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Monocular depth estimation (MDE), which is the task of using a single

image to predict scene depths, has gained considerable interest, in large part

owing to the popularity of applying deep learning methods to solve “computer

vision problems”. Monocular cues provide sufficient data for humans to instan-

taneously extract an understanding of scene geometries and relative depths,

which is evidence of both the processing power of the human visual system

and the predictive power of the monocular data. However, developing compu-

tational models to predict depth from monocular images remains challenging.

Hand-designed MDE features do not perform particularly well, and even current

“deep” models are still evolving. Here we propose a novel approach that uses

perceptually-relevant natural scene statistics (NSS) features to predict depths

from monocular images in a simple, scale-agnostic way that is competitive with

state-of-the-art systems. While the statistics of natural photographic images

have been successfully used in a variety of image and video processing, analysis,

and quality assessment tasks, they have never been applied in a predictive
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end-to-end deep-learning model for monocular depth. Here we accomplish this

by developing a new closed-form bivariate model of image luminances and use

features extracted from this model and from other NSS models to drive a novel

deep learning framework for predicting depth given a single image.

We then extend our perceptually-based MDE model to fisheye images,

which suffer from severe spatial distortions, and we show that our method that

uses monocular cues performs comparably to our best fisheye stereo matching

approach. Fisheye cameras have become increasingly popular in automotive

applications, because they provide a wider (approximately 180 degrees) field-of-

view (FoV), thereby giving drivers and driver assistance systems more visibility

with minimal hardware. We explore fisheye stereo as it pertains to the problem

of automotive surround-view (SV), specifically, which is a system comprising

four fisheye cameras positioned on the front, right, rear, and left sides of a

vehicle. The SV system perspectively transforms the images captured by these

four cameras and stitches them together in a birdseye-view representation of

the scene centered around the ego vehicle to display to the driver. With the

camera axes oriented orthogonally away from each other and with each camera

capturing approximately 180 degrees laterally, there exists an overlap in FoVs

between adjacent cameras. It is within these regions where we have stereo

vision, and can thus triangulate depths with an appropriate correspondence

matching method. Each stereo system within the SV configuration has a wide

baseline and two orthogonally-divergent camera axes, both of which make

traditional methods for estimating stereo correspondences perform poorly. Our

ix



stereo pipeline, which relies on a neural network trained for predicting stereo

correspondences, performs well even when the stereo system has limited overlap

in FoVs and two dissimilar views. Our monocular approach, however, can be

applied to entire fisheye images and does not rely on the underlying geometry

of the stereo configuration. We compare these two depth-prediction methods

in both performance and application.

To explore stereo correspondence matching using fisheye images and

MDE in non-fisheye images, we also generated a large-scale photorealistic

synthetic database containing co-registered RGB images and depth maps using

a simulated SV camera configuration. The database was first captured using

fisheye cameras with known intrinsic parameters, and the fisheye distortions

were then removed to create the non-fisheye portion of the database. We

detail the process of creating the synthetic-but-realistic city scene in which we

captured the images and depth maps along with the methodology for generating

such a large, varied, and generalizable dataset.
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Chapter 1

Introduction

The human visual system (HVS) uses both binocular and monocular

cues to perceive depths and instantaneously reconstruct the 3D world. Even

from a single image, without binocular cues, humans are able to easily gain a

good understanding of the 3D geometry of the scene, e.g., relative distances

and object sizes. Recently, modeling depth from monocular luminance has

gained interest, and deep learning approaches to depth estimation have shown

promising results. However, designing computational models to estimate depth

from monocular images, or Monocular Depth Estimation (MDE), remains an

ill-posed, challenging problem.

Recent work in estimating depth from monocular images has made

use of deep network architectures and training on large databases [8, 17, 21,

27, 28, 51, 53, 56, 57, 114]. Some models were trained with stereo or multiple

views [27, 28, 51], but the amount of multi-view ground-truth data that is

available is limited. Other approaches require post-processing, refinement

steps, or multi-phase training [17,56] or use networks having tens of millions

of trained parameters [8, 21,53,57,114]. One previous approach used natural

image statistic features in a Bayesian framework to regress depth using a
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simpler learner (Support Vector Regressor) [102], however that model requires

training two distinct sub-models, and depth-prediction is subsequently a two-

part process. Here we show that perceptually available information provided by

the local, scale-invariant statistics of natural scenes, or natural scene statistics

(NSS), can be used to predict depth in a simple end-to-end network, yielding

significantly improved results.

Natural Scene Statistics (NSS) have proven to be useful in under-

standing the evolution of the HVS and for exploring complex visual prob-

lems [7, 78, 91, 104, 112]. In a related study, the authors of [58] deployed

statistical models of luminance/chrominance and depth/disparity NSS, and

the relationships between them, to drive a Bayesian stereo algorithm to predict

disparity. The authors of [97] extended that work by introducing NSS models

of the marginal and conditional distributions of luminances/chrominances and

depths/disparities of natural scenes and used them to improve a chromatic

Bayesian stereo algorithm. More recently, bivariate and correlation NSS models

for natural images and depth maps were developed, but these only operate

on spatially adjacent bandpass responses [99, 103]. NSS models of spatially

adjacent luminance coefficients have also been shown to provide strong features

on visual problems [66,67], but they have yet to be applied to the problem of

depth prediction method, monocular, stereo, or otherwise.

Here we advance the problem of perceptual depth prediction, by first

introducing a new closed-form correlation model of local bivariate luminance

statistics. We then use features derived from this model, along with other
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univariate and bivariate NSS features, to train a deep neural network (DNN)

to predict inverse-range patches from luminance patches. We choose to predict

inverse-range (versus depth) because the goal of traditional stereo correspon-

dence matching methods is to estimate disparity, which is inversely proportional

to depth, so our use of inverse-range is natural in a depth-prediction context.

Therefore, we refer to our monocular inverse-range prediction model throughout

this report as a ‘depth’-prediction model.

When building this model, we represent each inverse-range patch using

a sparse code, each element of which supplies a weight on each patch within a

dictionary of image patches, which was learned from patches sampled from depth

perception databases of ground-truth luminance-depth images. We discuss

the construction of our network and emphasize connections and parallels to

perceptual models and concepts. We explain the new correlation NSS model, the

dictionary construction, and the network design, including the data processing

steps, the network architecture, the training and testing details, and the results.

We show that our simple network trained using perceptually-relevant features

and a perceptually-relevant loss function is able to predict dense depth maps

in a manner that is competitive with state-of-the-art methods.

Motivated by the popularity of using wide-angle lenses in automotive

applications, we also extend our model for MDE to fisheye images. We first

detail our algorithm for predicting depth from a wide-baseline orthogonally-

divergent stereo fisheye system, four of which comprise the automotive surround-

view (SV) system, and then compare the depths predicted with both the
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monocular and binocular methods. Fisheye cameras are able to provide a wider

(near-180o) field-of-view (FoV) compared to traditional rectilinear cameras,

thereby giving more visibility using very minimal hardware. Stereo systems

are typically comprised of a pair of rectilinear cameras with parallel camera

axes and narrow (∼ 10 cm) baselines. The use of fisheye lenses enables stereo

configurations to use wider baselines and non-parallel camera axes, since they

capture larger FoVs that may still overlap under disparate camera positions and

orientations. However, using fisheye lenses for stereo applications is inherently

more challenging because wide-angle lenses produce spatial image distortions

that get more severe closer to image edges, which are coincidentally where

FoVs overlap. Additionally, trying to change the fisheye stereo problem to be a

rectilinear stereo problem so that traditional stereo methods can be applied

presents its own challenges, because information can be lost, particularly at

the image edges, when wide-angle images are converted to rectilinear images,

and distortions in the ‘undistorted’ image can still be present due to the

spatial spreading of pixels. Therefore, we adapt our NSS-based MDE model

for native fisheye images and demonstrate its efficacy in predicting depths

without requiring co-registered fisheye stereo images or first removing the radial

distortion. We compare these results with our method for estimating depth

from fisheye stereo using a neural network trained for correspondence prediction,

first published in [76], and show that the monocular method performs better

in both accuracy and efficiency.
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Chapter 2

Background

We first review related work in developing natural scene statistics (NSS)

models, because the monocular depth estimation network we designed and

trained utilizes such NSS features extracted from the input image patches. We

also discuss related work in estimating depth from monocular images before

reviewing previous work in depth estimation for fisheye images, which, thus

far, has been constrained to stereo approaches, as no monocular work has been

done in the fisheye space.

2.1 Natural Scene Statistics

Extensive work has been done analyzing and modeling the natural

statistics of 2D and 3D scenes and how the HVS processes this information.

In particular, many models have been developed that make use of statistical

models of bandpass responses of luminance and depth/disparity of real-world

images [19,58,79,84,97,102,110]. Using locally normalized luminance coefficients

when modeling such relationships has been explored to a lesser extent, though

NSS computed in this domain are also perceptually relevant [66,67].

There exists a strong relationship between luminance and co-located

5



depth in natural scenes [79]. Statistical models have been established that

reliably capture the univariate [58, 97] and bivariate [99, 103] statistics of

real-world photographs quite well. There are a variety of useful established

closed-form NSS models of bandpass images [20, 91, 93, 100, 101], and recent

work using them for the monocular depth estimation problem has shown

promising results [102]. However, a bivariate model of luminance statistics as a

function of orientation and separation between pixels would better capture the

relationships between pixels and scene geometry. We develop and introduce a

closed-form bivariate model for luminance coefficients in Section 4.

2.2 Monocular Depth Estimation

Estimating dense depth maps of naturalistic scenes is useful for many

computer vision tasks, such as scene reconstruction and object detection/recog-

nition. Estimating scene depths given only a single monocular image is a

much more challenging problem than multi-view (stereo) or multi-frame (video)

depth estimation. The latter two problems have been studied extensively

[31, 40, 47, 76, 81, 119], however the problem of monocular depth estimation is a

much more poorly-posed problem, and progress towards developing a solution

has been more difficult.

Recent approaches to MDE that utilize DNNs have shown promising

results [8,17,21,43,53,56,57,83,114]. However, some of the highest-performing

methods limit the resolution of the output [17], require post-processing (correc-

tion) steps [8], require multi-phase training [114], or reformulate the problem
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as a variation of a classification task [8,21]. Some recent methods for MDE rely

on stereo or multi-view data for training [22,27,28], thus potentially limiting

their generalizability.

Instead of predicting depth, we predict the inverse of depth, which is

proportional to disparity, and which we refer to as inverse-range. The task of

predicting the inverse of depth follows the objective of stereo correspondence

methods. Stereo algorithms aim to estimate disparity, which can be used to

compute depth directly if the baseline and focal length of the stereo cameras

are known. Our method uses a novel modular DNN architecture that relies

solely on monocular training data. It can be trained end-to-end, and because

it operates in a patch-wise manner, it is able to produce predictions for images

of any resolution.

2.3 Depth Estimation using Fisheye Images

We now discuss past work in estimating depth using fisheye images,

beginning with stereo approaches using the more traditional rectilinear cameras,

so that we can then understand how using spatial distortions in images add

challenges and complexity to the problem that require modifications to these

methods.

2.3.1 Stereo Depth Estimation

The goal of stereo algorithms is to determine point correspondences

between a stereo image pair, which means finding which pairs of points in the
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stereo images correspond to the same world points. Stereo matching is governed

by epipolar geometry, which relates correspondences between views. Potential

matches for any point in the reference (typically left) image, must lie on a

corresponding epipolar line in the matching image. With rectilinear cameras,

image rectification is almost always applied in a preprocessing step, because

rectification transforms the pair to align on a common image plane, thereby

aligning the epipolar lines, and as a result, corresponding points align along

the same rows. Image rectification, therefore, simplifies the correspondence

matching problem to be one-dimensional. In other words, for each point in the

reference image, the stereo algorithm only needs to search along the same row in

the corresponding image for the matching point. Once a matching pair of points

is found, disparity can be computed as the horizontal displacement between the

points in each view. Stereo algorithms typically output a disparity map, where

a disparity value is given for each pixel in the reference image. Depth can

then be computed from disparity, as they are inversely proportional. Figure

2.1 shows an example stereo pair that was taken with traditional rectilinear

cameras. The images have also been rectified such that corresponding points

lie along the same rows. Disparity is then simply the difference between the

x-coordinates, disp = |x1 − x2|, and depth = fB
disp , where f and B are the lens

focal length and stereo baseline, respectively.

