
Automated Synthesis of

Delay-Insensitive Circuits

Roger Anthony Sayle

Doctor of Philosophy

Department of Computer Science

University of Edinburgh

1996

Abstract

The technological trend towards VLSI circuits built from increasing numbers of

transistors continues to challenge the ingenuity of both designers and engineers.

The use of asynchronous design techniques presents a method for taming the com-

plexity of large concurrent VLSI system design and offers a number of attractive

advantages over conventional design styles. In this thesis, we concentrate on the

useful class of delay insensitive asynchronous circuits. These have the property

that their correct operation is independent of the speed of the individual elements

and the delays in the connecting wires.

Traditionally, asynchronous circuits are considered much harder to design than

their synchronous equivalents due to their inherent nondeterminism. The use of

automated formal methods for generating such circuits shields the designer from

this complexity. This allows the designer to abstract away from implementation

issues and reason about the system behaviour in terms of concurrent processes or

high level programs. Because each step of the compilation process can be shown

to be sound, the resulting circuits are correct-by-construction.

This thesis presents a compilation methodology for designing delay insensitive

VLSI systems from behavioural specifications. The synthesis method makes use

of a graph-based representation of the circuit's behaviour. Optimization of the

global behaviour, by graph transformation, enables the generation of more efficient

circuits than those produced by previous asynchronous circuit compilers based

on syntax-directed translation. The resulting circuits are further improved by

semantics-preserving circuit transformations. A compiler has been constructed

that automatically performs the translation and transformation.

Acknowledgements

Although this page is considered unimportant and is often skipped by the reader,

to the author it is perhaps the most important page of all. The work in this thesis

would not have taken its final form without the help and friendship of the people

mentioned below.

Foremost I would like to thank my thesis supervisor Mike Fourman, for his

guidance and for the exceptional creative freedom I have been allowed. I would

also like to thank Jo Ebergen, Mark Josephs and Jan Tijmen Udding for many

constructive conversations. But most of all I would like to thank my examiners,

Julian Bradfield and Graham Birtwistle for their many recommendations that have

resulted in a much improved thesis.

Thanks also go to Delia Johnson for her continual support and encouragement.

This work has been financially supported by funding from the Science and

Engineering Research Council.

111

Table of Contents

Abstract 	 1

Declaration 	 11

Acknowledgements 	 111

Introduction 1

1.1 	Thesis Overview1

1.2 	Asynchronous Circuits 3

1.3 	Motivation 5

1.4 	Background and Related Work8

1.4.1 	Bounded Delay Model 8

1.4.2 	Unbounded Gate-Delay Model10

1.4.3 	Unbounded Wire-Delay Model13

1.4.4 	Module Based Synthesis 16

Behavioural Specification 	 20

	

2.1 	Abstract Circuit Model20

2.1.1 	Labelled Transition Systems20

2.1.2 	Operational Behaviour22

	

2.2 	Circuit Specification 24

2.2.1 	Process Algebra24

IV

2.2.2 	Trace Theory . 	26

2.2.3 	Petri 	Nets 28

2.3 Circuit Composition 30

2.4 Implementation Relation 34

2.5 Delay Insensitivity 37

2.6 Interface Partitioning 44

2.7 Compiler Representation 48

3. Basic Components 51

3.1 Handshaking 51

3.2 Primitive Components 52

3.2.1 	Merge 53

3.2.2 	Muller C-element 53

3.2.3 	Keller Select 54

3.2.4 	Decision-wait elements 55

3.2.5 	RGDA Arbiter 57

3.3 Standard Components 58

3.3.1 	IWire 58

3.3.2 	Toggle 59

3.3.3 	Call Element 	60

3.3.4 	Conventional Logic Gates 61

3.3.5 	Choice Element 62

3.4 Generalized Components 63

3.4.1 	N-Input C-Elements 63

3.4.2 	N-Input Merges 64

3.4.3 	Generalized Call Components 65

3.4.4 	Generalized Select Element66

3.4.5 	Nxl Decision Wait Elements 67

v

3.4.6 	NxM Decision Wait Elements . 	67

3.4.7 	N-TOGGLE Circuits70

3.5 Arbitration Protocols 75

3.5.1 	Mutual Exclusion Element 75

3.5.2 	RGD 	Arbiter 76

3.5.3 	k-SEQ Component 77

3.6 Initial Conditions 79

3.7 Asynchronous VLSI Circuits 80

3.8 Transistor-level Implementation 82

Stable State Synthesis Methodology 84

4.1 Stable State Theory 84

4.1.1 	Stable States85

4.1.2 	Stable State Graphs87

4.1.3 	Unstable Initial States 89

4.1.4 	Terminal States 90

4.2 Properties of Stable State Graphs 93

4.3 Signal Instance Graphs 95

4.4 Generic Implementation Strategy 97

4.5 Improved Generic Solution 100

4.5.1 	Decision Wait Improvements100

4.5.2 	SEQ element Improvements 102

4.6 Proposed Synthesis Methodology 103

4.6.1 	Implementation Model 103

4.6.2 	The Committee Problem 106

Circuit Synthesis 	 109

5.1 	Sequential Circuit Synthesis109

vi

5.1.1 Stateless Sequential Circuits 110

5.1.2 State-Holding Sequential Circuits 113

5.2 	Non-Concurrent Circuits 120

5.2.1 Non-Concurrent Routing Synthesis 121

5.2.2 Disjoint Transitions 129

5.2.3 Distinct Transitions 130

5.2.4 Partitioned Transitions 134

5.2.5 Synchronization Decomposition 	137

5.3 	Concurrent Circuits 139

5.3.1 Static Non-determinism140

5.3.2 Premature Concurrency 141

5.3.3 Classical Concurrency 142

5.3.4 Simple Concurrency 144

5.3.5 Synchronization Rollback146

5.3.6 General Arbitration 147

6. Advanced Synthesis 152

6.1 	Circuit Level Optimization 152

6.1.1 Component Generalization 153

6.1.2 Circuit Identities 154

6.1.3 Common Subexpression Elimination155

6.1.4 Technology Mapping 156

6.1.5 Row/Column Elimination 157

6.1.6 Row/Column Compression158

6.1.7 Decision Wait Splitting 160

6.1.8 Serial-Parallel Tradeoffs 161

6.1.9 Standard Logic Gates162

6.1.10 N-Toggle Optimization163

vii

6.1.11 CSG Optimization . 165

6.1.12 Constant Time Counters & CSGs 169

6.2 	Behavioural Transformation 170

6.2.1 Input 	Clustering 170

6.2.2 State Collapsing 171

6.2.3 State Combining 173

6.2.4 Initial State Combining 175

Case Studies 	 176

	

7.1 	Stack Element176

	

7.2 	Modulo-N Counters178

	

7.3 	One Place Buffer183

Conclusions 185

8.1 	Summary 185

8.2 	Evaluation 187

8.3 	Future Work 189

Glossary 	 191

References 	 193

viii

Chapter 1

Introduction

The complexity of VLSI circuits makes it difficult for designers to ensure their cor-

rect operation. This problem is aggravated by the continual reduction of transistor

size and growth of circuit size. The use of asynchronous circuits offers a possible

solution to the first issue and the use of automated formal methods as a solution

to the second. Automated asynchronous circuit synthesis can reduce both the time

and expense of producing correct and reliable circuits. In this thesis, we present

such a design method for a useful class of asynchronous circuits.

