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Abstract 

Positioning technologies are ubiquitous nowadays. From the implementation of the 

global positioning system (GPS) until now, its evolution, acceptance and spread has been 

unanimous, due to the underlying advantages the system brings. Currently, these systems are 

present in many different scenarios, from the home to the movie theatre, at work, during a 

walk in the park. Many applications provide useful information, based on the current position 

of the user, in order to provide results of interest. 

Positioning systems can be implemented in a wide range of contexts: in hospitals to 

locate equipment and guide patients to the necessary resources, or in public spaces like 

museums, to guide tourists during visits. They can also be used in a gymnasium to point the 

user to his next workout machine and, simultaneously, gather information regarding his 

fitness plan. In a congress or conference, the positioning system can be used to provide 

information to its participants about the on-going presentations. Devices can also be 

monitored to prevent thefts. 

Privacy and security issues are also important in positioning systems. A user might not 

want to be localized or its location to be known, permanently or during a time interval, in 

different locations. This information is therefore sensitive to the user and influences directly 

the acceptance of the system itself. 

Concerning outdoor systems, GPS is in fact the system of reference. However, this 

system cannot be used in indoor environment, due to the high attenuation of the satellite 

signals from non-line-of-sight conditions. Another issue related to GPS is the power 

consumption. The integration of these devices with wireless sensor networks becomes 

prohibitive, due to the low power consumption profile associated with devices in this type of 

networks. As such, this work proposes an indoor positioning system for wireless sensor 

networks, having in consideration the low energy consumption and low computational 

capacity profile. 

The proposed indoor positioning system is composed of two modules: the received 

signal strength positioning module and the stride and heading positioning module. For the 

first module, an experimental performance comparison between several received signal 

strength based algorithms was conducted in order to assess its performance in a predefined 
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indoor environment. Modifications to the algorithm with higher performance were 

implemented and evaluated, by introducing a model of the effect of the human body in the 

received signal strength. 

In the case of the second module, a stride and heading system was proposed, which 

comprises two subsystems: the stride detection and stride length estimation system to detect 

strides and infer the travelled distance, and an attitude and heading reference system to 

provide the full three-dimensional orientation stride-by-stride.  

The stride detection enabled the identification of the gait cycle and detected strides 

with an error percentage between 0% and 0.9%. For the stride length estimation two methods 

were proposed, a simplified method, and an improved method with higher computational 

requirements than the former. The simplified method estimated the total distance with an error 

between 6.7% and 7.7% of total travelled distance. The improved method achieved an error 

between 1.2% and 3.7%. Both the stride detection and the improved stride length estimation 

methods were compared to other methods in the literature with favourable results. 

For the second subsystem, this work proposed a quaternion-based complementary 

filter. A generic formulation allows a simple parameterization of the filter, according to the 

amount of external influences (accelerations and magnetic interferences) that are expected, 

depending on the location that the device is to be attached on the human body. The generic 

formulation enables the inclusion/exclusion of components, thus allowing design choices 

according to the needs of applications in wireless sensor networks. The proposed method was 

compared to two other existing solutions in terms of robustness to interferences and execution 

time, also presenting a favourable outcome. 

Keywords - Indoor positioning, wireless sensor networks, received signal strength, 

body effect, propagation model, stride and heading system, attitude and heading reference 

system, sensor fusion. 
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Resumo 

Os sistemas de posicionamento fazem parte do quotidiano. Desde a implementação do 

sistema GPS (Global Positioning System) até aos dias que correm, a evolução, aceitação e 

disseminação destes sistemas foi unânime, derivada das vantagens subjacentes da sua 

utilização. Hoje em dia, eles estão presentes nos mais variados cenários, desde o lar até́ à sala 

de cinema, no trabalho, num passeio ao ar livre. São várias as aplicações que nos fornecem 

informação útil, usando como base a descrição da posição atual, de modo a produzir 

resultados de maior interesse para os utilizadores. 

Os sistemas de posicionamento podem ser implementados nos mais variados 

contextos, como por exemplo: nos hospitais, para localizar equipamento e guiar os pacientes 

aos recursos necessários, ou nas grandes superfícies públicas, como por exemplo museus, para 

guiar os turistas durante as visitas. Podem ser igualmente utilizados num ginásio para indicar 

ao utilizador qual a máquina para onde se deve dirigir durante o seu treino e, 

simultaneamente, obter informação acerca desta mesma máquina. Num congresso ou 

conferência, o sistema de localização pode ser utilizado para fornecer informação aos seus 

participantes sobre as apresentações que estão a decorrer no momento. Os dispositivos 

também podem ser monitorizados para prevenir roubos. 

Existem também questões de privacidade e segurança associados aos sistemas de 

posicionamento. Um utilizador poderá não desejar ser localizado ou que a sua localização seja 

conhecida, permanentemente ou num determinado intervalo de tempo, num ou em vários 

locais. Esta informação é por isso sensível ao utilizador e influencia diretamente a aceitação 

do próprio sistema. 

No que diz respeito aos sistemas utilizados no exterior, o GPS (ou posicionamento por 

satélite) é de facto o sistema mais utilizado. No entanto, em ambiente interior este sistema não 

pode ser usado, por causa da grande atenuação dos sinais provenientes dos satélites devido à 

falta de linha de vista. Um outro problema associado ao recetor GPS está relacionado com as 

suas características elétricas, nomeadamente os consumos energéticos. A integração destes 

dispositivos nas redes de sensores sem fios torna-se proibitiva, devido ao perfil de baixo 

consumo associado a estas redes.  
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Este trabalho propõe um sistema de posicionamento para redes de sensores sem fio em 

ambiente interior, tendo em conta o perfil de baixo consumo de potência e baixa capacidade 

de processamento. 

O sistema proposto é constituído por dois módulos: o modulo de posicionamento por 

potência de sinal recebido e o módulo de navegação inercial pedestre. Para o primeiro módulo 

foi feita uma comparação experimental entre vários algoritmos que utilizam a potência do 

sinal recebido, de modo a avaliar a sua utilização num ambiente interior pré-definido. Ao 

algoritmo com melhor prestação foram implementadas e testadas modificações, utilizando um 

modelo do efeito do corpo na potência do sinal recebido. 

Para o segundo módulo foi proposto um sistema de navegação inercial pedestre. Este 

sistema é composto por dois subsistemas: o subsistema de deteção de passos e estimação de 

distância percorrida; e o subsistema de orientação que fornece a direção do movimento do 

utilizador, passo a passo. 

O sistema de deteção de passos proposto permite a identificação das fases da marcha, 

detetando passos com um erro entre 0% e 0.9%. Para o sistema de estimação da distância 

foram propostos dois métodos: um método simplificado de baixa complexidade e um método 

melhorado, mas com maiores requisitos computacionais quando comparado com o primeiro. 

O método simplificado estima a distância total com erros entre 6.7% e 7.7% da distância 

percorrida. O método melhorado por sua vez alcança erros entre 1.2% e 3.7%. Ambos os 

sistemas foram comparados com outros sistemas da literatura apresentando resultados 

favoráveis. 

Para o sistema de orientação, este trabalho propõe um filtro complementar baseado em 

quaterniões. É utilizada uma formulação genérica que permite uma parametrização simples do 

filtro, de acordo com as influências externas (acelerações e interferências magnéticas) que são 

expectáveis, dependendo da localização onde se pretende colocar o dispositivo no corpo 

humano. O algoritmo desenvolvido permite a inclusão/exclusão de componentes, permitindo 

por isso liberdade de escolha para melhor satisfazer as necessidades das aplicações em redes 

de sensores sem fios. O método proposto foi comparado com outras soluções em termos de 

robustez a interferências e tempo de execução, apresentando também resultados positivos. 

Palavras chave - posicionamento em ambiente interior, redes de sensores sem fios, 

potência de sinal recebido, efeito do corpo, modelo de propagação, navegação inercial 

pedestre, orientação, fusão sensorial.  
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Chapter 1  

Introduction 

Positioning technologies are ubiquitous nowadays, with position information being 

increasingly used to provide contextual feedback to applications. Location information of 

users enables applications to provide context-based information of interest, such as 

waypoints, commodities and services available nearby. This is the basis of location-based 

services (LBS), and this type of service is available mainly in outdoor environments, where 

the global positioning system (GPS) is capable of offering an adequate quality of service to 

the majority of applications. Companies such as Google, Microsoft and Nokia have 

undertaken an enormous effort in order to create detailed maps of outdoor environments. This 

enabled updated information of roads, streets, door numbers, and all types of services, from 

restaurants to shopping malls and gas stations, are available in every device with an Internet 

connection. Only recently has this mapping effort started to address indoor environments, 

with indoor maps from Google being available to users by late 2011. 

Indoor positioning is currently available in some countries, where a few proprietary 

solutions targeted at very specific applications exist, such as finding shelf products in a 

supermarket or navigating in large business areas. Several companies are engaged in pushing 

indoor localization systems to the market [1]. These companies can be roughly divided into 

two categories: map providers, such as Apple, Google, Nokia and Micello; and positioning 
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system providers including Apple, Google, Indoor Atlas, Pole Star, Shopkick, Aeroscout, 

Ekahau, Zebra Tech and Aisle411. Indoor positioning system solutions are mainly based on 

technologies such as WLAN (wireless local area network), radio frequency identification 

(RFID) and ultra-wideband (UWB). 

Under a worldwide perspective, indoor positioning is generally unavailable to users. It 

is a challenging task due to the variety of different situations that can arise inside buildings. 

From the type of walls to the objects that can be found in an indoor environment, the 

coexistence with other systems and the users themselves, all these elements interfere with 

position calculation. Under this type of environment, GPS is not reliable due to the signal 

attenuation from the lack of line-of-sight (LOS) to GPS satellites. 

UWB is a technology with potential to solve the problem of indoor positioning due to 

its high accuracy when inferring distances between devices [2]. UWB enables ranging 

capabilities between devices and allows the detection of multipath components of transmitted 

signals by using large channel bandwidths. Accuracies in the sub-meter range can be achieved 

with this technology. Yet, due to the existence of two versions of UWB standard competing 

among each other, a pulsed version and a frequency division version, standard acceptance has 

been very slow. Furthermore, the ranging capability feature is optional, not obligating 

manufacturers to implement it in order to comply with the standard. Due to the slow standard 

acceptance, there isn’t yet a mass market in place, which in turn affects device cost for 

currently available off-the-shelf components. The inclusion of UWB in IEEE 802.15.4 

standard [3] as a low power physical layer is a step towards faster industry acceptance, due to 

the popularity of 802.15.4 and its network and application layer protocol ZigBee. Since no 

particular solution has yet proven to be reliable, cost efficient and of generic application for 

every situation, a de facto standard has not yet been achieved. This lack of standard is also 

explained by the defragmentation seen in current indoor positioning solutions, which are 

typically proprietary, closed and non-compatible systems. 

The Internet of things (IoT) is another application area that can greatly benefit from 

indoor localization services. IoT is a vision consisting of a world where a large number of 

common objects used in a daily basis are imbued with computational and communication 

capabilities, efficiently automating innumerous tasks [4]. There are several institutions 

working in order to achieve this vision, not only in the form of standards creation and 

improvement, but also in the interaction between different standards, so a global network 
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augmented by these objects can be realized [5]. Sensor networks have a central role in this 

ubiquitous computing vision, since they provide the connection to the real world through 

sensors and actuators. A plethora of different sensors can be applied to the most diverse 

scenarios and the information generated by these sensors can be used to increase process 

efficiency or to achieve higher understanding of a certain phenomenon. 

The terms IoT and ubiquitous computing, along with other terms such as ambient 

intelligence, pervasive computing and smart objects are related and sometimes used 

interchangeably in literature. A common feature shared between these visions, directly related 

to the data sensed from these smart objects, is the location from where the data is collected. 

Sensor information is commonly referred to as context, and since location information is also 

user-sensitive context information, they complement each other. As such, positioning 

technologies are key enablers for the ubiquitous computing vision due to the application 

opportunities that arise with the knowledge of the position of the user or device. Wireless 

sensor networks (WSNs) are a major component of the ubiquitous computing vision; 

therefore indoor positioning in WSNs is also a key component for the IoT vision. 

A node in a WSN is a sensing capable device composed by a microcontroller and a 

wireless transceiver. WSN constraints relate to device cost, energy and computational 

capabilities, the latter of which trades-off with higher battery recharge frequencies. Due to 

typical WSN energy consumption and computational capacity constraints, low complexity 

positioning solutions are desired. Low power requirements are a common feature associated 

with WSN, which in turn is addressed in part by relaxing the computational capabilities of 

these devices. 

Positioning capability in WSNs brings spatial information to the data obtained from 

sensors. The position information can be used in the most various contexts, from geodesic 

routing to antenna beam forming, or to detect soil temperature and pinpoint the origin of a 

wildfire. Positioning in WSNs can be accomplished by using optical, acoustic or radio 

frequency (RF) technologies, to produce range, angle or pattern information. Using one of 

these measurements, or a combination of them, the location of a device can be computed. 

Received signal strength (RSS) based positioning is a popular approach in WSNs since no 

additional hardware is needed to implement this type of localization system. RSS positioning 

stands as a fast and inexpensive method to obtain the location of a device in a WSN, with 

accuracies spanning from 3 to 10 meters. This approach is also attractive due to the low power 
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consumption profile that sensor nodes are usually subject to. The small cost of sending or 

receiving radio messages to compute location is usually preferable than the increased costs (in 

terms of price, size and energy) of adding extra hardware to the positioning solution. RSS 

based positioning is accomplished by either using a propagation model to convert RSS to 

distance or by using the RSS measure itself as proximity estimate.  

The achievable accuracy by a positioning system is also very important and limits the 

applications in which a positioning system can be used. For example, while an accuracy of 

100 meters is sufficient for a ship navigating at sea to find its way across the ocean, such 

accuracy would be useless when driving a car along a road. Higher accuracy is generally 

desired, yet different applications require different minimum accuracies to be achieved. With 

higher accuracy, RSS positioning could deliver the quality of service necessary for a wider 

range of IoT applications. 

Low power consumption is a typical requirement in WSNs, since nodes are usually 

battery operated. A WSN node is capable of RSS positioning without the addition of extra 

hardware, thus not incurring in additional energy consumption. Coexistence with other 

systems, objects and environment is an important aspect of positioning systems. Coexistence 

with the users in RSS positioning is especially important due to the body influence in RSS 

readings. 

Recently, hybrid-positioning systems fusing information from multiple localization 

techniques and sensors have gained popularity within the scientific community. When a 

localization system fuses position information from multiple sources, high computational 

capabilities are necessary in order to produce higher accuracy position estimates in real-time, 

using the typical Kalman, Bayesian or particle filter implementations. The low power, low 

computational profiles of WSN are incompatible with this approach. As such, a balance 

between accuracy and computational complexity must be achieved in order to implement 

hybrid-positioning algorithms in low cost WSN. 

1.1 Evolution of Positioning Systems 

Positioning and navigation are an integral part of human nature, since our survival 

depended on the ability to find the way to shelter or food sources in the early ages of 

mankind. References or landmarks served the purpose of positioning and helped to identify 

important locations, such as the Stonehenge (3100 BC), which conveyed religious 
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significance to the location, or the Easter Island Statues (1680 BC), which symbolize social 

status of local tribe members. These landmarks not only served the local populations, they 

would also later be transposed to maps, facilitating navigation to anyone that ventured to these 

locations [6]. 

In maritime navigation, early sailors such as the Polynesian tribes did not have maps, 

and as such they observed the surrounding nature for references, such as the species of birds 

and fish and their migrations, the sky and the sea. The invention of the compass dates back to 

the Han Dynasty (204 BC) and the first Chinese navigators began to use the compass (1040 

AC) to establish sea routes, using the stars to find their positions. The compass would later be 

perfected by the Europeans, along with a number of instruments created to aid maritime 

navigation, such as the back staff, the cross staff, the kamal, the mariner’s astrolabe, the 

quadrant, the octant and the sextant. These instruments were used to measure altitude, angle 

(which would later be known as latitude) and to determine the distance from the Earth’s poles. 

Earth mapping using latitude and longitude coordinates was envisioned by Roger Bacon 

(1267 AC) in his work Opus Majus. A great leap in maritime navigation occurred when 

timekeeping was introduced by means of the sand hourglass and later the mechanical marine 

chronometers, which allowed navigators to find the longitude coordinate, which in 

conjunction with the latitude pinpointed the exact location of a vessel at sea. Timekeeping 

also brought with it the first forms of dead reckoning (DR), where navigation was 

accomplished by following charts containing compass orientations, keeping track of direction, 

speed and time spent on each heading. The accuracy of the position estimate was closely tied 

to the accuracy of timekeeping, with both evolving over time [6]. DR is reliable over short 

distances since, apart from measurement errors, it is also dependent on other factors (such as 

wind speeds and currents), which affect the estimation of distance traveled. 

Air navigation was partly accomplished using the instruments and techniques 

discovered and perfected in the maritime navigation. Yet, due to the time to compute a 

position fix and the harsh conditions aboard an airplane, many of the methods used before 

were impracticable in the aircraft context. As such, improvements in the sextant led to the 

bubble sextant, which allowed its use without visibility to the horizon. The first radio systems 

from the late 19th century also enabled direction finding by means of directional antennas. At 

the time, precise aerial navigation, especially in long-range flights, required careful 

coordination using astronavigation, DR and radio direction finding techniques. The evolution 

of timekeeping, namely from mechanical based timekeeping (accuracy of seconds) to 
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frequency based timekeeping (accuracy of microseconds) yet again revolutionized the process 

of navigation. This improvement, along with the discovery of radio waves theorized by 

Maxwell and demonstrated by Hertz, paved way for the radio detection and ranging 

(RADAR) system, enabling the detection of obstacles, their distances and speeds due to the 

reflection of radio signals and the Doppler effect. RADAR also enabled mapping of 

landforms while airborne.  

Military applications were the main driver for air navigation systems, with several 

hyperbolic navigation systems being implemented during World War I and World War II. By 

finding the time difference between signals from different base stations, and with the help of 

hyperbolic charts, a position fix could be achieved. Among these systems are GEE, DECCA, 

LORAN (Long Range Navigation) and SHORAN (Short Range Navigation). Positioning 

computers started to replace the navigator’s job aboard military aircrafts in the early 1950s, by 

combining astronavigation systems with inertial navigation units. 

Navigation in air, land or at sea can generally be treated as a two-dimensional 

problem, where the altitude or depth is treated as a separate dimension. Space exploration 

brought with it the need to find the position in three dimensions, with the added complexity of 

the much larger distances to travel. Inertial navigation evolved during this time, with laser 

gyroscopes and atomic clock precision, yet it was mainly used as a fallback system when 

communications with Earth were not possible. Tracking was accomplished by base stations 

situated in strategic points on Earth, which measured the time-of-flight of radio signals 

travelling to the probe. Transit [7], the first satellite navigation system, emerged during the 

space exploration age, and it was based on the Doppler effect. Using control stations on Earth, 

the position of the satellite was known. A device that received the radio signal from a satellite 

would be able to find its relative velocity. With the information of the satellites position, a 

position fix for the device was possible, with accuracy of 200 meters. By implementing 

passive systems, neither scalability nor privacy was an issue, and it was made available to 

serve both military and civilian purposes. A subsequent iteration of the satellite navigation 

system, based on the time of arrival of radio signals, would replace Transit and come to be 

known as GPS, combining atomic clock sources and a constellation of at least 24 satellites 

covering the entire globe. Further enhancements to GPS include the wide area augmentation 

system (WAAS) and the differential GPS (DGPS), which further improve GPS accuracy to 

the sub-meter range. 



Introduction Chapter 1 

 

 7 

Clearly satellite based systems such as the GPS play a crucial role in societies 

nowadays. Its evolution and dissemination has been constantly growing, due to the 

advantages that it brings, and the increasing efficiency in the most diverse fields, both civilian 

(from transportation to agriculture) and military (from tactical soldiers deployment to guiding 

a missile to its target). While an enormous effort has been made in perfecting outdoor 

positioning, only recently indoor positioning has begun to receive attention of the research 

community. 

1.2 Motivation and Objectives 

In outdoor environments, GPS is the standard positioning system and is capable of 

offering good quality of service to the majority of applications. However, in indoor 

environment, GPS cannot be used due to the high attenuation of satellite signals when not in 

LOS. Another issue associated with GPS is energy consumption. The integration of these 

devices in WSN is prohibitive due to the low power profile associated with these networks. 

Indoor positioning systems can be implemented in the most varied contexts, such as in 

hospitals, to locate equipment and guide patients to necessary resources, or in large public 

areas like museums, to guide tourists. Such a system can also be used in a gymnasium to 

indicate which machine a user should go next to proceed with his training, in a conference 

venue to find a specific presentation, or to monitor and prevent theft. Security and privacy 

issues are very important in positioning systems, since users may not want to be locatable in a 

specific location or interval in time. This information is therefore very user-sensitive and can 

influence directly in the acceptance of the systems [8].  

The market of indoor positioning is expected to have an exponential growth in the 

near future, according to several reports [9], [10]. Many use cases have been envisioned, 

where new location based services connect users to products, services and to other users, in 

ways never seen before. Yet, due to the lack of a universal indoor positioning technology that 

addresses every important aspect such as cost, efficiency, accuracy, availability, security and 

privacy above all, the boom that was expected to have already happened is still yet to come. 

Several implementations of indoor positioning systems exist. Some take advantage of 

existing infrastructures such as WLAN, while others use magnetic variances across a building 

or special beacons with ranging capabilities. Fingerprinting based solutions (also known as 

map matching) using WLAN or magnetic variance, depend on an offline phase where data 
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from the location is collected and compiled into a database. This is a sensible and 

cumbersome task, which influences the systems final accuracy. Furthermore, when changes 

occur in the environment, the database information collected needs to be rebuilt to reflect the 

new environmental changes. On the other hand, solutions that use special beacons need an 

infrastructure of their own, which implies additional costs to implement positioning 

capabilities. 

The study, development and test of an indoor positioning system for WSN is proposed 

in this work. The system combines two independent methods of position estimation, in order 

to maximize accuracy. Since low power is an important characteristic, RSS will be used as 

basis for position estimation, to which an inertial measurement unit (IMU) is added. The latter 

typically uses filters that require high computation capabilities (e.g., Kalman filters). 

Therefore we seek to adapt this system to WSN, relaxing computation requirements using 

simplified filtering techniques. A generic implementation of a positioning system without 

limiting its application to a specific area (such as sports, healthcare or assisted living) is 

desired; as such, we explored the achievable accuracy with current off-the-shelf components 

and assessed their integration in order to increase overall accuracy. The indoor positioning 

system is integrated into a body posture monitoring system which also uses an IMU to find 

the orientation of each body segment [11]. The following objectives are pursued: 

 Study of a relative positioning approach, having in consideration the body posture 

monitoring system, which allows the determination of the orientation of each user 

within radio range. 

 Implementation and characterization of a positioning system based on RSS. 

 Study and implementation of dead reckoning techniques to improve system accuracy. 

These techniques make use of an inertial measurement unit. Since low power is a 

requirement of WSN, relaxed computational filters are pursued and implemented. 

 Individual testing of the positioning capabilities of each technique. Evaluation of 

performance individually and also combining both RSS and DR techniques, having in 

mind the possible detection of improvements to implement. 
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1.3 Thesis Outline 

The remainder of this thesis is organized as follows: Chapters 2 and 3 present the 

state-of-the-art regarding positioning technologies, systems and algorithms, WSN positioning, 

DR and sensor fusion. Chapter 4 reviews the hardware platform and methods used to 

implement and test the RSS-based positioning solutions proposed. Chapter 5 studies, 

implements and tests modifications to RSS-based positioning, having in account the body-

induced effects. Chapter 6 studies, implements and tests an inertial navigation system applied 

to the user’s body. Chapter 7 presents the conclusions and future work. 
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Chapter 2  

Positioning Systems and 

Algorithms in Wireless Sensor 

Networks 

A wireless sensor network (WSN) consists of small, low-cost, resource-constrained 

devices equipped with sensing and communication capabilities, with the ability to form ad-

hoc networks in order to sense the environment. The WSN employed in this work is a low 

rate-wireless personal area network (LR-WPAN), which, according to the definition presented 

by the IEEE 802.15.4 standard, is “a simple, low-cost communication network that allows 

wireless connectivity in applications with limited power and relaxed throughput 

requirements” whose main objectives are “ease of installation, reliable data transfer, short-

range operation, extremely low cost and reasonable battery life” [1]. Low power requirements 

are common in these networks, since nodes are battery operated and longer operation times 

are desirable.  

A WSN is generally composed of two node types, which in IEEE 802.15.4 

terminology are called full function devices (FFD) and reduced function devices (RFD). The 
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FFDs, apart from sensing tasks, can serve as network coordinators, facilitating message 

exchange between other nodes and other networks to which they have access. RFDs, on the 

other hand, are nodes that cannot be assigned this network management task, and their sole 

purpose is to collect data from the environment. This data can be pre-processed by the node 

prior to its transmission, and the resulting information can be used in order to act on the 

environment if needed (e.g., averaging temperature readings from a sensor and using this 

information to control room temperature to a specified level). FFDs and RFDs are also known 

as sink and source nodes respectively, since RFD nodes typically are the source generating 

data for the sink to process or relay to other entities. These networks can operate in star 

topology, where all nodes relay messages to a central node, or peer-to-peer topology, where 

every FFD can communicate with other FFD. In both topologies, RFDs can only 

communicate with a FFD to relay messages. Figure 2.1 exemplifies the topologies described 

in [1]. 

 

Figure 2.1: Star and Peer-to-peer topology examples [1] 

A sensor node is a battery-operated device composed by a microprocessor, memory, a 

radio interface and a sensor interface. Microprocessors used in WSNs are generally low 

power and have low computation capabilities (8 bit microprocessors are common), running at 

frequencies in the order of tens of megahertz. The memory available is usually also limited, in 

the range of kilobytes. A wide range of sensors can be employed to sense data, which is 

transmitted to other entities through the radio interface. 

Low power requirements are often achieved by careful coordination of the necessary 

hardware for the task at hand. The microprocessor can be put in a sleep state or a specific 

sensor can be turned off for a certain amount of time before it is used again. The radio 

interface, which is typically the component that exhibits higher power consumption, can be 

turned off to save energy during periods when communications are not needed. Low power 
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requirements are also addressed at the medium access control (MAC) protocol level, with 

beaconed networks implementing idle times and guaranteed time slots for dedicated 

transmissions, which avoid wasting precious machine cycles of high power consumption 

while running contention access algorithms. Depending on data throughput and computation 

load, these mechanisms allow the extension of operation time for months of uninterrupted 

operation on a single coin cell battery. 

