78 research outputs found

    Rectification Strategies for a Binary Coded Structured Light 3D Scanner

    Get PDF
    Making a computer able to see exactly as a human being does was for many years one of the most interesting and challenging tasks involving lots of experts and pioneers in fields such as Computer Science and Artificial Intelligence. As a result, a whole field called Computer Vision has emerged becoming very soon a part of our daily life. The successful methodologies of this discipline have been applied in countless areas of application and their use is still in continuous expansion. On the other hand, in an increasing number of applications extracting information from simple 2D images is not enough and what is more requested instead is to use three-dimensional imaging techniques in order to reconstruct the 3D shape of the imaged objects and scene. The techniques developed in this context include both active systems, where some form of illumination is projected onto the scene, and passive systems, where the natural illumination of the scene is used. Among the active systems, one of the most reliable approaches for recovering the surface of objects is the use of structured light. This technique is based on projecting a light pattern and viewing the illuminated scene from one or more points of view. Since the pattern is coded, correspondences between image points and points of the projected pattern can be easily found. In particular, the performances of this kind of 3D scanner are determined by two key aspects, the accuracy and the acquisition time. This thesis aims to design and experiment some rectification strategies for a prototype of binary coded structured light 3D scanner. The rectification is a commonly used technique for stereo vision systems which, in case of structured light, facilitates the establishment of correspondences across a projected pattern and an acquired image and reduces the number of pattern images to be projected, resulting finally in a speeding-up of the acquisition times.Making a computer able to see exactly as a human being does was for many years one of the most interesting and challenging tasks involving lots of experts and pioneers in fields such as Computer Science and Artificial Intelligence. As a result, a whole field called Computer Vision has emerged becoming very soon a part of our daily life. The successful methodologies of this discipline have been applied in countless areas of application and their use is still in continuous expansion. On the other hand, in an increasing number of applications extracting information from simple 2D images is not enough and what is more requested instead is to use three-dimensional imaging techniques in order to reconstruct the 3D shape of the imaged objects and scene. The techniques developed in this context include both active systems, where some form of illumination is projected onto the scene, and passive systems, where the natural illumination of the scene is used. Among the active systems, one of the most reliable approaches for recovering the surface of objects is the use of structured light. This technique is based on projecting a light pattern and viewing the illuminated scene from one or more points of view. Since the pattern is coded, correspondences between image points and points of the projected pattern can be easily found. In particular, the performances of this kind of 3D scanner are determined by two key aspects, the accuracy and the acquisition time. This thesis aims to design and experiment some rectification strategies for a prototype of binary coded structured light 3D scanner. The rectification is a commonly used technique for stereo vision systems which, in case of structured light, facilitates the establishment of correspondences across a projected pattern and an acquired image and reduces the number of pattern images to be projected, resulting finally in a speeding-up of the acquisition times