There has been a lot of work on developing and improving traditional

stereo methods for camera configurations involving rectilinear cameras, and

there is no shortage of robust approaches, which is why the first step to many
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Figure 2.1: Example from [87]. A stereo pair of images taken with rectilinear
cameras with their corresponding disparity map. The left image is taken as the
reference. After applying image rectification, epipolar lines align along rows,
so matching points can be found via a 1D search. The yellow boxes indicate
an example pair of matching points, and their horizontal displacements are x1
and x2, which are used to compute disparity and, subsequently, depth.

fisheye stereo methods is to remove the fisheye distortion. Some traditional

stereo-matching algorithms rely on local [118] and/or global costs [36, 42],

a good example being the popular Semi-global Matching (SGM) [36] which

is commonly used in Advanced Driver Assistance Systems (ADAS) [71] and

autonomous driving applications [124]. The SGM method uses a local pixelwise

matching of Mutual Information (MI), while at the same time minimizing a

global energy function. The global energy function relies on complete disparity

map estimates, and therefore, requires that the input image pair be rectified,

which does not work when using native fisheye image pairs.

A variety of more recent stereo matching approaches have relied on

neural networks. Networks trained for correspondence prediction have been

proven to perform better [61,64,119,121] than traditional methods, and even

networks trained on synthetic data have performed well on real-world data [64].

Convolutional neural networks (CNNs) have become increasingly popular for
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learning both high-level vision tasks (e.g., semantic segmentation, object detec-

tion, classification) [26,35,50,80] and low-level vision tasks (e.g., correspondence

and optical flow prediction) [14,61,64,119].

The works in [121] and [119] use CNNs to compute matching costs

between image patches using binary cross-entropy and SGM [121] or a hinge-

based loss [119]. They were able to show that learned image features can

outperform manually-designed features in assessing patch similarities. The

work in [61] follows [119, 121], but they instead learn a probability distribution

over disparity values, thereby capturing correlations between disparities and

avoiding the task of independently processing patches. All three of these

approaches, however, assume the stereo image pair has been rectified, and by

extension, all image patches can be assumed to lie in the same image plane.

The work in [64] presents a deeper CNN to predict disparity maps given an

input stereo image pair. Unlike previous work [61,119,121], they train their

network end-to-end, with the inputs being the stereo images and the output

being a predicted disparity image, and they also assume the inputs are rectified

stereo images from rectilinear cameras. Our work with fisheye stereo closely

follows the work in [119], which uses rectilinear stereo. We adapt their model

architecture and retrain it on image patches extracted from the new database.
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2.3.2 Stereo and Monocular Depth Estimation using Fisheye Im-
ages

There has been no previous work in developing a method to estimate

monocular fisheye depth. Thus, we briefly discuss past work in estimating depth

using stereo fisheye images and the constraints of those systems. Past work

exploring fisheye stereo has typically involved fisheye correction, or some form

of spatial distortion removal, followed by stereo rectification [15,23,24,34,45,70,

88,116,123]. The variation among fisheye lens models is wide, but they share

the common advantage of having wider FoVs than rectilinear lenses, so each

is able to capture more information. However, in fisheye stereo applications,

after the removal of fisheye, the transformed views are usually cropped so that

the new images looks rectilinear, which results in a loss of information at the

FoV boundaries. In cases where the ‘undistorted’ views are not cropped, the

edge content may still suffer from horizontal distortions and lower resolution

due to spatial spreading of the original fisheye pixels.

Few methods do not remove fisheye distortion prior to stereo computa-

tion [44,68, 69,76], but the work in [44] used stereo images that they designed

to be densely textured, so they could then effectively apply a correspondence

method based on template-matching. The authors in [68, 69, 76] take an ap-

proach based on an analytical model of the fisheye lens and the stereo camera

geometry. They perform stereo matching along computed epipolar curves, which

provides an additional matching constraint in any correspondence-prediction

algorithm. Additionally, [68,69] use a stereo configuration of fisheye cameras
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with parallel vertical camera axes, and the points they attempt to match are

primarily the tops of buildings, which have very large depths and do not suffer

from widely disparate representations within a stereo pair.

All previous approaches to the challenging fisheye stereo problem have

required imposing constraints, e.g., on the stereo configuration itself, the search

space, and so on. A patch-based method that does not rely on stereo data

and that requires only computation of NSS features is undoubtedly much more

flexible and generalizable.
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Chapter 3

LIVE Surround-View Database1

We now introduce the LIVE Surround-View (LIVE SV) database that

was initially built for automotive surround-view, but can be used in a wide

range of stereo or monocular depth estimation methods as well. We first

presented this database in [76], and instructions to download the database can

be found at https://github.com/janicepan/live-sv/.

Surround-view is a common feature of Advanced Driver Assistance

System (ADAS) technology and uses four to six outward-facing fisheye cameras

placed on the front, right, rear, and left sides of a vehicle [13,33,106,117,122]. By

exploiting the wide Field-of-View (FoV) of fisheye lenses, such a configuration

allows for the generation of a complete 360o birdseye-view image, also referred

to as the surround-view or top-view output. An example set of synthetically

generated fisheye images along with a “true” simulated SV image are shown in

Fig. 3.1.

Because there are currently no surround-view or fisheye stereo databases,

1Content presented in this chapter was first published in [76]. Co-authors were Martin
Mueller, Tarek Lahlou, and Alan C. Bovik. Janice S. Pan did the work presented in [76]
of generating the database while following the guidance and feedback provided by her
co-authors.
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Figure 3.1: Example set of fisheye captures and the associated true SV.

and gathering enough real data for a machine-learning-based approach is

infeasible, we built a large 3D synthetic database initially to support data-

driven approaches to the SV and fisheye stereo problems. We built a city scene

in Blender [6] using SceneCity [12], which provides the tools to construct a

single city with realistic roads and buildings. An overhead shot of the city

we designed is shown in Figure 3.2. Blender is also compatible with Python

scripting, which enables automation in setting up and capturing scenes.

Data-driven approaches in computer vision are proving to outperform

state-of-the-art methods [115]. We captured our database using a photo-

realistic city scene, because we wanted our data to model real-world geometry,

as opposed to past work that used synthetically generated random scenes,
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Figure 3.2: Overhead screen-capture of the city designed using SceneCity [12].

e.g., [14, 64]. We detail the camera parameters and configurations used to

capture this dataset, which will make clear the variety of applications in which

LIVE SV may be useful.

3.1 Blender city

The city we built using SceneCity is comprised only of buildings and

streets, including road surfaces, sidewalks, street lights, signal lights, and trees.

To add variety and to create scenes more representative of a true city, we

populated the city in a structured and realistic manner. We added vehicles,

pedestrians, and sidewalk furniture (i.e., benches and trash cans) in two steps:

(1) populating the roads with vehicles and pedestrians and (2) populating the

sidewalks with pedestrians and sidewalk furniture.

To obtain the 3D models with which to populate the city, we used

Archive3D [1], a large online database containing tens of thousands of 3D
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models of people, furnishings, appliances, animals, plants, buildings, doors,

windows, and more. All models on Archive3D, however, were contributed by

different artists, so while there is a wide variety of looks, poses, and styles for

any object category, there were also a lot of inconsistencies in terms of Blender

compatibility and rendering capabilities. All models are also different sizes,

so it was infeasible to automatically import, scale, and position them. Each

model we chose to use had to be individually imported, and for most, we also

had to manually apply colors and/or textures to different parts of the model.

All objects we use to populate the city are shown in Figure 3.3.

Figure 3.3: Objects added to the city scene built with SceneCity [12].

The collection of added objects includes 16 vehicles (1 trolly, 1 firetruck, 1

bus, 1 ambulance, 3 trucks, 5 cars, 2 motorcycles, and 3 bicycles), 6 pedestrians,

3 trashcans, and 2 benches. Road objects in SceneCity are all a 10m×10m with

sidewalks, street lights, and signal lights. There are 5 road types (Figure 3.4):

straight, turn, T-intersection, 4-way intersection, and deadend. To maintain

realism in the scene, we added all objects with a structured randomness. To
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add a vehicle to a random road, we determine the location and orientation of

the road, randomly pick the side of the road on which to place the object, and

translate and rotate the vehicle so it faces in the correct direction of traffic flow.

When adding a pedestrian to a random road, we randomly rotate it about the

z-axis, thereby not constraining them to face in any particular direction. Since

sidewalks are located on different sides/corners for each road type, to be able

to easily and automatically populate the sidewalks, we decided to only add

objects to straight roads, which make up the majority of the road network.

Sidewalks on the straight roads simply run down the two sides, so computing

positions for objects is straight-forward. Additionally, each of the two sidewalks

that borders straight roads are divided in half by street light poles, so when

populating the sidewalks, we just add a new object to each of the 4 sidewalk

segments. Details for adding objects are as follows:

1. Randomly select 50% of all the road segments to populate. To the first

70% of these roads, add a randomly-selected vehicle. To the rest, add a

randomly-selected pedestrian.

2. Randomly select 33% of the all straight roads to populate their sidewalks.

For each for the four sidewalk segments, randomly select a pedestrian,

trash can, or bench, and translate and rotate the object so it faces the

middle of the road (a constraint primarily for the benches).

By adding objects in this manner, we believe we have created enough variation

and realism so the database can benefit both the trained network and the SV
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visualization.

Figure 3.4: SceneCity [12] road types: 2 intersections, 1 straight, 1 turn, 1
deadend. These pieces are duplicated and combined to create the entire road
network.

3.2 Data collection

To determine positions within the city from which to capture data, we

manually selected 222 locations in the city that have varying concentrations of

surrounding road and sidewalk objects. Additionally, we ensured that this set

of capture locations contains several sets of contiguous coordinates, to provide

some temporally continuous realistic road/driving data, which can help in

developing temporal SV methods. In Figure 3.5, we show two examples of some

of the selected locations. Selecting the locations such that they form sequences
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also allows us to gather different perspectives of the same scene, which helps

increase the variation in our data.

Figure 3.5: Two example sequences of capture locations. The sequence on the
left contains 5 contiguous locations, and the sequence on the right contains
30. At each purple dot will be the set of four SV fisheye cameras to capture
the scene from that location. Above each purple dot will also be a rectilinear
camera to capture a true virtual top-view image.

For every captured fisheye and true top-view image, we also capture a

depth map, which specifies for each pixel in the image the Euclidean distance

between the 3D world point and the 3D location of the camera center. This

measurement, computed in Blender, provides ground-truth depth for every

scene. In gathering depth data, we captured each image three times with

three different render seeds, and then combined them via a min filter. Such

processing is necessary, because the Blender rendering engine we used, Cycles,

works by projecting light off surfaces, thereby mimicking the physical properties
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of light. However, Cycles is error-prone in projecting light from the various

light sources in the scene and can create burnt-out pixels, which incorrectly

have infinite value in the depth map and appear as little bright spots, which

we refer to as fireflies. Figure 3.6 shows, for an example scene, the depth map

captured using a single render seed along with the depth map that results from

combining three depth maps captured using three different render seeds. By

combining maps captured with different seeds, we are able to eliminate almost

all occurrences of these erroneous depth measurements.

Figure 3.6: By capturing the same scene using different render seeds, we can
filter out the noise inherent in all captures: (left) the captured fisheye image;
(middle) the corresponding depth image captured using one render seed value;
(right) the result after combining the depth maps captured with three different
seeds. The ‘fireflies’ (infinite luminance values) appear at different pixels, and
by using a min filter, most or all can be removed to generate a cleaner depth
map.

In Figure 3.7, we show seven surround-view image sets from the database.

Each set contains the four fisheye captures, their corresponding fisheye depth

maps, as well as a true SV, i.e., birdseye-view, capture. Due to the range of

depths within each scene, to effectively display the depth maps, we only show

depths in the range [0,25] meters.
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3.2.1 Multiangle captures

In addition to capturing the four SV fisheye images and a true virtual

top-view image at each scene location, we also expanded our database to

include fisheye images captured at different angles and their corresponding

depth maps. Figure 3.8 shows the new angles (in red) by which we will rotate

each fisheye camera to expand our database. Each camera was rotated an angle

θ = {60o, 45o, 30o, 0o,−30o,−45o,−60o} about its vertical axis (normal to the

ground plane). By gathering data at so many different angles, we are able

make our database useful in developing methods for solving other multi-view

computer vision tasks. With the additional data, we can also explore fisheye

stereo with different degrees of divergence between the camera axes.

The set of captures from when each of the four cameras is at its own

default 0o-rotation is the SV configuration, and the adjacent camera pairs in

this configuration correspond to the orthogonal fisheye stereo case. Figure 3.9

shows a sample set of images captured at each of these seven angles. By using

stereo pairs with different combinations of rotations about their vertical axes,

we can control the degree of stereo toe-in or toe-out to build a generalizable

fisheye stereo engine. For instance, a pair of adjacent cameras with the left

capturing at −45o and the right capturing at +45o (refer to Table 3.1 for

possible camera pairs) can be used to represent the parallel camera axes case.

In other words, with the left/right camera pair being any of the combinations

listed in Table 3.1, if the left image was captured at its −45o orientation, and

the right was captured at its +45o orientation, then the angle between the
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camera axes is 0o, i.e., they form a parallel fisheye stereo pair.