 

Figure 2.2: Sensor Node Architecture. 

A positioning system (PS) allows the determination of the spatial location of an entity 

(user or device), using measurements collected from the environment. Knowledge of the 

position of sensor nodes enables a wide range of applications, from tracking to event 

monitoring and routing control. 

2.1 Positioning System Taxonomy 

Taxonomies abound when classifying PSs. In [2], systems are classified into exact and 

approximate positioning, where the first is based on precise measurements of distances or 

angles between sensor nodes and reference nodes (also known as anchor nodes), incurring in 

extensive calculations and high network traffic; and the latter allows relaxed calculations, 

producing estimates with lower accuracy, but exhibiting lower network traffic.  

The work in [3] classifies systems as: relative or absolute PSs, according to the type of 

position estimation produced; and autonomous-based or infrastructure-based positioning, 

depending on whether the node itself or an external resource computes the location, which 

exposes privacy and bottleneck issues and highlights the balance between computation costs 

and network overhead. The autonomous or infrastructure-based concepts are extended in [4] 

with the direct and indirect methods, where the entity that computes the location shares it with 

the device or external resource and vice-versa. The authors in [5] refer to this classification as 
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centralized or distributed positioning methods, and provide further classifications. Distributed 

methods are classified as either anchor-based or anchor-free, where in anchor based systems, 

anchors are deployed with the knowledge or with the ability to determine their own position 

autonomously, while in anchor-free methods, nodes compute their positions relative to other 

nodes in communication range. Anchor-based methods are yet again further classified into 

range-based and range-free methods, which are defined as the exact and approximate 

positioning methods from [2]. Figure 2.3 presents an overview of the taxonomies described. 

 

Figure 2.3: Classification of positioning methods in WSN. 

In [6] PSs are classified according to the signals used to collect measurements, which 

can be infrared (IR), ultrasound (US), radio frequency (RF), vision-based and acoustic. 

2.2 Performance Metrics in Positioning Systems 

Performance metrics present the basis of comparison among algorithms [7]. The 

performance metric that is most commonly emphasized in PSs is accuracy, which is generally 

measured as the mean Euclidean distance between the estimated position and the true 

position. Precision measures the consistency of results obtained when positions are estimated 

and, along with accuracy, a cumulative distribution function (CDF) is usually presented, 

denoting a given accuracy for a specific percentage of position estimates (e.g., an accuracy of 

3.2 m with 90% probability).  

The area of coverage of a system is the designated area where the PS is expected to 

provide service. It can be a single room, an entire building, a city or worldwide coverage. In 

[3], scale is defined as the area per unit of infrastructure and number of objects within this 

area that the system can locate. Adding more infrastructure units increases the area of 

coverage. 
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Positioning frequency is an important metric for applications such as navigation in 

real-time. Higher frequencies imply higher computational costs, which lead to higher energy 

consumption. The complexity of a positioning solution limits positioning frequency, along 

with sensor sample rate and microprocessor frequency when estimates are computed 

autonomously. When estimates are computed by the infrastructure, the limit is imposed by the 

network latency (bit rate, bit error rate and medium access mechanisms and number of hops) 

along with the time the server takes to compute the estimate. As pointed out in [7], 

positioning frequency is an important indicator of complexity. 

The cost metric can be related to energy and computational costs, but also related to 

the infrastructure, the positioning device and installation or maintenance of a PS. A low 

power positioning solution can decrease the costs associated with rechargeable batteries and 

reduce computation capability requirements associated with the microprocessor.  

Security and privacy are metrics highly sensitive to users, since the whereabouts of a 

person are often desired to remain private and in full control of the user. 

If a PS is to be used by a large number of users, scalability issues can arise, especially 

when resources are shared among users (e.g., a server which computes location of devices). 

Devices that compute the location estimate autonomously, such as GPS devices, avoid this 

kind of issue.  

Robustness is the ability to cope with erroneous or absent measurement information. If 

the PS is a hybrid solution between different positioning technologies, robustness is also 

related to the seamless integration of all technologies involved, where in the advent of failure 

from one positioning technology, the system should be able to cope with this issue and be 

able to produce position estimates. 

The accuracy and precision metrics are a result of the positioning measurements and 

algorithms used to compute position estimates. Range-based measurements are also known as 

geometric measurements, since they build on geometric shapes to estimate parameters such as 

distances or angles. 
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2.3 Overview of Range-Based Measurements and 

Algorithms 

Time of arrival (TOA), received signal strength (RSS) and angle of arrival (AOA) are 

the most common measurement types used in PSs. TOA and RSS are most commonly found 

in WSNs. Despite the AOA measurement being a well-known technique, it is the least 

common type in WSNs. Each type offers distinct performance metrics in terms of cost, energy 

consumption, accuracy and precision.  

An important aspect in PSs is the error associated with the employed measurement 

type. The Cramer-Rao lower bound (CRLB) is often used to characterize the achievable 

precision using a specific measurement method. This bound on variance can be seen as the 

best possible precision a certain positioning algorithm can achieve. As such, this enables 

algorithms to be benchmarked, according to how close the positioning estimate is to the best 

precision possible [8]. In the simplest case where the parameter to be estimated is a scalar, the 

bound is given by: 

 
𝜎�̂�

2 ≥
1

−𝐸 [
𝜕2
𝜕𝜃2 ln[𝑝(𝑋; 𝜃)]]

 
(2.1) 

where 𝜃 is an estimator of the true parameter 𝜃 (which could be, for example, a distance or an 

angle), E is the expected value operator, p is the probability distribution function  (PDF) 

associated with the random measurement X. The PDF is derived from the respective 

measurement model, reflecting the nature of the errors associated with each measurement 

type. Typically the noise present in the random measurement X is modelled through a zero-

mean Gaussian random variable.  

2.3.1 Angle-of-Arrival and Angulation 

The AOA technique determines the angle between an anchor node and a sensor node. 

A directional antenna or an array antenna can be employed to determine the AOA of a signal 

by analysing the phase or amplitude difference received by each antenna element. AOA is 

also possible to be determined by analysing the phase or time difference of an ultrasound 

signal detected by multiple receivers [9], or by means of radio interferometry [10]. This 

special antenna usually increases node cost and is typically employed in anchor nodes, which 
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are usually in lesser number than sensor nodes. Figure 2.4 depicts an example of the 

angulation algorithm, using two AOA measurements. 

 

Figure 2.4: Angulation example with known anchor coordinates. 

Given non-collinear locations among sensor and anchor nodes, two angle readings and 

known anchor node coordinates are sufficient to obtain a position estimate in 2D using 

angulation. The angles measured are given according to a reference orientation illustrated as 

the 0º direction in Figure 2.4, which could represent the orientation of the magnetic north (or 

true north). The angles and the coordinates of the sensor node and anchor nodes are related by 

equation (2.2) [11]. 

 (𝑥𝑖 − 𝑥) 𝑠𝑖𝑛 𝛼𝑖 = (𝑦𝑖 − 𝑦) 𝑐𝑜𝑠 𝛼𝑖 (2.2) 

Using the linear least-squares (LLS) method, multiple measurements are rearranged 

into the matrix form AX=B, with X being the column vector containing the estimated sensor 

coordinates [x, y]T, where: 

 𝑨 = [
− 𝑠𝑖𝑛 𝛼1 𝑐𝑜𝑠 𝛼1

⋮ ⋮
− 𝑠𝑖𝑛 𝛼𝑛 𝑐𝑜𝑠 𝛼𝑛

] (2.3) 

and: 

 𝑩 = [
𝑦1 𝑐𝑜𝑠 𝛼1 − 𝑥1 𝑠𝑖𝑛 𝛼1

⋮
𝑦𝑛 𝑐𝑜𝑠 𝛼𝑛 − 𝑥𝑛 𝑠𝑖𝑛 𝛼𝑛

] (2.4) 

According to the LLS algorithm formulation, the solution is found using: 

 𝑿 = (𝑨𝑻𝑨)−𝟏𝑨𝑻𝑩 (2.5) 

The LLS method is also a solution for data fusion when more than two measurements 

are available. It is important since this is a closed form method that minimizes a set of 
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observations and produces a result even when the angles sensed by the anchor nodes do not 

provide a unique intersection point due to noise factors that influence the process. 

The CRLB provides intuition on the achievable limit for AOA measurement systems. 

Considering a uniform linear array (ULA) with Na elements, such limit is presented in [12] as: 

 √𝑉𝑎𝑟(𝜓) =
√3𝑐

√2𝜋√𝑆𝑁𝑅𝛽∆√𝑁𝑎(𝑁𝑎
2 − 1) 𝑠𝑖𝑛 𝜓

 (2.6) 

where ψ is the AOA estimate, c the speed of light, SNR the signal-to-noise-ratio for each 

element, β the effective bandwidth and Δ the spacing between elements. Since small antennas 

are desirable for WSN applications, increasing Δ is not usually an option. Precision of the 

AOA measurement increases with higher SNR, signal bandwidth and number of elements. 

The best precision is also obtained when the antenna is perpendicular to the signal direction. 

The precision of the angle estimate will depend on directivity of the antenna, multipath 

propagation and shadowing conditions [13]. When under non-line-of-sight (NLOS), the 

multipath components of the signal can induce very large errors, since they can arrive from an 

arbitrary angle. 

A different approach is considered in [14], where anchor nodes are equipped with an 

array of antennas which create a rotating beacon signal using phase adjustments. Sensor nodes 

keep track of the time between the initial detection of the rotating beacon and its respective 

peak power, in order to find the angle to the anchor node.  

The main challenge for AOA systems in WSN relates to hardware complexity, since 

nodes in a WSN are usually constrained by low power and low cost requirements. Balance 

between complexity and accuracy is very important, and since this balance is difficult to 

achieve in AOA systems, they are less common in WSN. Furthermore, AOA is usually 

applied in outdoor scenarios. 

2.3.2 Time-of-Arrival and Lateration 

The TOA technique produces distance estimates by keeping track of the time that a 

signal takes to travel from one point to another. The distances obtained for each anchor will 

narrow the location of the sensor node to a circumference with radius equal to the distance 

estimated. Given three non-collinear measurements, the intersection of the three 
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circumferences pinpoints the sensor location. Consider the 2D case positioning presented in 

Figure 2.5. 

 

Figure 2.5: Lateration example with three anchor nodes. 

The distances estimated for each anchor node are related by equation (2.7) [11]. 

 (𝑥𝑖 − 𝑥)𝟐 + (𝑦𝑖 − 𝑦)𝟐 = 𝑑𝑖
2 (2.7) 

To find a solution to this system, first a linearization of the system of equations is 

obtained by subtracting the distance equation of the first anchor node from the other 

equations, which cancels the unknown squared terms. 

 𝑥𝑖
2 + 𝑦𝑖

2 − 𝑥1
2 − 𝑦1

2 − 2𝑥(𝑥𝑖 − 𝑥1) − 2𝑦(𝑦𝑖 − 𝑦1) = 𝑑𝑖
2 − 𝑑1

2 (2.8) 

A linear system of the form AX=B is obtained, which can also be solved using the LLS 

method from equation (2.5). The distance estimates can also be obtained by using a 

propagation model to convert RSS to distance, serving the result as inputs of the lateration 

algorithm. Detailed analysis of RSS systems is presented in section 2.4.  

The CRLB for TOA measurements is presented in [12] as: 

 √𝑉𝑎𝑟(𝜏) =
1

2√2𝜋√𝑆𝑁𝑅𝛽
 (2.9) 

where τ represents the TOA estimate, SNR is the signal-to-noise-ratio and β is the signal 

bandwidth. This result reflects the reason behind the high precision of UWB systems, since 

precision increases with higher signal bandwidths, which is precisely one of its features. 

Clock synchronization is necessary in order to measure the TOA and the granularity of 

the clock sources must be several orders higher than the time interval being measured. In the 
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case of ultrasounds this issue is not as critical as with the speed of light, where an error of 1 

nanosecond is equivalent to 30 cm distance error. The clock synchronization requirement can 

be removed if a two-way ranging procedure is employed, such as the one described in the 

IEEE 802.15.4a standard [15]. The clock accounting for time will always be the same, where 

an additional message exchange and cooperation of a second node is necessary. Another 

strategy that relieves nodes from clock synchronization is used in the Cricket system [16], 

where a RF and an ultrasound message are transmitted concurrently. As soon as the RF 

message is detected, a timer starts counting the time until the arrival of the ultrasound pulse. 

By neglecting the RF propagation time, which is much smaller than the ultrasound, the RF 

message itself is used as a synchronizing event. The speed of the traveling signal needs to be 

known a priori, and since the speed of sound depends on temperature, [17] also implements 

temperature adjustments by sensing the temperature in both nodes when performing the 

distance measurement. 

NLOS conditions also introduce errors in the estimation, although with lesser impact 

than in the AOA case. UWB is a popular approach in TOA systems, since its large bandwidth 

and short pulse duration enables the detection of the various multipath components of the 

signal [13]. Algorithms and strategies to select which multipath component to use in the 

distance estimation process is an on-going research topic. 

2.3.3 Time-Difference-of-Arrival and Hyperbolic Lateration 

The time-difference-of-arrival (TDOA) measurement is similar to the TOA and is 

typically used for tracking a target emitting a signal, where instead of measuring the time 

from a single anchor node, a time difference is measured from two anchor nodes 

simultaneously. This determines the position of the tracked sensor node on two hyperbolas 

with foci centred at the anchor nodes. Individual measurements of TOA from each of the 

anchor nodes can be tagged with a timestamp and relayed to the node computing the position 

estimation [5], [13]. Clock synchronization between anchor nodes is implicit; nonetheless 

relieving the sensor node from the synchronization task, which happened in the case of TOA. 

Three anchors are necessary to estimate the position of a sensor node in 2D using TDOA 

measurements.  

Consider the example presented in Figure 2.6. The TDOA is a measurement of time, 

which when multiplied by the propagation velocity will yield the difference in distances [18].  
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Figure 2.6: Hyperbolic lateration example with three anchor nodes. 

Using anchor 3 as reference for this example, the measurements depicted in Figure 2.6 

produce an equation of the form [11]: 

 𝑑3,𝑛
2 + 2𝑑3,𝑛𝑑𝑛 = 𝑥𝑛

2 + 𝑦𝑛
2 − 𝑥1

2 − 𝑦1
2 − 2𝑥(𝑥𝑛 − 𝑥3) − 2𝑦(𝑦𝑛 − 𝑦3) (2.10) 

A system of the form AX=B is obtained, where X includes the coordinates of the 

sensor node and the distance d3, since it is also an unknown. The solution can be found using 

equation (2.5). 

In [19] the CRLB for TDOA is investigated, where it is concluded that it cannot 

perform better than TOA case. As such, bandwidth and SNR are two key parameters to 

improve precision in this type of system. 

Similar to the TOA case, the synchronization requirement can be removed under 

certain conditions. Although not adequate to WSNs, using acoustic signals and recording 

these signals, the method described in [20] removes the synchronization requirement by 

emitting a second signal, a known time interval after receiving the first signal. The same 

concept of second signal transmission with known offset is used in [21]. 

2.3.4 Radio Interferometry 

Determining the position using radio interferometry (RI) technique can be 

accomplished by using the readily available RSS indication present in commercial off-the-

shelf (COTS) devices to measure the phase difference of two radio signals. This phase 

difference is then used to determine distance between nodes. RI stems from the same 

principles governing optical interferometry, and it is of interest since it is able to achieve high 

accuracy and long range simultaneously [22]. The method was first applied to WSN 
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localization in the RIPS (radio-interferometric positioning system) [23] where two anchor 

nodes emit pure sinusoids at slightly different frequencies, creating a compound signal 

envelope with low frequency, that can be measured using the RSS indicator. Consider Figure 

2.7 as an example. 

 

Figure 2.7: Interferometry ranging example. 

Anchor 1 and 2 transmit pure sinusoids synchronized in time, while anchor 3 and the 

sensor node receive the resulting signal by sampling the RSS indicator. A low-pass filter is 

applied to the RSS signal in order to remove the high frequency components. Assuming the 

two sinusoidal signal frequencies are lesser than 2 kHz apart, and the distances between the 

two emitters and two receivers is smaller than 1 km (100 m is the usual range for WSN 

radios), the resulting signal’s relative phase offset is related to the distance between the 

receiving nodes by equation (2.11) [23]. 

 𝜗1 − 𝜗2 = 2𝜋 (
𝑑1,𝑠 − 𝑑1,3 + 𝑑2,3 − 𝑑2,𝑠

𝑐/𝑓
) , (𝑚𝑜𝑑2𝜋) (2.11) 

The phase difference between the signals is directly related to the carrier frequency f 

and the distance between the transmitting and the receiving nodes. By collecting multiple 

measurements between nodes in the network, the phase ambiguity can be removed. In [23] a 

broadcast message sent by one of the sender nodes serves as synchronizing event for each 

participating node, after which local timers are used to keep time synchronization. The 

calibration of the radios to the specific frequency follows, after which both senders start to 

transmit the pure sinusoids. This method achieves an accuracy of 5 cm in an area of 18 m by 

18 m, with a latency of 80 minutes, due to multiple combinations of sender/receiving nodes in 

a 16-node network. 
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Authors in [24] present SRIPS (stochastic RIPS) using the 2.4 GHz frequency band. 

SRIPS eliminates the calibration phase of [23] by employing a stochastic approach and 

improve the time taken to perform a single measurement, which reduces the time to compute 

a position estimate to around 10 minutes. 

The application of RIPS and SRIPS is not suitable for indoor environments due to 

multipath propagation effects. To tackle indoor environments, authors in [25] propose space-

time RIPS (STRIPS), which uses a millimetre wave (MMW) system operating in the 60 GHz 

frequency band employing space-time coding, although only simulation results are presented. 

2.4 RSS-Based Indoor Positioning Systems 

RSS systems are known for the low reliability when inferring distances from 

measurements. Filtering techniques are a solution for dealing with RSS reliability under noisy 

environment conditions. These techniques also stand as the common solution for integration 

of heterogeneous PSs, in order to provide more accurate location estimation. Kalman filters 

[26] and particle filters [27] are the usual approaches; however, since these solutions need 

high computational capacity, they are usually not compatible with WSNs. Instead, filtering is 

typically accomplished by averaging multiple measurements, thus positioning accuracy is 

sacrificed in the trade-off for lower computational demands, longer lifespan of sensor nodes 

and faster positioning update rates when desired. Hybrid positioning techniques are a popular 

research topic in WSN, due to devices combining a radio interface along with sensing 

capabilities. Data is gathered from several sensors and fused with RSS positioning techniques 

in order to improve accuracy [28]–[30]. 

Map matching, range-free positioning and range-based positioning are the main 

methods used to locate nodes in PSs based on RSS. Map matching systems are a popular 

approach in RSS positioning in wireless local area networks (WLANs), which uses already 

deployed network infrastructure without needing additional components. Range-free 

positioning uses radio parameters such as link quality indication (LQI), RSS or node 

connectivity to infer proximity to a certain known reference point. Range-based systems use 

RSS readings as input for propagation models that estimate distances between devices in a 

network.  
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2.4.1 Propagation Models 

Distance inference through signal attenuation use propagation models that depend 

heavily on the environment where the system is implemented. Some propagation models are 

better for indoor settings while others are more appropriate for outdoors environment. A 

general overview of various propagation models can be found in [31]. 

Several efforts have been made to characterize radio signal propagation during the 

GSM (Groupe Spécial Mobile) system’s evolution, through the COST 231 project [32]. For 

indoor settings, the one-slope [33] and the multiwall [34] propagation models are frequently 

used in the state-of-the-art. The one-slope equation is defined in (2.12). 

 𝑅𝑆𝑆𝑂𝑆(𝑑) = 𝑅𝑆𝑆(𝑑0) − 10 × 𝑛 × 𝑙𝑜𝑔 (
𝑑

𝑑0
) + 𝜒𝜎 (2.12) 

The parameter 𝑅𝑆𝑆(𝑑0) is the RSS at the reference distance 𝑑0 (usually 1 meter), 𝑛 is 

the path loss exponent (PLE) and 𝜒𝜎 is a Gaussian distributed random variable with zero-

mean and environment dependent variance. The multiwall model is defined in equation 

(2.13). 

 𝑅𝑆𝑆𝑀𝑊(𝑑) = 𝑅𝑆𝑆𝑂𝑆(𝑑) − ∑𝑘𝑖 × 𝐴𝑡𝑡𝑖 (2.13) 

The multiwall model uses the one-slope model attenuation and includes the effect 

from walls obstructing LOS communication between devices. The parameter 𝑘𝑖 represents the 

number of walls of type i, and 𝐴𝑡𝑡𝑖 the respective attenuation value for type of wall i. 

These propagation models typically model the large-scale effects of signal attenuation. 

The main error source comes from the small-scale fading effect, which is the fast variation 

that occurs in a short time period. This effect happens when the environment changes or when 

the antennas are moved by a fraction of the wavelength. Multipath waves combine at the 

receiver in slightly different time instants, giving rise to a signal that can largely vary in 

amplitude and phase [35]. Small-scale fading is usually modelled through a Gaussian random 

variable as in equation (2.12). 

A typical approach used to obtain the values of the propagation model parameters is to 

apply linear regression techniques on data collected from a specific site. Least squares method 

can be applied to obtain values for the PLE parameter. A PLE of 2 is the reference path loss 

used in free space propagation. Authors in [36], [37] obtained PLE values above 2, which is 
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typical in non-line of sight (NLOS) or reflection dominated environments. Values below 2 are 

less frequent, but are sometimes found in literature [34]. 

The propagation model method stands as a fast and cost efficient way to obtain an 

estimate of distance between nodes in a network. The main disadvantage is the low accuracy 

in indoor environment. When devices are worn near or on the human body, propagation 

models performance further degrades. Attenuations as high as 15 dB due to human body are 

reported when compared to the line-of-sight (LOS) case [38], thus affecting distance 

inference. Authors in [38] argue that models accounting for the impact of the human body 

might be developed, using exponential interpolation from data collected in test measurements. 

Body orientation is of extreme importance when accounting for body attenuation factor, yet a 

system that incorporates the body effect is seldom seen in the literature. 

2.4.2 Map Matching 

Radio propagation complexity is addressed in map matching by collecting empirical 

data from the location were the PS is to be implemented. This data is later used to find the 

position of a node. Two phases compose the system originally implemented by Bahl et al. 

[39]. In the offline phase, data relating position and RSS from access points (APs) is gathered 

from the site into a database, in order to create a radio map. In the online phase, mobile nodes 

report to a server the RSS from APs in range. The server compares the mobile node readings 

to the radio map signatures so a match (or the closest to) can be found, thus pinpointing the 

mobile node’s position. Equation (2.14) is used in the search for the smallest distance in 

signal space. 

 𝐷𝑠𝑠 = [∑|𝑅𝑀𝑎𝑝(𝑖) − 𝑅𝑠(𝑖)|
𝑝

𝑁

𝑖=1

]

1
𝑝

 (2.14) 

The parameter N is the number of anchor nodes in range, 𝑅𝑀𝑎𝑝(𝑖) is the RSS stored 

for anchor i in a calibration point of the radio map, 𝑅𝑠(𝑖) is the RSS sampled in the online 

phase for anchor i and p is the norm used, e.g., for p = 2, the signal space distance is the 

Euclidean distance between the calibration point and the mobile node’s RSS reading. 

Equation (2.14) is computed for all calibration points and the nearest neighbour (NN), which 

is the calibration point that produces the smallest Dss, is assumed as the position of the mobile 

node. A variant of this method is to find K NNs (KNN) instead of a single NN, averaging the 

coordinates of the K points to produce the position estimate. In [40] the KNNs are weighted 
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by the inverse of the distance in signal space (WKNN), improving the position estimates. The 

WKNN position estimate is obtained using equation (2.15):  

 �̂� =
∑ 𝑤𝑖

𝐾
𝑖=1 ⋅ 𝑷𝒊(𝑥, 𝑦)

∑ 𝑤𝑖
𝐾
𝑖=1

; 𝑤𝑖 =
1

𝐷𝑖
 (2.15) 

with Pi being the coordinates (x and y in the 2D case) of each of the K calibration points found 

during the search. The purpose is to weight heavier the readings that are closer to the 

calibration points collected during the offline phase. If the same weight were given to all 

neighbours, a simple average would be obtained from the K calibration points closest to the 

reading. 

Apart from the centralized approach, the disadvantage of map matching is that 

changes in the environment after the radio map has been built will affect the positioning 

accuracy. A comprehensive study on fingerprinting is presented in [41]. Authors conclude 

that map density translates to higher accuracy with a nonlinear behaviour in increasing the 

number of calibration points. The direction faced when collecting samples, also studied by 

Bahl et al., is crucial and greatly improves system accuracy. However, even though 

positioning algorithms in map matching search through a database of calibration points taken 

in different body orientations, these algorithms do not account for the direction the user is 

facing when an RSS sample is collected during the online phase. The use of sensors capable 

of producing orientation information (such as magnetic or gyroscope sensors) could bring 

accuracy improvements to these systems. 

The radio map creation is a cumbersome task when a large area is to be mapped, or 

when the density of calibration points is high. Approaches to facilitate the creation of a radio 

map in the offline phase have been conducted. Authors in [37] use propagation models to ease 

the process of radio map database creation, and consequently, adapting to changes in the 

environment through recalculation of the database. Another solution to the map creation phase 

is to use ray-tracing modelling to obtain the attenuation values of signal propagation [42]. 