1.1 Thesis Overview

This thesis is organized such that the reader who is not interested in the details

of the theorems can skip them and still understand the important points. Each

chapter includes a set of examples to illustrate the concepts described in that

chapter. A glossary containing definitions of the more commonly used technical

terms is presented at the end of the thesis. The rest of this first chapter describes

what are asynchronous circuits, and particularly delay insensitive circuits are. This

is followed by a section motivating their use and finally by a review of previous

work on asynchronous circuit design.

Chapter 2 begins by introducing an abstract model of asynchronous circuit.

This model describes the observable operational model of an asynchronous cir-

cuit in terms of labelled transition systems (LTSs). This model is then related to

other formalisms for describing asynchronous circuit behaviour, including process

algebra, trace theory and Petri nets. An improved implementation (or satisfaction)

1

Chapter]. Introduction 	 2

relation is then defined on these transition systems that holds between a specific-

ation and a valid implementation of that specification. Automated techniques are

then discussed for translating specifications into LTSs, checking (and correcting)

their delay insensitivity and finally converting it into a minimized normal form.

Chapter 3 describes the basic target components used by the synthesis method.

The chapter starts by introducing a number of 'primitives' that form a component

basis for the synthesis method. Using these primitives, more useful components

(commonly used by other researchers) are defined. The chapter goes on to define

larger parameterizable 'macro' components that are used by the circuit compil-

ation method. The correctness requirements for transistor level implementations

of these components are then discussed. The constraints insure that composition

of the physical transistor level implementations obey the abstract model. The

chapter ends with a section on initialization conditions and implementation issues

for transistor (or gate) level implementation of DI modules.

Chapter 4 presents an introduction and overview of the automated delay in-

sensitive circuit synthesis methodology. This chapter introduces the 'stable state'

model of delay insensitive circuit behaviour. This model then provides the formal

basis of an useful abstraction of delay insensitive transition systems, called stable

state graphs (SSGs). This representation takes advantage of the properties of

delay insensitive behaviours to reduce the complexity of representing circuit be-

haviour, and acts as an underlying formalism for the circuit synthesis method. A

classification of stable states and several other properties of SSGs are then defined

that are used during circuit synthesis. Next, an improved generic implementation

strategy is described that forms the basis for the proposed compilation method.

Finally, the chapter ends with a short overview of the steps involved in the pro-

posed compilation (decomposition) method and the target implementation model

for this approach.

Chapter 5 contains the detailed description of the proposed synthesis method-

ology. The chapter is arranged sequentially, presenting decomposition strategies

for larger and larger classes of circuit behaviours. This organization allows the

exposition of simple concepts and examples first, before proceeding to more com-

plex cases and problems. Chapter 6 describes a number of improvements to the

synthesis method given in the previous section. These optimizations and trans-

formations are discussed separately from the main method for clarity. The various

improvements presented in this chapter are divided into two groups; circuit trans-

Chapter 1. Introduction 	 3

formations and behavioural transformations. Circuit transformations are 'peep-

hole' optimizations that may be applied to the generated circuit to improve the

resultant design. Behavioural transformations are semantics preserving transform-

ations that modify the circuit specification as a preprocessing step (or first pass)

to the automated compilation method.

Chapter 7 describes the application of the proposed circuit synthesis method

to several example circuit specifications. The case studies have been defined by

other researchers, and provide a set of common benchmarks in the field of delay

insensitive circuit design. Finally, Chapter 8 contains a summary of the thesis.

It reviews the main achievements of this research, and proposes some suggestions

for future work in this area. This chapter also compares the developed delay

insensitive circuit synthesis methodology to the results of similar related work by

other researchers.

1.2 Asynchronous Circuits

In classical logic design, digital circuits are classified as being either combinational

or sequential, distinguished by the existence of feedback signals within the circuit.

Combinational circuits are those without feedback and are therefore stateless. Each

of the circuit's outputs is a (delayed) boolean function of the circuit's inputs. To

do more complex computations, state holding sequential circuits must be used.

Timing is a central problem in such circuits, especially those using feedback sig-

nals, as the design must ensure that a computation does not begin until earlier

computations have been completed.

In conventional synchronous design, storage elements are used to decouple the

feedback signals and break the circuit into combinational logic separated by latches.

These latches capture their inputs on the tick of a global synchronization 'clock'

signal. The correct operation of the circuit is ensured by spacing the clock ticks

by more than the delay of each combinational block. Synchronous design typically

also assumes that the inputs to the circuit change on or shortly after each clock

tick, and then remain constant until the next tick.

The alternative to this almost universal approach is to use unclocked asynchron-

ous design styles. Asynchronous circuits are divided into those that avoid timing

problems by carefully co-ordinating the various delays in the circuit and self-timed

Chapter 1. Introduction 	 4

circuits that use synchronization signals between circuits. A classification of these
various timing paradigms is given in figure 1-1.

Synchronous 	Asynchronous

Timing Constraints 	Self-timed

Data Bundling 	Speed Independent

Delay-Insensitive

Figure 1-1: Classification of circuit timing paradigms.

The most common form of timing constraint used in asynchronous design is

the data bundle. A 'bundle' of data wires, or bus, is associated with a single

set of control wires that show the validity of the value on the data bundle. The

bundling constraint requires that the data value be observed at the receiver before

a signal appears on a control wire. This may be achieved by constructing delays

in the control wires. Bundling allows data values to be transmitted over buses

without the wiring and circuitry overhead of using complex encoding techniques.

Bundled data paths are commonly used with self-timed control circuitry. These

circuits can make use of standard combinational logic components, such as adders

and multipliers. Other forms of timing constraint used in asynchronous design

include assumptions about the upper and lower bounds on component delays and

assumptions about the maximum ratios of these bounds.

Interest in self-timed circuits has been centered on speed independent circuits,

those that do not depend on the delays of the individual components within the

circuit. Speed independent circuits form pure concurrent systems and are therefore

particularly amenable to mathematical methods. These circuits consist of a fixed

set of processes (modules) communicating over a fixed set of unbuffered channels

(wires). All synchronization between modules is by explicit handshaking protocols

over these channels. The complexity caused by the nondeterministic behaviour of

such concurrent systems is the principal reason for the popularity of synchronous

design styles.

In this thesis we concentrate on delay insensitive circuits, a subclass of speed

independent circuits. A digital circuit is delay insensitive if its correct operation is

Chapter 1. Introduction 	 5

independent of the delays in both the individual components and the interconnect-

ing wires of the circuit, except that those delays be finite. This tolerance to wire

propagation delays eliminates several of the technical problems currently facing

circuit designers.

Digital circuits cannot always be classified as either totally synchronous or

asynchronous. A large system is often designed at several different levels of ab-

straction. At each level, the use of a different timing paradigm may be appropriate.