Table 3.1: Combinations of SV camera pairs that form a stereo pair

Left stereo camera Right stereo camera
Front Right
Right Rear
Rear Left
Left Front

3.2.2 Data augmentation

The proposed database includes 222 unique manually selected scenes

captured within the city, each of which was captured 21 times by the four

fisheye cameras and true birdseye-view camera, and each capture has an

associated ground-truth depth image, also acquired in Blender. Each of the

21 captures is a different augmentation, chosen by randomly rotating about

the vertical axis the 5-camera configuration, which includes the four fisheye

cameras and an overhead rectilinear camera to capture a true virtual SV

image. The data was also diversified by randomly applying different lighting

conditions, shown in Figure 3.10 to the scene. Overall, the database includes

4,662 surround-view image sets, each of which includes the front, right, rear,

left, and overhead captures (see Figure 3.1) along with corresponding depth

maps for each captured image. So that users of the database can develop and

test fisheye stereo methods, the database contains 18, 648 unique stereo pairs.

The true SV image is only used in this work to evaluate the performance of

our SV distortion correction method.
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Figure 3.7: Example scenes from the database. Each set of images includes
four fisheye images, their corresponding depth maps, and a true birdseye view
capture. Note: for display, only depths <25 meters are shown.

23



Figure 3.8: New camera angles (in red). Images captured at 0o correspond
to the traditional SV camera configuration, i.e., orthogonal fisheye stereo. To
be clear, the front camera’s 0o position is towards the top edge of the page,
whereas the right, rear, and left default 0o positions are towards the right,
bottom, and left edges of the page, respectively.

Figure 3.9: Example of an expanded set of fisheye captures for one scene. The
camera labels are on the left, and each column displays the images captured
when each camera is rotated about its vertical axis from its default 0o position.

Figure 3.10: Ambient lighting colors
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Chapter 4

Luminance and Depth NSS

Before discussing our proposed MDE method, we must first discuss

natural scene statistics (NSS) models and introduce a new bivariate correla-

tion model, because these NSS features are integral to our depth-estimation

approach. One hypothesis of vision science is that the sensory systems have

become, through evolution and adaptation, matched to the statistical proper-

ties of the signals to which they are exposed [2, 82,111]. When attempting to

solve the MDE problem, the only available data from which to predict depth

is from single-view pixel data. Thus, we begin by exploring the statistical

relationships that exist between the bandpass luminance coefficients of images

and their corresponding depths. We develop a model that is able to capture

the correlations between spatially neighboring luminance values across multiple

scales. We apply the bivariate model introduced in [99, 103] to the spatial

domain, complete the correlation model, and present it in a closed form. Then

in Chapter 5, we use features derived from the new correlation model, along

with established univariate and bivariate luminance NSS features, to train a

DNN to predict depths from monocular image patches.
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4.1 Univariate NSS Model

In the 1980s, Ruderman [84] observed interesting outcomes that arose

by applying a simple process of image modification. After digitizing a large

set of outdoor photographs, he found that subtracting estimates of the local

mean luminances from the pictures, then further processing by dividing by the

estimates of local variance (an example of a ‘divisive normalization transforma-

tion’, or DNT), has a decorrelating and gaussianizing effect on the image data.

The DNT process is perceptually significant and is a reasonable approximation

to the nonlinear behavior of retino-cortical neurons [110]. We will start by

reviewing simple spatial domain NSS models, beginning with the univariate

model detailed in [66,67]. Given an image I, define the normalized luminance

values:

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + C
, (4.1)

where i, j index row and column pixels, respectively, C is a normalization

constant that stabilizes the quotient when σ is small, and

µ(i, j) =
K∑

k=−K

L∑
l=−L

wk,lIk,l(i, j), (4.2)

and

σ(i, j) =

√√√√ K∑
k=−K

L∑
l=−L

wk,l(Ik,l(i, j)− µ(i, j))2, (4.3)
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where, as in [66], we use a patch sampling window w = {wk,l|k = −K, ...,K, l =

−L, ..., L} that is a 2D circularly-symmetric Gaussian weighting function sam-

pled out to 3 standard deviations and rescaled to unit volume. In the experi-

ments, we use K = L = 3, but operate over multiple scales.

Although in principle, the empirical distributions of the DNT luminance

coefficients should be Gaussian-shaped, we instead fit the histograms with the

zero-mean generalized Gaussian distribution (GGD) function:

f(x;α, σ2) =
α

2βΓ(1/α)
exp

(
−
(
|x|
β

)α)
, (4.4)

where

β = σ

√
Γ(1/α)

Γ(3/α)
, (4.5)

and

Γ(a) =

∫ ∞
0

ta−1e−tdt, a > 0. (4.6)

The GGD is parameterized by α and σ2, which represent the shape and

variance, respectively, of the distribution. We use the maximum-likelihood

method detailed in [89] to estimate α and σ2. One of the databases that we use

is the large new LIVE Surround-View (SV) Database [76] (Chapter 3), which

contains over 130, 000 pairs of synthetically-generated naturalistic color images

and ground-truth depth maps. We have found that the parameters of the best
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Figure 4.1: GGD fit to bandpass, divisively normalized luminance histogram
from the LIVE SV Database [76].

GGD fits to the DNT luminance coefficients of LIVE SV support the use of

natural picture statistics models on the images in the LIVE SV database. As

shown in Figure 4.1, the distributions of the normalized luminance coefficients

strongly tend towards a unit normal Gaussian [66,84].

The LIVE SV database was originally generated for the purpose of

exploring surround-view driver assistance imaging systems, where the feeds

from four fisheye cameras placed around a vehicle are combined to generate

a top-down view of the vehicle and its surroundings. The SV database, con-

tains fisheye stereo pairs and their corresponding depth maps, which are also

subjected to the fisheye distortion. The spatial distortion can be removed to

obtain typical rectilinear photographic images of city scenes, which include

pedestrians, bikes, motorcycles, a variety of vehicles, and other realistic content.
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We performed this distortion removal step and use the resulting non-fisheye

images in developing both our bivariate NSS model (Section 4.2) and our

monocular depth estimation model (Chapter 5). We will refer to the set of

non-fisheye data (images and co-registered depth maps) within this dataset

as ‘LIVE SV’ and the set of fisheye data within this dataset as ‘LIVE SV-F’.

We now focus on using the LIVE SV data and will only use the fisheye data

beginning in Chapter 6.

4.2 Bivariate NSS Model

Our bivariate NSS model extends the work done in [99, 103], which

explored the NSS of spatially adjacent directional bandpass (wavelet) responses.

We use a simpler isotropic bandpass/DNT model. As with [99, 103], we use

a bivariate generalized Gaussian distribution (BGGD) to model the pairwise

statistics of pixels having four relative orientations, separated by distance d, as

shown in Figure 4.2: the horizontal (0o), right diagonal (45o), vertical (90o),

and left diagonal (135o).

The bivariate generalized Gaussian distribution is:

f(x;M, αb, βb) =
1

|M|
gαb,βb(x

>M−1x), (4.7)

where x ∈ IR2, M is a 2× 2 covariance matrix, αb and βb are scale and

shape parameters, respectively, and gαb,βb(·) is:
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Figure 4.2: Visualization of distances and orientations between pairs of pixels
on which we model bivariate statistics. Left: distance is measured in pixels,
while orientation is measured clockwise from the positive horizontal. Right:
the four orientations considered in our bivariate statistical model.

gαb,βb(y) =
βbΓ(1)(

2
1
βb παb

) 1
2 Γ
(
N
2βb

)e− 1
2

(
y
αb

)βb
, y ∈ IR+. (4.8)

The elements of matrix M are pairwise covariances, for which we seek a

simple closed-form correlation model so that the overall second-order statistical

model, described by (4.7) and (4.8), is also of closed form. Figures 4.3 and 4.4

plot the correlations against the distance between the pixels for four different

orientations, on two different databases. Figure 4.3 was generated on the LIVE

Color+3D Database Release 2 [102], which contains 98 sets of high-definition

(1920× 1080) stereo color image pairs with co–registered dense ground-truth

depth maps. The images in this database are pristine, natural images, i.e.,

with minimal distortion. The depth data was captured using a RIEGL VZ-400

terrestrial range scanner calibrated to the camera.

As previously mentioned, we also utilized the LIVE SV Database [76],
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Figure 4.3: Empirical luminance correlations computed on the LIVE Color+3D
Release 2 Database. Top row: correlation as a function of distance for (from L
to R) θ = {0, 45o, 90o, 135o} and 7 different scales. Bottom row: correlation
functions averaged over scales showing confidence bands.

because of its size, which greatly facilitates the training of deep models, and the

guaranteed accuracy of its ground-truth range measurements. Large amounts

of ground-truth co-registered luminance and depth data are very difficult to

obtain, and this dataset contains over 130, 000 pairs of naturalistic color images

and corresponding depth maps. Since the data was generated synthetically, it

contains perfectly calibrated co-registered luminance-depth data. The correla-

tion plots generated using this synthetic data nicely agree with those computed

on pristine images captured by high-definition cameras, which, along with the

univariate GGD fits (Figure 4.1), supports the use of LIVE SV for developing

MDE models of natural photographic + depth images.

We have found that a difference-of-exponentials can be used to accurately

model the empirical correlation values:
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Figure 4.4: Empirical luminance correlations computed on the LIVE SV
Database. Top row: correlation as a function of distance for (from L to R)
θ = {0, 45o, 90o, 135o} and 7 different scales. Bottom row: correlation functions
averaged over scales showing confidence bands.

ρ(d) = 2ead − eabd, (4.9)

where d is the pixel separation, a controls the decay steepness (and thus, the

location of the dip that is evident in the plots), and b controls the width of

the dip (or lack thereof). Figure 4.5 shows possible shapes the model (4.9) can

exhibit when varying the parameters a and b. In the left plot, a is fixed at -0.5,

while b varies, and in the right plot, b is fixed at 0.5, while a varies.

32



Figure 4.5: Difference-of-exponentials (correlation model (4.9)) with (top) fixed
a and varying b and (bottom) fixed b and varying a.
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Chapter 5

NSS-Based Monocular Depth Estimation

We now detail our method for predicting depth from monocular im-

ages using the univariate and bivariate NSS models discussed in Chapter 4.

We use features extracted from the NSS models in a deep neural network

(DNN) to predict inverse-range patches from luminance patches. We rep-

resent each inverse-range patch using a sparse code, each element of which

supplies a weight on each patch within a dictionary of image patches, which was

learned from patches sampled from depth perception databases of ground-truth

luminance-depth images. We first explain how these patch dictionaries were

constructed before discussing the construction of our network while emphasiz-

ing the connections and parallels to perceptual models and concepts. In the

sections following, we explain the dictionary training and the network design,

including the data processing steps, the network architecture, the training

and testing details, and the results. We show that our simple network trained

using perceptually-relevant features and a perceptually-relevant loss function

is able to predict dense depth maps in a manner that is competitive with

state-of-the-art methods.
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5.1 Sparse Representation for Inverse-Range Maps

It is strongly believed that the HVS extracts statistical elements of visual

stimuli to produce efficient representations [2, 82, 111]. Early on, Barlow [4]

proposed that early visual processing in the brain acted to remove much of the

considerable redundancy present in visual signals by generating statistically

independent neural responses. Further, a significant amount of prior work

has demonstrated the connection between NSS and sparse representations

[3, 19, 72,73]. In particular, Field [19] showed that simple cells in the primary

visual cortex (V1) create sparse representations of the natural world, which is

largely made up of regular structures of 3D objects and surfaces. Following

Field’s paper, there has been extensive work showing that receptive fields similar

to those of simple cells can be optimized to produce sparse representations of

natural scenes [5, 37, 72, 108, 109]. Regularities in depth are strongly tied to

luminance regularities, and depth and luminance statistics can be similarly

modeled [38,58,59,95–97,99,103].

Su, et. al., [102] postulated that depth maps tend to be composed of

simple, regular patterns, and they used a small dictionary of five canonical

patterns to represent priors in a Bayesian depth prediction framework. They

achieved promising results on predicting dense depth maps. We adopt a similar

approach to what was proposed in [102], but with important differences. We

use a significantly larger collection of picture + depth data to learn a larger,

more descriptive dictionary of inverse-range patterns. Instead of using steerable

pyramids, we build dictionaries of divisively-normalized inverse-range patches,
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computed by applying (4.1) to the inverse-range maps:

Îir(i, j) =
Iir(i, j)− µir(i, j)
σir(i, j) + Cir

. (5.1)

Again, in traditional stereo-matching algorithms, the goal is typically to com-

pute disparity, which is inversely proportional to depth (and directly propor-

tional to the camera focal length and baseline of the stereo configuration), so our

use of inverse-range is natural in a depth-prediction context. Additionally, the

scale of inverse-range values within each map is smaller and more manageable

than the potential range of depths.