2.4.3 Range-Free Positioning 

The range-free positioning method involves determining the proximity when a device 

or object is near a known location. Examples of technologies used in this method include 

physical contact detection by means of a sensor or monitoring wireless access points. In 

WSNs, this method is used typically under high node density.  
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The weighted centroid localization (WCL) method [43] is a well-known, low 

complexity algorithm with good robustness to noise that can be used along with any kind of 

metric that reflects proximity or distance between nodes. Bulusu et al. implemented this 

method in [44], where node connectivity was the metric used to infer distance. Given a set of 

beacon nodes in the network possessing knowledge of their location, the position of sensor 

nodes can be estimated by calculating the centroid of all beacon node coordinates for which 

the sensor is in range of. The main advantage of WCL derives from its simplicity, since the 

position estimate depends only on the number of anchor nodes in communication range. The 

position estimate is calculated using equation (2.16): 

 �̂� =
∑ 𝑤𝑖

𝐵
𝑖=1 ⋅ 𝑳𝒊(𝑥, 𝑦)

∑ 𝑤𝑖
𝐵
𝑖=1

; 𝑤𝑖 = |
1

(𝑅𝑝)𝑒
| (2.16) 

where Li are the coordinates of each anchor node and Rp is the radio parameter used to 

calculate the weight. The exponent e allows an adjustment of the importance of the weight 

applied to each anchor node’s Rp parameter. 

In [45], authors compare the LLS method against centroid-based algorithms. Results 

show that the centroid-based method outperforms the LLS method in precision and accuracy 

with lower complexity, when under an environment strongly affected by multipath 

propagation. 

LANDMARC [46] uses RSS readings in their approximate positioning method. Tag 

readers report RSS from moving RFID tags, along with RSS from reference tags. Reference 

tags are fixed and their RSS are used as means of comparison between that of the movable 

tags to infer proximity. In analogy to the Map Matching solution, the reference tags role is 

similar to the radio map in section 2.4.2. As such, an equation identical to equation (2.15) is 

used to find the position of a tracked tag, where the weight used is defined in equation (2.17): 

 𝑤𝑖 =
1/𝐸𝑖

2

∑ 𝐸𝑖
2𝑘

𝑖=1

 (2.17) 

where  Ei is equal to the distance in signal space from equation (2.14), using p = 2. In spite of 

the 1-meter accuracy attained by their method, the time to determine position of movable tags 

is incompatible with real time positioning. In a more recent work [47], authors further 

improve LANDMARC’s positioning error. Although their system has faster update rate than 

original LANDMARC, tags have a signal reporting cycle of 2 seconds, which is still 

incompatible with many real time positioning scenarios. 
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The approximate point-in-triangulation test (APIT) algorithm [48], despite not being 

designed as an indoor system, could also be used in such conditions. In APIT a sensor node 

chooses three anchors that are in communication range and tests whether it is located inside 

the triangular area formed by the anchor nodes. The test is repeated for other combinations of 

anchor nodes, and the final position estimate is given as the centre of gravity (COG) of the 

intersection of all triangles in which the sensor node found itself to be located. Only 

simulation results are presented, from which it is concluded that APIT is more susceptible to 

node density than WCL. 

The work in [49] implements improvements to the WCL algorithm by adjusting 

weights based on an adjusted LQI scheme. The feasibility of this method could be an issue 

under real WSN implementations, since the IEEE 802.15.4 standard [1] only requires this 8 

bit parameter to be modelled with at least eight unique values in the range from 0 to 255. In 

addition, the simulations presented in [49] implement the LQI value as a function of distance, 

when the LQI value is essentially a function of SNR and bit error rate. For example, the Texas 

Instruments CC2530 datasheet [50] recommends the implementation of LQI using a 

correlation measurement between the start of frame delimiter (SFD) and the first eight 

symbols of an incoming packet, along with two parameters (offset and slope) derived from 

empirical measurements of packet error ratio. The LQI can also be a function of the RSS, in 

which case no additional information could be derived from the LQI that is not already 

mapped in the RSS. 

Network-based positioning algorithms such as DV-Hop [51] can use the RSS as a 

metric to infer distance for each hop. Error is reduced in comparison with using hop 

information only. In [52], authors achieve less than 10% radio coverage error when using RSS 

measurements between hops. In contrast, authors in [53] discard a RSS solution due to its low 

reliability. These contradictory opinions are strongly related to the use case scenario of each 

positioning system implementation. The RSS positioning is a common first approach to 

localization in WSN, yet if care is not taken to account for the environment and/or body 

influence, performance may degrade significantly. 

2.5 Issues in RSS Positioning Systems 

The accuracy of the methods described in the previous section is directly related to RF 

propagation, depending on features like the topology of a building, construction materials, 
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objects, furniture and number of persons inside a room. When propagation models are used, 

the PLE is usually considered fixed for a specific scenario. This is also one of the main 

problems, since the PLE is a key parameter in distance estimation that varies with position 

and environment changes [54]. According to [55] a fixed environment-dependent PLE 

generally has smaller variance compared to the dynamic PLE obtained through an estimation 

process, which demonstrates the random nature associated with the propagation environment. 

PLE estimation suffers from multipath and shadowing effects, which are the main 

sources of error in RSS-based PSs, especially in indoor environments. Multipath happens 

when the radio wave travels the propagation medium interacting with objects along the way, 

suffering attenuation, reflection, scattering and diffraction [56]. Multiple copies of the signal 

arrive at the receiver with different attenuations, delays and phase-shifts, which are added 

constructively or destructively depending on each signal phase. The multipath effect depends 

on the number of objects, dimensions and dielectric material properties present in the signal’s 

propagation path. This effect is also commonly termed small-scale effect or fast fading [57], 

due to the fast RSS variations over small distances (in the order of the wavelength). 

Shadowing happens when the radio wave travels through different obstacles or 

mediums, suffering attenuation in the process [35]. Shadowing and path loss (the gradual 

decay of signal power along distance) are also called large-scale effects or slow fading, due to 

the slower RSS variations over greater distances. These large-scale effects are always present 

whether static or dynamic scenarios are considered. For greater distances between transmitter 

and receiver, the probability of the signal encountering a greater number of objects is also 

higher, thus it is common to find in literature increasing variances for higher distances 

between devices.  

Ray-tracing techniques are a common tool used in network planning and deployment, 

in order to determine efficient device placement in a building [58]. This type of tool can 

generate a map of radio propagation, which can be used in producing more accurate distance 

estimates. Due to the dynamics of indoor environments, it is unfeasible to have a radio map 

being constantly updated by a ray-tracing algorithm and deployed to devices in a particular 

room.  

RSS dependence on the environment is what makes indoor positioning a challenging 

task, due to the accuracy of the position estimate being a function of so many variables, which 

can vary widely from one indoor scenario to another. In practice, since indoor propagation 
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environment complexity is very high, an empirical model such as the one-slope model from 

equation (2.12) is used extensively [56]. It is a simple model that captures the essence of the 

signal decay with distance. Note that by using a constant power at the reference distance, the 

transmission power is implicitly assumed as constant. 

In [19], [59], theoretical precision bounds are studied for RSS positioning, which for a 

single RSS reading are given by equation (2.18): 

 √𝑉𝑎𝑟(𝑑) ≥
𝜎𝑑 𝑙𝑛 10

10 ∙ 𝑛 ∙
 (2.18) 

where d is the distance between transmitter and receiver, n is the PLE and σ is the standard 

deviation of the shadowing effect from equation (2.12). This theoretical framework allows 

insight over the properties that affect precision. From equation (2.18) we can denote that the 

RSS variance increases with the distance, such as reported in [8], [18], [43], [60]–[62] and 

decreases with increasing values of the path loss exponent n, such as observed in [63]. The 

bound itself may be unachievable yet it serves as an overall precision mark that positioning 

algorithms can be compared to. 

In practical situations, indoor conditions and the proximity of the user’s body 

significantly hinder the propagation model’s correlation with distance. Furthermore, RSS 

variance only occurs when the environment is dynamic, e.g., when any surrounding objects or 

transmitter and receiver devices are moved. When every object and both the transmitter and 

receiver devices are static, the multipath effect does not change in time, and the RSS is given 

by the sum of all copies of the original signal that the receiver can detect. For example, a 

receiver placed 10 meters away from a transmitter will experience the same RSS variance as 

when a distance of 2 meters separates the receiver and transmitter, which stands in direct 

conflict with the CRLB in equation (2.18). This variance property is what enables 

tomographic radio imaging systems to track user movements inside buildings [64]. Since the 

variance of the signal is null under static conditions, averaging over time will not influence 

the outcome of the positioning error. This implies that the RSS received by the device in static 

conditions is constant, and is a function of multipath and shadowing effects that are occurring 

in a given instant. When the user moves or the environment changes (e.g., a door opens), 

these multipath and shadowing effects also change, thus the RSS variance is both position and 

environment dependent.  
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The effect of the body on the propagation conditions is an important topic for 

communications systems deployment and performance assessment. The proximity of the 

human body is an important factor that induces bias in the position estimation, with 

attenuations as high as 15 dB under NLOS conditions [38]. When the user’s body blocks the 

LOS transmission between two devices, a part of the wave travels through the body (shadow 

fading occurs) while the remaining wave energy is absorbed, reflected, diffracted and 

scattered. These attenuation effects directly influence RSS positioning algorithms since the 

RSS is used to infer distance or proximity. 

Some works attempt to model the body effect in the antenna using the super-antenna 

concept referred in [65], which is directly related to shadowing caused by the proximity of the 

body. In this model, the body is considered as an integral part of the antenna, contributing to 

the radiation diagram. Besides radiation pattern, factors such as transmission power and radio 

frequency also play an important role [66]. 

The sparse anchor problem [53] is also an issue for localization algorithms in WSN 

since a minimum number of anchors are needed to provide a location estimate. If enough 

anchors are available, the positioning estimate is also dependent on the anchor placement in 

the field. This problem is known as geometric dilution of precision (GDOP) and happens 

when anchor locations are collinear [15]. 

The work presented in [67], where a model of relative antenna gain versus rotation is 

inferred from measurements, also considers body effects. This antenna gain model is used in 

conjunction with an inertial model, which assumes the orientation of the user is the same as 

the orientation of its velocity vector. In [38] the body effect is characterized in terms of the 

location of the sensor node (pocket or necklace), contact time and effective bandwidth 

between sensor nodes both in indoor and outdoor environments. The work in [68] 

encountered variations of up to 30 dB when the source is located from 0 cm to 10 cm off the 

body. Body posture and antenna placement in the user’s body is analysed in [69], where the 

body movement is of utmost importance for the communications performance. 
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Chapter 3  

Inertial Navigation Systems and 

Sensor Fusion 

An inertial navigation system (INS) integrates position and orientation changes over 

time, in order to estimate the relative position and orientation since system start-up. This form 

of positioning is also known as dead reckoning (DR) and is used in many applications, 

including missile guidance, aircraft, spacecraft, ship and submarine navigation. An INS uses 

an inertial measurement unit (IMU) containing tri-axial accelerometers and gyroscopes. Other 

types of sensors are also commonly found, such as magnetic, temperature and pressure 

sensors. When the magnetic sensor is present, other common terminologies are used to refer 

to the IMU, such as inertial and magnetic measurement unit (IMMU) or magnetic, angular-

rate and gravity (MARG) sensor. The IMU terminology is used in this work, making 

appropriate references to the specific sensors as needed. 

Under ideal error-free measurements, an IMU would suffice in order to obtain a 

relative position estimate autonomously. Under such error conditions, a gyroscope when at 

rest could detect the Earth’s rotation and find true north autonomously [1]. From a positioning 

system’s perspective, this would be an ideal positioning method since it is self-contained 
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(does not require infrastructure) and could be used anywhere in the world. Since every 

measurement is always associated with an error, dealing with measurement errors in INSs is 

crucial, since errors will accumulate with each measurement update, causing drift of the 

position and orientation estimates. INSs can provide good estimates for short periods of time. 

When paired with other positioning solutions like global positioning system (GPS), the drift 

errors can be compensated. INSs and GPS systems complement each other, providing position 

estimates with higher accuracy, or improving system robustness during GPS signal outages 

[2]. 

3.1 Inertial and Magnetic Sensors  

The evolution of micro-electro-mechanical system (MEMS) sensors enabled the 

application of INSs to the detection of human motion. The advantages of MEMS sensors are 

the small form factor, low cost, low power, lightweight, rugged construction, fast start-up 

time, low maintenance and high reliability characteristics [3]. The main disadvantage of 

MEMS sensors is the lower accuracy when compared to previous mechanical or fiber optic 

systems. Another disadvantage is that MEMS sensor output measurements in the body-frame 

(frame with origin in the sensor), while mechanical systems output measurements in the 

world-frame [3] (frame aligned with the vertical and the north direction on the Earth’s 

surface). The body-frame measurements imply that additional calculations need to be 

performed in order to obtain the required world-frame measurements of interest. The gain in 

size, weight, lower power and reliability far surpass such disadvantage, which becomes 

negligible as computation capacity increases. Current smartphones for instance, contain all the 

sensors and computational capacity necessary for INS applications, enabling ubiquitous 

tracking of users movements.  

A capacitive MEMS accelerometer can be described as a suspended proof mass. When 

this mass moves due to inertia (induced external forces or the gravitational force), the 

accelerometer’s structure bend, acting like a spring. The displacement of the proof mass is 

detected by capacitance changes. The principle behind a MEMS accelerometer relates to 

Hooke’s law and Newton’s second law of motion: 

 𝐹𝐻 = 𝐹𝑁; 𝑘 ⋅ 𝑥 = 𝑚 ⋅ 𝑎 (3.1) 

where k is a constant factor characteristic of the spring, x is the displacement, m is the mass 

and a is the acceleration.  
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The MEMS gyroscope operating principle is based on the Coriolis force. The 

gyroscope can be described as a proof mass that is oscillating in a plane. When subject to a 

rotation with a rotation axis perpendicular to the oscillating plane, a Coriolis force appears: 

 𝑭𝑪 = −2 ∙ 𝑚 ∙ 𝒗 × 𝝎 (3.2) 

where m is the mass, v is the velocity of the plane oscillations and ω is the rotation. This force 

is then detected by means of capacitance changes. 

Current MEMS magnetometers used in INS applications are mostly Hall effect or 

anisotropic magneto-resistance (AMR) sensor types. Hall effect magnetometers are based on 

the Lorentz force, which deflects the electrons traversing a conductor when a magnetic field 

perpendicular to the direction of the flow of electrons is applied. This results in a voltage 

between the planes of the conductor [4], which is proportional to: 

 𝑉𝐻 =
𝑅𝐻

𝑡
⋅ 𝐼 ⋅ 𝐵 (3.3) 

where RH is the Hall coefficient which depends on the conductor material, t is the conductor 

thickness, I is the current passing through the conductor and B is the magnetic field 

perpendicular to the conductor. AMR magnetometers use a thin film of ferromagnetic 

material where its resistance varies with the strength of the magnetic field applied in a specific 

direction. The resistance variation [4] is given by: 

 𝑅𝐴𝑀𝑅 = 𝑅0 − 𝛥𝑅 sin2 𝛼 (3.4) 

where ΔR is the maximum resistance variation (in the order of 3%), R0 is the resistance in a 

non-magnetic field and α is the angle of the magnetic field direction. These variations are 

detected typically using a Wheatstone bridge configuration. 

These sensors suffer from the same sources of error: bias, white noise, bias stability, 

temperature effects, quantization, axis misalignments, scale factors and non-linearity [3]: 

 Bias is the offset of the output to the true value. When integrated, causes an error that 

grows linearly with time. 

 White noise is a random signal with frequency much higher than the sampling rate. It 

is modelled by a sequence of zero-mean uncorrelated random variables with finite 

variance. Random walk appears due to the integration of white noise, causing errors 

that grow proportionally to the square root of time. 
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 Bias stability, or 1/f noise, specifies how the bias of a device may change over time. 

This effect is usually observed at low frequencies and incurs in the same magnitude of 

errors as in the random walk case.  

 Temperature affects the bias of the sensor and can be compensated with calibration. 

The compensation can be already embedded in the sensor for higher end devices 

containing an on-board temperature sensor. Temperature compensation for 

accelerometers is generally not necessary [1]. 

 Axis misalignments or cross-axis sensitivity occur when the sensing axis are not 

perfectly orthogonal. These effects are usually neglected since most sensors are 

assembled as three-axis units, which minimize misalignments. 

 Scale factors influence the magnitude of the sensor output, incurring in bias errors 

when the sensor is undergoing rotation/acceleration. 

 Non-linearity is the maximum deviation of the sensor output from an ideal linear fit, 

which is typically presented as a percentage of full-scale. 

 Quantization errors are a consequence of analogue-to-digital conversion (ADC) and 

are usually considered as part of the non-linearity. The maximum quantization error is 

bounded to 0.5 LSB (least significant bit). 

Sensor calibration minimizes the effects of scale factors, axis misalignments, initial 

biases, temperature compensation and non-linearity. A simple calibration method is used in 

[5]. Details of a rigorous calibration process can be found in [6], [7]. Magnetometer 

calibration involves compensating for distortions that are caused by components or objects 

placed near the sensor, which are subject to the same rotations as the sensor (e.g., components 

inside the same device). When the magnetic distortions are constant, the influence will appear 

as an offset in the measurements of each axis. This is known as hard iron effect and is caused 

by permanent magnets and magnetized iron or steel. When the magnetic distortion changes 

with the orientation of the device, the scale of the measurements will also change. This is 

known as soft iron effect and is caused by nearby ferrous materials such as nickel used in 

batteries [8]. 

Since the measurements from the MEMS magnetometer are not integrated over time, 

drift is not an issue. Sensing the Earth’s magnetic field to perform heading measurements 

using magnetometers is heavily influenced by external magnetic distortions, especially in 

indoor environments.  
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The characterization of sensor noise is typically accomplished using the Allan 

variance (AVAR) test, which is a time domain analysis technique designed for characterizing 

noise and stability in clock systems [9]. This method identifies the different types of noises 

and their respective magnitudes affecting the system. A practical example on the application 

of this method is presented in [3]. A perfectly calibrated device will have a performance that 

depends only on bias stability and random walk. These parameters, obtained from the AVAR 

test, impose a maximum achievable limit in performance under optimal conditions. MEMS 

sensors performance is expected to improve along with improvements in the fabrication 

techniques, with lower prices due to large-scale production and integration on mass consumer 

products such as smartphones, tablets, smartwatches and wearable gadgets. 

IMUs are often classified according to the bias stability that the embedded sensors 

achieve. Authors in [1] classify IMUs according to the grades presented in Table 3.1. 

Table 3.1: IMU classification. 

Grade Gyroscope Bias Accelerometer Bias 

Military 0.005 º/h < 30 μg 

Navigation 0.01 º/h 50 μg 

Tactical 1 º/h 1 mg 

Consumer > 1 º/h > 1 mg 

 

Low cost MEMS sensors are consumer grade level, for which calibration is a 

fundamental issue for its usability in INS applications. Even using high end consumer grade 

MEMS IMU, errors can exceed 100 meters after 1 minute of operation at 100 Hz sampling 

rate [3] due to gyroscope errors. 

The INS task is to use IMU measurements to compute two estimates: changes in 

orientation and changes in displacement. INSs using DR method alone, as the only 

orientation/positioning method, will exhibit unbound errors over time. INSs coupled with 

other positioning methods will exhibit bounded errors. These errors are either bounded by the 

alternative positioning method or the bound is given as a percentage of the distance travelled. 

When applying INS to human motion, certain conditions can be identified and used in order 

to minimize the accumulated error. These conditions are discussed in section 3.5.1. The next 

section discusses DR. 
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3.2 Dead Reckoning 

A strap-down INS performing DR positioning is a self-contained system that accounts 

for differences in orientation and displacement sensed with the help of gyroscope and 

accelerometer sensors. Orientation is a typical output of an INS and can be encoded using 

Euler angles, rotations matrices or quaternions. Quaternions are a popular alternative, as they 

do not suffer from singularities (also known as gimbal lock) that occur in Euler angles when 

two rotation axes are aligned. Compared to rotation matrices, quaternions only use four 

parameters instead of the nine required to encode rotations. Regarding computational 

efficiency, quaternion algebra requires fewer operations than the matrix counterpart, which is 

an advantage when implementing INS in resource constrained embedded devices. For these 

reasons, quaternions are adopted in this work. Figure 3.1 depicts a block diagram of the 

operations performed by an INS. 

 

Figure 3.1: Orientation, velocity and position estimation in DR. 

For the INS to be able to compute the direction of the distance traveled, the orientation 

of the device must first be estimated. This is achieved by integrating the body-frame angular-

rate measurements (bωi) from the gyroscope. The kinematic equations used to update the 

body-frame to world-frame rotation at each time instant [5], [10] are presented in equations 

(3.5) and (3.6): 

 �̇�𝝎𝒘
𝒃 =

1

2
∙ 𝒒𝒘

𝒃
𝒊−𝟏 ⊗ [0𝑤, 𝜔

𝑏
𝑥, 𝜔

𝑏
𝑦, 𝜔𝑧

𝑏 ] (3.5) 

 𝒒𝒘
𝒃

𝒊 = 𝒒𝒘
𝒃

𝒊−𝟏 + �̇�𝝎𝒘
𝒃 ∙ 𝑑𝑡 (3.6) 

where dt is the time between measurements, 𝒒𝒘
𝒃

𝒊 and 𝒒𝒘
𝒃

𝒊−𝟏 are the current and previous 

quaternion rotations from body-frame to world-frame and 𝒘
𝒃 �̇�𝝎 is the quaternion derivative 

from body-frame to world-frame, which is the result of the quaternion multiplication between 
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the previous orientation estimate with a quaternion containing a zero scalar component and 

axis i, j, k equal to the angular rates sensed in the body frame axis x, y and z respectively. 

Assuming unit quaternions, and since the quaternion conjugate ( 𝒒𝒘
𝒃

𝒊
∗) is equal to its inverse 

under this condition, the current orientation estimate ( 𝒒𝒘
𝒃

𝒊) is used to obtain the acceleration 

measurement in the world-frame using equation (3.7). 

 𝒂
𝒘 = 𝒒𝒘

𝒃
𝒊
 ⨂[0𝑤, 𝑎𝑥

𝑏 , 𝑎𝑦
𝑏 , 𝑎𝑧

𝑏 ] ⊗ 𝒒𝒘
𝒃

𝒊
∗ (3.7) 

Removing gravity in the world-frame is accomplished by simply subtracting the 

gravity value (9.8 m/s2 or 1 g) from the vertical axis, perpendicular to the Earth’s surface. 

Integrating the gravity-corrected accelerometer measurements in world-frame yields the 

velocity estimate. Integrating the velocity estimate yields the position estimate. The problem 

associated with this procedure is the error that accumulates during both the orientation and the 

position integration process. 

The orientation estimate drift is due to the integration of the angular rate error (bei
ω). 

This drift or orientation error influences the projection of the body-frame accelerometer 

measurements into the world-frame, which are used in the gravity correction step. This error 

in the orientation estimate is crucial, especially the roll and pitch (or tilt) angles, which 

effectively project part of the gravity vector in the wrong direction. The accelerometer error 

(bei
a) will also incur in additional position estimation errors, although to a much lesser extent, 

due to being several orders lower than the error induced from the orientation estimation [1], 

[3]. 

Errors in DR will exhibit unbound growth in time. The solution to this problem is 

addressed by the integration of multiple measurements from different sensors using sensor 

fusion techniques, which are described in the next section. The application of sensor fusion 

methods to improve orientation and position estimation is described in sections 3.4 and 3.5 

respectively.  

3.3 Sensor Fusion 

A sensor fusion method is the combination of measurements obtained from several 

sensors in order to provide a new, more accurate and/or more robust estimate than any of the 

sources individually. It can be applied to measurements of the same type of sensor, which is 

the case of the least squares (LS) method from the previous chapter or it can be applied to 
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measurements from different sensor types. The purpose of sensor fusion is to limit drift errors 

of the INS, by exploiting information that can be derived from a multitude of different 

sensors, such as accelerometer, magnetometer, pressure, temperature, Doppler sensor, wind 

speed, etc. 

The complementary filter (CF) is a simple sensor fusion method, which follows a 

frequency-based approach to combine measurements of the same signal originating from 

different sensors. 

Bayesian filtering is a general approach to the sensor fusion problem using Bayes’s 

rule. 

 𝑃(𝑥|𝑦) =
𝑃(𝑦|𝑥)𝑃(𝑥)

𝑃(𝑦)
 (3.8) 

 The state vector (e.g., the parameters of interest such as position, acceleration, 

velocity, etc.) of the system is estimated through a state dynamics model and a measurement 

model, each incorporating independent noise in the estimates. The state dynamics assume a 

Markov model, where the state only depends on the previous state estimate (e.g., states prior 

to the previous state provide no additional information). Equations (3.9) and (3.10) describe 

this general probabilistic framework [11]. 

 𝐵𝑒𝑙−(𝑥𝑡) = ∫𝑃(𝑥𝑡|𝑥𝑡−1)𝐵𝑒𝑙(𝑥𝑡−1) 𝑑𝑥𝑡−1 (3.9) 

 𝐵𝑒𝑙(𝑥𝑡) = 𝛼𝑡𝑃(𝑧𝑡|𝑥𝑡)𝐵𝑒𝑙−(𝑥𝑡) (3.10) 

The dynamics and measurement models are represented by 𝑃(𝑥𝑡|𝑥𝑡−1) and 𝑃(𝑧𝑡|𝑥𝑡) 

respectively; 𝛼𝑡 is a normalizing constant. The system starts with an initial belief (Bel) of the 

state vector, which is updated by the dynamics model. This new state estimate is then used 

when a new measurement is available, to recursively update the uncertainty associated with 

the current estimate. The implementation of this abstract probabilistic approach requires the 

definition of the dynamics model, the measurement model and the representation of the belief, 

enabling different filter implementations [11].  

The Kalman filter (KF) is a specific case of the general Bayesian filter, which models 

the uncertainty of the state estimates using Gaussian distributions [12]–[16]. It is a sensor 

fusion method that follows a stochastic or time domain approach. The KF is generally 

adopted due to its accuracy and computational efficiency [11].  
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Particle filters are another Bayesian filtering technique that provides solutions to non-

linear cases and are typically used when map information is available, enabling autonomous 

location estimation by matching features found in the environment to the map information 

[12], [16]. The main disadvantage of particle filters is the high computational capacity 

requirement due to the need to generate a large number of particles to obtain accurate 

estimations. 

Due to restrictions in power and computational capacity, wireless sensor networks 

(WSNs) require low complexity sensor fusion methods, where computational efficiency is 

crucial. The computational overhead of a KF solution is still significant when considering 

WSNs. As an example, the work in [17] implements a solution based on KF which imposes a 

load of 37 % on a 1 GHz Qualcomm Snapdragon processor with 512 MB of RAM (random 

access memory). WSN nodes have much less computational capacity, with 8 bit 

microprocessors and frequencies in the order of tens of megahertz. 

