 
can see there is a trend in the mean value of the dynamic mode. Mean 
attenuation value rises when the user rotates past the 90-degree direction and 
until 180 degrees. Mean attenuation decreases between 180 and 270 degrees, 
point from which the mean value starts to exhibit the same trend as in the 0-
degree direction. 
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 5. DISCUSSION 

Propagation models typically model large-scale fading LOS propagation. 
Body influence, NLOS between nodes and multipath dominated 
environments induce large variations in RSS, which are not accounted for in 
the propagation model. The comparison between the results obtained for the 
BP and BNP case demonstrate how strong the body influence is. Also, 
measurements obtained in the anechoic chamber also suggest that body 
influence is important when estimating the position using RSS. 

The use of propagation models proved to be unreliable in the case of the 
LLS algorithm. Distances estimated by the propagation model used as 
weights in approximate positioning algorithms produced acceptable results, 
yet they did not surpass results using RSS alone as weight.  

Although more information from the propagation environment is 
embedded in the map matching solution, which includes body orientations, 
the results obtained did not compensate such effort when compared to WCL 
algorithm. Approximately two hours were needed to collect all calibration 
points in our small test environment. If a bigger area were involved, the 
offline phase map creation would be harder to accomplish without resorting 
to other mapping techniques. 

In the BP case, performance obtained from the WCL solutions is 
equivalent to the map matching solution. WCL solutions provided the best 
position estimates in the BNP case. This, associated with the fact that RWCL 
solution does not require prior calibration and setup, makes this type of 
positioning the best possible under our test conditions. 

The LLS based on propagation model solution provided the weakest 
results. Clearly, LLS algorithm cannot be used with RSS measurements in 
such an environment. LLS algorithm needs more accurate methods to detect 
distance between nodes. 

6. CONCLUSIONS AND FUTURE WORK 
From the results obtained we can conclude that the RWCL solution 

provides overall better results than map matching, with the advantage of 
having lower complexity and easier setup. The LLS is an inappropriate 
solution when using RSS to estimate position in indoor environment. 
Distances estimated from propagation models are severely affected by biases 
that heavily depend on factors such as body orientation, LOS/NLOS 
condition, multipath between nodes and proximity to other objects, walls or 
obstructions. Approximate positioning algorithms tend to perform better in 
this kind of environment due to its error resilience. 

All algorithms showed poor positioning capabilities when body influence 
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 is present. When body influence is removed, positioning accuracy improves 
drastically, with the exception of LLS. Between all three types of positioning 
algorithms, body influence impact was small in the LLS case, medium in the 
map matching solution, and highest in the WCL algorithms. 

Anchor node placement is a very important issue in RSS positioning 
systems that has not been addressed in this work. A minimum number of 
anchor nodes were employed, assuring always a total of four non-collinear 
points. Increasing the number of anchor nodes in the test area is another 
possibility to further reduce positioning error. This measure needs to be 
taken with caution in the case of WKNN, since increasing number of anchor 
nodes also increases algorithm complexity. 

As future work, we intend to integrate the RSS indoor positioning 
capability in our wireless posture monitoring system (WPMS) [25]. The 
WPMS is a motion capture system that uses information from multiple 
inertial and magnetic sensors placed in the user’s body. The objective is to 
provide location information, which, together with the body posture, will 
characterize not only how the user is moving but also his location.  
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