On each database that we used to develop and test our models, we

randomly extracted 200,000 DNT inverse-range patches of size 31× 31 across a

range of scales. To do so, we first scaled each image to multiple resolutions, the

choice of which we discuss in Section 5.2.2, and for each image, regardless of

resolution, we extracted patches of constant size 31× 31. We then applied least

angle regression (LARS) [16], which is a stepwise regression algorithm that, at

each step, selects a patch from a collection of possible dictionary elements that

has the strongest correlation with the data, and then iteratively selects patches

based upon a refitting of residuals to build the dictionary. The candidates

for the dictionary patches were initialized using singular value decomposition

(SVD) to be the orthogonal basis for IR961 (because 312 = 961). In other words,

if we have n× p data matrix A, where n is the number of image patches used

to learn the dictionary (200,000), and p = 312 = 961, then applying SVD gives:
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A = USVT, (5.2)

and the candidate dictionary elements are the rows of SVT. By iteratively se-

lecting the strongest patch to include in the dictionary, we obtain a small

subset of orthogonal patches that can be used to reconstruct any DNT

inverse-range image, thereby removing a significant amount of redundancy

in the representation of the input data. LARS is implemented in Python in

the MiniBatchDictionaryLearning function from the decomposition module

within the scikit-learn library [77]. By including patches from multiple scales

during construction of the dictionary, we were able to build a reasonably

scale-agnostic model.

Using this method, we obtained a set of 64 31× 31-sized basis patches,

so that any image patch within the database can be represented using a

linear combination of these 64 bases. Each patch from each image in the

database can thus, instead of being represented by 312 pixels, be represented

by a sparse 64-length code, each element of which represents a weight for

the corresponding dictionary patch. Figure 5.1 shows the learned dictionaries

of inverse-range patches on each of the three datasets we tested. We also

tried learning dictionaries of different sizes (36 and 81) and found that the

smaller 36-element dictionary yielded image reconstructions with significantly

greater loss, whereas the 64- and 81-element dictionaries yielded comparable

high-accuracy image reconstructions.
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(a) LIVE SV [76] (b) LIVE Color+3D [102] (c) NYU Depth V2 [90]

Figure 5.1: Dictionaries of learned sparse inverse-range patches computed on
each of the three tested databases.

Figure 5.2 shows examples of reconstructions of one DNT inverse-range

image from each database. To demonstrate the applicability of the dictionaries

to images of different scales, the examples in Figure 5.2 are of varying resolutions.

The example from the LIVE SV Database in Figure 5.2a is 360× 640, which

is 25% of the resolution of the original (720 × 1280); the example from the

LIVE Color+3D Database in Figure 5.2b is 270× 480, or 1/16-th the original

resolution of 1080× 1920; and the example from the NYU Depth Dataset in

Figure 5.2c is of full resolution 480× 640 (460× 620 with some invalid edge

pixels removed).

5.2 Method

We now explain the components of our inverse-range patch prediction

model. We start by describing the model input features in Section 5.2.1. Then

we describe each of the relevant luminance + depth datasets, and how we
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(a) Example from LIVE SV [76]

(b) Example from LIVE Color+3D [102]

(c) Example from NYU Depth V2 [90]

Figure 5.2: From left to right in each row: Original luminance image; ground-
truth inverse-range map; divisively normalized bandpass ground-truth inverse-
range; divisively normalized bandpass inverse-range image reconstructed from
the dictionary elements in Figure 5.1a
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processed each of them to extract the necessary features in Section 5.2.2, We

detail the design of the network architecture in Section 5.2.3, and relate how

we trained the model in Section 5.2.4.

5.2.1 NSS Features

The goal is to take an input luminance patch that is a projection of

part of a 3D scene, and densely predict its corresponding depth patch. We

use patches of size 31× 31 throughout. From each patch within a luminance

image, we extract a 982-length feature vector F comprising:

• DNT luminance coefficients: Lij for i, j ∈ 1, ..., 31,

• Luminance patch mean: µL,

• Luminance patch variance: vL,

• Normalized y-coordinate of the luminance patch: y,

• Luminance GGD parameters: αGGD, σGGD,

• Luminance BGGD parameters: αBGGDk , βBGGDk for k = [1, ..., 4],

• Luminance correlation model parameters: ak, bk for k = [1, ..., 4],

where k indexes the four pairwise orientations {0o, 45o, 90o, 135o}, and µL and

vL are extracted during the divisive normalization step. The GGD parameters

are estimated using the moment-matching approach used in [66] and proposed

in [89]; the BGGD parameters are estimated using the moment-matching
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approach for fitting multivariate generalized Gaussian distributions (MGGD)

detailed in [29]; and the correlation model parameters are estimated using

the Nelder-Mead simplex algorithm [52], as implemented in the fminsearch

MATLAB function, to fit the constrained difference of exponentials (4.9) to

the empirical correlations, for integer pixel separations ranging from d = 1 to

d = 16 pixels.

The luminance patch mean and variance are computed during the

process of divisively normalizing the luminance patch, and the normalized

y-coordinate is simply the y-coordinate in pixels divided by the height of the

image in pixels. This knowledge of vertical location within the image is a

monocular cue, because pixels closer to the top generally correspond to world

points with larger depths, and pixels closer to the bottom generally correspond

to to world points that have smaller depths [102].

5.2.2 Datasets

Next we describe the datasets that we used and explain how the data

was processed for both training and testing. On each dataset, we extract and

use only the luminance channel, and compute inverse-range as the reciprocal of

depth. We selected 20 images from each dataset that we set aside to evaluate

the performance of the trained inverse-range prediction network on full images.

These images were not included when generating patch data to train and test

the network. We also list in Table 5.1 a few database features and processing

choices. The variable Cir represents the normalization constant used in (4.1)
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for inverse-range images, which is required to build the inverse-range dictionary

specific to each dataset and to extract the sparse code for generating the training

and testing data. The choice of Cir is different for each database, because it

depends on the variances of the luminance patches within the databases, which

arises from various factors, such as the precision of the data, the complexity of

the scenes, and any inherent noise in the data. We manually chose Cir for each

database to not overpower the variance in the DNT equation denominator.

Additionally, because we aim to build a scale-agnostic model, we ex-

tracted a range of scales of images within each database depending on the origi-

nal resolution of images in that database. The images in the NYU dataset [90],

for instance, are native 480×640, which is much smaller than the native images

in both the LIVE SV [76] and LIVE Color+3D [102] databases, so we only

extract five scales (including the original) on NYU, as opposed to the seven

which we extract from the others.

LIVE SV Database The LIVE SV Database [76] is a large synthetic

database with over 130,000 co-registered pairs of color images and ground-truth

depth maps. Although all of the images in the database were captured with a

fisheye lens, the intrinsic camera parameters are known, so we transformed all

the images and depth maps to their rectilinear forms. To generate the training

and testing data, we randomly sampled patches from 500 luminance-depth

image pairs. In this database, some pixels in the sky or on complex object

surfaces (e.g., tree leaves) have infinite ground-truth depth recorded, so they
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were excluded from the training and testing sets, and only depths less than 50

meters were estimated.

LIVE Color+3D Database Release 2 The LIVE Color+3D Database

Release 2 [102] contains 98 sets of stereo color image pairs with co-registered

depth maps of outdoor scenes. Because the left and right images and depths

in each stereo pair are quite similar in nature, we randomly selected 20 left

images for final evaluation and excluded their corresponding right images from

both the training and testing data.

NYU Depth Dataset V2 The NYU Depth Dataset V2 [90] contains 1449

pairs of aligned color images and depth maps of indoor scenes. Due to occlusions

and measurement limitations, the raw depth maps contain missing values.

These missing depth measurements are often in key spatial locations, as they

correspond to changes in object boundaries and sharp changes in depth. The

authors provide interpolated measurements for missing values, and because it

is important that our model be able to learn such geometries in a scene, we

used these dense maps to extract training and testing data.

Table 5.1: Database Features and Processing

Database Resolution Scales Cir Depths
LIVE SV 720× 1280 7 0.1 <50m
LIVE Color+3D 1080× 1920 7 0.0001 -
NYU Depth V2 480× 640 5 0.001 -
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5.2.3 Neural Network Architecture

In order to optimize our predictions of inverse-range using NSS features,

we built a modular network, motivated by our normalization transformation

of the inverse-range images and NSS. If we consider any inverse-range map as

being a reconstruction from its DNT form, as in (5.1), then we may formulate

the inverse-range-prediction problem as a combination of four smaller problems:

first, predicting the DNT patch, the patch mean, and the patch variance,

and then combining those three predictions in a reverse divisive-normalization

transformation step. We model our network on this formulation, as depicted

in the network flow diagram in Figure 5.3a. One module, the ‘code’ block, is

designed to predict a 64-length feature vector, which is intended to represent

the code used to reconstruct the DNT inverse-range patch from dictionary

patch elements. To obtain the inverse-range values from the DNT patch, we

also require the patch mean and variance. However, instead of training separate

networks to predict mean and variance separately, we use two normalizing

scalar (NS) blocks in our network to predict scalar features to be passed to the

combination module to predict the final inverse-range patch.

We show the specific architectures of the modules in Figure 5.3b. The

code and NS modules use the four fully-connected layers, while the combination

module uses the four convolutional layers. The luminance blocks also use the

four convolutional layers with an additional fully-connected layer to obtain a

feature vector of the appropriate dimensions to input to the intermediate ‘code’

block. We provide details of all layer dimensions for our highest-performing
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network in Table 5.2, and note that our network contains approximately 880K

parameters, which is orders of magnitude smaller than other high-performing

models [21, 53,57].

We tested module architectures of different depths and widths and

tried extracting luminance feature vectors of different lengths. We also tested

fully-connected architectures, fully-convolutional architectures, and other com-

binations besides the one represented in Table 5.2, along with options of

including residual connections. The chosen output length of the luminance

feature-extraction block is 961, as displayed in Figure 5.3a, which indicates that

the luminance CNN extracts a feature vector of the same dimensions as the

input patch. We found that extracting shorter feature vectors compromised per-

formance. Our final network also does not use any skip or residual connections.

We did not find that adding them between fully-connected layers improved

performance, and we obtained similar results using an adapted version of

ResNet [35] as the combination module, however that network is more complex

and takes much longer to train and execute on test data. Importantly, our

proposed network requires far fewer parameters than previous high-performing

networks designed and trained for monocular depth estimation. Much of the

predictive power of the system lies in the use of perceptually relevant features.

If the features listed in Section 5.2.1 are denoted as F , then Fs is a

subset of F that excludes the DNT luminance coefficients. For the NS blocks,

the only inputs are Fs, whereas, for the ‘code’-prediction module, the DNT

luminance patch is first passed through four convolutional layers to extract a
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961-length feature vector before being concatenated with Fs to form the input

feature vector of length 982. We also conducted experiments where we excluded

the NSS features and only trained on luminance patches. In these experiments,

the input to each of the three modules was a 961-length luminance feature

vector, extracted using a separate CNN (each having the same architecture as

the luminance CNN detailed in Table 5.2) for each module. We found that the

results suffered significantly when NSS features were excluded from the model.

The network begins with these three independent branches to represent

the components in the reverse divisive normalization process (5.1), because any

image patch can be reconstructed from its DNT, mean, and variance. The 64-

length vector resulting from the code-prediction module represents the sparse

code, which is used to reconstruct the DNT patch from the dictionary elements.

This step is represented by the ‘decode’ block in Figure 5.3a, which takes a

64-length inverse-range patch code as input and reconstructs an estimate of

the DNT inverse-range patch, which is then combined with the outputs of

the NS modules in a combination module, yielding the estimate of the final

inverse-range patch.

5.2.4 Training

To train the network, which we did for each database separately, we

randomly sampled 625,000 luminance-depth patch pairs. We reserved 20%

(125,000 pairs) for testing, and used the remaining 80% (500,000 pairs) for

training. During the training process, 10% of the training patches were reserved
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(a)

(b)

Figure 5.3: (a) Network flow diagram, in which the four-layer fully-connected
architecture shown in (b) is used in the code-prediction, mean-prediction,
and variance-prediction modules, and the four-layer convolutional architecture
shown in (b) is used in the combination module as well as to extract luminance
features to input into the code-, mean-, and variance-prediction modules.
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Table 5.2: Network Architecture Details

Layer DimensionsModule Input Output FC1 FC2 FC3 FC4

‘code’ (982,) (64,) 524 262 131 131
NS
(‘mean’) (21,) (1,) 11 6 3 3

NS
(‘variance’) (21,) (1,) 11 6 3 3

Conv1 Conv2 Conv3 Conv4

luminance (31,31,1) (961,) (3,3,4) (3,3,8) (3,3,16) (3,3,32)
combination (31,31,4) (31,31,1)

for validation.