The next sections describe the CF and KF, which are the most computationally 

efficient sensor fusion methods. 

3.3.1 Complementary Filter 

The CF is an application of Wiener filtering theory [18] where two measurements of 

the same signal with different noise characteristics are combined, in order to provide a better 

estimate of the signal. Considering as an example a gyroscope signal that is integrated over 

time to give an estimate of the roll angle, and an accelerometer, where the roll angle is 

estimated using equation (3.11): 

 𝑟𝑜𝑙𝑙 = 𝑡𝑎𝑛−1 (
𝑎𝑦

𝑎𝑧
) (3.11) 

Both sensors are employed to measure the roll angle (signal of interest) and each 

sensor is affected by noise signals with complementary spectral characteristics: the gyroscope 

angle estimate is predominantly affected by low frequency noise due to drift from errors 

accumulated over time, while the accelerometer is predominantly affected by high frequency 

noise due to external accelerations. The block diagram for this filter type is presented in 

Figure 3.2.  
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Figure 3.2: Complementary filter block diagram. 

Assuming for example that G(s) is a low-pass filter with the Laplace domain transfer 

function: 

 𝐺(𝑠) =
1

1 + 𝑇𝑠
 (3.12) 

where T is the time constant defining the cut-off frequency of the filter; the complementary 

transfer function will be a high-pass filter, as can be seen in equation (3.13), with the same 

cut-off frequency. 

 1 − 𝐺(𝑠) =
𝑇𝑠

1 + 𝑇𝑠
 (3.13) 

The CF operates in the frequency domain by high-pass filtering the noise signal e1 and 

low-pass filtering the noise signal e2. Combining the two results the signal is reconstructed, 

thus removing, or at least attenuating noise signals corrupting the signal of interest s(t). An 

alternate version of this system is presented in Figure 3.3, where the filter is operating on the 

noise signals only [18], [19]. 

 

Figure 3.3: Alternate complementary filter block diagram. 

By subtracting both measurements, the difference between the noise signals e1 and e2 

is served as input to the low-pass filter G(s). The filter is effectively estimating the noise 

signal e1, which is then subtracted from the measurement affected by the high-frequency 

noise. This later form of the complementary filter is more appropriate for practical 

implementations, since it only uses one multiplication operation. 
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The CF is a well-known technique used in the flight control industry for many years. 

These filters are a special case of the KF [20] under steady-state conditions, with a much 

lesser computational burden [19]. 

3.3.2 Kalman Filter 

The KF [20] was proposed in 1960 and is still one of the most important sensor fusion 

algorithms, with applications in the most diverse areas from defence to commercial and health 

products. The KF revolutionized the space era by providing the navigation solution to the 

moon and back in the Apollo moon project [21].  

This type of filter is known as the optimal tracking filter and is based on the 

assumption that the noise present in the measurements and actuation signals are independent 

and affected by zero-mean Gaussian random variables. Since the product of two Gaussian 

distributions is also a Gaussian distribution, the filter is able to predict the estimate error. The 

KF model bases its principle in three sources of information: model dynamics, control inputs 

and sensor measurements [22]. Model dynamics and control inputs are described in equation 

(3.14): 

 𝑥𝑘 = 𝐴𝑘𝑥𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘 (3.14) 

where xk is the current state vector, xk-1 is the previous state vector, uk is the input vector 

containing the control inputs (e.g., throttle force, braking force, steering angle, etc.), the 

matrices A and B represent the state transition matrix and the control input matrix and wk is 

the process noise. The matrix A models the dynamics of the system, applying the effect of the 

state parameters at time k-1 to the system state at time k (e.g., the acceleration or braking 

force in the previous time step will influence velocity in the current time step). Matrix B 

converts the effect of input controls uk to the domain of the state parameters at time k. The 

sensor measurements are described in equation (3.15): 

 𝑧𝑘 = 𝐶𝑘𝑥𝑘 + 𝑣𝑘 (3.15) 

where zk is the current sensor measurement vector, Ck is the observation matrix that converts 

state vector parameters to the domain of sensor measurements and vk is the measurement 

noise. The index k indicates that the entities can change over time. The KF updates the state of 

a system from time k-1 to time k by applying equation (3.16), which is known as the state 

prediction equation: 
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 𝑥𝑘
− = 𝐴𝑘𝑥𝑘−1 + 𝐵𝑘𝑢𝑘 (3.16) 

where 𝑥𝑘
− is the predicted (also known as a priori) state vector containing the variables to 

track at time k (e.g., position, velocity, acceleration, orientation, sensor bias, etc.). This 

prediction step is subject to the process noise wk with covariance matrix Qk affecting the state 

parameters. The filter updates the error prediction 𝑃𝑘
− using equation (3.17): 

 𝑃𝑘
− = 𝐴𝑘𝑃𝑘−1𝐴𝑘

𝑇 + 𝑄𝑘 (3.17) 

where Pk-1 is the previous error estimate. Equations (3.16) and (3.17) represent the prediction 

phase of the KF, which is followed by the measurement phase by applying equation (3.18) to 

compute the Kalman gain: 

 𝐾𝑘 = 𝑃𝑘
−𝐶𝑘

𝑇(𝐶𝑘𝑃𝑘
−𝐶𝑘

𝑇 + 𝑅𝑘)
−1 (3.18) 

where 𝐶𝑘
T
 is the transpose of matrix Ck and Rk is the covariance matrix of vk, which accounts 

for errors in the measurement process. The filtered state estimate is then computed using 

equation (3.19): 

 𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐶𝑘𝑥𝑘

−) (3.19) 

where the predicted values are compared with the measured values (also known as 

innovation). The Kalman gain acts as a weighting function of the innovation, given the 

uncertainty of the errors associated with each source of information. A smaller Kalman gain 

or smaller innovation implies better tracking by the system, since smaller corrections are 

applied to the predicted state. Equation (3.19) is based on the same principle of the 

complementary filter from section 3.3.1, applied in the estimation of the vector parameter. 

The error of the final estimate is obtained using equation (3.20): 

 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐶𝑘)𝑃𝑘
− (3.20) 

where I is the identity matrix. This model is applied to linear systems where matrix A is a 

linear function of xk and wk, and matrix C is a linear function of xk and vk. The control inputs 

of the KF model are usually absent when KFs are used in the context of INS applied to human 

motion. 

An extended KF (EKF) is used when the system is described by nonlinear functions. 

The EKF transforms the nonlinear function into an approximate linear function using a first 

order Taylor series expansion [23]. This requires the computation of a Jacobian matrix and is 

sensitive to inaccuracies in the approximation and initial conditions, which affect the filter 
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performance. As an alternative, the unscented KF (UKF) is proposed, which improves the 

performance of the filter under nonlinear systems, with increased complexity and computation 

capacity. Under the specific case of human motion, the UKF is considered to have 

approximately the same accuracy of the EKF [24].  

3.4 Improving Orientation Estimates 

A simple method to obtain an improved orientation estimate is the FQA (factored 

quaternion algorithm) presented in [25]. This method uses the accelerometer sensor to obtain 

roll and pitch angles directly from accelerometer measurements, assuming that the IMU is 

stationary (i.e., only the gravitational force is present in the accelerometer measurements). 

The magnetometer measurements are used in the same way as in a tilt-compensated e-

compass [26], from which the yaw angle is extracted. One advantage of this method is that 

magnetometer measurements are only used in the estimation of the yaw angle. This implies 

that magnetic disturbances do not influence the projection of gravity, which is a critical part 

for reducing error growth in INS. The main issue associated with FQA or the tilt-compensated 

e-compass method is that the stationary condition of the accelerometer measurements is 

seldom the use case in the context of human motion.  

Information from other sensors in the IMU can be used to compensate the gyroscope 

bias drift by employing the sensor fusion techniques described in section 3.3. One common 

approach to improve orientation estimates is to apply a minimization technique such as the 

Gauss-Newton algorithm (GNA) [5], [27] to estimate the error of the orientation using a cost 

function that relates the previous orientation estimate and the current sensor measurements 

(accelerometer measurements are compared to gravity and magnetometer measurements are 

compared to the current reference heading). The iterative GNA is presented in equation 

(3.21). 

 𝑥𝑛+1 = 𝑥𝑛 − (𝐽𝑟
𝑇𝐽𝑟)

−1𝐽𝑟
T𝑟(𝑥𝑛) (3.21) 

where x is the orientation error estimate, J is the Jacobian matrix and r the cost function. This 

error estimate is combined with the gyroscope measurements using a CF. The error-filtered 

orientation rate is integrated and normalized in order to obtain the final orientation. An 

identical approach using an EKF instead of a CF is found in [28]. The cut-off frequency of the 

CF is a parameter that can be controlled, which in [27] is adaptively modified according to the 

convergence rate of the GNA and the divergence rate of the gyroscope. 
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One disadvantage of the GNA method is the sensitivity to biased measurements, 

which causes convergence issues. To counter this, authors in [27] implement a compensation 

method based on the magnitude of the acceleration and magnetic measurements. When the 

magnitude of these vectors exceeds a predefined threshold, they are replaced by estimates of 

accelerometer and magnetometer measurements obtained using the previous orientation 

information. Another disadvantage is the requirement to compute a matrix inversion. 

The gradient descent algorithm (GDA) [10] is a strategy similar to the GNA, for 

which the iterative equation is presented in (3.22). 

 𝑥𝑛+1 = 𝑥𝑛 − 𝜇𝐽𝑟
T𝑟(𝑥𝑛) (3.22) 

where μ is known as the gain or learning rate. The advantage is that GDA does not require a 

matrix inversion such as in GNA, allowing for faster update rates. Performance results 

presented have the same level of accuracy of a KF approach with much lower computational 

loads. 

Solutions like GNA or GDA are iterative minimization solutions, which in the cases 

presented are reduced to a single iteration. This is considered acceptable when the 

convergence rate is equal or greater than the rate of change of the orientation. When the 

sensor measurements are biased (e.g., under magnetic disturbance or external accelerations), 

GNA and GDA will be subject to slow convergence. 

An EKF is proposed in [24], where it is assumed that the gyroscope bias is negligible. 

The states modelled are a quaternion representing orientation and the magnetometer bias to 

account for local variations of the magnetic field. The variance parameters of the 

accelerometer and magnetometer are modified according to thresholds, due to the known 

sensitivity of the EKF to biased measurements. These thresholds protect against external 

accelerations and magnetic disturbances by diminishing the effect of accelerometer and 

magnetometer sensors in the final estimation. In extreme conditions, the filter estimate will be 

affected only by the gyroscope measurement. 

One option available in the KF framework is to reduce the number of parameters to be 

estimated by the filter. If the errors of the state are modelled instead of the states themselves, 

the dimension of the state parameter can be reduced, effectively improving the computation of 

the filter equations. The states of interest need to be updated outside the KF and take into 

account the estimated error. This configuration is known as indirect KF (IKF) and one such 
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configuration is proposed in [29], where the orientation error, accelerometer and gyroscope 

bias are the states estimated. The magnetometer sensor only contributes to the yaw angle and 

an adaptive algorithm which estimates and corrects for bias in the accelerometer 

measurements, is also included to account for external accelerations. 

The author in [30] examined the performance of KFs versus CFs under simple motion 

and walking motion scenarios. The CF performed better than the KF both in terms of 

orientation error (with CF estimates between 60% to 70% better than KF estimates) and time 

taken to compute an estimate (with the time to compute an update of 280 μs and 1.3 ms for 

the CF and KF respectively). It is also noted that the microcontroller used in [30] is able to 

perform single-cycle multiplications. A WSN based on the CC2530 system-on-chip (SoC) 

[31], such as the one used in this work, uses an 8-bit 8051 microcontroller, which does not 

possess this functionality. Under these circumstances, multiplication operations have a 

significant impact in the algorithm efficiency, especially in the case of the KF where a matrix 

inversion is computed. The work in [32] also compared performances of orientation 

estimation using EKF versus orientation estimation using CF under typical scenarios of 

human motion, where it is shown that there is not a significant difference among the errors 

found for each solution. 

The CF and KF solve the problem of drift from the gyroscopes by estimating bias 

errors and/or by combining accelerometers and magnetometers. The KF requires a model of 

the dynamics involved and provides not only an estimate but also the uncertainty of the 

estimate, feature which is absent when using CFs. On the other hand, the CF solution is easier 

to implement since it does not depend on dynamic models, requiring only that the inputs are 

spectral complements of each other. 

3.5 Improving Distance Estimates 

Using MEMS sensors in INS results in fast error accumulation, even in static 

condition scenarios such as [3]. If the IMU is subject to external accelerations, even higher 

error accumulation is expected. In the context of human motion, the INS can be used to 

identify gait cycle parameters in order to detect steps (time between two footfalls on opposite 

feet) or strides (time between two footfalls of the same foot). This is known as a pedestrian 

dead reckoning (PDR) system and results from a segmentation of the INS position estimates 

into a step/stride and heading system (SHS) [33]. The information of the SHS will produce a 
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position estimation error that, instead of unbound error growth over time as in the case of the 

INS, will exhibit error growth as a percentage of the distance travelled.  

PDR systems have been studied and applied in several different fields in the medical 

area to analyse gait cycle and monitor healing progress of patients in rehabilitation, in the 

context of first responders to help fire-fighters in critical missions and in virtual reality and 

commercial applications for navigation. The step/stride detection (SD) algorithm depends on 

the type of sensors used and the location where the IMU is attached to the body. The step 

information enables the application of pseudo-measurements commonly known as zero-

velocity updates (ZVU) when the foot is planted on the floor and zero-angular-rate updates 

(ZAU) when the person is not walking (i.e., the person is still). An alternative to the distance 

estimation through double integration of acceleration is to estimate each step/stride length 

(SL) by inferring distance from the measured data. 

3.5.1 Stride Detection 

The gait cycle of a healthy person is typically divided primarily into stance and swing 

phases [34], as depicted in the stride example of Figure 3.4 (adapted from [35]). 

 

Figure 3.4: Gait cycle. 

In the stance phase, the foot is in contact with the floor. Starting in the mid-stance 

(MS), the transition to the swing phase involves the foot pushing the body forward while 

lifting the heel (heel-off - HO) from the floor, until toe-off (TO) occurs. The swing phase 

starts when the foot is no longer in contact with the floor and swings forward (mid-swing - 

MSW) until the heel-strike (HS), which marks the end of the swing-phase and the beginning 

of the stance phase. The opposite foot repeats this sequence of events but out of phase, since 

when one foot is in HS, the other is in HO. 

SD algorithms are mainly characterized in [33] as stance detection or step cycle 

detection. Stance detection algorithms are typically threshold-based and involve identifying 
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periods of inactivity in the IMU measurements [36], which correspond to the periods where 

the foot is planted in the floor. In [37] a general framework is derived to characterize stance 

detection algorithms, for which the most commonly used methods are the acceleration moving 

variance, the acceleration magnitude and the angular rate energy. Stance detection is usually 

accomplished by placing the sensor on the foot. 

An example of SD using the acceleration moving variance is implemented in [38], 

where the IMU is attached to the foot. The magnitude of the acceleration is computed for 

every sample, while the acceleration variance is computed for a window of 15 samples at 100 

Hz. The thresholds are chosen empirically and are applied to the acceleration variance. 

Variances above 2 m/s2 identify the swing phase and variances below 1 m/s2 identify the 

stance phase. A step is detected when the swing phase ends and the stance phase starts. The 

reported percentage of error is 0.1 % of the real number of steps. 

The gyroscope based algorithm from [39] using a foot-mounted IMU is also 

implemented and tested in [38]. The magnitude of the gyroscope measurements is computed 

for every sample and the resulting signal is filtered in order to avoid small fluctuations. An 

empirical threshold value of 1 rad/s was used, reporting a percentage of error of 0.2 % of the 

real number of steps. An algorithm using the magnetometer is also implemented in [38], 

which high-pass filters the magnetometer signal before applying the same procedure for the 

gyroscope signal. The threshold value for the magnetometer algorithm is not provided. The 

percentage of errors reported is 0.94 %. 

The work in [40] uses the pitch angle of a sensor placed in the trousers’ pocket. The 

pitch angle is obtained from an orientation estimation method using UKF, applied to 

accelerometer, gyroscope and magnetometer measurements. A simple fixed threshold is used 

for peak detection of the pitch angle, which according to the authors does not vary with the 

user’s velocity. In a challenging test including stairs, an acceleration magnitude algorithm 

detected 87 % of the steps, while the authors’ proposed method detected all steps. 

Stride cycle detection involves searching the sensor data for patterns that identify one 

or a subset of the events depicted in Figure 3.4, typically resorting to peak detection and zero 

crossing. Spectral analysis, template matching and autocorrelation can also be applied, with 

added computational complexity [41]. Event detection is implemented in [34] using 

accelerometer signals, by searching the measurements for a specific order of the events during 

a normal step, with the sequence being: opposite foot strike, TO, initial swing, terminal swing 
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and foot strike. Although author reports errors in the order of 10 % of the distance travelled, 

no report is given about the accuracy of the SD algorithm. 

Authors in [42] look for parameters in the gyroscope measurements that conform to a 

trend signal that is typical for the gyroscope output when placed in the foot. These parameters 

are then seen as events that are fed to a finite state machine. After applying filtering, a SD 

accuracy of 100 % is reported, in the form of detected ZVU intervals. 

The accelerometer can be placed in the waist in order to detect hip movements while 

walking [43]. Slope changes in the averaged vertical acceleration axis indicate a step. To 

improve the step-counting accuracy, the slope changes or peaks should be detected at 

appropriate times, during a time window of approximately ±15 %, since the step frequency 

has a tendency to maintain within these limits during steady state walking. Authors in [17] 

also use a hip mounted accelerometer and apply the threshold to the acceleration energy 

instead of the acceleration variance. In [44] authors place an accelerometer in the ankle to 

detect the swing phase and the heel touch down of the step. Multiple thresholds are applied to 

detect each event, with a SD accuracy of 99 %. 

Under steady walking, both stance and step cycle detection present good SD accuracy 

values, near 100 %. Issues arise when the user is not steadily walking, during very slow 

motion (e.g., slowly walking in a waiting line), while turning, sidestepping or walking 

intermittently, or when SD is used in irregular floors, stairs and access ramps. The signal 

patterns change under these conditions, giving rise to missed steps. Also, SD applied to 

mobility-impaired persons can report errors as high as 29 % [33]. When a person steps onto 

elevators, escalators or moving walkways, step data is either absent or highly biased from 

external motions. 

3.5.2 Step Length Estimation 

Step or stride length estimation is typically applied having in consideration a specific 

model that, such as in the SD case, depends on the location of the sensor. The further away 

the IMU is from the foot, the higher the abstraction necessary for estimating SL is. This type 

of estimation is typically dependent on a calibration procedure, to adjust parameters of the 

model to each user. In [43], where the accelerometer is located in the hip, the leg is seen as a 

lever of fixed length when the foot is on the floor and the stride length is estimated as: 
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 𝑆𝑡𝑟𝑖𝑑𝑒 ≈
2 × 𝐵𝑜𝑢𝑛𝑐𝑒

𝛼
 (3.23) 

where Bounce is the vertical displacement of the hip and α is the angle between the leg and 

the vertical direction. By empirical demonstration, the angle α is replaced by a constant K and 

the vertical displacement is given by the difference between the maximum (Amax) and 

minimum (Amin) acceleration of the hip. The stride length is given by equation (3.24). 

 𝑆𝑡𝑟𝑖𝑑𝑒 ≈ √𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛
4 × 𝐾 (3.24) 

The K parameter is typically used as a calibration value that differs between users 

[38], [40]. Errors between 0.30 % and 0.78 % of the distance travelled were reported in [38] 

for different walking speeds. 

The SL estimation in [40], where the IMU is located in the trousers’ pocket, is 

accomplished by applying the pitch angle used for SD, described in equation (3.25) 

 𝑆𝐿 = 𝑎 ∙ 𝛥𝜃 + 𝑏 (3.25) 

where Δθ is the pitch amplitude in degrees, and parameters a and b are the slope and intercept 

respectively, found by applying linear regression to data collected for each user. Authors 

reported a mean error of 0.15 % of the distance travelled, with trials performed at different 

speeds. 

SL estimation applied to handheld IMUs is studied in [45], where the SL is given by 

equation (3.26): 

 𝑠 = ℎ ∙ (𝑎 ∙ 𝑓𝑠𝑡𝑒𝑝 + 𝑏) + 𝑐 (3.26) 

where h is the user’s height, fstep is the frequency of the step and a, b and c are calibration 

parameters. Errors between 2.5 % and 5 % of the total travelled distance are reported. 

On the other hand, systems that apply the IMU closer to the foot either estimate the SL 

using empirical approximations or using motion models that do not depend on calibration 

parameters. The work in [44] uses equation (3.27), obtained from experiments, applied to 

acceleration measurements collected by a sensor located in the ankle of the subject.  

 𝑆𝑡𝑟𝑖𝑑𝑒(𝑚) = 0.98 × √
∑ |𝐴𝑘|

𝑁
𝑘=1

𝑁

3

 (3.27) 
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where Ak is the measured acceleration during a stride cycle. This simple method achieved 5 % 

errors in total distance travelled. 

A shank-mounted IMU is used in [46] to estimate SL, speed and slope in each gait 

cycle. The authors use an inverted pendulum model of walking due to the IMU being located 

in the shank. For each gait cycle, the acceleration is resolved to the world-frame by 

integrating gyroscope measurements. Double integration is applied to the world-frame 

acceleration measurements in order to estimate SL, with initial conditions for velocity and 

position set to zero. The authors present the results for speed and slope estimates during 

walking, which exhibit an error between 5 % and 13 % at different walking speeds and under 

different slopes. 

One popular solution for SL estimation is to take advantage of pseudo-measurements 

(ZVU and ZAU) to provide a reset mechanism to the integration procedures, which can be 

applied directly to the SL estimation or to reduce integration drift in the INS. 

3.5.3 Exploring Pseudo-Measurements 

Given the cyclical nature of walking, pseudo-measurements of velocity and angular 

rate can be inferred from the state of the gait cycle. For a foot-mounted IMU, when the gait 

reaches the stance phase, the velocity of the foot is known to be zero. As such, this 

information is used to limit the drift error by forcing the velocity of the foot-mounted INS to 

zero (ZVU), thus resetting the integration errors. This enables the integration procedure to be 

performed only for short periods of time (smaller than the step period, in the order of half a 

second), during which the drift accumulation is typically negligible. The ZVU is the most 

versatile method since it can be used to estimate displacement in any direction, as opposed to 

other methods that assume the step/stride is performed in the forward direction. It can also be 

used to resolve vertical displacements, such as climbing stairs or access ramps [15], [47]. 

ZVUs are implemented in [48] where the integration cycle is applied only during the 

swing phase. In [15], ZVUs are applied to a 15-state EKF estimating biases for orientation, 

angular rate, position, velocity and acceleration. This is further integrated with GPS and 

magnetometer measurements in order to correct for heading drift, achieving 0.3 % error of the 

total distance travelled in both indoor and outdoor scenarios. 

The authors in [49] use a CF to estimate orientation and apply ZVUs to the integration 

of the gravity-corrected world-frame acceleration measurements. SL estimation errors of 1.1 
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% of travelled distance are reported for an outdoor scenario. The work in [39] applies a 

similar strategy to the integration of the acceleration measurements to both indoor and 

outdoor scenarios. As expected, outdoor scenarios generally exhibit lower heading error than 

indoor scenarios, due to magnetic interferences. Errors due to magnetic disturbances range 

from 1 % of distance travelled in outdoor scenario to 16 % of distance travelled in indoor 

scenario. 

When the user is still (i.e., not walking), the angular rate can also be inferred as zero. 

This pseudo-measurement can be used to limit the heading drift of the INS. ZAUs are used in 

[47], [50], [51] to improve heading estimates using KF-based solutions. Another solution to 

improve heading estimates is the method employed in [51], in which the corridors in 

buildings are assumed as straight paths. This method enables heading error estimation and 

correction when the straight corridor assumption is true. When this is not the case, the 

positioning error increases with the duration of the circular path. 

As a concluding remark, the work in [52] studies the effects of modelling sensor 

biases when applying ZVUs, showing that the innovation sequences from a KF are correlated 

with the steps. Insufficient bandwidth is identified as one possible reason for this correlation, 

due to the extreme dynamics that the foot is subject to during heel-strike. 
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Chapter 4  

RSS Positioning Performance 

Comparison 

Received signal strength (RSS) based positioning is a popular approach in wireless 

sensor networks (WSNs) since RSS is readily available within the radio module. Due to 

typical WSN energy consumption and computational constraints, low complexity positioning 

solutions are desired. The aim of this chapter is to compare positioning methods suitable for 

WSNs that best fit the indoor scenario. As such, a practical implementation of RSS based 

positioning using wireless sensor nodes is realized. Positioning calculation is compared using 

three types of positioning methods compatible with WSNs in an indoor test scenario: map-

matching (also known as fingerprinting), approximate positioning and exact positioning 

algorithms. 

Map-matching solutions are mainly used in large areas, such as office settings and 

warehouses with several divisions. This comparison differs from the usual approach, since the 

fingerprinting solution is implemented in a smaller predefined space of a room, without walls 

in between access points. 
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The goal is to study positioning techniques that are compatible with real-time 

positioning in WSN, having low-power and low complexity as requirements, yet presenting 

the best accuracy possible under such conditions. 

4.1 Hardware Platform 

The wireless sensor nodes communicate using the IEEE 802.15.4 medium access 

control (MAC) protocol, working on the 2.4 GHz frequency band. The development kit 

CC2530DK [1] from Texas Instruments is used in this work. The CC2530 is a system-on-chip 

(SoC) solution that contains an 8051 microprocessor, a radio transceiver and general I/O 

(input/output) peripherals. The CC2530 radio has a sensitivity of -97 dBm and a maximum 

transmission power of +4.5 dBm. The modules are equipped with the Antenova M2M 2.4 

GHz swivel antenna [2]. 

 

Figure 4.1: CC2530 development board (left) and battery board (right) with evaluation modules. 

The test scenario used is composed by four anchor nodes and one sensor node. Each 

anchor node is composed by a CC2530 evaluation module and a battery board powered by 

two AA batteries. The sensor node is composed by a development board and an evaluation 

module. The development board contains necessary hardware to interface with the USART 

(universal synchronous asynchronous receiver transmitter), used to communicate through 

standard RS-232 serial port. 
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4.2 Experimental Setup 

The anchor’s role is to broadcast beacon messages periodically, so sensor nodes can 

receive these messages and locate themselves. The test bed is a room with 10×4.7 m free 

space area, as shown in Figure 4.2. Anchor locations are depicted as green circles, along with 

distances to walls and the three supporting beams are depicted as squares. Black dots indicate 

calibration points. A calibration point was also taken at each anchor location. 