For example, a single global clock signal is better suited to gate level abstractions

than to large computing systems, whereas delay insensitive techniques are inap-

plicable to transistor level circuit abstractions. An example of a multi-paradigm

design style is the use of several independent clocks within a single design, called

self-clocked design. Conventional synchronous methods are used within each clock

domain, and these domains communicate between one another asynchronously.

Similarly, an asynchronous circuit may be used within a conventional synchron-

ous (clocked) design by either estimating or measuring the upper bound on the

computation delay.

1.3 Motivation

As the technological trend to scale down the feature size of transistors and increase

the size of each chip continues, conventional synchronous circuit design encounters

several serious, fundamental limitations. Some of these problems relate to the

difficulty in synchronization and transfer of information between sub circuits within

a single clock period, while others are caused by the complexity of managing large

designs [84].

Seitz [106] argues that as the physical size of the circuit is reduced, the para-

meters determining its behaviour do not scale uniformly. The relationship between

wire delay and switching delay changes such that the delays in the connecting wires

increasingly dominate the transistor switching times. As the cost of communica-

tionsbecomes ever more important, a change of design discipline is required. The

serious problem of clock skew which is facing current designers is caused by the

difficulty of distributing global clock signals. Transmission delays cause clock ticks

that are supposed to be simultaneous, to occur at significantly different times.

Chapter 1. Introduction 	 6

The ability to isolate and abstract the implementation timing from the logical

design of a circuit is a useful property of a hardware design method. It allows

both the behaviour and the correctness of a design to be reasoned about, without

reference to the physical properties of a specific implementation. Delay insensit-

ive circuits allow this separation between design and engineering issues and are

therefore attractive for analysis by formal methods and particularly automated

synthesis.

Delay insensitive circuits also have several advantages over conventional syn-

chronous design that are attractive to engineers and designers.

Performance Asynchronous circuits are potentially faster than their equivalent

clocked designs. A synchronous system is composed of several parts that carry out

specific computations. The correct behaviour of the system requires the clock rate

to be slowed to the speed of the slowest subcomputation. This clock period must

also take into account the worst case execution time and propagation delays under

worst case operating conditions. In, comparison, Self-timed circuits operate at a

rate determined locally by component and wire delays, and this tends to reflect

average case rather than worst case delay for the circuit.

Power Consumption Asynchronous circuits typically have a much lower power

consumption for two principal reasons. Firstly, no power is dissipated by driving

a global clock signal at high frequencies. Secondly, transistors in an asynchronous

circuit only fire when they contribute to a computation. A related engineering

benefit is that power dissipation is distributed over time rather than concentrated at

rising and falling clock edges. This property leads to a reduction in electromagnetic

interference.

Modularity Self-timed circuits have useful composition properties that simplify

the process of system design. Large complex systems can be split into independent

modules without interface timing constraints. Self-timing also allows efficient cir-

cuits to be collected to form libraries and re-used within designs. This modularity

also allows any component within a design to be replaced safely by a functionally

equivalent one, with improved properties such as performance or cost, without

compromising the circuit's correct behaviour.

Chapter 1. Introduction 	 7

Robustness Delay insensitive circuit behaviour is less sensitive to variations

in the environment. Physical factors such as temperature, process spread and

power supply variations tend to affect the relative delays in the circuit rather than

its logical correctness. Reducing the temperature of a delay insensitive circuit

increases the observable speed of the circuit. Asynchronous circuits also suffer

less from other effects, such as switching noise. Tolerance of these parameters is

typically difficult to assess before fabrication and to detect during testing.

Implementation The low level physical design of delay insensitive circuits is

also much simplified. Routing constraints on the physical layout of the circuit

and geometry of the circuit are relaxed. Transistor sizing and placement optim-

ization can be performed, provided the functionality of the primitive components

is maintained. Reimplementation of the design at a different feature size or in a

different fabrication process requires only redesign of the primitive components.

This allows designs to be reused and to take advantage of improvements in imple-

mentation technology with minimum effort.

Metastability Another benefit is the reliability of circuits containing compon-

ents with metastable behaviour. Metastability is an unstable equilibrium in the

state of an electrical circuit. A metastable circuit can remain in a metastable equi-

librium for an indefinite period of time before resolving into a stable state. This

can cause functional errors in synchronous circuits when the duration of the meta-

stability lasts longer than a single clock period. This 'glitch' phenomenon, first

discovered by Chaney and Molnar [25], is fundamental to arbiter and synchronizer

circuits. Indeed, Mendler and Stroup [85] show that any such device built on New-

tonian principles (that voltage changes are continuous) will behave incorrectly with

the appropriate inputs. Self-timed circuits avoid this problem as the circuit waits

until the element has settled into a stable state before the computation proceeds.

Testability Delay insensitive circuits are completely self-checking for single and

multiple stuck-at-faults. The occurrence of a break in any of the circuit's wires will

eventually halt the operation of the circuit. This property means that deterministic

delay insensitive circuits are fully testable for stuck-at-faults. Any test computation

that fails to complete within a maximum permitted time limit indicates a fault

within the circuit. It is also possible to build fault tolerant systems by using a

Chapter 1. Introduction 	 8

'watchdog' time-out signal, where the absence of a result from a subcircuit within

a time limit causes the system to detect that the sub circuit is malfunctioning.

1.4 Background and Related Work

Previous work on asynchronous circuit design methodologies can be categorized by

the 'delay-model' used in the circuit abstraction. The organization is chronological

from the date of the model's introduction. The first work on asynchronous circuit

design assumed an upper limit on the delays in both the components and the

wires of the circuit. This was followed by speed independent circuit design, using

the assumption that component delays were unbounded and that wire delays are

negligible. This is equivalent to stating that all wire delays are concentrated at the

outputs of the components. The most recent delay model is that used for delay

insensitive circuit design, which allows unbounded delays in both components and

wires. As with most classifications, some works may be placed in more than a

single class or group.

Similar reviews of the field of asynchronous circuit design have been published

by several authors [4,50,51].

1.4.1 Bounded Delay Model

Asynchronous State Machines

Early work on asynchronous circuit design concentrated on the design of asyn-

chronous state machines, referred to as Huffman circuits [56,57]. These state

machines are implemented as combinational logic with delayed feedback Signals

to maintain the current state. The circuit is assumed to operate in fundamental

mode [83] where the interval between successive input changes is long enough for

the circuit to complete its transition to the next stable state.

The principal difficulty in asynchronous state machine synthesis is the state

assignment problem. For a synchronous finite state machine (FSM), [1092] state

variables are both necessary and sufficient for representing n states. As long as

each state code is unique, the assignment of codes to states may be made arbitrarily

without affecting the correct operation of the FSM. However, this is not the case

Chapter]. Introduction 	 9

for asynchronous state machines where a 'critical-race-free' state assignment is

required, which may need more than 11092n] variables. A race is said to occur

when two or more state variables change during a state transition. This race is

termed critical if the final state reached depends on the ordering of the changes.