We evaluated a number of loss functions, including the mean squared

error (MSE), mean absolute error (MAE), difference of structural similarity

(DSSIM), [41,113], and weighted combinations of the three. The non-traditional

loss, DSSIM, is based on the Structural SIMilarity index (SSIM), which consid-

ers luminance, contrast, and structural similarities between two images, taking

a maximum of 1 when the images being compared are identical. To use this

index in a loss function, we therefore subtract its value from 1, and in the Keras

implementation we used, the DSSIM loss is clipped at 0.5. We found that the

MAE preserved finer details, which is to be expected, while a combination loss

(MAE-DSSIM) equally weighing MAE and DSSIM produced the best results.

We trained the network end-to-end, while also utilizing losses at the

outputs of the ‘code’ and NS modules. For the first half of training, we used a

combination loss comprising the overall MAE-DSSIM inverse-range loss as well

as three intermediate layer MAE losses:
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• the MAE loss between the output of the ‘code’-prediction block and the

ground-truth sparse code of the DNT inverse-range patch;

• the MAE loss between the output of one of the NS modules and the

ground-truth inverse-range patch mean;

• and the MAE loss between the output of the other NS module and the

ground-truth inverse-range patch variance.

The weight ratio between the overall loss and each of the three intermediate

losses was 1 : 0.01. The validation loss was computed at the end of each epoch.

We used a patience threshold of 10 epochs to determine when to change or

stop training, meaning that we monitor the validation loss to determine when

it no longer improved (i.e., the validation loss decreased) for 10 consecutive

epochs. The first time this event happened, the weights for the intermediate

losses were dropped, and only the overall MAE-DSSIM inverse-range patch

loss was used for the rest of training, which stopped when we no longer saw

improvement in the validation loss for another 10 consecutive epochs. The final

model was taken to be the one having the lowest validation loss.

We used this two-tier training scheme to initially gently guide the ‘code’

and NS modules to predict the quantities required for patch reconstruction

from DNT components (5.1). We removed these guiding losses before finishing

training, which we noticed had a small impact on the visual results, but

systematically improved the quantitative results. We also tried training end-to-
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end with only the MAE-DSSIM loss, and found that the network sometimes

struggled more to accurately predict the inverse-range values of object interiors.

5.2.4.1 Data Augmentation

We also observed that the inverse-range patch variances of natural

images are heavily skewed toward zero, because scene depths are predominantly

smooth and continuous with discontinuities mainly corresponding to object

edges. To avoid biasing our model to predicting inverse-range patches having

zero variance, we augmented the training data by sampling the patches based

on their variances, and by combining these samples with the training samples.

Specifically, we computed a sample weight for each training patch to be its

variance over the sum of all training patch variances. We then sampled, with

replacement, 500,000 patches, i.e., the same number of patches as in the training

set, appended these patches to the original training data, and randomly selected

500,000 patches from this augmented set for training.

In Figure 5.4, we show, for a random sample of LIVE SV patches, the

histogram of inverse-range patch variances on the left, where the severity of the

bias toward zero is apparent. After resampling, the distribution is still skewed

toward zero, but the bias is not as severe, as seen in the histogram on the right

in Figure 5.4. By implementing this resampling approach, our training data

distribution is still significantly representative of the true data distribution, but

we place a greater emphasis on learning inverse-range values on patches having

higher inverse-range variance, which are more likely to correspond to points of
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Figure 5.4: Histograms of inverse-range patch variances: (left) before resampling
and (right) after resampling using the method detailed in Section 5.2.4.1. Plots
are shown for a randomly sampled 100,000 patches from the LIVE SV data,
but we observed similar trends on the other databases as well.

interest or object edges. We trained networks with and without this resampling

step and found that the predictions resulting from using the resampled training

data to be both quantitatively and qualitatively better.

5.3 Results

While the final models are trained to predict inverse-range in a patchwise

manner, the true test of each model is how well it can predict dense inverse-range

maps on entire images. To evaluate the final models, we used the 20 randomly-

selected evaluation images from each database that did not contribute any

training or testing patches to build the model. As previously mentioned, if the

evaluation image was part of a stereo pair from the LIVE Color+3D database,

the corresponding image also made no contribution to the sets of training and

testing patches, because the image content between the stereo image pairs in
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that database is almost always nearly identical.

To evaluate performance, we compute the mean absolute error (MAE)

and the normalized mean absolute error (nMAE), which is the MAE divided

by the ground truth values:

nMAE(G,P ) =
|G− P |
|G|

, (5.3)

where G and P are the ground-truth and predicted inverse-range maps, respec-

tively.

In Table 5.3, we show the average and median of each error metric across

the 20 evaluation images for each database when the model was trained on

patches extracted from images of the same resolution. In other words, for each

scale, 650,000 training and testing patches were extracted only from images of

that scale. Thus, the scales and image resolutions listed in Table 5.3 correspond

to both the model and evaluation data, and the model trained for each scale

can be considered to be scale-aware. The results in Table 5.4, on the other

hand, were obtained from models trained on patches extracted across all scales,

i.e., 7 scales on both of the LIVE databases and 5 scales on the NYU dataset.

These models can therefore be considered as scale-agnostic, and the scale and

image resolutions listed in Table 5.4 correspond only to the evaluation data for

which the results are listed, because a single multi-scale model was trained for

each database.

The results reported in Tables 5.3 and 5.4 are errors, so smaller numbers

indicate better performance. We considered the normalized MAE when com-
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paring model performances, since it weighs errors based on the ground truth

values. Therefore, major differences between depth distributions in scenes from

different databases are normalized. Generally, the multi-scale models, which

were trained on data across all scales, performed slightly worse than single-scale

models trained on scale-specific data. However, the difference was small, and

the multi-scale results strongly support the efficacy of using the scale-invariant

NSS to learn scale-agnostic networks. We also observed that for any given

database, models trained on higher-resolution data did not necessarily perform

better in terms of nMAE. Similarly, models trained on data at different scales

also did not necessarily perform better on higher-resolution data. In fact,

there was no obvious relationship between resolution and performance, which

supports the generalizability of the model and features.

Table 5.3: Results from Single-Scale Models

Database Scale Index Image Resolution Average MAE Median MAE Average nMAE Median nMAE

LIVE SV

0 720× 1280 0.4251 0.3736 0.3347 0.3221
1 509× 905 0.4166 0.4050 0.3176 0.3014
2 360× 640 0.3986 0.3739 0.3204 0.3174
3 255× 453 0.4094 0.3750 0.3431 0.3470
4 180× 320 0.3820 0.3559 0.3096 0.3190
5 127× 226 0.4016 0.3543 0.3328 0.3191
6 90× 160 0.3804 0.3610 0.2934 0.2941

LIVE Color+3D

0 1080× 1920 0.0432 0.0394 0.6060 0.5207
1 764× 1358 0.0414 0.0352 0.5470 0.4916
2 540× 960 0.0379 0.0314 0.5277 0.4627
3 382× 678 0.0396 0.0319 0.5394 0.4186
4 270× 480 0.0439 0.0310 0.5309 0.4693
5 191× 339 0.0453 0.0308 0.5489 0.4809
6 135× 240 0.0453 0.0342 0.5304 0.4553

NYU Depth V2

0 460× 620 0.1500 0.1085 0.3094 0.3083
1 325× 438 0.1460 0.1074 0.3002 0.2951
2 230× 310 0.1402 0.1061 0.2894 0.2898
3 163× 219 0.1343 0.1033 0.2814 0.2810
4 115× 155 0.1260 0.1035 0.2697 0.2790

We also compared our model’s performance on the test images of each

database to the performance of the model presented by Laina, et. al [53].
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Table 5.4: Results from Multi-Scale Models

Database Scale Index Image Resolution Average MAE Median MAE Average nMAE Median nMAE

LIVE SV

0 720× 1280 0.4642 0.4341 0.3745 0.3642
1 509× 905 0.4471 0.4228 0.3757 0.3646
2 360× 640 0.4423 0.4100 0.3663 0.3668
3 255× 453 0.4474 0.4167 0.3537 0.3522
4 180× 320 0.4439 0.4263 0.3345 0.3387
5 127× 226 0.4643 0.4181 0.3228 0.3152
6 90× 160 0.4669 0.4671 0.3093 0.2904

LIVE Color+3D

0 1080× 1920 0.0497 0.0408 0.7224 0.6231
1 764× 1358 0.0518 0.0387 0.6617 0.5737
2 540× 960 0.0488 0.0340 0.6491 0.5653
3 382× 678 0.0461 0.0321 0.6165 0.5274
4 270× 480 0.0459 0.0323 0.5963 0.5042
5 191× 339 0.0449 0.0341 0.5903 0.5150
6 135× 240 0.0437 0.0337 0.5778 0.5050

NYU Depth V2

0 460× 620 0.1510 0.1107 0.3029 0.3035
1 325× 438 0.1464 0.1087 0.2967 0.2953
2 230× 310 0.1433 0.1077 0.2948 0.2886
3 163× 219 0.1383 0.1037 0.2877 0.2934
4 115× 155 0.1328 0.0966 0.2773 0.2816

Although another model [21] has been reported to provide better performance

than the Laina model, we could not reproduce the reported results, and the

authors of [21] do not provide training code to do so. In [21], the second best

performance on the NYU dataset was obtained using Laina, so we used Laina

as a benchmark to evaluate our model’s performance. The Laina model is

trained on full images and predicts complete depth maps, although at a lower

resolution. Thus, for each database, we formed the training data using the

images from which we extracted patches to train our patch-based model. We

also resized the LIVE SV and LIVE Color+3D images to 480× 640 to avoid

modifying the original model. Additionally, because the model was initially

presented to predict range, we trained and evaluated the Laina model on range

images and took the inverse of the predictions for the sake of comparison. We

tried training the models to predict inverse-range directly, but this approach

yielded worse results. We show the performance results of this model along
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with those from our own scale-agnostic model in Table 5.5.

Table 5.5: With and Without NSS

Database Model MSE MAE nMAE
Mean Median Mean Median Mean Median

LIVE SV Pan 0.5538 0.3492 0.4642 0.4341 0.3745 0.3642
Laina 5.8683 5.3368 1.9381 1.9143 0.6769 0.6672

LIVE
Color+3D

Pan 0.0045 0.0028 0.0497 0.0408 0.7224 0.6231
Laina 0.4941 0.4778 0.6717 0.6602 10.1756 9.7636

NYU
Depth V2

Pan 0.0471 0.0221 0.1510 0.1107 0.3029 0.3035
Laina 0.0360 0.0210 0.1455 0.1225 0.3361 0.3264

We show example predictions computed by both our scale-aware and

scale-agnostic models, as well as the predictions produced by the Laina model

[53] in Figures 5.5, 5.6, and 5.7. On each database, we chose predictions from

two different scales of our models to demonstrate the generalizability of our

scale-specific models to be scale-agnostic. (Refer to Table 5.3 or Table 5.4

for scale resolutions.) The Laina model performed quite well on the NYU

dataset, however, our models outperformed the Laina model with respect to

normalized MAE. The complexities contained in the LIVE SV Database and

the insufficient amount of training data in the LIVE Color+3D Database likely

contributed to the poor visual results delivered by the Laina model.

5.3.1 Module Outputs

As mentioned, the modular design of the network was motivated by

the DNT deconstruction of the inverse-range map. The three components

needed to reconstruct any inverse-range patch are the divisively-normalized

patch, which can be reconstructed from the 64-length code, along with the
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Figure 5.5: Inverse-range prediction results on the LIVE SV Database.

Figure 5.6: Inverse-range prediction results on the LIVE Color+3D Database.
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Figure 5.7: Inverse-range prediction results on the NYU Depth Database.

patch mean and variance. The latter two are represented in the network by the

NS blocks, which predict scalar outputs. Though training begins with weakly

biasing these two NS modules to predict the inverse-range patch mean and

variance, this bias is removed to finish training. We are still, however, able to

demonstrate that the values predicted by these intermediate network layers

closely resemble the intended mean and variances scalars. In Figure 5.8, we

show all three intermediate network outputs from the model trained on scale-2

data (360 × 640 image resolution) for all the LIVE SV images displayed in

Figure 5.5. The predicted DNT, mean, and variance images all display similar

characteristics to their ground-truth maps, which further supports the HVS

motivation behind the design of our network.
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Figure 5.8: Intermediate model outputs. From left to right: the ground-
truth inverse-range image; the predicted inverse-range image; the ground-truth
divisively-normalized inverse-range image; the predicted divisively-normalized
inverse-range image; the ground-truth inverse-range mean image; the predicted
inverse-range mean image; the ground-truth variance image; and the predicted
variance image.
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5.3.2 The Value of NSS Features

As mentioned in Section 5.2.3, we also trained models without using the

NSS features (Fs) as inputs to the model, as a way of probing the efficacy of

these features. In these experiments, we excluded the NSS features and trained

the models using only the luminance patches, which were fed into three separate

CNN modules, each configured according to the luminance CNN described

in Table 5.2. These luminance feature vectors were then separately fed into

the same ‘code’ and ‘NS’ blocks shown in Figure 5.3a. For the SV examples

shown in Figure 5.5, we also show, in Figure 5.9, the difference between the

predictions when NSS features were included as input features (middle column)

and excluded entirely from the network (last column). These examples clearly

illustrate the enhanced performance afforded by including NSS features in the

monocular depth estimation training process. A quantitative comparison is also

provided in Table 5.6 for the scale-specific models (trained on 1/4-resolution

SV data) that produced the results in Figure 5.9. Both the visual and numeric

results strongly support the use of NSS features as inputs to the model as well

as the idea that these kinds of fundamental, perceptually relevant statistical

features can be used to significantly improve learned MDE models.