Anchors are placed in the corners of the mentioned area on top of a stand, 1.2 meters 

above ground. The stands used are made of plastic, so no extra interferences affect the radio 

messages. Numbered from 1 to 4, each anchor broadcasts one beacon message periodically, at 

the start of each 100-millisecond superframe. 

 

Figure 4.2: Experimental setup scenario. 

In order to have synchronized beacon messages from anchors, a simple scheme was 

adopted. As soon as anchor 2 receives beacon message from anchor 1, anchor 2 begins 

broadcasting its own beacon periodically, and so forth. Anchor nodes bypass the usual 

CSMA/CA (carrier sense multiple access/collision avoidance) in their transmissions, so 

timings between transmissions do not overlap. Messages arrive sequentially and free of 

collision since all anchors transmit in different time instants.  

Using the sequence number in the beacon messages, the sensor node detects lost 

beacons during data collection and inserts a value of -127, indicating an invalid RSS sample. 

Since the goal is to assess accuracy of positioning algorithms for our use case scenario, nodes 
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were only used to obtain real data from the test site, leaving calculations to be performed in an 

offline phase. 

4.2.1 Propagation Model Calibration 

The testing area used does not have walls between devices, and therefore the multiwall 

model was discarded and the one-slope model was used. The one-slope model was used as the 

linear (in the coefficients) non-polynomial model, to find the n parameter of the one-slope 

model: 

 𝑀(𝑥) = 𝑐1Φ1(𝑥) + 𝑐2Φ2(𝑥) (4.1) 

with Φ1 = 1 and Φ2 = 10 × log10(𝑥), where a reference distance of 1 meter was used. The 

model coefficients are calculated by minimizing the squared error between the model and the 

measurements taken at the site:  

 𝑆 = ∑(𝑓𝑖 − 𝑀(𝑥𝑖))
2

𝑁

𝑖=1

 (4.2) 

The solution is found by solving a system of equations in augmented matrix form: 
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 (4.3) 

A best-fit value is calculated using samples taken at different distances from the 

anchor nodes. 

4.2.2 Positioning Algorithms 

Three different types of algorithms were tested in this performance comparison: map-

matching, approximate and exact positioning methods. The usual two-phase approach was 

employed for the map-matching solution. During the offline phase, a sensor node was used to 

collect calibration points in the area confined by the four anchor nodes. At each grid point 

position, true x and y values and body orientation (e.g., north, west, south and east) was 

recorded.  

A calibration point is composed by average, minimum, maximum and standard 

deviation values obtained from the RSS indication field in beacon messages. For each 
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calibration point, 100 RSS samples were collected from all anchor nodes, followed by 

computation and storage of the calibration point in the radio map database.  

The radio map was created with a grid resolution of one square meter (one point each 

meter along each axis). Since the positioning area is 4.7 meters wide, the last column of the 

grid has a smaller resolution of 0.7 square meters. The test field is covered by a total of 66 

points, with 4 sampling directions on each point, amounting to a total of 264 calibration 

points. After collecting all calibration points during the offline phase, the corresponding 

database was created. Each entry of the table is composed by: position (real position 

coordinates x, y and direction d) and average RSS for each anchor node. The minimum, 

maximum and standard deviation for each calibration point were also stored. Although these 

values have not been used in the position calculation process, they allow a qualitative initial 

evaluation of the fingerprinting map created.  

During the online phase, the sensor node obtains RSS samples and stores them. At the 

end of a test run (e.g.: after collecting 100 samples), RSS data is uploaded to the personal 

computer (PC) running MATLAB and the position is computed using the weighted k-nearest 

neighbours (WKNN) algorithm. 

The data collected during the online phase for the map-matching solution is also used 

to compute positions using the approximate and exact positioning solutions. For the 

approximate positioning method, weighted centroid localization (WCL) is applied, where two 

different parameters are used as weights to compute position: the RSS and the distance 

obtained from the path loss model. In the exact positioning method, the linear least squares 

(LLS) algorithm is used, where the path loss model is first applied to the RSS for conversion 

into a distance estimate. This distance is then served as input for the LLS method to find the 

position of the sensor node. 

4.3 Results 

One aspect of RSS positioning that is essential to its performance is the body 

influence. Two sets of samples were collected, with one set being obtained with the user’s 

body near the receiving antenna (body present - BP), the other set without the body influence 

(body not present - BNP). A set is composed by several test runs; each test run contains 100 

RSS samples. Position estimation is computed for each sample in a test run, thus no averaging 

was used in the tests presented. 
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All sample sets were taken in positions where a calibration point exists. The BP 

sample set is composed by 79 test runs, from which 66 were taken facing the north direction. 

The remaining 13 test runs were randomly chosen across the positioning area, with different 

orientations. The BNP sample set is composed by 12 test runs randomly chosen and do not 

have an orientation associated since the body is not present. 

The height of the sensor nodes is the same as the anchor nodes (1.2 meters above 

ground). The mean and standard deviation of the absolute error (Euclidean distance between 

the calculated position and the true position) were the metrics chosen as performance 

indicators. Performance evaluation results for each algorithm are presented, in order to find 

the best parameter values for the experimental setup. A comparison between all positioning 

algorithms is also presented. The results obtained for the propagation model calibration are 

presented next. 

4.3.1 Propagation Model Calibration 

Two parameters are required to calibrate the one-slope propagation model: the RSS at 

the reference distance and the path loss exponent (PLE). For the first parameter, a reference 

distance of 1 meter was used. This is the usual choice found in literature, which simplifies 

computation of distances by the low power sensor nodes.  

Twelve datasets of RSS measurements were collected at different distances from each 

of the anchors and applied equations (4.1), (4.2) and (4.3) to find the one-slope model 

parameters. Table 4.1 presents the data collected, where the coefficients from the one-slope 

model were calculated for each dataset. 

The average value of each coefficient was used in the propagation model, presented in 

equation (4.4). 

 𝑅𝑆𝑆𝑂𝑆(𝑑) = −37.72 − 10 × 2.19 × log10(𝑑) + 𝜒𝜎 (4.4) 

The RSS measurements for the propagation model were collected with the body near 

the receiving antenna, and in line-of-sight (LOS) to each anchor node, which is the typical 

application scenario. 
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Table 4.1: Propagation model measurements. 

Dataset RSS at distance d0 Exponent n 

1 -30.88 3.88 

2 -45.91 0.12 

3 -32.18 1.81 

4 -31.06 2.76 

5 -36.09 3.17 

6 -55.19 -0.16 

7 -20.42 3.99 

8 -34.76 2.72 

9 -34.82 2.38 

10 -47.71 1.40 

11 -48.75 1.41 

12 -34.84 2.74 

Average -37.72 2.19 

 

4.3.2 Map Matching 

The radio map is a representation of the propagation conditions that the algorithms 

were subject to. Figure 4.3 illustrates the average RSS for each of the anchor nodes obtained 

from all calibration points. 

The plots from Figure 4.3 were obtained by averaging all calibration points in a given 

x and y position for all four directions. The values depicted clearly correlate with the position 

of the anchor nodes, where the strongest RSS values appear in the area where the anchor is 

located. The worst-case calibration point had a standard deviation of 6 dBm. When the 

distance to the transmitting antenna is the smallest and both antennas are in line-of-sight, a 

difference of 6 dBm in received RSS power implies a best-case scenario position variation of 

approximately 1 meter. 

Two parameters were tested in the map-matching solution: the number of neighbours 

K and the norm used p. The mean error (ME) and the standard deviation (STD) are presented 

in Figure 4.4.  
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Figure 4.3: Average RSS fingerprint map. 

 

Figure 4.4: Mean and standard deviation for WKNN with different values of K and p. 

The body influence is presented for each of the p-norms tested: L1-norm (Manhattan), 

L2-norm (Euclidean) and L3-norm. In the BP case, the ME variation between K=1, equivalent 

to the nearest neighbours (NN) algorithm, and the other values of K is not significant. This 

can be explained due to the positioning system area and calibration point density. Since the 

area is small (47 m2) and the density of calibration points is high (264 calibration points), the 
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NN algorithm tends to perform as good as WKNN. Other works, such as [3], also pointed out 

this outcome, yet under a different environment. Note that a map-matching solution with NN 

as the positioning algorithm only needs to find one nearest neighbour, which is 

computationally faster than the WKNN case. A trade-off between the number K of neighbours 

and calibration point density is therefore possible when producing the radio map. 

In the BNP case, the value K has a more important influence than in the BP case, 

where for p=2 and K=5, ME reaches a minimum of approximately 2.2 meters. This scenario 

where body influence is not present is, of course, a best-case scenario, which does not happen 

when the system is to be used by a person. Yet, it shows a boundary of positioning error that 

deterministic frameworks could provide in this environment, if accounting the body influence 

in the position calculation.  

The STD values exhibit a monotonic decrease, with the increase of K in the BP case. 

Differences between norms are negligible. In the BNP case, STD values reach a minimum of 

0.8 meters for p=1 and K=4.  

4.3.3 Approximate Positioning 

Two weights for the WCL algorithm were tested: RSS and distance using the one-

slope path-loss model. For the RSS used as weight (RWCL), the exponent e was varied. 

Results are presented in Figure 4.5. 

In contrast with other works [4], [5] the optimum e parameter was found to be 

between 2 (BP) to 6 (BNP), where a trade-off between the ME and the STD exists. As the 

parameter e increases beyond 4 in the BP case, and beyond 6 in the BNP case, the ME and 

STD also increase. With a high e value, the position is strongly influenced by the anchor node 

with the greater RSS reading. Thus, in limit conditions, the calculated position would be the 

same as that of the anchor node with higher RSS in the field. 

Again, body influence plays a very important role. As an example, for an exponent of 

e=4, the ME in the BNP case is approximately half of the ME in the BP case. In the case of 

STD, an improvement of more than 50% in the BNP case is also achieved. 
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Figure 4.5: Mean and standard deviation for RWCL with different values of exponent e. 

For the distance used as weight (DWCL), two parameters can be varied: e (same as in 

RWCL), and the PLE n from the one-slope model. Results are presented in Figure 4.6. 

 

Figure 4.6: Mean and standard deviation for DWCL with different values of PLE n and parameter e. 

A resolution of 0.2 in both parameters was used. Performance wise, the DWCL results 

are very similar to those obtained in RWCL. The minimum ME of 1.36 meters is achieved for 

n=2.2 and e=1.4 in the BNP case, while in the BP case, minimum ME was 2.92 meters with 

n=3.4 and e=1. In both the ME and the STD results, there is a balance between parameters. 

By increasing n, distances from the propagation model become smaller, which have more 
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weight. When e is increased, the distance from the propagation model is also increased (in 

module), thus balancing each other’s effect. This explains the “saddle” effect in Figure 4.6, 

where the increase of both does not affect the performance indicators. 

The value of n=2.2 obtained in the BNP case is also very similar to the value obtained 

by linear regression of n=2.19. This suggests that the use of linear regression is an appropriate 

method of determining PLE n when LOS conditions are assured in the PS. Under non-line-of-

sight (NLOS) conditions to some anchor nodes, the optimum value of n tends to increase 

when compared with the LOS case. 

4.3.4 Exact Positioning 

The influence of the parameter n of the one-slope model, used in the RSS to distance 

conversion, was tested. The results for the LLS algorithm are depicted in Figure 4.7.  

 

Figure 4.7: LLS mean and standard deviation for different values of PLE n. 

Increasing the value of n produces a dampening effect on the error, since the estimated 

circumferences around each anchor node become smaller. Even though the mean error and the 

standard deviation decrease, the PS exhibits a saturated behaviour, since using n=6 is 

approximately the same as using n=10. Positioning error increases very rapidly for values of 

n smaller than 4. For a value of n=2.19, the one-slope model estimates the ME to around 1000 

meters, which is many orders higher than the positioning area itself.  
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4.3.5 Algorithm Comparison 

To evaluate the algorithm’s sensitivity to noisy measurements, a simple simulation 

was made: given a set of positions (x, y) from our test setup, the real distance from all anchor 

nodes to each position was calculated. An error was added to this calculated distance and 

served as input to each algorithm that uses distances. For the RSS based algorithms, distances 

were converted to RSS using the inverse of the one-slope model with parameters d0=1 m, 

n=2.19 and RSS(d0)=-37.72 dBm. Results are presented in Figure 4.8.  

 

Figure 4.8: Error sensitivity comparison between algorithms tested. 

Only the LLS algorithm exhibits zero error under exact distance estimates. However, 

the error increases rapidly with the noise in the LLS case, while the other algorithms exhibit 

resilience to increasingly erroneous estimates.  

In order to compare the positioning algorithms, only the best parameter values for 

each of the algorithms used were considered. Under these best values, the cumulative 

distribution function (CDF) of the ME was calculated and plotted for each algorithm. To have 

a frame of reference when comparing algorithms, a fictitious positioning algorithm called 

static centre position (SCP) was added to each CDF plot. This algorithm simply returns the 

centre position of the PS area, for any input. The CDF for WKNN and LLS algorithms is 

presented in Figure 4.9. 

Regarding the WKNN algorithm, the body influence is evident. In the BNP case, an 

error of 3 meters is achieved with a probability of around 70%, while in the BP case an error 

of the same magnitude is achieved with a probability of only 40%.  
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Figure 4.9: Cumulative distribution functions for all algorithms tested. 

The body presence has a bigger impact on WCL than in the map-matching solution. In 

spite of that, the WCL algorithms present slightly better results than WKNN when under body 

influence. When body is not present, WCL produces the best position estimates of all 

algorithms tested. Considering a probability of around 70%, WCL improves from an accuracy 

of 4 meters in the BP case to approximately 1.8 meters in the BNP. Between RWCL and 

DWCL, different parameter values lead to an equivalent performance.  

This implies that the use of RSS is the best weighting solution in WCL for our setup, 

since it is simpler than using a propagation model, avoiding the calibration phase for the 

propagation model parameters and the distance calculations. 

In the LLS case, the body presence had less influence than the other algorithms. LLS 

had the worst performance, where the BNP case obtained a performance at the same level of 

the BP case for the other algorithms. When compared with SCP, LLS can even sometimes 

perform worse. 

In general, WCL and WKNN have similar weak performances in the BP case. If the 

body influence is removed (the BNP case), WCL algorithms can perform significantly better 

than WKNN. In addition to this, WCL also has reduced complexity and no offline phase 

when compared to WKNN. Little overhead is needed to allow nodes to compute their 

position, since nodes only need to know the coordinates of the anchor nodes. 
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4.4 Discussion 

Propagation models typically model large-scale fading propagation under LOS, not 

accounting for body influence or multipath effects. These issues severely affect the 

propagation models’ correlation between distance and the RSS measurements. The distances 

estimated are severely biased, heavily depending on body orientation, LOS/NLOS condition 

and proximity to other objects, walls or obstructions. The comparison between the results 

obtained for the BP and BNP cases demonstrate how strong the body influence is. Given these 

observations, it is important to account for body influence when estimating the position using 

RSS. 

Although more information from the propagation environment is embedded in the 

map-matching solution, which includes different body orientations, the results obtained did 

not compensate such effort when compared to WCL algorithm. Approximately two hours 

were needed to collect all calibration points in our small test environment. If a bigger area was 

involved, the offline phase map creation would be harder to accomplish without resorting to 

other mapping techniques. 

The performance obtained from the WCL solutions is equivalent to the map-matching 

solution in the BP case. WCL solutions provided the best position estimates in the BNP case. 

From the results obtained, the RWCL provided overall better results than map-matching, with 

the advantage of having lower complexity and easier setup. Approximate positioning 

algorithms tend to perform better in this kind of environment due to its error resilience. In the 

case of DWCL, in spite of using a propagation model calibrated to the specific test scenario, 

using the distance as weight did not improve position estimates when compared to simply 

using the RSS parameter. 

Under exact distance measurements, the LLS technique yields the exact position. 

However, under erroneous distance measurements, the LLS performance is greatly affected. 

The LLS solution provided the weakest results, due to distances rarely being correctly 

estimated under our indoor test scenario. Clearly, LLS algorithm cannot be used with RSS 

methods in such an environment. It needs more accurate methods to detect distance between 

nodes and cannot be used as positioning algorithm when such are unavailable.  

The algorithms tested showed poor positioning capabilities in our setup scenario when 

the body influence is present. When the body influence is not present, positioning accuracy 
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improves significantly, with the exception of LLS, which performs approximately the same as 

the SCP. Between all three types of positioning algorithms, body influence was small in the 

LLS case, medium in the map matching solution, and highest in the WCL algorithms. 

Anchor node placement is a very important issue in RSS positioning systems that has 

not been addressed here. A minimum number of anchor nodes were employed, with an anchor 

node placement assuring always a total of four non-collinear points. Increasing the number of 

anchor nodes in the positioning area is another solution to further reduce positioning error. 

This measure needs to be taken with caution, since increasing number of anchor nodes also 

increases algorithm complexity, especially in the case of WKNN. 
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Chapter 5  

Body Effect in RSS Based 

Positioning 

The influence of the human body in antenna systems has significant impact in the 

received signal strength (RSS) of wireless transmissions. Accounting for body effect is 

generally considered as being able to improve position estimation based on RSS 

measurements. As such, the work from the previous chapter is augmented with the 

information of user orientation. By inferring the user’s orientation we are effectively inferring 

line-of-sight (LOS)/non-line-of-sight (NLOS) conditions between sensor and anchor nodes. 

With this information, this work seeks to assess if accounting for body influence can improve 

the position estimate under indoor conditions.  

Several measurements were performed within the experimental setup scenario, where 

the sensor node is now equipped with an inertial measurement unit (IMU) containing inertial 

and magnetic sensors. A model of the RSS attenuation induced by the body is created using 

experimental measurements collected in a controlled environment and applied in real-time to 

the positioning system. The body attenuation model enables the compensation of RSS 
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measurements collected by the sensor node, by taking into account attenuation effects from 

NLOS and body proximity. 

A real-time path loss exponent (PLE) estimation method using RSS information from 

neighbour anchors is also implemented and evaluated. The weighted centroid localization 

(WCL) is chosen in this work as the positioning algorithm, since it provided the best results in 

the previous chapter. The performance of WCL is evaluated to assess the effect produced by 

incorporating the body effect into the localization algorithm. 

5.1 Hardware Platform 

The CC2530 development kit from the previous chapter was used in this work. The 

anchor nodes are the same as in the previous chapter, while the sensor node has been 

redesigned. The sensor node was replaced by an evaluation module and two extra boards, one 

board containing the battery and the sensor platform (containing inertial and magnetic 

sensors, such as the sensor node described in [1]), and the other board containing a secure 

digital card (SDC) to store data. These boards are interconnected through 20-pin header 

connectors, allowing a modular approach for rapid prototyping. 

 

Figure 5.1: Sensor node prototype. The CC2530 module is shown on the left, the sensor and battery board in the 

middle and the SDC board on the right. 

The sensor platform integrates an InvenSense MPU6000 [2] with a Honeywell 

HMC5883L [3]. The MPU6000 embeds an accelerometer, a gyroscope and allows integration 

with an external sensor via I2C (inter-integrated circuit) protocol. The noise figures are 0.005 

º/s and 400 μg at 10 Hz for the gyroscope and accelerometer respectively. The HMC5883L 

magnetic sensor noise is 5 milli-gauss. The MPU6000 collects samples from each sensor and 

stores them in a first-in-first-out (FIFO) buffer. We used a sampling frequency of 100 Hz. The 
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data stored in the FIFO from all three sensors are read using the serial peripheral interface 

(SPI) protocol in a single burst at a 1 MHz clock frequency, using the serial port and the direct 

memory access (DMA) controller from the CC2530. 

When the term IMU is used from now on, it will refer to this sensor setup composed 

of accelerometer, gyroscope and magnetometer, which enable the determination of device’s 

orientation. The data collected from the RSS and the IMU is stored in a file on the SDC for 

offline processing in MATLAB. 

5.2 Orientation Measurement 

Only the accelerometer and magnetometer sensors were used to determine orientation 

in this work. Prior to measuring orientation, a calibration procedure is performed to 

compensate for offsets in the sensors. The minimum and maximum value of each axis is 

obtained by manually aligning the sensing axis with gravity, for the calibration of the 

accelerometer, and the magnetic north for the calibration of the magnetometer. The minimum 

and maximum values are then used in equation (5.1) to produce uniform values from -1 to 1: 

 𝑢 =
𝑅𝑒𝑎𝑑𝑖𝑛𝑔 − 𝑀𝑖𝑛

𝑀𝑎𝑥 −𝑀𝑖𝑛
2

− 1 (5.1) 

A tilt-compensated e-compass method using rotation quaternions was implemented to 

determine orientation. Figure 5.2 depicts the sensor coordinate system used in the IMU. 

 

Figure 5.2: Sensor coordinate system 

The orientation measurement consists in finding the Euler angles (roll, pitch and yaw) 

between the sensor coordinate system and the global coordinate system, where gravity is 

aligned with the –z-axis and the projection of the magnetic north in the azimuth plane is 

aligned with the +x-axis. First the roll and pitch angles are computed with the accelerometer 

data, using equations (5.2) and (5.3): 
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 𝑟𝑜𝑙𝑙 = 𝑡𝑎𝑛−1 (
−𝑔𝑦

−𝑔𝑧
) (5.2) 

 
𝑝𝑖𝑡𝑐ℎ = 𝑡𝑎𝑛−1 (

𝑔𝑥

√𝑔𝑦
2 + 𝑔𝑧

2
) 

(5.3) 

where gx, gy and gz are the normalized gravity vector components, which are measured by the 

accelerometer sensor when there are no external forces acting on the sensor node. Using the 

atan2 and atan methods in MATLAB for roll and pitch angles respectively produces angles in 

canonical form. Roll varies between ±180º and pitch varies between ±90º. Two rotation 

quaternions are created using equations (5.4) and (5.5), for the roll and pitch angles obtained 

from the accelerometer readings. 

 
𝒒𝒓𝒐𝒍𝒍𝑤

𝑏 = (cos
𝑟𝑜𝑙𝑙

2
, sin

𝑟𝑜𝑙𝑙

2
, 0, 0) 

(5.4) 

 
𝒒𝒑𝒊𝒕𝒄𝒉𝑤

𝑏 = (cos
𝑝𝑖𝑡𝑐ℎ

2
, 0, sin

𝑝𝑖𝑡𝑐ℎ

2
, 0) 

(5.5) 

The notation 𝒒𝑤
𝑏  denotes the quaternion q that rotates from the body frame (b) to the world 

frame (w) (or inertial frame) aligned with the gravity and the magnetic north vectors. 

The tilt rotation quaternion is computed by simply multiplying the pitch and roll quaternions. 

 𝒒𝒕𝒊𝒍𝒕𝑤
𝑏 = 𝒒𝒓𝒐𝒍𝒍𝑤

𝑏 ⨂ 𝒒𝒑𝒊𝒕𝒄𝒉𝑤
𝑏  (5.6) 

The yaw angle is computed by first applying the inverse of the tilt rotation, which brings the 

magnetic vector into the azimuth plane:  

 𝒉 = 𝒒𝒕𝒊𝒍𝒕𝑤
𝑏 ⨂(0,𝒎)⨂ 𝑞𝑡𝑖𝑙𝑡

∗
𝑤
𝑏  (5.7) 

where the magnetic vector m is converted to a quaternion with scalar part equal to zero. The 

yaw angle is then computed using equation (5.8): 

 
𝑦𝑎𝑤 = 𝑡𝑎𝑛−1 (

−ℎ𝑦

ℎ𝑥
) 

(5.8) 

where hx and hy are the normalized rotated version of the magnetic vector components. The 

yaw angle is computed using the atan method and varies between ±180º. Finally a rotation 

quaternion is created using half of the yaw angle: 

 𝒒𝒚𝒂𝒘𝑤
𝑏 = (cos

𝑦𝑎𝑤

2
, 0, 0, sin

𝑦𝑎𝑤

2
) 

(5.9) 
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Multiplying the yaw quaternion by the tilt quaternion produces the full orientation of the 

sensor node in quaternion format: 

 𝒒𝒇𝑤
𝑏 = 𝒒𝒕𝒊𝒍𝒕𝑤

𝑏 ⨂ 𝒒𝒚𝒂𝒘𝑤
𝑏  (5.10) 

5.3 Path Loss Estimation 

When deploying a wireless sensor network (WSN) in an indoor environment, PLE 

estimation is accomplished by performing several power measurements at different distances 

from a transmitting node. These measurements are then used to compute a best-fit constant 

value for the PLE parameter, to be used in the positioning area. This task was performed in 

the previous chapter. Here a different approach is explored, which uses the distance 

information that is configured in the anchor nodes of the positioning system. Given that each 

anchor is assigned a location, distances between anchors are known. Since nearby anchor 

nodes also receive the beacons broadcasted, a PLE estimate can be obtained from this 

information. 

In the previous chapter, anchor nodes were configured to send beacon messages 

periodically (100-millisecond superframe). The anchor nodes in this work were configured to 

additionally include RSS information from other anchor nodes in the beacon messages. 

During a superframe, the sensor node will receive one beacon message from each anchor 

node, with each beacon message containing a list of RSS readings that the respective anchor 

node received from other anchor nodes in communication range. With RSS and distances 

between anchor nodes, path loss exponent estimation for each link is obtained using equation 

(5.11), which is derived from the one-slope model (equation (2.12) from chapter 2). 

 
𝑛 =

𝑅𝐴 − 𝑃0

−10 ∙ 𝑙𝑜𝑔10(𝑑)
 

(5.11) 

where RA is the RSS received by the anchor node for a specific link and P0 is the RSS at the 

reference distance of 1 meter. Assuming that all four anchor nodes from our positioning 

scenario have full connectivity, each anchor will capture RSS from all other three anchors and 

broadcast this information in the beacon message. The sensor node uses this information to 

infer the PLE for each anchor. Figure 5.3 depicts an iteration of the algorithm, to which we 

refer to as closest link path loss (CLP). First the sensor node computes the initial position 

estimate using the RSS received from the anchor nodes using WCL algorithm. This initial 
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position estimate, together with the known anchor coordinates is used to find the node and 

anchors displacement vectors (vectors 2,1 2,N 2,3 and 2,4 in Figure 5.3).  