Algorithms for these critical-race-free state assignments have been suggested

by several authors [43,73,111] and techniques permitting non-fundamental mode

operation have also been suggested [116]. Detailed reviews of early asynchronous

state machine synthesis may be found in the text books by Unger [115] and Fried-

man and Menon [44]. Enhancements to the asynchronous state machine model

have been developed by Hayes [52], Hollaar [55] and Molnar [91]. More recently,

asynchronous state machine synthesis based on burst mode operation has been sug-

gested [31]. This alternative to fundamental mode operation allows construction of

fast and efficient control circuits. The principal disadvantage of the state machine

model is that their behaviour is strictly sequential and concurrent operation cannot

be described.

Self-clocked Design

Seitz, in his chapter 'System Timing' in Mead and Conway's text book [106],

proposes self-clocked design as one approach to asynchronous circuit design. Small

self-timed elements are designed as synchronous systems with internal clocks, in

equipotential regions inside which wire delays are considered negligible. The design

may be made free of synchronization failure by using 'universal clocks' that may be

stopped and restarted asynchronously. This retains the advantages of synchronous

design under those conditions in which it is workable. Rosenberger [101] describes

a similar design style called Q-Modules, where local clock ticks are suspended until

all storage elements have settled into the next state.

Micropipelines

In his 1988 Turing Award Lecture, Sutherland [110] described another asynchron-

ous design style based on the bounded gate-delay model. This style, termed mi-

cropipelines, uses fine grain pipelines where each stage communicates asynchron-

ously with its neighbours. In addition to a single completion signal, these stages

have another signal to acknowledge the receipt of the start request and permit

another request to be sent. In conventional self-timed design, acknowledgement

Chapter 1. Introduction 	 10

takes place only after the processing has been completed. The micropipelined

paradigm can achieve high speed throughput by overlapping operations, with dif-

ferent stages operating concurrently. Sutherland's approach traditionally uses a

four phase bundled datapath with two phase handshaking. Furber and his col-

leagues at the University of Manchester have used this approach to implement a

self-timed RISC processor [45,47].

1.4.2 Unbounded Gate-Delay Model

Speed Independence

Although most early interest was in this state machine model of asynchronous

circuits, the roots of the theory of self-timed circuits go back as far as the early

1950s. Muller and his colleagues at the University of Illinois developed a funda-

mental algebraic theory of circuits whose observable behaviour does not depend on

the relative speeds of their elements [92]. It was in this seminal paper that the term

speed independent circuit was first coined. However the relevance of this work, and

a similar later paper by Armstrong, Friedman and Menon [2], was not recognized

until much later. It was in this second publication that the self-checking properties

of self-timed circuits were first mentioned.

Independent research in the Soviet Union during the 1950s and 1960s tackled

the problem of the variable delays in standard SSI and MSI IC packages. The best

case gate delays of identical commercially available circuits were four or five times

better then their worst case delay. A theory of speed independent circuits, termed

aperiodic circuits in translation, was developed by Varshavsky and Rosenblum [126]

based on earlier work on asynchronous circuits by Gavrilov [48]. Varshavsky et

al. [125] showed that any four-phase asynchronous state machine can be imple-

mented speed independently from AND-OR-NOT components. Originally, imple-

mentations required these 'antitone' components of arbitrary complexity. However

subsequent work describes implementations in a finite basis of primitive compon-

ents [124]. Synthesis from event-based specifications, rather than state transition

diagrams, was first suggested by Starodubtsev [107]. His doctoral thesis [108] con-

tains efficient synthesis and analysis methods for arbitrary autonomous circuits

described by taxograms, where events are labelled by signal transitions.

Chapter 1. Introduction 	 11

Petri Net Modules

A module based approach to the implementation of speed independent circuits was

investigated during the 1970s by Dennis' group of project MAC at the Massachu-

setts Institute of Technology [32]. They used Petri nets to model the behaviour of

speed independent circuits. The Petri net is a widely used model of concurrent

systems developed by Carl Petri. A Petri net is a bipartite directed graph with

two types of nodes: places and transitions. Places within the net are capable of

containing some number of 'tokens' or 'markers', such that a condition (place) is

said to hold or be true if a token is present in it. Places are connected by directed

arcs, via transitions, along which tokens may pass. The movement of tokens along

the arcs is controlled by the occurrence of a 'firing' of a transition, known as an

event. A transition may only fire when there is a token in each input state, when

a single token is removed from each of its input states and placed in each of its

output states.

Patil [96] proposed implementing speed independent circuits that resembled the

Petri net itself. The Petri net was structurally realized by modules that performed

the roles of the places, transitions and arcs of the Petri net. The main drawback

with this approach is that it resulted in very large implementations for relatively

simple circuit behaviours. Misunas [90] improved upon this idea by using mod-

ules of common Petri net functions. These basic functions are then composed

to implement the behaviour of the specification Petri net. Using this relatively

simple approach Misunas was able to design a speed independent processor based

on the design of a CDC 6600. More recently, Lister and Alhelwani have proposed

a similar method for implementing speed independent circuits from data-flow Petri

nets [72].

Signal Transition Graphs

The signal transition graph (STG), originally called a 'signal graph', was first in-

troduced as a formal model of asynchronous circuit behaviour by Rosenblum and

Yakovlev [102,103,128]. Similar work on STGs has been independently introduced

by Chu [26] and Molnar et al. [91] under the name 'I-Nets'. An STG is an 'inter-

preted Petri net' where the transitions are interpreted as signal transitions. STGs

formally model the causal relationships between the circuit and the environment

in which it operates.

Chapter 1. Introduction 	 12

The synthesis of asynchronous circuits from STGs involves finding both a state

assignment and a hazard-free implementation of the circuit using the appropriate

delay-model. The problem of state assignment, assigning a binary coding to each

state, is similar to that in asynchronous state machines. An STG has a unique state

coding (USC) property if the binary code assigned to each state is distinct from

the codes assigned to every other state. An STG has the weaker complete state
coding (CSC) property, if any two markings that enable different sets of output

signals have distinct state codes. A CSC state assignment often permits a more

efficient implementation that a USC state coding, as distinct states may have the

same coding allowing states to be represented by shorter binary codes. Different

synthesis techniques require the STG to satisfy either the USC or CSC property.

Algorithms for modifying the STG by adding state variables to obtain both the

above properties have been given by several authors [71,86,123,129]. The chosen

state assignment must also have a boolean implementation that is free from both

critical races and hazards. A hazard in an asynchronous circuit is an unexpected

'glitch' of a signal value that is a transition that is not allowed by the specification.

Hazards are typically caused either by the delays in the circuit's feedback signals or

the differences in the gate delays of the circuit. The use of STGs with bounded-wire

delay models has been investigated by Lavagno et al. [68,69].

CalTech Design Method

Alain Martin [76,78,80] has developed a design method for speed independent

circuits that produces very efficient implementations. His method is based on a

sequence of transformations from a specification of communicating processes to

a transistor level implementation. The final implementations contain isochronic

forks but are independent of transistor switching delays. A fork or branch of a

wire is considered isochronic if the difference in propagation delays between the

two branches is negligible. This assumes all wire delays are concentrated at gate

outputs, and hence circuits are speed independent but not delay insensitive.