Table 5.6: Comparison with Previous Models

Database Model MSE MAE nMAE
Mean Median Mean Median Mean Median

LIVE SV
w/ NSS 0.4271 0.3322 0.3986 0.3739 0.3204 0.3174
w/o NSS 1.0158 0.8209 0.7089 0.6553 0.6310 0.6505
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Figure 5.9: Comparison of results for models trained on single-scale (scale
2) data for the SV database, both with (middle column) and without (last
column) using NSS features as inputs.
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Chapter 6

Orthogonally-Divergent Fisheye Stereo2

We now shift our focus to estimating depths using fisheye images,

specifically as it pertains to automotive surround-view (SV), which, as discussed

in Chapter 3, uses four fisheye cameras placed on the front, right, rear, and left

sides of a vehicle and generates a single birdseye-view image of the vehicle’s

surroundings by stitching together undistorted perspective-transformed versions

of the four images captured by those fisheye cameras. Being able to estimate

depths from fisheye images has potential applications not only in many general

computer vision tasks, but within SV as well. For instance, one could use

the knowledge of the scene structure that is gained from estimating depths

to improve the stitched-together perspective-transformed birdseye image. If

one knows where objects are located, common issues, such as ghosting or

objects disappearing completely, which result from blindly stitching the four

views together, may be avoided. Inherent in SV are four stereo camera pairs

(Table 3.1), and because there exists a significant amount of overlap in FoVs

between each pair, one only needs to exploit these overlapping views to use in

2Content presented in this chapter was first published in [76]. Co-authors were Martin
Mueller, Tarek Lahlou, and Alan C. Bovik. Janice S. Pan did the work presented in [76] of
formulating the fisheye stereo model, building and training the network, and designing and
evaluating the pipeline while following the guidance and feedback provided by her co-authors.
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triangulating depth.

Stereo systems are typically comprised of a pair of rectilinear cameras

with parallel camera axes and narrow (∼ 10 cm) baselines. The use of fisheye

lenses enables stereo configurations to use wider baselines and non-parallel

camera axes, since they capture larger FoVs that may still overlap under

disparate camera positions and orientations. However, using fisheye lenses for

stereo applications is inherently more challenging because wide-angle lenses

produce spatial image distortions that get more severe closer to image edges,

which are coincidentally where FoVs overlap and where one would want to

exploit stereo vision.

We train a neural network to conduct correspondence prediction and

use it along with the stereo camera parameters to predict a depth map, given

a fisheye stereo pair. The proposed method does not require the removal of

fisheye distortion, nor does it require stereo rectification. The trained network

searches along epipolar curves to find correspondences, then triangulates and

estimates depths under smoothness constraints.

We first detail the underlying fisheye stereo geometry and explain the

model in Section 6.1 before discussing our pipeline for predicting depth and

the neural network on which the pipeline depends (Section 6.2). The work

presented in this chapter was previously published in [76].
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6.1 Orthogonally-Divergent Fisheye Stereo Model

Because the stereo systems within SV use fisheye lenses instead of

rectilinear lenses, each camera within any stereo pair can be rotated about its

vertical axis away from the other and still maintain FoVs that overlap. Figure

6.1 depicts a diverging fisheye stereo system, where the left and right cameras

are symmetrically rotated by angles +α and −α, respectively, about their

Y-axes (i.e., their vertical axes). In the context of SV, usually α ≈ 45o, and

each camera is angled slightly downward, i.e., rotated about their X-axes, to

capture more of the ground plane. Again, the ‘left’ and ‘right’ cameras in a

stereo pair may be any of the pairs listed in Table 3.1 (refer to Fig. 3.1).

Figure 6.1: Fisheye stereo with diverging camera axes.

The camera lenses are assumed to follow an equisolid fisheye model,

though the same method can be extended to stereo systems comprised of lenses

with any known distortion model. Other camera projection models are shown
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Figure 6.2: Comparison between camera models; adapted from [105].

in Figure 6.2. Under the equisolid fisheye model, the relationship between

any image point (xi, yi) for camera i and its 3D point (Xoi, Yoi, Zoi) in the

coordinate frame of camera i can be described as follows:

ri =
√
x2i + y2i = 2f sin

(θi
2

)
, (6.1)

φi = arctan
(yi
xi

)
, (6.2)

tan(θi) =

√
X2
oi + Y 2

oi

Zoi
, (6.3)
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where f is the focal length; ri is the distance between (xi, yi) and the image

center; θi is the angle between the Z-axis of camera i and (Xoi, Yoi, Zoi); and

φi is the angle between the XZ-plane of camera i and (Xoi, Yoi, Zoi), which is

the world point (Xo, Yo, Zo) in the coordinate frame of camera i. Thus, given a

left image point (x1, y1), and a known or estimated depth Zo1 one can solve for

Xo1 and Yo1:

Xo1 =

√
(Zo1 tan(θ1))2

1 + tan(φ1)2
,

Yo1 = Xo1 tan(φ1). (6.4)

Both θ1 and φ1 depend only on the reference point (x1, y1) and can be

computed from (6.1) and (6.2), respectively. After obtaining Xo1 and Yo1 using

(6.4), the world point (Xo1, Yo1, Zo1) can be represented in the coordinate frame

of camera 2: (Xo2, Yo2, Zo2), from which (x2, y2), the matching point to (x1, y1),

can be computed.

We only need to know how to transform between the left and right cam-

eras’ coordinate systems, which are defined by (X1,Y1,Z1) and (X2,Y2,Z2),

respectively. The translation and rotation matrices used to transform points in

either coordinate system into the world coordinate system are:

TL =


1 0 0 −B

2

0 1 0 0
0 0 1 0
0 0 0 1

 , TR =


1 0 0 B

2

0 1 0 0
0 0 1 0
0 0 0 1

 , (6.5)

65



RLy =


cosα 0 − sinα 0

0 1 0 0
sinα 0 cosα 0

0 0 0 1

 ,

RRy =


cosα 0 sinα 0

0 1 0 0
− sinα 0 cosα 0

0 0 0 1

 , (6.6)

where baseline B is the distance between the camera centers, and the midpoint

along B is the origin of the world coordinate system. In SV, B is typically on

the order of a meter. In capturing the LIVE SV Database, B ≈ 1.4m.

We also define a rotation matrix about the X-axis, because each camera

is downtilted 20o towards the ground to allow the fisheye cameras to capture

enough of the ground to generate complete birdseye-view images:

RLx = RRx =


1 0 0 0
0 cos 20o − sin 20o 0
0 sin 20o cos 20o 0
0 0 0 1

 . (6.7)

The rigid transformation matrices can then be written as:

PLW = TLRLyRLx and PRW = TRRRyRRx, (6.8)

where PLW and PRW are the transformation matrices to map points in the left

and right camera coordinate frames, respectively, into the world coordinate

frame. I.e., 
Xo

Yo
Zo
1

 = PLW


Xo1

Yo1
Zo1
1

 = PRW


Xo2

Yo2
Zo2
1

 , (6.9)
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or, more directly, 
Xo2

Yo2
Zo2
1

 = P−1RWPLW


Xo1

Yo1
Zo1
1

 . (6.10)

Thus, for any point (x1, y1) in the left image, and a known (or estimated)

depth Zo1, we can solve for Xo1 and Yo1. Therefore, a simple sweep over a

range of depth values
{
Zk
o1

}
, k ∈ [0, K] can yield a set of candidate world

points
{

(Xk
o1, Y

k
o1, Z

k
o1)
}
, which, when projected into the right image, comprise

the epipolar line segment that serves as our correspondence search space. The

objective is then to select the k associated with the best corresponding point.

We use K = 25 meters (refer to Section 6.2.1).

6.1.1 Fisheye distortion removal and stereo rectification

We use the aforementioned analytical understanding of the fisheye stereo

problem without attempting to reduce it to the more traditional rectilinear

stereo problem, even though the latter approach is simpler and already has

many robust proven approaches (see Section 2.3.1). The reason for working

in the fisheye space is to retain the information provided by the wide fisheye

FoV. In Figure 6.3, we show a pair of fisheye stereo images on the left. The

middle and right-most columns show the images with their fisheye distortions

removed at different resolutions. Much of the information at the edges of the

fisheye FoVs is lost in going from the fisheye to the non-fisheye images, and

capturing these regions, i.e., having such wide FoVs, is precisely why fisheye

lenses are used over rectilinear lenses.
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Figure 6.3: For a given fisheye stereo pair (1st column), different resolutions
of the distortion-corrected images (2nd and 3rd columns). Resolutions are
denoted at the top of each column. The angle between the camera axes that
captured the fisheye images in the left column is 0o, i.e., the stereo system has
parallel camera axes, and the baseline between the cameras is about 1.4m.

6.2 Depth-prediction pipeline

Now that we understand how to map between the captured images and

the world, we will present our approach to computing depth from fisheye stereo.

Figure 6.4 shows the depth estimation pipeline given an input fisheye stereo

pair. The search space in Step 2 for finding corresponding patches is limited

by the patch size and by the spatial extent of the fisheye FoV projected on the

image plane. Patches are extracted in Step 3 according to these constraints.

Point correspondences in Step 4 are computed by taking the best match along

each epipolar search curve, as predicted by a trained network, which we discuss

next. The epipolar curves are determined by the camera and stereo parameters,

so we can pre-compute them in a prior calibration step and then input them in a

look-up table (LUT) to more efficiently compute point correspondences between
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any stereo pair. When triangulating depth (Step 5), the Euclidean distance

between (Xo, Yo, Zo) and the left camera center is the estimated depth for

(x1, y1). Hence, depth is a measurement on all three 3D space coordinates. To

find point correspondences, we use a local correspondence prediction network,

which we trained using patches extracted from image pairs in the LIVE SV-F

Database [76], which contains 18, 648 unique fisheye stereo pairs. We use the

LIVE SV-F database, which was created for exploring SV problems, because it

is the only openly available database containing well-calibrated wide-baseline

orthogonally-divergent fisheye stereo image pairs with ground-truth depth

maps.

Figure 6.4: Algorithm pipeline for computing depth image.

6.2.1 Neural network for correspondence prediction

The correspondence prediction network we trained was based on the

2-channel architecture in [119], as shown in Figure 6.5 and we followed similar

methods for training. We used 200 of the 222 scenes in the database yielding

16, 800 stereo pairs (200 scenes × 21 augmentations per scene × 4 pairs per
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augmentation). From these pairs, we drew 250, 056 positive (correct) matching

patches from feature points and an equal number of negative (incorrect) matches.

We used 80% of the data for training, 10% for validation, and 10% for testing.

The inputs to the network are 25× 25 RGB patches, and we used a regularized

hinge loss function, similar to the work in [119], using a manually designed

matching cost for patch pairs.

Figure 6.5: 2-channel architecture [119].

To extract positive matches from the dataset, we used the ground-truth

depth maps produced by Blender to compute the 3D location of every pixel in

each fisheye image. By projecting all the image points into world coordinates,

we matched points projected from fisheye image pairs using a nearest-neighbor

search to select the point in the right image closest in 3D space to each point

in any given left image. The cost of the match was represented by the distance

between the matched points. A threshold of 0.1 meters was chosen to be the

upper limit on classifying a match as true positive. In other words, if the

best match, i.e., the 3D point from the right image that was closest to the

left reference pixel, was more than 0.1 meters away, the reference pixel was
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considered to have no stereo match. Thus, the collection of positively matching

patches had costs in the range [0, 0.1].

To extract negative matches, for each positive match, we computed the

epipolar curve segment in the right image corresponding to the reference point

in the left image. We used a depth threshold of 25 meters when computing

the epipolar curve segment. In other words, the maximum triangulated depth

between the reference point (in the left image) and any point on the epipolar

curve segment (in the right image) is 25 meters. We then randomly selected a

patch from this epipolar curve that was not the true match to be the negative

match. To compute the cost of the match, we computed the difference between

(1) the triangulated depth using the reference point and the positive matching

point and (2) the triangulated depth using the reference point and the negative

matching point. Recall that we established in Section 3.2 that depth in this

work is computed as a 3D Euclidean distance. Therefore, by computing cost

in this way, we still maintain the cost as representing a 3D distance for both

positive and negative matches.