 

Figure 5.3: Closest link path loss algorithm iteration example for anchor 2. 

Using the cross product rule with the z component set to zero, the area of the parallelograms 

formed by each anchor displacement vector and the node displacement vector are computed. 

The two smallest areas are chosen, which correspond to the links closer to the node’s initial 

position estimate. Next, a linear interpolation is used to find the PLE of the sensor node’s link 

to the anchor, by using the angle between the two closest links (beta angle) and the angle 

between one of the links and the user displacement vector (alpha angle). The angles are 

computed using the dot product and a linear interpolation is used to find the PLE using 

equation (5.12). 

 
𝑛 = 𝑛𝑖,1 ×

𝛽 − 𝛼

𝛽
+ 𝑛𝑖,2 ×

𝛼

𝛽
 

(5.12) 

where ni,1 and ni,2 are the PLEs of the closest links to the node’s estimated position, beta is the 

angle between the closest links, and alpha is the angle between one of the closest links and the 

user displacement vector. This PLE (n) represents the state of link attenuation from the 

previous superframe, and allows estimation of the distance between the sensor node and the 

respective anchor node by using equation (5.13), which also derives from the one-slope 

model:  

 
𝑑 = 10(

𝑅𝑆−𝑃0
−10𝑛

)
 

(5.13) 

where Rs is the RSS received by the sensor node, P0 is the RSS at the reference distance and n 

is the PLE obtained from equation (5.12). This procedure is repeated for each anchor node, 

and the distances obtained for each anchor are then used in the WCL algorithm to estimate the 

position of the sensor node. 
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The goal associated with this procedure is to use as much RSS information as 

possible, in order to capture path loss changes caused by the user’s body or the dynamic 

environment. 

5.4 Evaluation of Body Effect in RSS 

Body effect experiments were carried out in two different environments, the 

positioning area of 4.7 m by 10 m (approximately 50 m2) used in the previous chapter and an 

anechoic chamber. Figure 5.4 details the anechoic chamber setup. 

 

Figure 5.4: Anechoic chamber setup. 

To evaluate body effect on RSS, three sets of measurements were collected: static with 

body influence (case 1), where the device is placed on the user’s body while the user is 

standing still; static without body influence (case 2), where the device is placed on top of a 

plastic stand; and dynamic (case 3), where the device is placed on the user’s body and the user 

performs a 360º rotation. For all scenarios the device is always placed at waist level, 1.2 m 

above the ground. The goal is to distinguish between device effects (hardware effects such as 

antenna placement in the device and radiation pattern) and body effects, as well as between 

static and dynamic situations. 

The anechoic chamber tests provide a controlled environment without external 

interferences. It allows us to determine the multipath and shadow fading caused by the body 

alone, since other multipath components from wall and ground reflections are severely 

attenuated or non-existent in this type of environment. The positioning scenario tests provide 

real data for comparison with controlled environment data. 
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Data capture is accomplished by the sensor node, which receives messages from a 

transmitter node placed at the same height and at a distance of 2 m. The sensor node simply 

stores the RSS values from the received messages and the raw IMU data in a file on the SDC. 

5.5 Attenuation Model 

We consider that the RSS that the sensor node receives from each anchor node is 

influenced by the user’s orientation according to an attenuation model that relates the relative 

attenuation with the user’s orientation. First, a reference orientation relating the positioning 

setup coordinate system to the global coordinate system is required (e.g., the positioning setup 

coordinate system offset relative to the magnetic north). This reference orientation was 

initially measured in our positioning scenario. To find the relative angle between the user’s 

orientation and an anchor node, the user location on the positioning scenario is also needed. If 

the WCL algorithm is used to find this position, an additional error is added in the relative 

angle estimation and therefore, to avoid this additional error, the real position logged during 

the data collection phase (such as in the map-matching offline phase of the previous chapter) 

was used in order to compute the anchor direction. This allows the inclusion of orientation 

information with a much smaller error than using WCL to find position, which can be seen as 

a best-case scenario where orientation information is the best possible.  

Anchor direction relative to the sensor node is found using equation (5.14), by 

computing the difference between the location of the sensor node ps and the location of the 

anchor node pa.  

 𝒂 = 𝒑𝒔 − 𝒑𝒂 (5.14) 

The orientation of the sensor node is corrected by multiplying the IMU orientation 

quaternion by another quaternion representing the north offset angle, measured in the 

positioning setup coordinate system using equation (5.15).  

 𝒒𝒘
𝒃

𝒄 = 𝒒𝒘
𝒃

𝒊𝒎𝒖⨂ 𝒒𝒘
𝒃

𝒐𝒇𝒇𝒔𝒆𝒕 (5.15) 

With both the world (inertial) coordinate frame and the local coordinate frames of the 

positioning area aligned, the sensor node’s forward direction is obtained by multiplying the 

resulting rotation quaternion by a 3D vector pointing in the x-axis direction (i.e., 0º roll, 0º 

pitch and 0º yaw), using equation (5.16): 

 𝒃 = 𝒒𝒘
𝒃

𝒄⨂(0, 𝒅)⨂ 𝒒𝒘
𝒃

𝒄
∗ (5.16) 
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where d is the x-axis direction vector (i.e., vector [1,0,0]) forming the vector part of a 

quaternion with zero scalar part and 𝒒𝒘
𝒃

𝒄
∗ is the quaternion conjugate. The scalar part of 

quaternion b from equation (5.16) is discarded and the 3D orientation vector is given by the 

vector part. Discarding the z component of the 3D vector representing the sensor direction, the 

relative angle between sensor and anchor direction is simply given by the angle between two 

vectors: 

 
𝛼 =  𝑐𝑜𝑠−1 (

𝒂⋅ 𝒃

‖𝒂‖ ∙ ‖𝒃‖
) 

(5.17) 

 𝑟 = 𝒂 × 𝒃  (5.18) 

Vectors a and b represent anchor direction and sensor direction respectively. Since the angle 

will always be the smallest angle between both vectors, multiplying the angle by the sign of 

the rotation axis produces absolute orientation. The angle produced by equations (5.17) and 

(5.18) will be used to lookup the attenuation value of the model collected in the anechoic 

chamber. A linear interpolation is used when no information is available for the angle 

detected by the sensor node (e.g., between two points in the attenuation model). 

5.6 Results 

This section presents the results for the experiments carried out in the proposed 

scenarios. RSS data collected to study the body effect is presented in polar plots. Units for 

RSS data are dBm and angles are in degrees. Regarding positioning algorithm performance, 

the parameters found in the previous chapter, which maximize WCL accuracy, were used as 

default parameters in this work. When using the raw RSS readings for WCL the exponent e 

was set to 3.4 (same as RWCL in the previous chapter). For distances (obtained from the one-

slope model) being used as weights in CLP the exponent e of 1 and the reference power P0 of 

-37.72 were used (same as DWCL in the previous chapter). The performance indicator chosen 

is the Euclidean distance between real position and estimated position. Cumulative 

distribution functions and geographical error distributions are presented for each algorithm, 

with and without body effect compensation. 

5.6.1 Body Effect in RSS 

A manual orientation measurement was performed inside of the anechoic chamber, 

using markers placed in the floor. For the positioning scenario, orientation is obtained using 
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the IMU after performing the calibration procedure. The sensor node is either fitted to the user 

at waist level in case 1 (static with body influence) and case 3 (dynamic with body influence) 

or placed on top of a plastic stand in case 2 (static without body influence) at the same height 

(1.2 meters) as the user’s waist. Rotations are performed along the vertical axis (z-axis) in a 

counter-clockwise direction, with 0º being the orientation facing the anchor node (LOS) and 

180º being the opposite direction (NLOS). Due to space constraints inside the anechoic 

chamber, the distance between sensor and anchor nodes was fixed to 2 meters in both test 

scenarios. For cases 1 and 2, the sensor node is oriented accordingly, and 100 RSS samples 

are collected. For case 3, the user performs a 360º turn during approximately 60 seconds. 

Since the sensor is placed at waist level, some interference is expected due to the arms when 

the body is present (cases 1 and 3). The user’s arms were in a resting position along the torso. 

Results are summarized in Figure 5.5, where RSS values are presented. The body effect 

experiments in the positioning scenario were performed with a minimum distance to the walls 

of 2 meters. 

 Case 1 

(Static w/ body 

influence) 

Case 2 

(Static w/o body 

influence) 

Case 3 

(Dynamic) 

Positioning 

Scenario 

   

Anechoic 

Chamber 

   

Figure 5.5: Effect of the human body on the RSS under different scenarios. 

There is a clear trend in the summarized plots from Figure 5.5, where higher RSS 

attenuation can be seen whenever the body is blocking the LOS. Both scenarios from cases 1 

and 3 exhibit this NLOS effect for orientations between 90º and 270º. 
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The RSS levels depicted in the anechoic chamber and positioning scenarios of case 2 

are a function of antenna radiation pattern, antenna placement in the PCB and scenario 

conditions. There is minimum practical difference between both scenarios in case 2, implying 

that for our positioning scenario, the minimum distance of 2 meters to the walls is sufficient 

for signals reflecting of the walls not to be detected by the receiver, and thus not influence the 

positioning algorithm error. These reflections are dependent on wall material, which has been 

studied in works such as [4] and is outside the scope of this work.  

The RSS variance increases significantly in case 3 when compared with the other 

cases, due to the user’s motion during the test. It is important to note that the RSS variance 

increases for both scenarios under dynamic conditions. In the case of the positioning scenario, 

these variations are generally higher. 

The body effect data collected does not appear to agree with superposition of 

attenuation effects, since the attenuation profile observed in static conditions when the body 

effect is present is not identifiable in the case where the body is not present. 

The RSS variance exhibited in the plots from Figure 5.5 is solely due to the user’s 

body, which is the only source of motion in the experiments. When the user’s body is 

removed from the test scenarios, plots for minimum, maximum and average RSS overlap, 

which indicates that no variations occurred. 

The data collected from the anechoic chamber scenario was used to create the body 

attenuation model presented in Figure 5.6. 

 

Figure 5.6: Body attenuation model (units are in dB). 

The attenuation model is the result of a combination of multipath and shadowing propagation 

conditions imposed by the presence of the body inside the anechoic chamber. The model is 

effectively the difference between the RSS obtained when the body is near the receiving node 

(case 1) and the RSS obtained when the body effect is not present (case 2). 
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5.6.2 Body Effect in Algorithm Performance 

The body attenuation model obtained in the previous section is used in this section by 

adding the corresponding RSS attenuation value to the RSS received from each anchor node, 

according to the angle between the user’s orientation and the anchor node direction. These 

compensated RSS values are then served to the positioning algorithm and a new estimate of 

position is computed. 

In order to experimentally study the body effect in algorithm performance, three sets 

of data were collected in the positioning scenario. The first set was collected with the sensor 

node held in the user’s hand at approximately 20 cm away from the body (referred to as off-

body-20 dataset). The second set was collected with a distance between body and sensor node 

of 10 cm (referred to as off-body-10 dataset). The last set was collected with the sensor node 

attached to the user’s body at waist level using a Velcro strap (referred to as on-body dataset). 

These datasets were served as inputs to the WCL and CLP algorithms, generating output 

estimates without the body effect compensation (WCL and CLP), with the body effect 

compensation using the true position logged during data collection (WCL+B true pos and 

CLP+B true pos) and with the body effect compensation using WCL to produce the initial 

position estimate (WCL+B est pos and CLP+B est pos). Datasets were collected in different 

days, at approximately the same hour of the day. Algorithm performance for the off-body-20, 

off-body-10 and on-body datasets is presented in Figure 5.7, Figure 5.8 and Figure 5.9 

respectively. 

 

Figure 5.7: Performance results for the off-body-20 dataset. 

 

2 2.5 3 3.5 4 4.5 5 5.5 6
0.4

0.5

0.6

0.7

0.8

0.9

1

Error (m)

C
u

m
u

la
ti

v
e

 P
ro

b
a

b
il
it

y

 

 

WCL

WCL+B true pos

WCL+B est pos

CLP

CLP+B true pos

CLP+B est pos



Body Effect in RSS Based Positioning Chapter 5 

 

 95 

The results obtained for the off-body-20 dataset show that the position estimated by 

each algorithm worsens when the body orientation is accounted, with WCL+B using the true 

position degrading from 3.03 m to 3.61 m (+19%) compared to WCL, and CLP+B using the 

true position degrading from 2.69 m to 4.3 m (+59%) compared to CLP, analysing 

performances at 70% probability. A lower performance was expected using the estimated 

position, compared to the true position, when inferring orientation, which is consistent with 

the results, as can be seen in Figure 5.7. 

 

Figure 5.8: Performance results for the off-body-10 dataset. 

The off-body-10 dataset also consistently presented worse performance when 

accounting body orientation, yet with lesser impact than in previous dataset. WCL+B using 

the true position degraded from 2.83 m to 3.22 m (+13%) compared to WCL, and CLP+B 

using the true position produced slightly worse results, from 3.02 m to 3.12 m (+3%), 

compared to CLP, when analysing performance at 70% probability. Using the estimated 

position to infer orientation had lesser impact in performance for this dataset, compared to the 

previous dataset, although still presenting worse performance. WCL actually performed better 

in the off-body-10 dataset than in the off-body-20 dataset, which was contrary to our 

expectations. The algorithms that account for the body effect improved when compared to 

their performances in the previous dataset, yet still presenting worse performance than the 

simpler versions that don’t account the body influence. 

Results for the on-body dataset scored the lowest positioning accuracy from all 

datasets. On the other hand, there were improvements when comparing individually each 

algorithm with its body effect counterpart, with WCL+B using the true position improving 
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from 3.85 m to 3.6 m (-6%) compared to WCL, and CLP+B improving from 4.36 m to 3.61 m 

(-17%) compared to CLP, at 70% probability. Using the estimated position for the body effect 

compensation did not improve the location estimates obtained by WCL and CLP algorithms. 

 

Figure 5.9: Performance results for the on-body dataset. 

Overall, for the off-body-20, off-body-10 and on-body datasets, CLP (with an 

accuracy of 2.69 m, an improvement of 11% compared to WCL), WCL (with an accuracy of 

2.83 m) and WCL+B using the true position (with an accuracy of 3.6 m, an improvement of 

6% compared to WCL), respectively, presented the highest accuracy marks under our test 

conditions at 70% probability. When comparing WCL and CLP to their counterparts that 

account the body influence using the estimated position, which is the real use case scenario, 

the body attenuation model consistently worsened the accuracy. On-body dataset showed 

lesser degradation of accuracy (in the order of 3%), off-body-10 showed average degradation 

of accuracy (14% and 35% for WCL and CLP respectively) and off-body-20 showed higher 

degradation of accuracy (42% and 105% for WCL and CLP respectively). Results are 

summarized in Table 5.1. 

Table 5.1: Algorithm performance results for 70% cumulative probability. 

 WCL 
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true pos 

WCL+B 

est pos 

CLP 

CLP+B 

true pos 

CLP+B 

est pos 

Off-Body-20 3.03m 3.61m 4.31m 2.69m 4.3m 5.53m 

Off-Body-10 2.83m 3.22m 3.23m 3.02m 3.12m 4.09m 

On-Body 3.85m 3.6m 3.96m 4.36m 3.61m 4.49m 
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In Figure 5.10, Figure 5.11 and Figure 5.12, the geographical distribution of the 

positioning error is presented for each algorithm, with respect to the off-body-20, off-body-10 

and on-body datasets, respectively. The tests were performed with only one user inside the 

area. If more users were present, the error distribution would certainly generate different error 

patterns. 

 

Figure 5.10: Geographical distribution of positioning error for off-body-20 dataset. Axes are in meters. 

 

Figure 5.11: Geographical distribution of positioning error for off-body-10 dataset. Axes are in meters. 

It is clear from the geographical error distributions that different positions are subject 

to different error magnitudes due to the propagation conditions of the scenario. Differences in 

error distributions are larger between datasets and smaller across positioning algorithms. 

Overall, the error is generally smaller near an anchor node and larger further away. The centre 

of the positioning area also has a tendency to exhibit lower error. 
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Figure 5.12: Geographical distribution of positioning error for on-body dataset. Axes are in meters. 

As a final result presented in this section, the difference between the RSS received by 

the sensor node and a theoretical RSS that would have been received by the sensor node in 

ideal conditions were computed, in order to show the RSS deviation from the empirical model 

that is encountered in the field. Using the real position of the sensor node logged during data 

collection and the one-slope model, theoretical RSS values were computed for each anchor 

using the real distances. For this calculation the PLE n=2.19 and P0=-37.72 dBm parameters 

found in the previous chapter were used. The probability distributions (calculated using the 

ksdensity method from MATLAB) for the body attenuation model and the RSS difference for 

all three datasets are depicted in Figure 5.13. The body attenuation distribution was also plotted 

for comparison. 

Figure 5.13: Probability distributions for the difference between real and theoretical RSS received from anchor 

nodes. Body attenuation model distribution is plotted for comparison 
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In the case of the on-body dataset, the distributions of anchors 1 and 4 are similar to 

the distribution of the body model, which is related to the improvements seen in this dataset 

when accounting body influence. Distributions for anchors 2 and 3 differ significantly from 

the body model, meaning that while anchors 1 and 4 are generally correctly compensated 

using the body model, anchors 2 and 3 deteriorate the distance estimate. For the off-body-10 

and off-body-20 datasets, differences between the model and anchors are bigger, which 

explain why the body influence compensation produced worse results compared to not 

accounting body influence. It can also be seen that RSS difference is more closely 

approximated by tailed distributions, rather than Gaussian, as is generally assumed due to the 

central limit theorem. 

5.7 Discussion 

In the previous chapter, the WCL algorithm was tested with and without body 

influence in the same positioning scenario as in this work, and the performance was improved 

from 4.0 m to 1.8 m (for a 70% probability) when the body was removed from the scenario, a 

55% improvement in position accuracy. Body influence in RSS is widely known to induce 

error in the position estimation. Accounting for body influence, such as in [5], provided a 

major impact, improving location estimates. In order to remove or minimize this bias effect 

caused by the body in the previous chapter, a body attenuation model was created and applied 

in the same positioning scenario. 

Considering the best-case scenario (when the body attenuation model was applied 

using the true position to estimate orientation), only minor improvements on the positioning 

error were obtained for the on-body dataset. For the datasets where the sensor node is 

distanced from the body, the body attenuation model consistently deteriorated the 

performance. This could be explained due to the model being created using on-body data and, 

as such, it was more likely to produce better results when applied to the on-body dataset. 

However, this best-case scenario cannot be used in a real use-case (which would use the 

estimated position to infer orientation), since the body attenuation model consistently 

deteriorates accuracy in all datasets, despite the controlled environment with only the user in 

the positioning area. These results suggest that the shadowing component caused by the body 

plays a minor role in the RSS when compared to the multipath component imposed by the 

environment. The higher attenuation found in the positioning scenario also stands in 

agreement with this suggestion. 
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The distance from the sensor node to the user’s body is an important parameter, as 

evidenced by the differences in performance between datasets. The closer the sensor node is 

to the body, the worse the positioning algorithms performed in general. The multipath and 

shadowing component that originates from the body presence is intensified with the inverse of 

the distance between the body and the receiving antenna, reducing the accuracy achieved by 

the positioning algorithms tested. 

The PLE estimation method used in the CLP algorithm explores the fact that the 

anchor nodes are configured with their own location. This enables the use of inter-anchor 

node RSS and distance information in the PLE estimation. The CLP algorithm achieved its 

highest positioning accuracy of 2.69 m in the off-body-20 dataset, an improvement of 11% 

compared to WCL. The additional RSS information transmitted in the beacon messages sent 

by anchor nodes used in the CLP algorithm increased the overhead significantly. However, 

the algorithm performance has not improved with this added information for the case of the 

on-body dataset, which is the use-case of interest for a personal positioning system. Given the 

result obtained for the off-body-20 dataset for the CLP, this PLE estimation method could 

also outperform the raw RSS used in WCL if the human body was not present in the scenario. 

These results show that there is a weak correlation between RSS and distance in our indoor 

environment, where RSS more closely resembles a proximity inference metric than a distance 

inference metric. These results are also specific to the IEEE 802.15.4 physical layer in the 2.4 

GHz frequency band, which is the protocol implemented by the CC2530 hardware modules 

used in this work.  

Using more anchor nodes is a solution to improve localization accuracy; yet, to 

increase anchor number in the test scenario, precautions would be necessary for the following 

reasons: extra anchors inside the positioning area would not be possible to add since they 

would need to be at the same height as other anchors, and, as such, would pose an obstacle to 

the user inside the positioning area; increasing the number of anchor nodes would increase 

complexity and the overhead in CLP would grow exponentially. 

The distance between anchor nodes and walls is another important parameter to 

consider when deploying RSS positioning systems. Using a minimum distance of 2 meters 

from walls, the RSS collected by the sensor node in the positioning setup is approximately the 

same as the RSS collected in the anechoic chamber. The anchors in our positioning scenario 

had much lower distances from walls, with 0.36 m in the worst case, and 1.8 m in the best 
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case. These smaller distances affect especially anchors 2 and 3, for which the RSS 

distributions from Figure 5.13 differed significantly from other anchors. Further testing would 

be necessary to find an optimum wall distance that maximizes the efficient use of an indoor 

space with minimal impact in algorithm performance. The height of the anchor and sensor 

node with respect to the ground is also an important parameter, which was made constant in 

this work. The height influences the ground reflected wave, which can add constructively or 

destructively to the direct path wave, greatly influencing the RSS. 
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Chapter 6  

Stride and Heading System for 

WSN in Indoor Environment 

The inertial measurement unit (IMU) used in the previous chapter is, in itself, a 

standalone form of positioning system that can be applied in order to improve position 

estimates, as such, a stride and heading system (SHS) is implemented in this work.  

The location where the IMU is placed in the body plays a very important role in terms 

of algorithm selection, leading to different performances between implementations. A 

solution often adopted in the literature is the placement of the IMU on the foot. This location 

enables simple detection algorithms based on thresholds, due to the high dynamics sensed 

during the human gait cycle. Detecting steps or strides is typically accomplished by applying 

a threshold to the signal of interest from the accelerometer or gyroscope sensors 

(magnetometer sensor is also possible, although presenting higher detection error) [1]. 

Applying a constant threshold presents a disadvantage: the threshold is chosen under 

specific conditions, which, when not present, incur in errors in the stride detection (SD) 

algorithm. A filter is usually applied in order to remove undesired momentary variations, 

along with additional restrictive conditions (e.g., by using a timer with a predefined interval to 
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avoid false detections between strides [2]) to further reduce detection errors. The threshold 

method is typically employed to accurately detect inactivity periods, in order to apply zero-

velocity updates (ZVUs) to correct drift errors during these time instants [2]–[4]. This is 

considered the most versatile method due to the decomposition of the stride length in each 

axis of the world coordinate system, enabling the detection of motion in any direction, 

including height changes during a walk. An algorithm with less versatility than the latter, 

similar to the ZVU applied to the ankle, is presented in [5] which performs a stride-by-stride 

integration of the gyroscope and accelerometer signals, detecting forward movement and 

height changes.  

ZVUs provide the initial conditions for the integration of accelerations related to the 

duration of a single stride (i.e., integration is reset every stride and gravity is corrected from 

the accelerations), achieving accuracies in the order of 0.3% to 3% of total travelled distance 

(TTD). Another strategy to infer SL is to apply a model or an empirical formula to the data 

collected by the IMU during one stride [6], [7], resulting in accuracies between 3% to 8% of 

TTD. The latter methods, although exhibiting lesser accuracy than the former methods that 

use ZVUs, have lower computational complexity and are therefore of interest to this work. 

Following an approach similar to the works in [7]–[9] and having in consideration that 

the algorithms are to be applied to devices with low computational capabilities, we implement 

SD and stride length (SL) estimation by placing the IMU in the ankle of the user. The sensor 

module is attached in a fixed position and orientation on the user’s ankle. The ankle is chosen 

for the position of the IMU since its angular velocity pattern allows a better segmentation of 

the gait cycle. Also, by placing the IMU in a specific orientation, a simplification in the SD 

algorithm is possible, by searching the data stream for events only in one axis of the 

gyroscope, which is the axis that senses the majority of the rotations observed in the sagittal 

plane (y-axis or pitch axis in this work). Since the typical stride movement is in its majority 

localized in this axis, initial IMU offsets or misalignments do not influence significantly the 

event detection. The stride length (SL) estimation, however, has a strong dependency on 

misalignments of the sensor node. These misalignments translate into angular velocities 

observed in all axes, which cannot be disregarded as in the case of SD. It is therefore 

necessary to account for angular velocity observed by the sensor in these axes, in order to 

reduce errors in SL estimation. 
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6.1 Stride Detection 

The goal in this work is to robustly detect strides by placing the node in a specific 

position and orientation, so the body axes of the gyroscope are (at least) coarsely aligned with 

the global vertical and forward axes. The misalignment of the node can be seen as a common 

issue when placing the IMU in the ankle, therefore robustness against misalignment 

conditions is desirable in a real use-case scenario. When placing the sensor node in the user’s 

ankle, the x-axis (forward direction axis) of the IMU is aligned with the direction of 

movement. The rotations in the sagittal plane are sensed mainly by the y-axis of the 

gyroscope, which is used in the algorithm to detect the phases of the gait cycle. The y-axis in 

this work is filtered using a second order Butterworth low pass filter with a cut-off frequency 

of 4 Hz (such as in [5]). A plot of the y-axis of the gyroscope measurements during one stride 

is presented in Figure 6.1. 

 

Figure 6.1: Filtered gyroscope measurements for steady walking, collected from an IMU placed in the ankle. 

During steady walking, all the states from both phases of the gait cycle are clearly 

identified during a stride. Some states can be missing from the data stream under specific 

conditions, such as walking in uneven terrain, climbing stairs, walking uphill or downhill. 

Another cause for missing states from the gait cycle is related to health or disability issues of 

the user. For a normal person, when the stride ends in the MSW (mid-swing), the heel-strike 

(HS) state is typically missing in the measurements, depending on how abruptly the foot stops 

the stride. These issues are generally known to influence pedestrian navigation, yet some of 

these issues are highly uncommon, such as uneven terrain in indoor environment. Taking into 

consideration the issues described, a SD algorithm was developed and is presented in Figure 

6.2. 
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Figure 6.2: Proposed SD algorithm. 