Martin specifies the desired behaviour of the circuit using a language based

on Hoare's CSP [53] and Dijkstra's guarded command language [33], called Com-

municating Hardware Processes (CHP). In addition, CHP contains assignments,

arrays, functions, procedures and a 'probe' construct that allows a process to de-

termine if there are any incoming communications pending [75]. The synthesis

Chapter 1. Introduction 	 13

method begins by decomposing the processes into small, sequential processes with

explicit handshaking between them. All communication is assumed to be four-

phase using dual-rail encoding. After a state assignment similar to those described

above, each process is translated into a set of production rules, which form a com-

pact representation for CMOS transistor networks. Production rules are selected

that ensure the correct sequential behaviour of the circuit and minimize the num-

ber of state holding operators required. Burns and Martin have also developed

an algorithm for automatic transistor sizing for the generated circuits [22]. This

technique has been used on a number of complex designs including a fast asyn-

chronous microprocessor [77]. Methods based upon production rules have also

been investigated by several other authors [109,117].

1.4.3 Unbounded Wire-Delay Model

Macromodules

The first attempt to construct circuits that were independent of wiring delays was

made by the Macromodules project at Washington University around 1970 [27].

It was this research that first coined the term 'delay insensitive circuit'. The aims

of the project were to investigate computer architecture using modular building

blocks that performed specific operations. Physical implementation issues deman-

ded that regular interfaces be used to plug modules together and their operation

be independent of wiring delays between the racks that held the modules. Around

16 types of module were implemented including modules for ALUs, registers, ad-

ders and ferrite core memory. Communication between modules used transition

signalling for the control paths and bundled data paths. This design approach led

to ease of reconfiguration and no natural limit to the size of the design.

Following the work of the Macromodules project, Keller [64] attempted to de-

termine a minimum set of primitive delay insensitive modules that were 'universal'

to the class of speed independent or delay insensitive circuits. That is, all such

circuits can be implemented entirely from a restricted set of basic elements. This

is similar to the property that any synchronous design may be implemented us-

ing just NAND or NOR gates. Keller showed that only three components (the

merge, the select and the arbitrating test and set) are required for all four-phase

speed independent circuits. However, no attempt was made to formalize either the

composition semantics or the class of circuits covered by the method.

Chapter 1. Introduction 	 14

Recent results by Seger [105], Brzozowski and Ebergen [16,17], Martin [79] and

Leung and Li [70] have shown that the class of purely delay insensitive circuits is

extremely restricted. This proof, called the Unique Successor Set (USS) property,

states that circuits of components with only single outputs are either sensitive to

wire delays or perform trivial computations. This result requires primitive com-

ponent bases for general delay insensitive circuits to contain elements with multiple

outputs. Implementations of these elements using transistors (or conventional logic

gates) must make use of timing constraints, such as isochronic forks.

Trace Theory and Process Algebra

The first formal model of delay insensitive circuits was developed at the Tech-

nical University of Eindhoven [99,121]. Trace theory, first proposed by Hoare [54],

represents the behaviour of an asynchronous circuit as the sequence of voltage

transitions at its interface. Directed trace structures classify each observable wire

as either an input or an output, and specify all permissible orderings of events on

these wires. These orderings, or traces, specify the correct operation of a circuit

and also constrain the circuit's environment. A circuit is delay insensitive if its

wires are free from computation interference and transmission interference. Com-

putation interference occurs when a signal arrives before a receiver is ready for it

and transmission interference occurs when two signals on the same wire interfere.

Snepscheut [122] defines a composition operator for directed trace structures,

called agglutination, that places an explicit delay in wires connecting outputs to

inputs. Because this operator allows an unbounded number of messages per wire,

explicit handshaking signals must be added to avoid transmission interference.

Sriepscheut implements trace structures as a network of communicating asynchron-

ous state machines whose interconnections are independent of wiring delays. Each

state machine is constructed from a programmable logic array (PLA), flip-flops and

c-elements and is assumed small enough to be embedded in an isochronic region.

Udding [112,113] presented a formal definition of the delay insensitivity of a

component as a set of constraints on the component's trace structure. These

rules also lead to system of classification of delay insensitive circuits. Udding

also states necessary conditions for a composition of trace structures to be free

from computation and transmission interference and proves that the class of delay

insensitive circuits is closed under composition.

Chapter]. Introduction 	 15

In his doctoral thesis Ebergen [36,38] presents an alternative formalization of

delay insensitivity which he proves equivalent to Udding's rules. Ebergen also

introduces a more general (de)composition operator for delay insensitive networks

that reflects the permissible behaviour of the circuit's environment. Using this

definition, an automatic method for synthesis for delay insensitive circuits is presen-

ted for a restricted class of circuit specifications. This syntax directed approach

produces a delay insensitive network of primitive components from a predefined

(but infinite) basis.

Dill [34] suggests the use of trace theory for the automatic hierarchical verific-

ation of speed independent circuits. His LISP model checker uses a state based

approach to verify 'safety' properties, such as the delay insensitivity of a circuit.

He also defines an implementation equivalence between two trace structures that

holds when one may be safely replaced by the other.

The prefix-closed trace structures described fail to capture properties such

as the 'liveness' and 'fairness' of a circuit [46]. Black [8] extends trace theory to

include infinite traces which may be used to describe the behaviour of fair arbiters.

A similar approach using non-prefix-closed sets of finite and infinite traces, termed

complete trace structures, has been described by Dill to cover both liveness and

fairness [34].

An alternative to the use of trace theory is to describe the behaviour of an

asynchronous circuit as a set of communicating sequential processes using a process

algebra such as CSP [53] or CCS [89]. This model of computation considers a

static set of concurrent processes that interact via input and output commands

on shared communication channels. Josephs and Udding [58,59] have developed

a delay insensitive process algebra, based on CSP, that expresses the properties

of delay insensitive circuits. The formalism contains algebraic laws for modelling

interference that can be shown equivalent to Udding's original rules. The laws of

the DI algebra allow expressions to be transformed into a normal form [49] and

semantically equivalent forms. This system of manual transformations provides

a basis for algebraically specifying and verifying component behaviours but is

unsuitable for an automatic synthesis methodology.

Chapter 1. Introduction 	 16

1.4.4 Module Based Synthesis

Several systems have been developed to automate the synthesis of delay insensitive

circuits from behavioural specifications. These circuit compilers translate a process

based description of the desired behaviour into a network of primitive elements.

A process based specification is either the composition of simpler processes or a

primitive process. Typically a source language will contain constructs for sequen-

tial, parallel and conditional composition, alternation and repetition. All of the

compilers described below use syntax directed translation techniques [1], where

each syntactic construct of the source language generates a fixed set of compon-

ents and wires. Using this method, an implementation is given for each of the

primitive processes of the language and a circuit composition rule is given for each

construct of the specification language. For a compound specification of a process

and valid implementations of its subprocesses, these rules should generate a valid

implementation of the whole construct.