In order to achieve balance between the positive and negative matching

scores, we flipped and scaled all positive and negative matching costs to obtain

scores for the positive matches. Specifically, let us represent the distances

between positive matches as dp and the distances between negative patches as

dn:

dp ∈ [0, 0.1], dn ∈ (0, 25). (6.11)
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Note that the endpoints for negative depth distances dn are non-inclusive,

because all depths are non-zero, and the maximum triangulated depth using

any point on any epipolar curve segment is 25 meters. Therefore, the difference

between the true depth and the depth of a negative matching point will be in

the range (0, 25). To compute a more balanced set of target match scores, sp

and sn for the positive and negative matches, respectively:

sp =
0.1− dp

0.1
, sn =

−dn
25

. (6.12)

By processing the costs for the positive and negative matches in this

way, we obtain a set of match scores with the following properties:

• The strongest positive match score is sp = 1, and the strongest negative

match score is sn = −1, so all scores lie within [−1, 1].

• All positive matches have positive scores, and all negative matches have

negative scores.

• The triangulated 3D distance between matches monotonically decreases

as match score increases, i.e., as strength of match increases.

The hinge loss function we use is:

min
w

λ

2
||w||2 +

N∑
i=1

max(0, 1− sioneti ), (6.13)

where w are network weights, N is the mini-batch size, i is the training sample

index, si is the matching score for patch pair i, and oneti is the network output for
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patch pair i. We thus train the network to primarily predict patch matches with

scores that are indicative of the degree to which patches match, so selecting the

patch candidate along an epipolar curve with the largest predicted magnitude

can then reasonably serve as an effective method of choosing the best match.

We show examples of positive and negative matches in Figure 6.6. The

first two columns show the captured left and right fisheye images, respectively.

In the left fisheye image, the reference patch is indicated with a red box. In

the right fisheye image, the blue and yellow boxes correspond to patches that

positively and negatively match, respectively, to the red box. The right three

columns show these patches extracted from their respective images, so we can

better visualize features between both true matches and false matches and

understand the difficulty sometimes in visually determining match strength.

6.2.1.1 Training details

We trained the 2-channel network using mini-batch sizes of 500, a total

of 100 epochs, and Adam optimization with learning rate initialized at 0.001.

Weights were initialized randomly, and we trained the model from scratch.

All pixel values were scaled and centered to fall in the range [-1,1], i.e, if the

original pixel value is v, the processed value is 2
(
v

255
− 0.5

)
, because the images

are of type uint8). All training examples are shuffled prior to learning.

We monitor the validation loss while training, and every 100 steps,

we compute the predicted classification accuracy, among other performance

metrics, across the entire validation dataset. If the counts of true positives,
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true negatives, false positives, and false negatives are denoted by TP, TN, FP,

and FN, respectively, the metrics are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (6.14)

TPR =
TP

TP + FN
, (6.15)

TNR =
TN

TN + FP
, (6.16)

PPV =
TP

TP + FP
, (6.17)

NPV =
TN

TN + FN
, (6.18)

F1 =
2× TPR× PPV
TPR + PPV

, (6.19)

(6.20)

where TPR, TNR, PPV, and NPV stand for true positive rate (i.e., sensitivity,

recall), true negative rate (i.e., sensitivity), positive predictive value (i.e.,

precision), and negative predictive value, respectively, and the F1 score is the

harmonic average between precision and recall. We report the quantitative

results from training our network in Table 6.1.

Table 6.1: Network Performance on Test Data

Acc TPR TNR PPV NPV F1

0.860 0.851 0.869 0.872 0.848 0.861

We show in Figure 6.7 pairs of positively and negatively matching patch

pairs drawn from the test data. The first two columns titled ‘True Positives’
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and ‘True Negatives’ show examples that were correctly classified. The third

column shows examples of false positives and negatives. Above each left

(reference) patch, we show the ground-truth match score, and over each right

patch, we show the predicted matching score. Our network is fairly consistent

in predicting positive matches to have match scores very close to 1, meaning

our network may not have learned the strength-of-match concept for positive

matches that we designed into our training data. However, with our use of

hinge loss, erroneous predictions of match class (positive or negative) most

significantly impact weight updates in network training, and strong correct

predictions of positively-matching patches have minimal impact on network

parameter updates. Additionally, more important than the magnitudes of

the predicted match scores are the signs of the predictions, i.e., the predicted

classes, and the quantitative results we presented in Table 6.1.

6.2.2 Results

The results presented in Table 6.1 only pertain to the trained network.

We have yet to see how well the entire pipeline (Figure 6.4) performs when we

use our trained network to predict point correspondences (Step 4 in Figure 6.4).

To test how accurately the depth maps are predicted, we use the 22 scenes that

were not previously used for training the correspondence prediction network.

In other words, we used 1848 stereo pairs (22 scenes × 21 augmentations per

scene × 4 pairs per augmentation), from which no patches were extracted for

training, validating, or testing the network for predicting match scores. We
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used normalized absolute depth error to evaluate the accuracy of predicted

depth maps:

Error =
|G− P |
|G|

, (6.21)

where P is predicted depth, and G is ground-truth depth. We computed the

mean normalized absolute depth error over all pixels in each stereo pair and

then averaged these values over all 1, 848 pairs.

Additionally, because of the highly localized nature of correspondence

prediction, with the ‘best’ match for any reference patch being that with the

highest matching score, we also impose a smoothness constraint that considers

neighboring correspondences when selecting the most appropriate match. Given

a set of pixels in a window Wp around any reference image point p, denote the

median ‘best’ depth in Wp as dm, i.e., the depth which was triangulated from

the corresponding patch with the highest matching score. For pixel p, there is

also a set of candidate matching pixels Cp in the corresponding image along

the epipolar curve, and each candidate pixel c ∈ Cp has an associated depth

dc, which would result from triangulating depth between p and c. Thus, we

penalize match scores for candidate matching pixels based on how far their

associated depth is from the median neighboring depth:

o′c = onetc − λ|dc − dm|, (6.22)

where o′c denotes the new matching score, and onetc is the raw network output

for the patch pair comprised of the patch at reference pixel p and candidate
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matching pixel c. The weight λ determines how heavily to penalize a candidate

depth’s distance from its neighbors. The neighborhood window was fixed to be

3× 3 when computing dm.

To establish a benchmark for performance, we first predicted correspon-

dences without the smoothness constraint and relied only on the highest match

scores. We report the errors when using census similarity, sum of absolute

differences (SAD), and sum of squared differences (SSD) to estimate corre-

spondences in Table 6.2. We compare the results with the errors obtained

when using our trained network and with the additional smoothing step (6.22).

Our trained network already performed better than the benchmark similarity

metrics, and the error was further reduced when we imposed the smoothness

constraint. We show results from our depth-map prediction pipeline and the

effectiveness of the additional smoothing step in Figure 6.8.

Table 6.2: Network Performance on Test Data

Similarity Metric Error

Census 0.93

SAD 1.08

SSD 1.05

Network 0.75

Network, smoothed 0.51

We compute depths for pixels for which the estimated correspondence

has a positive predicted match score. If even the highest match score along an
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epipolar curve is negative, then the reference point in the left image is considered

to not have a predicted matching point in the right image. Additionally, our

epipolar search curves were computed only for depths within 25 meters (as we

discussed in Section 6.2.1), so when we evaluate depth prediction performance,

we only consider pixels for which we have a valid depth estimate and can expect

a valid depth estimate. Therefore, our evaluation results are based on pixels

with positive predicted matches and ground-truth depths less than 25 meters.

6.3 Concluding Remarks

We have demonstrated the use of the new LIVE SV-F Database [76] in

a new depth-map prediction pipeline for fisheye stereo inputs. We introduced

the difficult stereo configuration involving a wide baseline and fisheye cameras,

which, while it provides a significant amount of flexibility in computer vision

tasks, also possesses inherent challenges the more this flexibility is exploited. In

developing our pipeline for densely estimating depth values, we trained a neural

network to conduct correspondence prediction and, by using the stereo system

parameters, showed how it can be used to predict a depth map given a fisheye

stereo pair without requiring the removal of fisheye distortions followed by

stereo rectification, thus avoiding steps which are both common and necessary

when using traditional stereo-matching methods. We also introduced a novel

smoothness constraint for refining predicted depth maps that significantly

improves the results. Despite the difficult conditions, the proposed method is

able to produce depth estimates close to the ground-truth.
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The proposed approach, however, requires a calibrated system, known

camera parameters, and does not run in real time as implemented. In a SV

system, if depth estimation using the inherent fisheye stereo is meant to improve

rendering of the top-view image, robustness and speed are both paramount to

the successful application of the algorithm. Requiring a prior calibration step

indicates robustness may be an issue, because the system would need to be

re-calibrated any time the system physically changes. We next show how we

adapt our perceptual monocular depth estimation method to be able to predict

depth maps from fisheye images. Our MDE method has fewer constraints, runs

faster, and performs better, making it a more desirable solution for estimating

scene structures with a SV camera configuration.
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Figure 6.6: Examples of positive and negative patch matches. Columns from
left to right: the left (reference) fisheye image, in which the reference patch is
indicated with a red box; the right fisheye image, in which the blue and yellow
boxes correspond to patches that positively and negatively match to the red
box; the isolated red boxes from the left fisheye images; the blue boxes from
the right fisheye images; and the yellow boxes from the right fisheye images.
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Figure 6.7: Predictions on example test patch pairs.
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Figure 6.8: Example stereo pairs from the 1, 848 pairs reserved for testing
the depth-map prediction pipeline (Fig. 6.4). First two columns: left and
right fisheye captures; third column: ground-truth depths for pixels visible to
both cameras and in the overlapping FoVs; fourth column: predicted depths
triangulated using only the network-scored best-match pixel; fifth column:
depth maps that result when the smoothness constraint is imposed.
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Chapter 7

Fisheye Monocular Depth Estimation

In Chapter 6, we discussed a method for depth estimation using stereo-

vision, i.e., using two cameras to triangulate the depth of any point that falls

within the overlapping field-of-view (FoV) between the cameras. That method

operates in the fisheye domain, meaning that the images are not transformed,

via spatial distortion removal and stereo rectification, into a rectilinear stereo

pair on which traditional stereo matching methods may be used. A method

requiring such a transformation would fail to benefit from the main advantage

provided by using a fisheye camera model, namely its near-180o FoV.

Because fisheye cameras can capture such wide FoVs, their application

in stereo configurations provides a lot of flexibility, particularly in the baseline

separation between the cameras and in the relative orientation between the

cameras. Even when the cameras are separated by a wide baseline or if the

angle between the camera axes begins to diverge, there remains an overlapping

FoV region between the captured images, so we still have stereo vision, and

therefore, stereo methods may still be applied to predict the depth maps in

these regions. However, the amount of overlap between the captured FoVs

decreases as the baseline or divergence angle increases, which directly restricts
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the amount of depth information we are able to predict. As seen in [76], with

orthogonally-divergent fisheye stereo, the resulting depth map is less than half

of the reference image. Thus, relying on stereo methods in such challenging

configurations can be limiting, and a monocular approach could provide much

more flexibility in application. We adapt our NSS-based monocular depth

estimation (MDE) method for fisheye images, which has the following important

advantages over our stereo approach:

• Does not require a second view for triangulating depth;

• Does not require calibration of the camera system to compute camera

extrinsic parameters;

• Provides depth estimates for the entire fisheye image, not just for an

overlapping FoV.

In this chapter, we first explore fisheye NSS (Section 7.1) before ex-

plaining our process for adapting our MDE method to be able to handle

fisheye-distorted images (Section 7.2). We then present the quantitative and

visual results and compare the predictions made by our MDE model with

those obtained using the stereo method presented in Chapter 6 (Section 7.4).

As we will demonstrate, our monocular approach is less complex, has fewer

constraints, and performs better at predicting depths than our stereo approach.
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7.1 Fisheye NSS

Because the features used in our MDE model to predict depth are

extracted from NSS models, we must first understand whether the fisheye

distortion model changes the underlying NSS of images in a way that might

prevent the meaningful extraction of NSS model parameters. We use the

naturalistic fisheye images in the LIVE SV-F database, because we have

already demonstrated the naturalness of the non-fisheye portion of the dataset

in Section 4.1.

We observe that the naturalistic fisheye images in the LIVE SV database

display similar NSS to those of pristine images captured using real-world

rectilinear cameras. Additionally, because fisheye images are radially distorted,

we partitioned the fisheye images into nine sub-images to analyze the effect of

radial distortions on univariate NSS. Specifically, we partitioned the fisheye

images into a 3 × 3 grid of equally-sized sub-images, and fit a GGD (4.4)

to the divisively-normalized luminance coefficients of valid patches (i.e., we

exclude the black bordering pixels not corresponding to any image content).

