1,052 research outputs found

    MINIMALIST: An Environment for the Synthesis, Verification and Testability of Burst-Mode Asynchronous Machines

    Get PDF
    MINIMALIST is a new extensible environment for the synthesis and verification of burst-mode asynchronous finite-state machines. MINIMALIST embodies a complete technology-independent synthesis path, with state-of-the-art exact and heuristic asynchronous synthesis algorithms, e.g.optimal state assignment (CHASM), two-level hazard-free logic minimization (HFMIN, ESPRESSO-HF, and IMPYMIN), and synthesis-for-testability. Unlike other asynchronous synthesis packages, MINIMALIST also offers many options:literal vs. product optimization, single- vs. multi-output logic minimization, using vs. not using fed-back outputs as state variables, and exploring varied code lengths during state assignment, thus allowing the designer to explore trade-offs and select the implementation style which best suits the application. MINIMALIST benchmark results demonstrate its ability to produce implementations with an average of 34% and up to 48% less area, and an average of 11% and up to 37% better performance, than the best existing package. Our synthesis-for-testability method guarantees 100% testability under both stuck-at and robust path delay fault models,requiring little or no overhead. MINIMALIST also features both command-line and graphic user interfaces, and supports extension via well-defined interfaces for adding new tools. As such, it is easily augmented to form a complete path to technology-dependent logic

    The post office experience: designing a large asynchronous chip

    Get PDF
    Journal ArticleThe Post Office is an asynchronous, 300,000 transistor, full-custom CMOS chip designed as the communication component for the Mayfly scalable parallel processor. Performance requirements led to the development of a design style which permits the design of sequential circuits operating under a restricted form of multiple input change sign alling called burst-mode. The Post Office complexity forced us to develop a set of design fools capable of correctly synthesizing transistor circuits front state machine and equation specifications, and capable of verifying the correctness of the resultant circuity using implementation specific timing assumptions. The paper provides a case study of this design experience

    Criteria for the Design of "fast," "safe" Asynchronous Sequential Fluidic Circuits

    Get PDF
    Engineerin

    Automated synthesis of delay-insensitive circuits

    Get PDF

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Energy-Efficient Digital Circuit Design using Threshold Logic Gates

    Get PDF
    abstract: Improving energy efficiency has always been the prime objective of the custom and automated digital circuit design techniques. As a result, a multitude of methods to reduce power without sacrificing performance have been proposed. However, as the field of design automation has matured over the last few decades, there have been no new automated design techniques, that can provide considerable improvements in circuit power, leakage and area. Although emerging nano-devices are expected to replace the existing MOSFET devices, they are far from being as mature as semiconductor devices and their full potential and promises are many years away from being practical. The research described in this dissertation consists of four main parts. First is a new circuit architecture of a differential threshold logic flipflop called PNAND. The PNAND gate is an edge-triggered multi-input sequential cell whose next state function is a threshold function of its inputs. Second a new approach, called hybridization, that replaces flipflops and parts of their logic cones with PNAND cells is described. The resulting \hybrid circuit, which consists of conventional logic cells and PNANDs, is shown to have significantly less power consumption, smaller area, less standby power and less power variation. Third, a new architecture of a field programmable array, called field programmable threshold logic array (FPTLA), in which the standard lookup table (LUT) is replaced by a PNAND is described. The FPTLA is shown to have as much as 50% lower energy-delay product compared to conventional FPGA using well known FPGA modeling tool called VPR. Fourth, a novel clock skewing technique that makes use of the completion detection feature of the differential mode flipflops is described. This clock skewing method improves the area and power of the ASIC circuits by increasing slack on timing paths. An additional advantage of this method is the elimination of hold time violation on given short paths. Several circuit design methodologies such as retiming and asynchronous circuit design can use the proposed threshold logic gate effectively. Therefore, the use of threshold logic flipflops in conventional design methodologies opens new avenues of research towards more energy-efficient circuits.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Static Analysis of Circuits for Security

    Get PDF
    The purpose of the present work is to define a methodology to analyze a system description given in VHDL code and test its security properties. In particular the analysis is aimed at ensuring that a malicious user cannot make a circuit output the secret data it contains
    corecore