At every new measurement collected from the IMU, the main gyroscope axis is 

filtered and used in the search for events by comparing the current and the previous filtered 

sample, with knowledge of the previous state of the gyroscope signal (e.g., rising or falling). 

A set of events is identifiable: 

 An upper peak (UP), when the gyroscope signal changes the slope from 

positive to negative. 

 A zero crossing (ZC), when the gyroscope signal changes sign. 

 A lower peak (LP) when the gyroscope signal changes the slope from negative 

to positive. 

 A combination of both UP and ZC (UPZC), and LP and ZC (LPZC), which 

can happen if the update rate of the gyroscope is not fast enough to detect a 

peak before a ZC occurs. 

 Whenever an event is detected, it is used to update the finite state machine (FSM) 

depicted in Figure 6.3.  

 

Figure 6.3: Finite state machine applied in stride detection using gyroscope measurements. 

The symbols “!” and “&” in the transitions between states in the FSM represent NOT 

and AND logical operations, respectively. The conditions for each state transition are 

described as follows: 
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 FF1: the event is UP and the previous filtered value is higher than the 

threshold. 

 FF2: the event is UPZC and the previous filtered value is higher than the 

threshold. 

 TO1: the event is UP. 

 TO2: the event is ZC. 

 SW1: the event is ZC or LPZC and the stride is valid. 

 SW2: the event is ZC and the stride is invalid. 

 HS1: the event is UP or UPZC. 

The FSM starts in the foot-flat (FF) state, where it searches for the UP event. When 

this event is detected and the previous filtered sample is higher than the predefined threshold, 

the transition to the toe-off (TO) state occurs. By using a threshold, part of the false positive 

UP events that would trigger a transition to the TO state are discarded. The FSM can also 

transit to the swing phase directly if the UPZC occurs (e.g., due to a slow update rate or faster 

stride speed). 

Occasionally, in the TO state, multiple UP events can occur either due to walking in 

irregular pavements or due to slow walking. As such, the FSM stays in the TO state if the UP 

event is found. The transition from TO state to the swing (SW) state occurs when the ZC is 

detected; if the event detected is not a ZC, the FSM goes to the initial state to start searching 

for the UP event again. 

After entering the SW state, the FSM searches for a ZC event, which typically appears 

immediately before the HS. When this event is found, a stride is evaluated. A stride is 

considered valid only when the maximum absolute value of the current filtered sample during 

the SW state was higher than the threshold. 

The SD algorithm is controlled by the threshold parameter (used in TO detection and 

stride validation). This threshold applied is less rigid than the typical thresholds applied in 

other methods, since the decision of SD does not solely depend on this minimum threshold 

value. 
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6.2 Stride Length Estimation 

Two methods are used to implemented SL estimation in this work: a simple method 

with lower computation complexity, which integrates the angular velocity from the gyroscope 

during the time interval when the user swings the leg forward; and an improved method with 

higher computation complexity based on the algorithm applied in [5], where the integration of 

the ankle acceleration is performed for the duration of the gait cycle. 

For the simple method, a pendulum is used as an approximation model to the SL 

estimation, as presented in Figure 6.4. 

 

Figure 6.4: Pendulum model approximation for stride length estimation. 

This model depends on the user’s leg length, for which the method applied in [10] was 

used to find this parameter, by measuring the distance between the medial malleolus and the 

anterior superior iliac spine. Under the assumption that the angle described by the ankle after 

the TO until the HS phase is proportional to the stride, the SL is given by: 

 𝑆𝐿1 = 2 ∙ 𝐿 ∙ sin
𝜃

2
 (6.1) 

where L is the leg length in meters and  is the angle in radians, obtained by the gyroscope 

integration of the movement observed by the IMU in the sagittal plane. In order to avoid 

trigonometric calculations in the sensor node, equation (6.2) can be applied instead of 

equation (6.1).  

 𝑆𝐿2 = 𝐿 ∙ 𝜃 (6.2) 

Equation (6.2) computes the length of the arc described by the ankle motion, which is used as 

an approximation of the actual SL. 
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The state information from the SD algorithm is used in order to accomplish the 

integration of the forward swing of the leg. Due to the filtering step applied to the main 

gyroscope axis, the true start of the SW state of the SD algorithm is delayed, compared to the 

raw gyroscope data. Performing the gyroscope integration when the FSM enters the SW state 

would depend on the delay introduced by the filter. Instead, the integration is performed when 

the FSM is either in the TO or SW states and only when the angular velocity of the raw 

gyroscope main axis is negative. Only the main gyroscope axis is filtered and used as input to 

the FSM. The integration is performed using the raw gyroscope measurements from all axes, 

therefore reducing computation complexity by not carrying out the filtering of all axes. The 

integration is reset every time the FSM enters the TO state, preventing the integration of 

angles that do not belong to the current stride. 

When the user performs a turn while walking, a bias can also incur in the SL estimation, 

since the integration is accounting for other movements besides the pendulum motion of the 

stride. Turning while walking does not often occur, since people tend to walk in straight 

paths. This bias in SL is generally small and can be disregarded due to its low frequency 

during walking. 

For the improved method, the algorithm from [5] is applied, using the state information 

derived in the SD algorithm to find the ankle vertical event. When this event is detected, the 

ankle is considered vertical, and as such, the angle of the IMU with the vertical axis is zero. 

This provides the initial condition for the integration of the gyroscope data using equation 

(6.3), starting from the quaternion identity (i.e., quaternion vector [1, 0]): 

 𝒒𝒘
𝒃

𝒊 = 𝒒𝒘
𝒃

𝒊−𝟏 +
1

2
𝒒𝒘

𝒃
𝒊−𝟏⨂𝝎 ∙ ∆𝑡 (6.3) 

where 𝒒𝒘
𝒃

𝒊−𝟏 is the previous iteration of the gyroscope based quaternion rotation from body 

frame (b) to world frame (w), ⨂ denotes the quaternion multiplication, ω is a quaternion with 

zero scalar part and vector part equal to the filtered angular velocity sample from the 

gyroscope (in rad/s) and ∆𝑡 is the sampling period. The acceleration in world frame is 

computed using equation (6.4): 

 𝒂
𝒘 = 𝒒𝒘

𝒃
𝒊⨂ 𝒂

𝒃 ⨂ 𝒒𝒘
𝒃

𝒊
∗
 (6.4) 

where ba is the filtered acceleration sample in the body frame and 𝒒𝒘
𝒃

𝒊
∗
 is the quaternion 

conjugate of the current orientation estimate. The acceleration in world frame is given by the 

vector part of quaternion wa. The effect of gravity is present in this acceleration, and in [5] it 
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is removed by simply subtracting gravity (9.81 m/s2) from the vertical axis (z-axis). Since the 

zero-angle in the ankle vertical event is an approximation, it is not guaranteed that the gravity 

vector is precisely vertical with respect to the body frame. This vertical gravity assumption 

therefore depends on: misalignments (such as in the previous SL method) during the 

placement of the IMU; the anatomy of the user’s leg, which might not allow a perfectly 

vertical position for the IMU (also depending on the IMU’s size); and the user’s posture 

during the ankle vertical event when walking. Instead of using the assumed vertical axis from 

the world frame, the filtered body frame acceleration sampled during the vertical ankle event 

is used as an approximation to the gravity vector, in order to estimate a possible tilt angle, 

which would otherwise influence the removal of gravity during the full integration of the 

stride cycle. 

The ankle vertical event is detected in this work whenever the FSM is in the FF state 

and a LP or a LPZC event is detected. When a HS state is detected by the FSM, a flag is used 

to mark that a SD occurred. When the ankle vertical event is detected and this flag is active, 

the SL is evaluated prior to the reset of the integrated velocity and displacement of the ankle. 

6.3 Orientation Estimation 

The algorithm for orientation estimation in low computational capacity devices is 

typically the bottleneck of the system. The maximum update frequency will depend on how 

fast orientation can be estimated, since this is usually the most computationally intensive 

operation performed. In addition, high update frequencies are recommended in order to fully 

capture the user’s movement. For this reason, complexity is a crucial aspect that needs to be 

taken into account when selecting the orientation algorithm. Since the envisioned use case is 

pedestrian navigation in indoor environment, which is typically affected by magnetic 

disturbances, coping with these disturbances is also a requirement. The low complexity 

requirement and the application of the IMU to the human body exclude the Kalman filter (KF) 

option, since not only this type of filter requires higher computational capacity as compared to 

the complementary filter (CF), but it has also been shown to provide lower accuracy than the 

CF, due to the increased complexity of the process model and absence of the control input 

[11]. The CF solution is therefore adopted in this work. 

Two types of orientation estimates can be derived from the sensors contained in the 

IMU: through gyroscope integration and through vector observations (from the accelerometer 
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and magnetometer sensors), which give an estimate of the direction of gravity and the 

direction of the magnetic north respectively. For the two-vector observation (TVO) method, 

several well-known algorithms exist, among which are the triad [12] and the factored 

quaternion algorithm (FQA) [13]. These solutions produce an orientation estimate with a 

single sample of the vector observations and decouple the magnetometer influence in the roll 

and pitch angles, affecting only the yaw (or azimuth) angle. This feature is of interest, 

especially in environments with magnetic disturbances. 

Several CFs are available in the literature [14]–[16] that fuse information from both 

types of orientation estimates. We analysed these filters in terms of robustness against 

external influences (accelerations and magnetic interferences), and with the notable exception 

of [16], orientation accuracy was rapidly and severely affected. To improve robustness against 

external influences, we propose a generic algorithm that can be applied to a CF structure 

using any TVO algorithm in combination with gyroscope integration. 

Several sources of error affect the orientation algorithms used in an attitude and 

heading reference system (AHRS): external influences (acceleration or magnetic 

disturbances), sensor calibration errors and white noise that causes drift when integrated. By 

combining two complementary sources of orientation information, the CF removes the drift 

that would be observed if using only the gyroscope integration method and attenuates 

influences from external acceleration and magnetic disturbances that would be observed if 

using only the TVO method.  

The CF is governed by a single parameter that is the cut-off frequency, which can be 

seen as a weighting factor between both orientation estimates. When under external 

influences, the TVO method becomes unreliable. This in turn influences the final orientation 

estimate of the CF. External accelerations due to impacts or repetitive motions and magnetic 

disturbances that occur when near metallic objects deteriorate the orientation estimate. As an 

illustration of these signals in pedestrian navigation, the module of accelerometer and 

magnetometer data collected while walking with an IMU attached to the ankle is presented in 

Figure 6.5. 
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Figure 6.5: Normalized accelerometer (top) and magnetometer (bottom) data collected from a walk with an IMU 

attached to the ankle. 

External accelerations in human walking are typically high frequency variations, 

lasting less than a second. Magnetic disturbances do not share this property. They are constant 

and environment dependent when the user is not moving. When the user is moving, the 

magnetic vector norm undergoes changes. The closer the IMU is to metallic objects, the 

greater the influence in the magnetic disturbance.  

It is clear that both high and low frequency variations occur when walking in an 

indoor environment. Furthermore, the magnetometer calibration is valid for the specific 

location where it took place, as can be seen by the unitary module of the magnetic vector at 

the beginning of the walk. 

The orientation estimation is accomplished by applying the CF presented in the block 

diagram of Figure 6.6. 

 

Figure 6.6: Block diagram of the orientation estimation using a CF. 

 

12 14 16 18 20 22 24 26 28
0

1

2

3

4

Time (s)

|A
c
c
|

 

 

12 14 16 18 20 22 24 26 28

1

1.1

1.2

1.3

Time (s)

|M
a

g
|

 

 



Stride and Heading System for WSN in Indoor Environment Chapter 6 

 

 113 

Two orientation estimates are obtained by employing a TVO method (such as [13], 

[17]) and the gyroscope integration. These estimates are then applied to the CF, which is 

governed by the parameter α, which depends on the desired time constant τ and the sampling 

period Δt: 

 𝛼 =
∆𝑡

𝜏 + ∆𝑡
 (6.5) 

The bias bi-1 from the gyroscope is first removed from the gyroscope sample and the 

gyroscope orientation estimate is obtained by integrating the bias-free angular velocity using 

equation (6.3). 

The error is computed by finding the element-by-element difference between the TVO 

and the gyroscope orientation quaternions: 

 𝒒𝒘
𝒃

𝒆 = 𝒒𝒕𝒗𝒐𝒘
𝒃 − 𝒒𝒘

𝒃
𝒈 (6.6) 

The final orientation estimate is the element-by-element sum of the gyroscope 

orientation quaternion and the error quaternion with each of its components multiplied by the 

α parameter: 

 𝒒𝒘
𝒃

𝒊 = 𝒒𝒈𝒘
𝒃 + 𝒒𝒘

𝒃
𝒆 ∙ 𝛼 (6.7) 

Quaternion normalization is necessary at this stage in order to avoid accumulation of 

rounding errors. 

One issue arises when applying CF to fuse orientation estimates in quaternion space. 

A quaternion q and its symmetric –q represent the same rotation, e.g., rotating about an axis e 

by an angle θ and rotating about an axis –e by an angle –θ are identical rotations. If the TVO 

method derives a quaternion that is symmetric to the gyroscope integration method, the error 

estimate of the CF will no longer estimate orientation errors. This in turn forces the current 

orientation q to converge to –q, by performing a 360-degree turn about an arbitrary axis, until 

both orientation estimates are numerically equal. The algorithms in [14], [16] avoid this by 

applying the CF to the estimation of the gravity and north magnetic vectors. This condition is 

avoided in this work by simply negating the components of the TVO quaternion when its dot 

product with the gyroscope quaternion is negative. 

Increased robustness against external influences is an important property of indoor 

positioning systems. Increasing the order of the filter is a natural option, so a stronger 

attenuation of these unwanted signals would take place. Instead, a more flexible option is 
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considered, by applying the operations depicted in the block diagram of Figure 6.7 to the 

resulting orientation from the CF. 

 

Figure 6.7: Block diagram of the external influence compensation and bias estimation. 

The estimate of the angular velocity observed by the CF is first computed by finding 

the angular velocity observed between successive iterations, using equation (6.8). 

 �̇�
𝒃

𝝎 =
2

𝑑𝑡
( 𝒒𝑖−1

∗
𝒘
𝒃 ⨂ 𝒒𝒘

𝒃
𝒊) (6.8) 

Since the angle difference between iterations is small, the vector part of the result of 

equation (6.8) will be equivalent to the angular velocity (due to the small angle approximation 

of the sin function). The difference between this angular velocity and the gyroscope sample is 

the correction factor that the TVO algorithm is imposing on the CF. By simply multiplying 

this difference with a constant β lesser or equal to one, a percentage of the correction factor is 

removed. 

Since the TVO algorithm uses the accelerometer to estimate the tilt angle and the 

magnetometer to estimate the yaw angle, the β constant becomes a two-element vector, where 

the first element influences the x and y components of the angular velocity correction (roll and 

pitch angles) and the second element influences the z component (yaw angle). The main goal 

behind the external influence compensation method is to provide a simple parameterization of 

the confidence that should be assigned to the corrections of the accelerometer and 

magnetometer readings, under the condition that the gyroscope bias is known, either by 

offline calibration or online bias estimation. 

Gyroscope bias estimation is an important part of the AHRS due to its time varying 

nature. It is typically addressed in KFs, yet seldom addressed in CF implementations, apart 

from notable exceptions such as [18]. A simple way to find the bias of a gyroscope is to 
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average the samples of a static sensor node over a small period of time, since the true angular 

velocity is known (zero). Using only the TVO method to infer angular velocity is not possible 

due to the magnitude of the error in the orientation estimate. For example, an orientation 

estimate with an error of 0.22 degrees at 100 Hz update rate (which is the case of the TVO 

method for the IMU used in this work, demonstrated in the next section) would exhibit high 

angular velocity error (22 º/s minimum) even when the node is actually static. The angular 

velocity from the CF is computed using equation (6.8). The gyroscope bias is estimated by 

low pass filtering the difference between the CF’s angular velocity and the angular velocity 

observed by the gyroscope, and using this averaged bias estimate in the next iteration to 

correct the gyroscope sample. The same cut-off frequency of the CF is used in low pass 

filtering of the bias estimation, in order to achieve a stable bias estimate. Since the operation 

depicted in Figure 6.7 is selectively increasing the time constant of the CF for the roll, pitch 

and yaw angles, any modification in the time constant must also be reflected in the 

coefficients of the low pass filter of the bias estimation, i.e., equation (6.5). The coefficient for 

the bias estimation is obtained using equation (6.9), applied using each component of the β 

parameter: 

 𝜃 =
∆𝑡

𝜏
𝛽

+ ∆𝑡
 (6.9) 

For β equal to zero, the bias in the lower branch of Figure 6.7 does not change, thus no 

bias estimation is possible, since in this case only the gyroscope is effectively being used in 

the orientation estimation. It is important to highlight that, since the TVO method is not 

reliable under external influences, bias estimation should only occur when the IMU is 

stationary or when no external influences are detected.  

6.4 Sensor Characterization 

The Allan variance (AVAR) test was applied to the IMU used in this work in order to 

quantify the noise levels affecting the inertial navigation. Measurements from the three 

sensors contained in the IMU were collected at a frequency of 100 Hz for a period of 12 

hours, where the sensor node was kept stationary. The AVAR for an averaging time t is 

computed by splitting a long sequence of data into M bins of length t (e.g., bins with t seconds 

of data). The average value yi is then calculated for each bin i. The AVAR is obtained using 

equation (6.10). 
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 𝐴𝑉𝐴𝑅(𝑡) =
1

2(𝑀 − 1)
∑(𝑦𝑖+1 − 𝑦𝑖)

2

𝑀−1

𝑖=1

 (6.10) 

The bin number and bin size varies according to the averaging time, with the smaller 

bin size given by twice the sampling time. A larger bin size implies higher error in the results 

due to the smaller number of bins M used in equation (6.10). 

The Allan deviation is the square root of the AVAR. The parameters of interest are simply 

read directly from the plot in logarithmic scale. These parameters are related to the slopes and 

minimum values, which are caused by different random processes. Quantization noise 

typically appears at the start of the averaging time, with a slope of -1. White noise is identified 

in the plot as the region with a slope of -0.5. The random walk is measured by fitting a 

straight line through the slope and reading its value at t = 1 s. Bias instability is given by the 

minimum value, which is found in the flat region of the plot. The results for the 

accelerometer, gyroscope and magnetometer sensors are presented in  

Figure 6.8,  

Figure 6.9 and Figure 6.10, respectively. A summary of the values of interest is 

presented in Table 6.1 

 

Figure 6.8: Allan deviation for the accelerometer sensor. 
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Figure 6.9: Allan deviation for the gyroscope sensor. 

 

Figure 6.10: Allan deviation for the magnetometer sensor. 

The absence of a slope of -1 in every axis shows that quantization noise is negligible 

for all sensors at the sampling frequency used. For the magnetometer sensor, some 

interference is visible in the low frequency range, which is normal, since the data collection 

was not performed in a controlled environment; as such, it was susceptible to external 

magnetic interferences. 
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Table 6.1: Summary of Allan deviation values for bias instability and random walk. 

Sensor Axis Bias Instability Random Walk 

Accelerometer 

MPU6000 

X 0.224×10-3 m/s2 (950 s) 2.714×10-3 m/s2 

Y 0.180×10-3 m/s2 (950 s) 2.425×10-3 m/s2 

Z 0.435×10-3 m/s2 (130 s) 3.891×10-3 m/s2 

Gyroscope 

MPU6000 

X 0.722×10-3 º/s (170 s) 4.559×10-3 º/s 

Y 1.46×10-3 º/s (750 s) 4.165×10-3 º/s 

Z 0.795×10-3 º/s (210 s) 4.386×10-3 º/s 

Magnetometer 

HMC5883L 

X 0.851×10-9 T (35 s) 3.455×10-9 T 

Y 1.172×10-9 T (39 s) 3.413×10-9 T 

Z 2.04×10-9 T (29 s) 6.496×10-9 T 

 

The angle random walk (ARW) is calculated by applying equation (6.11) to the 

random walk noise obtained for each axis of the gyroscope. 

 𝐴𝑅𝑊[°/√ℎ] = 60 × 𝑁𝐷 [
°/𝑠

√𝐻𝑧
] (6.11) 

In the worst-case value (gyroscope’s x-axis) from Table 6.1, a value of 0.274 º/√h is 

obtained, which is similar to the value of 0.3 º/√h calculated from the datasheet specifications. 

Both the accelerometer and the magnetometer are used to obtain an absolute estimate 

of the orientation. The random walk noise imposes the limit on the accuracy that can be 

achieved. Taking the random walk value for the worst-case accelerometer axis z, dividing by 

the value of gravity due to the normalization of the accelerometer reading in the TVO 

algorithms, and converting the result to degrees, an error of approximately 0.022 degrees is 

obtained. However, this error is achieved when only the acceleration from gravity is sensed 

by the accelerometer, and when the accelerometer samples are averaged over a 1 second 

interval. Since each measurement is being used to compute the angle estimate at 100 Hz, the 

error is 0.22 degrees (one decade above due to the slope of -0.5 in the AVAR plot). 

Following a similar analysis for the magnetometer case, a value between 25 to 65 

micro-Tesla is expected in the absence of magnetic disturbances, which imposes a worst-case 

error angle of approximately 0.15 degrees. 

This analysis does not consider the calibration influence and can be seen as a best-case 

scenario under perfect calibration values. Under normal conditions, the angle is affected by 
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sensor bias, scale factor, axis misalignments, temperature and non-linearity in the sensor 

outputs. 

6.5 Experimental Setup 

An evaluation of the SHS was performed to each of its components: the SD/SL and 

the AHRS. For both components, the evaluation was performed using data collected from an 

IMU attached to the ankle of the user, while performing a specific set of routes. The data 

collection experiments were conducted at University of Minho, Campus of Azurém.  

Two subjects were asked to perform a specific set of routes within the experimental 

setup. Three routes were planned for the subjects to follow: a straight line path where the 

person walks from one point to the other and back, without making any turn while walking 

(green line); a path around the Hall, which includes turns (blue line); and a path that, besides 

including turns, also includes stairs and irregular pavements (red line). The footprint of the 

area is presented in Figure 6.11. 

 

Figure 6.11: Footprint of the experimental setup with the routes performed by the subjects. 

The goal of each route is to present different degrees of difficulty for the SD and SL 

algorithms, with features typical in indoor environment. A distance-measuring wheel was 

used to obtain the true length of each route, in order to infer the accuracy of the SL estimation 

algorithm. For the route with stairs, the length included the vertical and horizontal length of 

each stair. The subjects were asked to perform the routes two times, under normal and fast 

walking paces, in order to have different speeds to compare between the results. Since all 

routes start and finish in the same point, the orientation algorithm’s resilience to indoor 
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conditions are observed by the deviation between start and finish points in the end of each 

route. 

The hardware platform from the previous chapter is also used in this work. The sensor 

node collects measurements from the IMU at a frequency of 100 Hz. This update rate is 

necessary for the gyroscope to be able to measure the dynamics of the foot during the gait 

cycle. The gyroscope, accelerometer and magnetometer dynamic ranges were set to 1000 º/s, 

4 g and 0.88 gauss respectively. These ranges guaranteed that no sensor output saturation 

occurred during the experiments and the signals of interest remained well within range in 

order to avoid non-linear behaviours. 

Manual calibration was performed on site for each of the IMU’s sensors. For the 

accelerometer and magnetometer, minimum and maximum values were found by manually 

aligning the sensing axis with the direction of gravity or local magnetic field. For the 

gyroscope, bias values were found by simply averaging the gyroscope outputs while the 

sensor is static. A manual calibration for the scale factor of the gyroscope was also carried out 

by performing multiple 360-degree rotations in each axis while manually adjusting the scale 

factor, in order to obtain 0-degree angle when the sensor returns to the original orientation. 

Temperature calibration was not performed. To reduce the temperature effect, the sensor was 

powered on for several minutes prior to the data collection, so a working temperature could be 

achieved. With the exception of the red route from Figure 6.11, where a portion of the route is 

performed in outdoor environment, all other routes were performed indoor, for which 

temperature variation is small. 

6.6 Results 

6.6.1 Stride Detection 

The SD algorithms from [1], [19] were also implemented and evaluated for the same 

datasets collected, in order to have a basis for comparison. Although [1], [19] are applied to 

the foot, the algorithms can also be used when the IMU is placed in the ankle. All algorithms 

apply a low pass filter to the signals of interest before processing. The authors in [19] do not 

clearly state what type of filter is used, as such we applied a median filter, such as performed 

in [1].  
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The user performs each route and counts the total number of strides taken from start to 

finish, in order to estimate the SD error. The algorithm described in section 6.1 is applied with 

the threshold parameter configured to 50 º/s, a value that was found empirically during the 

algorithm trials. The threshold effectively constrains how small or slow is the stride that the 

algorithm can detect. A value of 50 º/s is well below the normal angular velocity during slow 

walking. 

 A sample of the state of the SD algorithm during a stride is presented in Figure 6.12, 

where the states implemented in the SD algorithm are overlapped with the filtered y-axis 

gyroscope signal. 

 

Figure 6.12: State identification of the SD algorithm during the gait cycle. 

The states implemented by the SD algorithm are clearly identified. The TO state is 

detected when the UP event is observed for a value of angular velocity above the threshold. 

This is followed by a rapid decrease in angular velocity, which happens during the forward 

leg swing. During the leg swing, the FSM searches for a ZC event. When this event is found, 

a stride is evaluated by verifying if the minimum value of the filtered gyroscope axis is 

greater in absolute value than the threshold. The verification of this condition triggers the 

transition to the HS state, which signals the SD event. 

The results for the routes performed by subject A and B are presented in Table 6.2 and  

Table 6.3 respectively. 
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Table 6.2: SD count and error percentage results for subject A. 

Route True Count SD Algorithm Jimenez [1] Feliz [19] 

Blue Normal 33 33 (0%) 33 (0%) 37 (12.1%) 

Blue Fast 29 29 (0%) 29 (0%) 33 (13.8%) 

Green Normal 106 106 (0%) 107 (0.9%) 109 (2.8%) 

Green Fast 84 84 (0%) 84 (0%) 86 (2.4%) 

Red Normal 101 101 (0%) 102 (1%) 111 (9.9%) 

Red Fast 94 94 (0%) 91 (3.2%) 95 (1.1%) 

Σ |Error| 0 0 (0%) 5 (1.1%) 24 (5.4%) 

 

Table 6.3: SD count and error percentage results for subject B. 