We show how we partitioned the fisheye images in Figure 7.1, and it is apparent

that the spatial distortions are strongest in sub-images around the perimeter

and minimal in the center sub-image (fisheye22). Figure 7.2 shows that these

DNT luminance values have empirical distributions that are Gaussian and very

similar in shape and scale to those drawn from undistorted, i.e., rectilinear,

image data. Knowning that the fisheye-distorted images contain statistical

regularities similar to those of undistorted images gives us confidence that the
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NSS parameters extracted from fisheye images may be used in a method similar

to that used for non-fisheye images to predict inverse-range and that our MDE

method is appropriate for such a domain.

7.2 Adapting the NSS-based MDE Method for Fisheye

Fisheye images follow a known radial distortion based on the lens model

(equisolid, in our case), so the normalized y-coordinate on its own is no longer

sufficient in capturing the vertical placement of points in the image, which is

a perceptual depth cue [102]. Therefore, we add a normalized x-coordinate

feature to provide the network with sufficient spatial information. Specifically,

the x-coordinate feature is computed using:

x =
|w/2− j|
w/2

, (7.1)

where j is the pixel index along the x-axis, and w is the width of the image in

pixels. We normalize by half the image width starting from the middle of the

image, where the spatial distortion is minimal.

As we previously did for each database, we also learn a new 64-element

dictionary from the set of fisheye images within the LIVE SV-F database to

train a MDE model specifically for fisheye images. Instead of using all seven

of the scales we used with the LIVE SV dataset, for the LIVE SV-F data, we

use only three resolutions: 720× 1280 (the original resolution), 360× 640, and

180 × 320, because we anticipate severe spatial distortions to make it more
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Figure 7.1: Top row: labeled regions for NSS analysis; Rows 2-5: Example
fisheye images (left) with their partitions (right).
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Figure 7.2: Comparison of the GGD fits to rectilinear, fisheye, and partitioned
fisheye divisively-normalized luminance histograms.
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Figure 7.3: Dictionary elements of the learned sparse inverse-range patches
computed on the LIVE SV-F Database.

difficult to train the same multi-scale model. In the DNT process (4.1), as was

used for the non-fisheye data, Cir = 0.1. Figure 7.3 shows the learned dictionary

elements, and Figure 7.4 shows examples of DNT fisheye images reconstructed

from this dictionary at two scales to demonstrate the generalizability of the

learned dictionary patches.

7.3 Training Details

The same network shown in Figure 5.3 was trained with LIVE SV-F

data, but with the additional x-coordinate feature, Fs becomes a 22-length

feature vector, and the dimensions of the inputs to the ‘code’ and two NS

blocks (listed in Table 5.2) are (983,) and (22,), respectively. Everything

else with respect to training the network remains the same: the amount of

training/validation/testing data, the two-tiered training procedure, the loss

function, the patience threshold, the method for augmenting the training data,
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Figure 7.4: Examples showing the DNT inverse-range images reconstructed
from the dictionary patches. From left to right in each row: original luminance
image; ground-truth inverse-range map; divisively normalized bandpass inverse-
range; DNT inverse-range map of resolution 360× 640 (scale 2) reconstructed
from the dictionary patches; DNT inverse-range map of resolution 180× 320
(scale 4) reconstructed from the dictionary patches.
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and so on. Please refer to Section 5.2.4 for the details.

7.4 Results

We tested the MDE fisheye model in two ways: first, following the same

testing procedure we used to test the model trained on rectilinear data, and

then on the ‘test’ images in the LIVE SV-F dataset. As introduced in [76],

these test images capture 22 new scenes within the synthetic cityscape and,

like the 20 LIVE SV images previously set aside to test the trained model, also

contain content unseen by the training pipeline. From these 22 scenes, we only

selected the 1, 848 images captured using the orthogonally-divergent camera

configuration, so as to appropriately compare results to those computed using

the stereo pipeline (Chapter 6).

In Table 7.1, we show the average and median MAE and nMAE (defined

in Section 5.3) when the model was trained on patches extracted from images

of the same resolution (scale-aware) and when the model was trained on

patches extracted from images across all three tested resolutions (scale-agnostic).

Therefore, the image resolutions listed in Table 7.1, for the scale-aware results,

correspond to the data on which the models were both trained and tested,

whereas for the scale-agnostic results, the listed resolutions correspond only to

the data on which the models were tested, because the scale-agnostic model was

trained using data across all three scales. Figure 7.5 shows the fisheye versions

of the examples shown in Figure 5.5, when scale-agnostic and scale-aware (for

scale 0: 720 × 1280; and scale 2: 360 × 640) models were run on the fisheye
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versions of the test images. As we observe, the same model with the same

architecture and training parameters can perform quite similarly at predicting

inverse-range values in fisheye images with only a single addition to the input

features.

As is the case in Tables 5.3 and 5.4, smaller numbers indicate better

performance. If we consider normalized MAE, we still observe that the scale-

agnostic (multi-scale) models perform slightly worse than the scale-aware

(single-scale) models, but again, the multi-scale results support the efficacy of

using the scale-invariant NSS to learn scale-agnostic models.

Table 7.1: Results from Multi-Scale and Single-Scale Models on the LIVE SV-F
Database

Model Image Resolution Avg MAE Median MAE Avg nMAE Median nMAE

Scale-Agnostic
720× 1280 0.4422 0.5040 0.5385 0.5818
360× 640 0.4388 0.4534 0.5591 0.5255
180× 320 0.5085 0.5230 0.5751 0.6348

Scale-Aware
720× 1280 0.4250 0.3993 0.5040 0.4763
360× 640 0.3972 0.4045 0.4801 0.4615
180× 320 0.4937 0.4552 0.5669 0.5543

7.4.1 Comparison with Stereo

We also compute the performance on the 22 ‘test’ scenes in the LIVE

SV-F database that were generated specifically to serve as a disjoint subset of

scenes containing no overlapping content with the rest of the database. As we

did in Section 6.2.2, we used 1, 848 stereo pairs, inputting the left (reference)

image of each pair into our MDE model. We also downscaled the test images

to a resolution of 180× 320, because the stereo pipeline was developed only for

this resolution. We computed performance using both inverse-range and depth
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Figure 7.5: Inverse-range prediction results on fisheye images from LIVE SV
Database.
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on the entire image as well as on the ‘overlapping FoV’ region by assuming the

wide-baseline orthogonally-divergent stereo configuration (Section 6.1). Our

stereo method was developed to predict depths on points falling within the

overlapping FoV, so the monocular and stereo results can only be compared in

this domain.

Table 7.2 shows the quantitative results when comparing inverse-range

and depth predictions when considering both entire images and overlapping

FoV regions. To compute the MDE models’ predictions of depth, we simply

took the reciprocal of the predicted inverse-range values, and to compute the

stereo pipeline’s predictions of inverse-range, we similarly took the reciprocal

of the predicted depth values. As we can see, the scale-aware (i.e., single-scale

or SS) MDE model consistently outperforms the scale-agnostic (i.e., multi-scale

or MS) model and the stereo method (in the overlapping FoV regions, where

the comparison is appropriate to make).

To clarify, the scale-aware model that was used to generate the results

in Table 7.2 was trained on patches extracted from images that were scaled

down to 180 × 320; as was the stereo model. The multi-scale model, on the

other hand, was trained on patches extracted from images across three scales,

and all of the results in Table 7.2 are based on the disjoint 180× 320-resolution

test set.

We also show visual results in Figure 7.6 on the same examples used to

demonstrate the performance of the stereo pipeline (Figure 6.8). We show the

inverse-range predictions on the entire ‘reference’ image along with the depths
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Table 7.2: Results on the LIVE SV Fisheye Test Database, Resolution 180×320

Comparison Domain Model Avg MAE Median MAE Avg nMAE Median nMAE

Inv-Range
MDE-MS 0.2782 0.2748 0.4781 0.4490
MDE-SS 0.2281 0.2156 0.4229 0.3380

Inv-Range, Overlapping FoV
MDE-MS 0.2673 0.2622 0.4388 0.4397
MDE-SS 0.2019 0.1857 0.3592 0.2900
Stereo 0.2460 0.2463 0.4233 0.4218

Depth
MDE-MS 0.5264 0.2713 0.2222 0.1922
MDE-SS 0.5588 0.2739 0.1794 0.1660

Depth, Overlapping FoV
MDE-MS 0.1985 0.1785 0.2211 0.1732
MDE-SS 0.1974 0.1746 0.1713 0.1545
Stereo 1.7090 1.6668 0.5136 0.4988

(computed as the reciprocal of the inverse-range values) on the overlapping FoV

if the reference is considered to be the left image captured in the wide-baseline

orthogonally-divergent stereo configuration described in Section 6.1. Our MDE

method produces much smoother depth maps than the stereo pipeline produces.

The low resolution in combination with the constant patch size (31× 31) yields

predicted depth maps that have very blurred edges and seem to lack fine detail,

however the depths of significant objects are still estimated quite well, and the

scenes predicted by our monocular models are much closer to the ground-truth

scenes than those predicted using our stereo pipeline, and these visual results

are supported by the quantitative results presented in Table 7.2.
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Chapter 8

Conclusion

We now briefly summarize the four main contributions we introduced

in this work:

• the LIVE SV Database;

• a bivariate NSS correlation model;

• a wide-baseline orthogonally-divergent fisheye stereo network and pipeline;

• and a perceptual MDE model.

We first introduced a new large-scale synthetic database containing

fisheye images and co-registered depth maps initially for the purpose of exploring

approaches to the surround-view (SV) feature in Advanced Driver Assistance

Systems (ADAS). The database, called the LIVE SV Database, though it

was generated with fisheye cameras, can easily be converted to a non-fisheye

database, which we have also done for this work. The scenes that were captured

are photorealistic; a wide variety of camera configurations were used; and the

database contains large amounts of data for exploring a variety of computer

vision problems. Thus, this database has substantial potential applicability,

and can be useful in developing many different computer vision models.
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We then presented a new bivariate correlation model for image luminance

coefficients in Section 4.2. The model is a simple constrained difference-of-

exponentials, and we demonstrated how well it models the empirical correlations

of the real-world images in the LIVE Color+3D Database Release 2 [102] and

of the synthetic images non-fisheye images in the LIVE SV Database [76].

We then used features extracted from this model, along with other univariate

and bivariate NSS features, in a modular patch-based deep neural network

that is trained to predict inverse-range patches from a single luminance patch.

The model architecture was inspired by the DNT processing theorized to be

performed by the HVS. We also utilized a learned dictionary to enable the

representation of DNT inverse-range patches by sparse codes, which served as

intermediary features within the predictive model. Our use of DNT inverse-

range patches (as well as DNT luminance patches) was motivated by the

low-level visual processing in the HVS, and representing inverse-range patches

in such a way significantly reduced the required complexity of our network.

We trained our network on patches extracted from images of the same

scale as well as on patches extracted from images across multiple scales to see

how well our models could generalize. We found that our scale-agnostic models

performed comparably to the scale-specific models, likely because the features

that are input to the model are based on NSS models, which are scale-invariant.

By incorporating NSS features and a DNT-based network architecture, we

presented a novel perceptually-motivated deep-learning approach for densely

estimating inverse-range maps, and we showed that it can perform well on
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complicated scenes, as well as on databases lacking a sufficient number co-

registered image/depth pairs to train deep full-image models.

In Chapter 6, we focused on the task of obtaining depth from fisheye

stereo and detailed the fisheye models, system parameters, and relevant mapping

equations in Section 6.1 before presenting our depth-prediction pipeline and

the correspondence-prediction network within it in Section 6.2. We adapted

a network that was previously developed to predict matching patches to our

problem and our unique database. We specifically had to design the matching

scores to represent match strength, and we trained our network from scratch,

providing all training details in Section 6.2.1.1. To evaluate the isolated network,

we computed classification metrics, and to evaluate its function in the entire

pipeline, we looked at normalized absolute depth error, or normalized MAE.

By comparing our network to classical similarity metrics, such as the census

similarity metric, sum of absolute differences (SAD), and sum of squared

differences (SSD), we showed that our network’s ability to predict matching

patches propagates through the pipeline to the final predicted depth map.

Finally, in Chapter 7, we adapted our MDE model to use on fisheye im-

ages by adding an x-coordinate feature and learning a new sparse dictionary for

patches drawn from DNT inverse-range fisheye images. We first demonstrated

that even though fisheye images suffer from severe spatial distortions, their

DNT luminance coefficients still follow similar NSS models as those developed

for pristine rectilinear images, thus supporting the application of our MDE

model in the fisheye domain. We compared results from the scale-agnostic,
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scale-aware, and stereo models, and showed that our NSS-based MDE mod-

els perform better than the stereo pipeline, and the scale-aware MDE model

performs better than the scale-agnostic model, though the results are close

and still support the efficacy of using scale-invariant NSS features to learn

scale-agnostic networks.
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