A restrictive communications protocol is imposed on each process to ensure

the semantics of circuit composition is equivalent that of the specification lan-

guage. Typically each process is viewed as a module that begins execution upon

the receipt of a request signal and indicates completion by an acknowledge sig-

nal. These processes may then be connected/ composed to create larger circuits

with similar request and acknowledge signals. Synchronization and communica-

tion between concurrent processes is by implicit handshaking circuitry. In this

way, the source specification may be used to describe the hierarchical structure of

the implementation. This simplistic translation may produce relatively large and

inefficient circuits.

Burns

The first automated asynchronous circuit compiler was developed by Burns and

Martin [21]. This program automated the CalTech design methodology described

earlier. The translation is from a variant of CSP that includes the probe con-

struct [75]. The addition of the probe allows CSP to specify 'fair' arbiters. Several

possible rules are given for each construct allowing trade-offs between cost and

performance. For example the guards of the ALT construct may be tested either

sequentially or concurrently (possibly using arbiters to ensure mutual exclusion).

The compiler also performs a significant amount of optimization at both the source

and circuit level. Source level optimizations involve testing invariants that guide

Chapter 1. Introduction 	 17

the selection of transformation rules. Circuit level, or peep-hole, optimizations re-

move locally redundant components from the final circuit. The resulting circuits

use four phase handshaking and consist of six basic components. These are the

standard logic gates, AND, OR and NOT, and three state holding components; the

Muller c-element, the synchronizer and the set/reset flip-flop.

Because this design style requires isochronic forks, the generated circuits are

speed independent but not delay insensitive. A full description of the translation

rules and optimizations is given in Burns' masters thesis [20]. The complete system

consists of about 800 PROLOG clauses. The compiled circuits are typically no

more than three times the size of those derived by hand. This inefficiency is caused

by the compiler not detecting all cases where explicit sequencing can be removed.

B runvand

A similar approach has been used by Brunvand and Sproull [14]. Their compil-

ation uses similar techniques to generate circuits that consist of delay insensitive

control units that direct the flow of data of bundled data paths. All control signals

within the target design use transition signalling. The source language to the com-

pilation system is a large subset of the Occam programming language [81] given

in a LISP-like syntax. The synthesis system also includes an Occam interpreter

that allows behavioural simulation and debugging of specifications prior to their

compilation [11]. The details of the nine translation rules are given in Brunvand's

doctoral thesis [13].

Except for the data path operators, the synthesis method requires only 11 prim-

itive modules. The complete list of primitive components includes the merge ele-

ment, the c-element, the toggle element, the arbiter and several kinds of storage

element including the select and call modules. All of the required components

have been implemented as standard cells requiring only a small number of tran-

sistors [12]. The state holding components respond to a global 'clear' signal to

reset them to an initial known state. The major advantage of data bundling is that

standard library components are used to implement the data path, such as adders

and multipliers.

Brunvarid's compiler, like Burns', improves the generated designs using se-

mantics preserving circuit-to-circuit transformations, similar to the peep-hole op-

timizations used in conventional compilers. This pass substitutes inefficient subcir-

cuits by more efficient implementations by identifying common module topologies.

Chapter 1. Introduction 	 18

These local improvements overcome some of the disadvantages of the relatively

simplistic translation method. Brunvand proves the validity of the circuit trans-

formations by showing their conformance equivalence using Dill's trace tools [34].

Brown

The first attempt at produce a truly delay insensitive circuit compiler was made

by Brown [10]. His system used a variable free subset of the Occam program-

ming language as the specification language. The absence of variables removes the

assignment, conditional and data communication commands from the language.

The design of circuits without data paths avoids the need for either data bundling

constraints or isochronic forks. The compilation process requires only ten rules to

generate delay insensitive circuits from their specifications. The target circuits use

transition signalling and are composed of six types of primitive component. These

components are the merge, the c-element, the select, two types of call module and

an arbitrating test-and-set module.

van Berkel

A far more advanced delay insensitive circuit compiler has been developed by van

Berkel and the group at Philips Research Labs [119,117]. The source language

to their synthesis system, called Tangram, is based heavily upon Hoare's CSP. In

addition to the constructs of Occam, Tangram supports finite iteration, guarded

commands, arrays, tuples, arithmetic operators, broadcast communication, func-

tions and procedures. Recently, the syntax of the Tangram programming language

has developed a Pascal-like syntax to make the notation more accessible to design-

ers.

The first phase of the Tangram compilation process is the syntax directed trans-

lation of the source description into a graphical intermediate representation, called

handshake circuits. A handshake circuit is a graph representing both the structure

and behaviour of the circuit. Each vertex of the graph is a handshake component

and control and data flow is explicitly represented by arcs between nodes. These

delay insensitive channels form the only interaction between handshake compon-

ents. This representation abstracts the communication actions away from specific

handshaking protocols and data encodings. The full implementation of Tangram

requires about two dozen types of handshake component, many of which are para-

meterized on word width. The Tangram compiler includes a peephole optimization

Chapter]. Introduction 	 19

pass that identifies subcircuits of the handshake circuit and replaces them with

cheaper equivalents.

The final stage of the compilation process implements the handshake circuit as

a CMOS VLSI circuit. Currently, the Tangram compiler synthesizes circuits with

four phase handshaking and dual rail encoding, and the corresponding speed inde-

pendent gate-level decompositions of the handshake components. The realizations

of handshake components allow all components in the circuit to be initialized by

forcing the electrical inputs low. This property called weakly initializable avoids

the need for reset circuitry. More recently a testability option has been added to

the compiler, which generates test circuitry for a restricted class of circuits [100].

This test strategy allows circuits to be tested effectively in polynomial time.

The Tangram compiler is part of an integrated tool set. The Tangram source

program can be compiled into a C-code simulator that will generate a coarse timed

trace of the circuit's behaviour or the intermediate handshake circuit may be trans-

lated to VHDL to generate more detailed timing information. The 'backend' of the

compiler produces standard cell net lists that may be input to Philips' VLSI layout

tools. At a more abstract level, the VOC project at Eindhoven University of Tech-

nology have produced a front end to the system that generates regular language

acceptors [7].

Chapter 2

Behavioural Specification

The design process can be seen as a translation of notation, starting with an ab-

stract descriptive specification and ending with a more concrete realization or im-

plementation of that specification. A synthesis method is a theory for constructing

realizations that are guaranteed to be correct with respect to their specifications

and therefore do not require debugging or verification. The foundations of any

synthesis method must contain a model for reasoning about a system's behaviour.

Several different models have been suggested for describing the concurrent be-

haviour of asynchronous circuits, including process algebra [23], Petri nets [26],

temporal logic [74] and trace theory [122]. In this thesis, a mathematical model

based on labelled transition systems is proposed to describe the behaviour of delay

insensitive circuits.

2.1 Abstract Circuit Model

2.1.1 Labelled Transition Systems

Labelled transition systems use an interleaving model of concurrency where simul-

taneous actions can occur in any temporal ordering, thus reducing concurrency to

non-deterministic interleaving. Models based upon true concurrency, such as Petri

nets, describe concurrent operation by explicit causal independence. Although

truly concurrent formalisms have greater discriminating power than interleaving

models, the 'observable' behaviour of an asynchronous system is a chronological

sequence of events. Hence, an interleaving model is a suitable formalism for behavi-

oural specification, which need not distinguish between underlying causal models.