    Calibrage et modélisation d’un système de stéréovision hybride et panoramique

    Get PDF
    Dans cette thèse nos contributions à la résolution de deux problématiques rencontrées en vision numérique et en photogrammétrie, qui sont le calibrage de caméras et la stéréovision, sont présentées. Ces deux problèmes font l’objet de très nombreuses recherches depuis plusieurs années. Les techniques de calibrage existantes diffèrent beaucoup suivant le type de caméras à calibrer (classique ou panoramique, à focale fixe ou à focale variable, ..). Notre première contribution est un banc de calibrage, à l’aide des éléments d’optique diffractive, qui permet de calibrer avec une bonne précision une très grande partie des caméras existantes. Un modèle simple et précis qui décrit la projection de la grille formée sur l’image et une méthode de calibrage pour chaque type de caméras est proposé. La technique est très robuste et les résultats pour l’ensemble des caméras calibrées sont optimaux. Avec la multiplication des types de caméras et la diversité des modèles de projections, un modèle de formation d'image générique semble très intéressant. Notre deuxième contribution est un modèle de projection unifié pour plusieurs caméras classiques et panoramiques. Dans ce modèle, toute caméra est modélisée par une projection rectiligne et des splines cubiques composées permettant de représenter toutes sortes de distorsions. Cette approche permet de modéliser géométriquement les systèmes de stéréovision mixtes ou panoramiques et de convertir une image panoramique en une image classique. Par conséquent, le problème de stéréovision mixte ou panoramique est transformé en un problème de stéréovision conventionnelle. Mots clés : calibrage, vision panoramique, distorsion, fisheye, zoom, panomorphe, géométrie épipolaire, reconstruction tridimensionnelle, stéréovision hybride, stéréovision panoramique.This thesis aims to present our contributions to the resolution of two problems encountered in the field of computer vision and photogrammetry, which are camera calibration and stereovision. These two problems have been extensively studied in the last years. Different camera calibration techniques have been developed in the literature depending on the type of camera (classical or panoramic, with zoom lens or fixed lens..). Our first contribution is a compact and accurate calibration setup, based on diffractive optical elements, which is suitable for different kind of cameras. The technique is very robust and optimal results were achieved for different types of cameras. With the multiplication of camera types and the diversity of the projection models, a generic model has become very interesting. Our second contribution is a generic model, which is suitable for conventional and panoramic cameras. In this model, composed cubic splines functions provide more realistic model of both radial and tangential distortions. Such an approach allows to model either hybrid or panoramic stereovision system and to convert panoramic image to classical image. Consequently, the processing challenges of a hybrid stereovision system or a panoramic stereovision system are turned into simple classical stereovision problems. Keywords: Calibration, panoramic vision, distortions, fisheye, zoom, panomorph, epipolar geometry, three-dimensional reconstruction, hybrid stereovision, panoramic stereovision

    Calibración y Segmentación de Imágenes en Cámaras con Distorsión Radial

    Get PDF
    La mayoría de los enfoques sobre el problema de la distorsión radial, asume la presencia de pixeles cuadrados, más no rectangulares, lo que complica el proceso de calibración en tiempo real. En este trabajo se propone una nueva metodología que permita tanto recalibrar la cámara, como analizar los efectos de la segmentación de imágenes compensadas con distorsión radial.&lt

    3D panoramic imaging for virtual environment construction

    Get PDF
    The project is concerned with the development of algorithms for the creation of photo-realistic 3D virtual environments, overcoming problems in mosaicing, colour and lighting changes, correspondence search speed and correspondence errors due to lack of surface texture. A number of related new algorithms have been investigated for image stitching, content based colour correction and efficient 3D surface reconstruction. All of the investigations were undertaken by using multiple views from normal digital cameras, web cameras and a ”one-shot” panoramic system. In the process of 3D reconstruction a new interest points based mosaicing method, a new interest points based colour correction method, a new hybrid feature and area based correspondence constraint and a new structured light based 3D reconstruction method have been investigated. The major contributions and results can be summarised as follows: • A new interest point based image stitching method has been proposed and investigated. The robustness of interest points has been tested and evaluated. Interest points have been proved robust to changes in lighting, viewpoint, rotation and scale. • A new interest point based method for colour correction has been proposed and investigated. The results of linear and linear plus affine colour transforms have proved more accurate than traditional diagonal transforms in accurately matching colours in panoramic images. • A new structured light based method for correspondence point based 3D reconstruction has been proposed and investigated. The method has been proved to increase the accuracy of the correspondence search for areas with low texture. Correspondence speed has also been increased with a new hybrid feature and area based correspondence search constraint. • Based on the investigation, a software framework has been developed for image based 3D virtual environment construction. The GUI includes abilities for importing images, colour correction, mosaicing, 3D surface reconstruction, texture recovery and visualisation. • 11 research papers have been published.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Motorcycles that see: Multifocal stereo vision sensor for advanced safety systems in tilting vehicles

    Get PDF
    Advanced driver assistance systems, ADAS, have shown the possibility to anticipate crash accidents and effectively assist road users in critical traffic situations. This is not the case for motorcyclists, in fact ADAS for motorcycles are still barely developed. Our aim was to study a camera-based sensor for the application of preventive safety in tilting vehicles. We identified two road conflict situations for which automotive remote sensors installed in a tilting vehicle are likely to fail in the identification of critical obstacles. Accordingly, we set two experiments conducted in real traffic conditions to test our stereo vision sensor. Our promising results support the application of this type of sensors for advanced motorcycle safety applications

    Global Pose Estimation from Aerial Images : Registration with Elevation Models

    Full text link
    • …
    corecore