38 research outputs found

    Radiation Hardened 10BASE-T Ethernet Physical Layer (PHY)

    Get PDF
    Embodiments may provide a radiation hardened 10BASE-T Ethernet interface circuit suitable for space flight and in compliance with the IEEE 802.3 standard for Ethernet. The various embodiments may provide a 10BASE-T Ethernet interface circuit, comprising a field programmable gate array (FPGA), a transmitter circuit connected to the FPGA, a receiver circuit connected to the FPGA, and a transformer connected to the transmitter circuit and the receiver circuit. In the various embodiments, the FPGA, transmitter circuit, receiver circuit, and transformer may be radiation hardened

    SpaceCube: A NASA Family of Reconfigurable Hybrid On-Board Science Data Processors

    Get PDF
    SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science-data processing systems developed at NASA Goddard Space Flight Center. This presentation provides an overview to the Future In-Space Operations Telecon Working Group

    SatCat5: A Low-Power, Mixed-Media Ethernet Network for Smallsats

    Get PDF
    In any satellite, internal bus and payload systems must exchange a variety of command, control, telemetry, and mission-data. In too many cases, the resulting network is an ad-hoc proliferation of complex, dissimilar protocols with incomplete system-to-system connectivity. While standards like CAN, MIL-STD-1553, and SpaceWire mitigate this problem, none can simultaneously solve the need for high throughput and low power consumption. We present a new solution that uses Ethernet framing and addressing to unify a mixed-media network. Low-speed nodes (0.1-10 Mbps) use simple interfaces such as SPI and UART to communicate with extremely low power and minimal complexity. High-speed nodes use so-called “media-independent” interfaces such as RMII, RGMII, and SGMII to communicate at rates up to 1000 Mbps and enable connection to traditional COTS network equipment. All are interconnected into a single smallsat-area-network using a Layer-2 network switch, with mixed-media support for all these interfaces on a single network. The result is fast, easy, and flexible communication between any two subsystems. SatCat5 is presented as a free and open-source reference implementation of this mixed-media network switch, with power consumption of 0.2-0.7W depending on network activity. Further discussion includes example protocols that can be used on such networks, leveraging IPv4 when suitable but also enabling full-featured communication without the need for a complex protocol stack

    SpaceCube v3.0 NASA Next-Generation High-Performance Processor for Science Applications

    Get PDF
    Electronics for space systems must address several considerable challenges including achieving operational resiliency within the hazardous space environment and also meeting application performance needs while simultaneously managing size, weight, and power requirements. To drive the future revolution in space processing, onboard systems need to be more flexible, affordable, and robust. In order to provide a robust solution to a variety of missions and instruments, the Science Data Processing Branch at NASA Goddard Space Flight Center (GSFC)has pioneered a hybrid-processing approach that combines radiation-hardened and commercial components while emphasizing a novel architecture harmonizing the best capabilities of CPUs, DSPs, and FPGAs. This hybrid approach is realized through the SpaceCube family of processor cards that have extensive flight heritage on a variety of mission classes. The latest addition to the SpaceCube family, SpaceCube v3.0, will function as the next evolutionary step for upcoming missions, allow for prototyping of designs and software, and provide a flexible, mature architecture that is also ready to adopt the radiation-hardened High-Performance Spaceflight Computing (HPSC) chiplet when it is released. The research showcased in this paper describes the design methodology, analysis, and capabilities of the SpaceCube v3.0 SpaceVPX Lite (VITA 78.1) 3U-220mm form-factor processor card

    S-band transmitter for Aalto-1 nanosatellite

    Get PDF
    Tässä työssä esitellään Aalto-1 satelliitin S-kaistan lähettävän radion suunittelu. Aalto-1 on CubeSat-standardiin perustuva kaukokartoitussatelliitti, jossa on hyötykuormina kolme tieteellistä instrumenttia: korkearesoluutioinen AaSI sepktrikamera, säteilymittari ja plasmajarru. Spektrikamera tuottaa informaatiota jopa useita kymmeniä megatavuja yhden kuvauksen aikana, joten lähettimeltä vaaditaan suurta tiedonsiirtonopeutta. Työssä määritellään vaatimukset, jotka perustuvat CubeSat-satelliittien tehorajoituksiin, avaruusolosuhteiden haasteisiin sekä linkkibudjettisimulaatioihin. Lähetin rakennetaan kaupallisista komponteista, jotka on valittu edellä määritettyjen rajoitteiden perusteella. Lähettimen topologia perustuu Texas Instruments:n CC2500 lähetin-vastaanottimeen, RFMD:n RF5602 tehovahvistimeen ja Texas Instuments:n MSP430 mikro-ohjaimeen. RF-sovituspiirit suunnitellaan käyttäen RF-piirisimulaattoreita ja toteutetaan mikroliuskatekniikalla. Lähettimelle suunniteltiin ensimmäinen prototyyppilevy sekä kehitettiin mikro-ohjaimen ohjelmiston ensimmäinen versio. Prototyypin ensimmäiset funktionaaliset testit osoittavat, että suunniteltu lähettimen rakenne pystyy täyttämään sille asetetut vaatimukset. RF-sovituspiirien testit osoittavat, että sovituspiirien suunnitelmat vaativat jatkokehitystä, jotta lähetin pystyy tuottamaan lähetyksessä tarvittavan tehotason.Aalto-1 is a CubeSat type nanosatellite mission used for Earth-observation. The satellite requires a radio link with high data throughput. The satellite carries AaSI spectral imager which is able to produce tens of megabytes of scientific data during an orbit period. In this thesis the design and implementation of an S-band transmitter for the Aalto-1 nanosatellite are presented. Requirements for the transmitter are defined by data throughput simulation, the CubeSat power limitations and the space environment. Based on the derived requirements, commercially available off-the-shelf components are selected. The transmitter consists of Texas Instruments CC2500 transceiver, RF Micro Devices RF5602 power amplifier and Texas Instruments MSP430 microcontroller. The RF transmission lines are designed and implemented with microstrip elements by using RF circuit simulators. First prototype board of the transmitter is implemented, as well as, control software developed for the microcontroller. First tests of the prototype indicate that the chosen architecture is capable of fulfilling the design requirements. The test results with the RF transmission lines indicate that further optimization work is required in order to deliver the maximum RF power to the output of the transmitter

    An Overview of SBIR Phase 2 Communications Technology and Development

    Get PDF
    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are eighteen technologies featured with emphasis on a wide spectrum of applications such as with a security-enhanced autonomous network management, secure communications using on-demand single photons, cognitive software-defined radio, spacesuit audio systems, multiband photonic phased-array antenna, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA
    corecore