20

Chapter 2. Behavioural Specification 	 21

It is the design methodology's task to find an implementation with a suitable causal

mechanism.

Definition 1 A directed labelled transition system is a structure (S, so, I, 0, T)

where S is a finite non-empty set of states, so E S is an initial state, I and 0 are

disjoint sets of input and output labels respectively and T c S x (I U 0) x S is the

transition relation.

Usually we write s 3 s' instead of (s, a, s') E T, and s —* s' when a s 4 s'.

The set of labels I U 0 is sometimes called the alphabet of the directed labelled

transition system (DLTS). Labels from the set of input labels, I, are distinguished

by suffixing with a question mark and output labels, 0, by suffixing with an ex-

clamation mark. For a transition t = (s, a, s'), s is called the prestate of t, and s'

is called the poststate.

At any moment in time, the asynchronous process described by a directed

labelled transition system can be in one, and only one, state or situation. Time is

introduced into our descriptive model by the transition relation T which describes

the sequential evolution of the asynchronous process. The definition of T as a

relation rather than a function expresses the non-determinism inherent in a process'

specification. Typically the transition relation is non-reflexive.

This definition of a directed labelled transition system leads to the usual graph-

ical representation as a directed transition graph. The vertices of the transition

graph are used to denote the states of the transition system, and labelled arcs rep-

resent the transition relations between them. Usually, the vertex of the transition

graph that denotes the initial state, 5, is emphasized to distinguish it from the

remaining states. An example of a transition graph is given in figure 2-1.

0

C?

00 	 0 	0

P! 	

b?~ ,,'/a?

Figure 2-1: Graphical representation of a directed labelled transition system.

Chapter 2. Behavioural Specification 	 22

The common notion of bisimulation [88,95] can be used to define an equal-

ity relation on labelled transition systems. Two labelled transition systems are

equivalent if their initial states are bisimilar.

Definition 2 The two states P and Q, of labelled transition systems P and Q

respectively, are bisimilar, written P r.J Q, if, for all a,

Whenever P _4 F' then, for some Q', Q - Q' and F' -

Whenever Q 4 Q' then, for some F', P - F' and F' 'S-.' Q'

This notion of equivalence is not the same as transition graph isomorphism.

Although graph isomorphism implies transition system equivalence, equal trans-

ition systems may not have isomorphic transition graphs. This notion of equality

can be used to define a normal or canonical form for directed labelled transition

systems. The normal form of a DLTS is the coarsest member of the bisimulation

equivalence class, i.e. the equivalent transition system which has the minimum

number of states.

Of special interest in behavioural specification is the class of strongly determ-

inate directed labelled transition systems. This is the class of transition systems

that do not make non-deterministic choices between transitions with the same label.

This restricted class of behaviours may be completely specified by trace structures.

Definition 3 The state s of the directed labelled transition system (8, so, I, 0, T)

is strongly determinate if for all states Sl, S2 E S, ifs 4 si and s 4 S2 for any

label a I U 0, then sl and S2 are bisimilar, S l 	52. A DLTS is called strongly

determinate if all its states are strongly determinate.

2.1.2 Operational Behaviour

An digital circuit has associated with it a finite set of terminals (or ports) used to

communicate with its environment. These terminals are partitioned into a set of

input ports I and a set of output ports 0. The observable behaviour of such a cir-

cuit can be represented by a directed labelled transition system (S, so, I, 0, Tram)

where each terminal of the circuit's interface is denoted by a unique label.

Each state of the transition system represents an instant in the behaviour of the

component, with initial state representing the starting state of the circuit. Each

state transition represents a possible communication action, or signal, between

Chapter 2. Behavioural Specification 	 23

the circuit and environment on the terminal denoted by the transition's label. The

transitions from a given state specify the set of permissible actions that may be pro-

duced at that point in the circuit's behaviour, and by whom. Transitions labelled

by elements of I mean that the environment may produce that communication sig-

nal next, and those labelled by 0 allow the circuit to generate the corresponding

output action next. Once the communication has taken place, the behaviour of the

circuit is represented by the poststate of the performed transition. In addition to

above safety constraint, the behavioural specification of a component also contains

a liveness constraint. A safety property asserts that "nothing bad will happen",

while a liveness property asserts that "something good will happen". If in a given

state, there exists a transition from that state labelled by 0, then the behavioural

state of the circuit must eventually advance. This progress requirement guarantees

that the environment can never wait indefinitely for a valid output to be produced.

Operationally, the occurrence of a communication action represents a change

of voltage, a transition, at the corresponding terminal. No distinction is made

between rising and falling voltage transitions. Hence the same state transition

may correspond to both low-to-high and high-to-low voltage transitions. Although

it is possible to 'unfold' a transition system such that each label denotes either

a rising or falling transition, specifications that do not make this distinction tend

to be much smaller. By convention, all terminals of a circuit are considered to

initially low, unless stated otherwise.

The complete labelled transition system contains all communication behaviours

that may take place between the component and its environment. The specification

of the boundary between component and environment acts as a contract between

them. The correct behaviour of the component should be guaranteed, provided

the environment behaves only as prescribed. Hence the behavioural specification

both defines the correct behaviour of a circuit and restricts the behaviour of the

environment.

As behavioural specifications detail the permitted observational behaviour of a

circuit's environment, they may be used to specify the class of correct 'environment

components'. The specification for a live environment may be found by reflecting

the directed labelled transition system. The reflection of a strongly determinate

DLTS L, denoted by L, is obtained by exchanging the elements of the sets I and

0. In this way, every output action of the circuit becomes an input action of the

environment and vice versa.

Chapter 2. Behavioural Specification 	 24

This interpretation of the permissible interface behaviour is similar to the use of

the must and may modalities of modal transition systems [67]. In this framework,

an implementation must be able to accept all the inputs and may generate any of

the outputs that are prescribed in the specification. In this case, the transitions 4
and 4 can be seen as variants of the —+o and - relations.

Asynchronous circuit behaviours that are not 'strongly determinate' pose in-

teresting problems. Consider the three states si , 82 and .53 of a DLTS such that
51

4 s2 and s 4 S3 for any symbol a where the states s2 and .53 are not bisimilar

.53. After the communication action a, the circuit is in one of two states, in-

distinguishable by the environment. To ensure correct operation in such an event,

the environment may only send input signals that may be received in all such in-

distinguishable states and must be able to accept output communication actions

from any such state. Hence, for any non-strongly determinate DLTS it is possible

to determine an 'equivalent' strongly determinate behaviour that ensures safe oper-

ation. The proposed design methodology assumes (ensures) that a DLTS specifies

the 'safe' strongly determinate behaviour of an asynchronous circuit, and issues an

error (warning) otherwise.

2.2 Circuit Specification

Directed labelled transition systems serve as suitable abstract model of asynchron-

ous circuit behaviour, but lack a convenient notation for a specification formalism.

For this reason, we give a labelled transition system semantics to a number of com-

mon circuit specification styles. This allows the use of conventional descriptions

to clearly and concisely define required circuit behaviours. Note that some of the

formalisms mentioned below are less expressive than DLTSs and hence are used

to describe restricted classes of circuit behaviour.