Route True Count SD Algorithm Jimenez [1] Feliz [19] 

Blue Normal 33 33 (0%) 33 (0%) 34 (3%) 

Blue Fast 27 28 (3.7%) 30 (11.1%) 29 (7.4%) 

Green Normal 105 105 (0%) 106 (0.9%) 112 (2.8%) 

Green Fast 80 80 (0%) 81 (1.3%) 82 (2.5%) 

Red Normal 98 98 (0%) 101 (3.1%) 109 (11.2%) 

Red Fast 88 91 (3.4%) 77 (12.5%) 94 (6.8%) 

Σ |Error| 0 4 (0.9%) 19 (4.4%) 29 (6.7%) 

 

The stride detection algorithm is able to deal with different terrain conditions, without 

affecting the SD performance. All strides were correctly detected in the results of subject A 

for each of the routes performed. Subject A counted a total of 447 strides, in routes that 

included stairs, slopes and irregular terrain. By manually analysing the gyroscope data, all the 

strides are clearly identified and the count of 447 is also confirmed. The proposed SD 

algorithm was able to detect all strides correctly. The typical threshold based algorithms that 

were used in the comparison also presented good overall performances. 

The SD algorithm for subject B showed errors in the number of strides counted for the 

fast paced trials. By analysing the data in these trials, it can be concluded that the difference in 

the count of 3 strides in the red route and 1 stride in the blue route are related to the time 

instants when the user performed turns or halts the walk. In both cases where error in SD was 

found, stride count from the subject was smaller than algorithm SD count. This indicates that 
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the true strides are correctly detected and some marginal signals during special events of the 

walk are falsely detected as strides. 

6.6.2 Stride Length Estimation 

Each of the routes depicted in Figure 6.11 were measured using a distance-measuring 

wheel, for which the green, red and blue route distances were 127.6, 136.1 and 42.05 meters, 

respectively. Lengths of 82 cm and 86 cm were measured for the legs of subject A and B, 

respectively, using a measuring tape, according to the method used in [10]. Since the ZVU 

method described in [1] cannot be applied with the IMU placed in the ankle, we compare the 

SL estimation of this work to the method described in [6] (which is compared in [1] to the 

ZVU method) and to the method described in [5], which also applied the IMU to the ankle. 

These methods also filter the IMU signals with a 4th order and a 2nd order Butterworth filters 

in the frequencies of 3 Hz and 4 Hz, respectively. The method in [6] uses a calibration 

parameter, which was empirically determined for each subject using the data collected for the 

green route under normal pace. This route was selected for this purpose since it does not have 

any turns while walking. Calibration values of 0.656 and 0.660 were found for subjects A and 

B respectively. This calibration value is used throughout all the routes performed by the 

subject. Equation (6.2) is used for the simple SL estimation method, since it provides the 

simplest calculation method. 

For the method in [6] the SD algorithm used is the same as in [1], which was 

evaluated in the previous section. For the remaining methods, and since the method in [5] 

does not specify the algorithm used in the SD, the method for SD of this work was used. The 

results for subject A and B are summarized in Table 6.4 and Table 6.5 respectively. 

Table 6.4: Route distance error in meters and percentage of TTD for subject A. 

Route Simple Method Improved Method Weinberg [6] Li [5] 

Blue Normal 0.22 (0.5%) 0.40 (1%) -2.72 (-6.5%) -1.51 (-3.6%) 

Blue Fast -2.48 (-5.9%) 0.53 (1.3%) -7.16 (-17.0%) -1.51 (-3.6%) 

Green Normal 2.93 (2.3%) -0.66 (-0.5%) 0.05 (0%) -6.82 (-5.3%) 

Green Fast -11.11 (-8.7%) 1.11 (0.87%) -26.47 (-20.7%) -5.22 (-4.1%) 

Red Normal -9.01 (-6.6%) -1.02 (-0.7%) -14.04 (-10.3%) -7.84 (-5.8%) 

Red Fast -15.32 (-11.3%) -3.84 (-2.8%) -25.99 (-19.1%) -11.78 (-8.7%) 

Σ |Error| 41.07 (6.7%) 7.56 (1.2%) 76.43 (12.5%) 34.68 (5.7%) 
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Part of the error from the total length of the route also depends on the number of 

strides detected, since there is no SL estimation if a stride is not detected. The simple method 

performed approximately at the same level of the other more complex algorithms in the 

normal pace trials. For the faster pace, this method consistently underestimated the SL. In the 

case of equation (6.1), the underestimation of the SL would be greater, which would result in 

higher percentage of error. The use of equation (6.2) compensates this underestimation effect 

and also unburdens the sensor node from trigonometric calculations. 

Table 6.5: Route distance error in meters and percentage of TTD for subject B. 

Route Simple Method Improved Method Weinberg [6] Li [5] 

Blue Normal -0.71 (-1.7%) 1.19 (2.8%) -2.30 (-5.5%) -4.72 (-11.2%) 

Blue Fast -3.27 (-7.8%) 1.24 (2.9%) -4.19 (-10.0%) -4.09 (-9.7%) 

Green Normal 1.09 (0.9%) 2.79 (2.2%) -0.07 (0.1%) -16.44 (-12.9%) 

Green Fast -13.09 (10.3%) 7.27 (5.7%) -21.55 (-16.9%) -11.39 (-8.9%) 

Red Normal -10.77 (-7.9%) 5.42 (4.0%) -11.16 (-8.2%) -14.40 (-10.6%) 

Red Fast -17.97 (-13.2%) 4.72 (3.5%) -36.53 (-26.8%) -16.70 (-12.3%) 

Σ |Error| 46.90 (7.7%) 22.63 (3.7%) 75.80 (12.4%) 67.74 (11.1%) 

 

Subject B, although not very different than subject A in terms of leg length, exhibited 

a faster pace than subject A, both in the normal and fast pace trials. This faster pace can 

explain the lower accuracy results from subject B compared to subject A, due to the 

underestimation of the SL under these conditions. The overall error percentage from all routes 

performed is comparable to the results obtained from the method in [5], which uses an higher 

computation complexity algorithm. 

It is clear that the method in [6] is highly dependent on the calibration procedure, 

specially when under different walking paces, where the error percentage greatly increased for 

the faster pace trials. Even though the SD errors in Table 6.2 for the method used for this SL 

estimation algorithm are low (1.1% and 4.4%), the errors in the SL estimation where the 

highest (12.5% and 12.4%). This indicates a lower correlation with SL when this method is 

used with an IMU in the ankle. 

In the case of the method in [5], the main reason that can explain the overall lower 

performance compared to the improved method presented in this work is the misalignment of 

the IMU with regard to the assumptions made in the algorithm. These misalignments are 
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addressed in the improved method, which not only resolved the accelerations in three 

dimensions, but also estimated the initial tilt of the IMU during the ankle vertical event using 

the accelerometer sample at the event instant. The improved method achieved overall lower 

error percentage, exhibiting improvements up to a factor of four, compared to the method in 

[5], where a two dimensional approach was used. 

6.6.3 Stride and Heading System 

For the results of the orientation algorithm proposed in this work, the algorithms from 

Madgwick and Gallagher in [14], [16] were also implemented, in order to provide a basis for 

comparison. The algorithm in [14] depends on two parameters, k1 and k2, which are used in 

the algorithm to control the influence of the gravity and magnetic vectors in the orientation. 

The method in [16] depends on a single parameter β, which is related to the correction step of 

the GDA, used in the fusion of the gravity and magnetic vector information. The orientation 

algorithm from this work uses a parameter α, which is related to the time constant of the CF 

by equation (6.4), along with the two-element vector β depicted in Figure 6.7, used to control 

the effect of external influences in the gravity and magnetic vectors. The Triad algorithm 

described in [17] was used as the TVO algorithm due to its simplicity and low computational 

demand. Note that the work in [14] also uses this method, while applying a different fusion 

algorithm with the acceleration and magnetic vectors. 

The parameters for each of the algorithms where empirically determined using the 

data from the green route. The parameters that produced the best overall result for each of the 

algorithms were constant throughout the remaining routes from Figure 6.11. For Madgwick 

AHRS [16], a β parameter of 0.001 was used, which filtered most of the magnetic 

interferences that heavily affect the orientation in indoor environment. For Gallagher AHRS, 

k1 and k2 were set to 0.05 and 0.03 respectively. For the AHRS in this work, the α parameter 

was set to 0.0099 (equivalent to a time constant of 1 second) and the β vector was set to 

[0.001, 0.001]. 

The improved SL estimation method from this work was used, since it provided the 

best overall results in the previous section. The AHRS algorithms are executed at every new 

sample from the IMU. When a stride is detected, the current orientation computed by the 

AHRS is used to find the heading direction of the user.  
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The map of the location is presented in the background of the reconstructed routes, for 

clarity. The trajectories were rotated and scaled accordingly and overlaid in the map. In order 

to reduce the influence of this process, the initial orientation is chosen according to the 

orientation of the first three strides, from which the true orientation is known. All routes start 

at location x = 0 and y = 0, and this location was moved to the approximate starting position 

on the map. The reconstructed trajectories of the data from the normal walking pace of subject 

A for the green, blue and red routes are presented in Figure 6.13, Figure 6.14 and Figure 6.15, 

respectively. 

 

Figure 6.13: SHS results for the green route. 

 

Figure 6.14: SHS results for the blue route. 

 

Figure 6.15: SHS result for the red route. 
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The parameters used in the AHRS algorithms for these experiments are very 

restrictive in terms of the amount of rotation that the accelerometer and magnetometer impose 

in the final orientation. The gyroscope contributes with most of the orientation changes, while 

the residual effect from the remaining sources is used mostly in eliminating the drift that 

would originate from solely using the gyroscope integration to infer orientation. 

The resilience to magnetic interferences is clearly observed in the green route trial, 

where the main orientation is preserved for the entire length of the hallway. Notice that 

despite the deviation when returning to the starting point, the orientation itself is very close to 

the real orientation. This small deviation, when sustained for several successive strides, causes 

the trajectory to drift slowly. It can be seen that the performances of this work and [16] are 

very similar. 

The results obtained for the red route reveal a greater discrepancy between the true 

route and the route obtained from the SHS. In this route, the user crosses a door (into outdoor 

environment) after the first three strides and climbs up two sets of stairs. At the top of the 

stairs a left turn is taken and a straight path with a small downhill slope is traversed on 

irregular pavement. A left turn is taken crossing the building, during which the user climbs 

down two sets of stairs. At the end of these stairs, another left turn is taken and the user enters 

the building and crosses the hallway to the starting point. Several sources contribute to this 

discrepancy, from higher magnetic variations in the transitions from indoor to outdoor, 

temperature variations, stairs and irregular pavement. All orientation algorithms tested 

performed worse in this route. The distance between the start and the finish point coordinates 

for each route is presented in Table 6.6. 

Table 6.6: Distance in meters and error as a percentage of TTD between start and finish points. 

Route This Work Madgwick Gallagher 

Green 2.24 (1.8%) 3.52 (2.8%) 1.31 (1%) 

Blue 0.29 (0.7%) 0.20 (0.5%) 1.18 (2.8%) 

Red 4.84 (3.6%) 5.42 (4%) 13.80 (10.1%) 

 

This type of comparison is usually applied in comparing the AHRS performance [2], 

yet, as can be seen in the case of the green route, even though Gallagher AHRS had the worst 

performance in orientation during the walk, it finished closer to the start point than all other 
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algorithms. This was the exception with regard to the other trials, which appropriately reflect 

the overall performance observed in each of the trajectories. 

The orientation algorithm in this work is effectively composed by three components: 

the CF, the external influence compensation method and the bias estimation. The normalized 

computation time required to perform each of these tasks was determined using the tic toc 

function from MATLAB. A normalization of the processing time was performed with regard 

to the time taken to compute the orientation in the simplest case (only CF component). Each 

iteration execution time was averaged in order to obtain a reliable estimate, using the longest 

dataset collected. This procedure was repeated 10 times (nearly 150000 iterations) from which 

mean and standard deviation values were computed. Table 6.7 presents the results. 

Table 6.7: Normalized processing time for each AHRS. 

 
This Work 

Madgwick Gallagher 
CF only No Bias Full 

Mean 1 1.574 1.619 1.413 1.372 

STD 0.0053 0.00639 0.00637 0.0151 0.0056 

 

Given an application scenario that requires orientation capabilities with low 

computational requirements, the CF only is the most suitable method, combining two types of 

orientations. Bias estimation can also be incorporated into the algorithm with a small penalty 

in the processing time. The full solution tested in this work, although slightly slower than the 

other solutions, incorporates bias estimation and presents the advantage that the algorithm can 

be configured based on the level of disturbances that are expected. An IMU in the waist, for 

example, is not subject to the same level of impacts and magnetic disturbances compared to 

an IMU placed in the ankle or the foot. Similarly, a walk in an outdoor scenario far from 

buildings and man-made structures will certainly encounter much smaller magnetic 

interferences compared to a walk in an indoor scenario. 

6.7 Discussion 

The SD method described enables accurate SD in different conditions that can be 

encountered in the indoor environment. The SD and SL enables the system to track the 

distance travelled by the user. Coupling this information with the orientation of the user from 
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an AHRS enables a stride-by-stride trajectory tracking, effectively providing an autonomous 

relative positioning system. 

Instead of following a generic approach in the device placement, which would be 

compatible with any initial orientation, this work restricted the device placement to a specific 

location and orientation. This simplification reduced the computational burden to the sensor 

node, since only one axis is used in the SD algorithm. Since the device is strapped directly to 

the ankle of the user (and not to a shoe in the case of the foot mounted), no extra movement 

appears in the measurements derived from torsions in the shoe. On the other hand, by 

attaching the node to the ankle, some minor disturbances were expected due to the leg 

muscles that are activated during specific instants of the gait cycle. By applying a low pass 

filter to the signal of interest, these disturbances were greatly attenuated and did not influence 

the stride count.  

This work highlighted the influence of misalignments that can occur when the user 

places the device in the ankle or due to posture or anatomy features of the user. To counter 

this effect, a three-dimensional approach must be used in order to provide accurate 

displacement information. The importance of these misalignments was also demonstrated in 

the improved SL estimation method, by comparing the performance of the method used in [5] 

to the solution proposed in this work. 

In the case of the simple SL estimation method, a consistent underestimation of the SL 

was observed in the faster pace trials. One possible explanation for this is due to a greater 

contribution to the SL from the supporting foot during mid-swing. Since the gyroscope cannot 

detect this contribution, the SL has a tendency to be underestimated. By using equation (6.2), 

the SL is overestimated according to the model from Figure 6.4. This overestimation is 

countered by the fact that the model does not account for the SL contribution from the 

supporting foot. 

When using the simple SL method, the leg length parameter becomes a very important 

scaling factor in determining the correct SL. This requires the user to measure and configure 

this parameter correctly. Other methods were experimented to measure this scaling factor, 

from which it was found that [10] was not only precise in terms of how to measure the leg 

length, but also produced consistent results in terms of distance travelled in the experimental 

trials. Further data collection and analysis with different users is necessary to confirm the 

accuracy and validity of this approach across users of different heights. 
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Ideally, the magnetometer absolute value would be unitary along the entire walk. This 

is seldom the case in indoor environment. Even with a perfect orientation algorithm that could 

account for changes in magnetic disturbances, orientation information would still be 

dependent on the location where the system initiated. Therefore, the Earth’s magnetic field is 

not sufficient to provide an accurate and self-contained reference for the heading angle in 

indoor environment. Possibly either a stronger artificial magnetic reference could be used or, 

a higher layer of the navigation system should be responsible for the global correction of the 

heading angle produced by the AHRS, according to the current location of the user. 

The orientation algorithm proposed allows a simple parameterization, through a 

preliminary evaluation of the level of external influences that the IMU is subject to in the 

required application. The method provides a generic approach to the fusion of two orientation 

algorithms. In the case of low computational devices, the bias estimation and external 

influence components of the orientation algorithm can be removed in order to lower 

computational requirements, allowing for design choices according to the application context. 
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Chapter 7  

Conclusions and Future Work 

This work proposed the study, development and test of an indoor positioning system 

for wireless sensor networks (WSNs). A generic implementation of a positioning system 

without limiting its application to a specific context was desired; as such, the achievable 

accuracy with current off-the-shelf components was explored. The indoor positioning system 

was integrated into a body posture monitoring system which uses an inertial measurement 

unit (IMU) to find the orientation of each body segment [1]. Two independent methods of 

position estimation were investigated, a received signal strength-based (RSS) and an IMU-

based, in order to maximize accuracy, while having in consideration the system’s efficiency 

due to the low power and low computational capability requirements associated with WSNs. 

In light of an efficient approach requirement, RSS positioning was used as the starting point, 

due to the necessary information being readily available in the WSN node, without the size 

and power consumption penalty of adding extra hardware capable of performing positioning 

measurements.  

Two main issues were identified with the RSS approach: the lack of consensus on the 

use of RSS as the basis information for a positioning system and the high heterogeneity of the 

experimental conditions found in the literature. Nonetheless, the RSS approach was pursued 
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and a subset of the main RSS-based positioning methods from the literature was implemented 

and tested in the experimental performance comparison from Chapter 4.  

The results from Chapter 4 revealed that the propagation model applied to RSS 

positioning performed poorly when the environment was severely affected by multipath 

propagation and due to the body effect. Distances estimated from the model were severely 

affected by biases that depended heavily on factors such as body orientation, line-of-sight 

(LOS)/non-line-of-sight (NLOS) conditions and proximity to other objects or walls. The 

experimental comparison demonstrated that, despite its simplicity, the weighted centroid 

localization (WCL) algorithm presents better performance than a map-matching solution for 

the experimental setup of this work. Also, a 55% improvement in accuracy was found when 

the body effect was removed from the positioning scenario. This conclusion paved the way to 

the work developed in Chapter 5, which not only studied the body effect in RSS positioning, 

but also a real-time path loss exponent (PLE) estimation method.  

Given that the body presence heavily affects the RSS of transmitted messages, as 

demonstrated in Chapter 4, accounting for body influence was consequently seen as a possible 

solution, capable of bringing major improvements to the performance of RSS-based 

positioning algorithms. Since this system is integrated in a posture monitoring system, the 

orientation of the body was available to be used in the RSS positioning. This led to the 

creation of a body attenuation model using a controlled environment (anechoic chamber), in 

order to compensate for the body effect on the RSS information obtained from the anchor 

nodes. However, this body attenuation model has not improved the positioning algorithm 

performance under the same indoor experimental setup as used in Chapter 4. Three datasets 

with different distances between the body and the sensor node were evaluated and the 

importance of this distance parameter was highlighted. The results suggest that the multipath 

propagation effect was more intense when the body was closer to the sensor node and that the 

shadowing component of the attenuation played a minor role in the RSS. This undermined the 

performance of the body attenuation model used to compensate RSS readings when the node 

was near or attached to the human body, with performance degrading as the body approached 

the antenna. 

The developed PLE estimation method (closest links path loss - CLP) explored the 

fact that the anchors in RSS-based positioning are configured with (or at least possess another 

method to find) their true location. Knowing the anchor locations allows the calculation of the 
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distances between anchors. Since each anchor broadcasts its beacon message, all other 

anchors in the vicinity also receive the beacon. With the information of distances and RSS 

from anchor nodes received by each anchor, a real-time PLE estimation method was 

developed. This method provided better accuracy than the WCL algorithm when the body was 

further apart from the antenna. When the body was closer to the antenna, the improvement 

was lost and the algorithm performance degraded compared to WCL. Given that the use case 

envisioned for this work attaches the sensor node(s) to the body of the user, the CLP method 

was not pursued in order to assess its improvement under a scenario without body influence. 

Nevertheless, it is believed that this method could provide accuracy improvements in 

scenarios where the human body is not present; as such its further assessment is left for future 

work. 

Given the availability of an IMU, the inertial and magnetic information from the 

embedded sensors was used to provide an additional source of position estimation, namely a 

pedestrian dead reckoning in the form of a stride and heading system (SHS). This type of 

system is decomposed into two systems: a stride detection (SD)/stride length (SL) estimation 

system to detect strides and infer distance travelled and an attitude heading and reference 

system (AHRS) to provide orientation information. The latter of these systems typically 

employ filtering (or sensor fusion) techniques that require high computation capabilities (e.g., 

Kalman filters). Given the low computational capability of the sensor node, simplified 

filtering techniques were pursued, in order to satisfy the low power requirements of WSNs.  

The solution for the SD system followed an approach based on the work in [2], but 

applying the IMU to the ankle, instead of the foot. The SD solution was implemented and 

compared against typical methods from literature, which are simple, low computationally 

demanding, threshold-based methods. A comparison between the methods proposed and 

current existing techniques was performed, under different conditions that can be encountered 

in the indoor environment. The results demonstrate that the proposed method is able to 

identify all true positives (i.e., when the stride occurs and is correctly detected). Some 

marginal signals in special events during the walk, such as turning or stopping and resuming 

the march, occasionally caused patterns identical to the stride pattern to emerge, being 

identified as false strides (i.e., false positives) as a result. The proposed algorithm 

outperformed the other methods for both subjects in the test, even though they already 

presented high percentage of correct SDs.  
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The approach used in this work was to imbue the SD system with a higher degree of 

functionality, identifying the stages of the gait cycle without resorting to complex algorithms. 

This in turn allowed the development of two heterogeneous SL estimation solutions: a first 

solution with lower computational demands, which provided lower accuracy in the SL 

estimation, but in agreement with the WSN requirements profile; and a second, more 

computationally demanding solution, which improves the method described in [3]. The first 

solution requires the configuration of a single parameter, the user’s leg length, while the 

second solution does not use any parameters. A calibration phase is not necessary with the 

proposed methods, which frees the user from the requirements of understanding and 

performing a calibration of the SL estimation system.  

The SD/SL data collected from the subject B exhibited higher errors than from subject 

A. An analysis of the gyroscope data from this subject showed that the placement of the 

sensor node in the ankle had a slight misalignment, which explains the high angular velocity 

measurements that were detected in both x and y axis during the stride. This subject also had a 

faster pace than subject A. Further testing is necessary in order to determine the cause for the 

higher error percentage observed. 

A preliminary study of sensor fusion techniques showed that the complementary filter 

(CF), when applied to human motion, is able to provide better results with lesser 

computational complexity than the typical Kalman filter solution. A quaternion-based CF was 

chosen, and this method was investigated, implemented and compared with similar methods 

in the literature. The efficiency requirement of the WSN was taken in consideration for the 

selection of a quaternion-based approach in detriment of a rotation matrix approach. The 

quaternion-based approach requires a smaller number of parameters than a matrix (four versus 

nine), leading to fewer mathematical operations, and therefore it is also much simpler to 

normalize compared to a rotation matrix. 

Given the level of interferences in the indoor environment, and the fact that the IMU is 

placed in the ankle, robustness against external influences was a necessity in order to apply 

the AHRS in indoor environment. The developed solution enabled a generic approach 

consisting of three components: the fusion of the gyroscope integration with a two-vector 

observation method using a CF; the external influence compensation method, which allows a 

simple parameterization according to the level of interferences expected from the 

accelerometer and magnetometer sensors; and a bias estimation component, using also a CF 
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to estimate the bias from the gyroscope sensor. The generic approach allows the external 

influence and the bias estimation components to become design choices when implementing 

the algorithm in devices with low computational capabilities. 

Another issue is that the direction of walk is assumed to be coincident with the 

forward axis of the system, but this is not always the case, since misalignments can occur 

during the placement of the IMU on the ankle. Ideally, a perfectly placed IMU on the ankle 

would exhibit angular velocities different than zero, only in one axis. When a misalignment is 

present, angular velocity measurements different from zero appear mainly in the roll and pitch 

axes. One possible solution for this issue could be to infer the orientation of the walking 

direction by analysing the proportion of angular velocity that can be observed in the roll and 

pitch axes of the sensor. This proportion would then be converted to an angular displacement, 

which could be used to correct the heading direction whenever a stride is detected. 

Two objectives from the work schedule were not accomplished as initially planned: 

the implementation of the positioning algorithms in an Android platform; and the fusion of 

both positioning systems, namely the RSS-based and the IMU-based approaches. The first 

objective was not pursued by choice, mainly due to the amount of design options that 

originated from the state-of-the-art research. 

The RSS-based positioning was also a topic that delayed the work schedule. The RSS-

based method was initially considered the main positioning method; however, due to the 

unfavourable results obtained in Chapter 4, a new search in the state-of-the-art was 

performed, in order to find any possible alternative algorithms for RSS-based positioning. 

This search proved unfruitful, given the efficiency requirement of the application scenario in 

WSNs, but on the other hand, it contributed to widen the state-of-the-art research from 

Chapter 2. This delay, together with the delay from the first objective, compromised the 

completion of the research for a method to fuse both RSS and IMU-based positioning 

systems.  

These unaccomplished objectives are postponed for future work. The most important 

of the objectives is the fusion of both positioning methods. Current methods resort to particle 

filters, which are completely outside the scope of WSNs. This task however, could be 

transferred to the smartphone platform. The smartphone could also be used as the main device 

for orientation information (or at least for a redundant method capable of reducing orientation 

error), given that it possesses the type of sensors used in the IMU. The smartphone is typically 
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placed in the pocket or held in the hand while the user is moving. This translates into smaller 

impacts when walking and less magnetic interference, due to being further away from the 

ground. The smartphone could be used to improve the heading estimation, or as a bias 

estimation method for the yaw component of the gyroscope, which is the source of orientation 

error in the AHRS of the SHS in indoor environment. 

The IMU device can be significantly improved with a dedicated hardware design, 

combining the CC2530 system-on-chip, the MPU6000 and the HMC5883L (or a similar 

hardware setup) in order to drastically reduce its size. In addition, a neoprene ankle bracelet 

could be applied to the IMU device, therefore enabling a more secure and comfortable 

attachment to the ankle of the user. The weight and size reduction could also bring 

improvements to the algorithm performance. The CC2530 could also be exchanged for the 

similar Bluetooth Low Energy module (CC2540) from the same manufacturer, which would 

be compatible with the smartphone approach. The RSS-based positioning could be delegated 

to the smartphone, along with the orientation part of the IMU-based positioning, leaving the 

SHS system to be implemented by the IMU device, in order to extend its battery life. 
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