2.2.1 Process Algebra

Process algebra [53,89] provides a framework for describing the modular structure

of concurrent systems (or processes) and also details their operational behaviour.

Syntactically, processes form a term algebra, where terms are built by a given set

of operators that typically include a parallel composition operator.

Chapter 2. Behavioural Specification 	 25

In this thesis, circuit specifications are given in a small subset of Miler's Cal-

culus of Communicating Systems (CCS) [89]. This subset has sufficient expressive

power to allow the description of any directed labelled transition system. The

agent, or process, Nil can perform no communication action. The prefix operator,

a. E, where a is an action label and E represents an agent expression, performs

the communication action a before evolving into the process E. By convention,

communication labels begin with a lower case letter. The choice, or sum, of two

agents E1 and E2, written E1 + E2, non-deterministically behaves like either E1

or E2. Action prefixing binds tighter than the choice operator. We shall assume

a set of agent identifiers, which may be bound to an agent expression that may

contain a reference to itself. This enables the definition of recursive processes. By

convention, agent identifiers are labels beginning with an upper case letter (unique

from Nil). An agent definition has the form bi A E, where the identifier A is

associated with the agent expression E. This syntax is the same as that used by

the original version Concurrency Workbench process algebra tool [30].

The directed labelled transition system describing the observable behaviour

of an agent can be determined using the structural operational semantics (SOS)

rules of that process algebra [98]. The initial agent, by convention the first agent

identifier defined in a circuit specification, is associated with the initial state so of

the DLTS. If the agent P, associated with a state s of a labelled transition system,

can perform a communication action a, then the DLTS has a state S2 that denotes

the a-derivative of P, and .s 3 82. The process a. E has the a-derivative E. If

P has an a-derivative P, then so do the agents P + E and E + F, for any agent

E and communication action (label) a. This definition allows the derivation of a

directed labelled transition system by syntactic search for reachable states.

For example, the directed labelled transition system described by the transition

graph in figure 2-1 is given by the CCS specification in figure 2-2 below.

bi SO a?.b?.S1 + b?.a?.S1 + c?.p!.SO

bi Si q'.d?.Sl

Figure 2-2: Example CCS circuit specification

It is trivial to extend this technique to allow asynchronous circuit specifications

to be given in the complete CCS syntax, including restriction, relabelling and vari-

ous composition operators. Similarly, for other process algebras such as CSP [53,

Chapter 2. Behavioural Specification 	 26

59], Circal [87], Esterel [6], ACP [3] and LOTOS. The principal advantage of this

approach over the formalisms used by other circuit synthesis methodologies is that

the semantics of the process algebra's operators need not be that of circuit compos-

ition. This allows the specification to describe the circuit's required .observational

behaviour without determining its structure.

2.2.2 Trace Theory

The most common formalism for describing delay insensitive circuit behaviour is

trace theory [36,112,122]. Trace theory specifies circuit behaviour by explicitly

stating all permissible sequences of communication actions that may take place

between a circuit and its environment.

Definition 4 A directed trace structure T is a pair (aT, tT) in which aT is a

finite set of symbols partitioned into two sets i T and o T, and tT is a set of

finite-length prefix-closed sequences of elements of aT, which are called traces.

The set of symbols aT is referred to as the alphabet of T, which is split into

the input alphabet, i T, and the output alphabet, o T. The trace set, tT specifies

all permissible communication sequences at the mechanism's interface with its

environment. Since trace sets are often infinite, representation by enumeration

of their elements is unreasonable, so traces structures are often defined using a

program notation based on regular expressions called commands.

Definition 5 A trace command over the alphabet of symbols (or labels) E is either

e, any symbol a E E, or any expression of the form S;T, [5], ST, SIA, SIT or

pref S where S and T are trace commands over E, and A is a set of symbols.

Each trace command E over an alphabet > denotes a directed trace structure

(aE, tE) where aE c E. The command e denotes the trace structure (0, {e})

(where {e} is the set containing the empty trace), the atomic command a E

denotes the trace structure ({a}, {a}) and each of the concatenation, union, repe-

tition, prefix closure, projection and weaving operators is defined as follows.

S;T = (aSUaT,{sflsetSAtetT})

ST = (aS U aT, tT U tS)

[5] = (aS,(tS)*)

Chapter 2. Behavioural Specification 	 27

prefS = (aS,{st.stEtS})

SA = (aSflA,{s[AsEtS})

ST = (aSUaT,{t E (aSU aT)*t[aS tSAt[aT E tT})

where t [A is the trace t from which all symbols not in set A have been re-

moved. To save parentheses, unary operators have the highest priority, followed

be weaving, concatenation, union and finally projection has the lowest priority.

Snepscheut [122] presents proofs for several interesting properties for these trace

operators. Ebergen [36] extends this notation to include general tail recursion,

similar to the agent identifiers used in process algebras.

We can introduce the notion of states of a trace structure by determining an

equivalence relation - on traces of a prefix closed trace T. The relation t -'-'j s

holds if for any trace r E aT, tr E tT 	sr E tT, i.e. the -'R relation holds

between traces with the same continuations. The equivalence classes of this rela-

tion form the states of the trace structure T. The state containing the trace t is

denoted by 	The directed labelled transition system representing the directed

trace structure T, has input label set i T, output label set o T and initial state

W. There is a transition 	4 	for any label a E aT if sa 	. One co-

rollary of this definition is that any directed labelled transition system described

by a trace structure is strongly determinate. As an example, the trace command

pref([c?;p!]; (a?Hb?); [q!; d!]) denotes the directed labelled transition system of fig-

ure 2-1 on page 21.

A similar notation, based on regular expressions, is used by several asynchron-

ous circuit researchers to describe directed labelled transition system that do not

have a branching structure. These notations are called cyclograms or taxograms

by Starodubtsev [107] and handshaking expansions by Martin [76]. The syntax of

both notations annotate transitions depending on whether the signal is rising or

falling. Martin suffixes output signals with ' for low-to-high transitions, and the

suffix 'j' for high-to-low transitions. The input actions of a circuit are described

syntactically as boolean expressions of signal names enclosed square brackets. (not

to be confused with the repetition operator of trace commands) called wait con-

ditions. A handshaking expansion is an alternating sequence of input and output

communication actions separated by semi-colons enclosed by a repetition operator

.]. An example handshaking expansion is given in figure 2-3 below.

Chapter 2. Behavioural Specification 	 28

*[[Ii]; rot; [ri]; rot; [-in]; lot; [-ui]; lo,]

Figure 2-3: Example handshaking expansion

Translating this syntax into a directed labelled transition system is straight-

forward; the example given above specifies the same DLTS as the trace command

pref[li?; ro!; ri?; ro!; ri?; lo?; Ii?; lo!]. Starodubtsev uses an almost identical syntax

using the characters '+' and '-' to denote transition polarity and delimiting the re-

petition sequence by -> and <-. However, cyclograms may also contain an initial

sequence of communication actions that are only performed once.

2.2.3 Petri Nets

Another popular representation of asynchronous circuit behaviour, typically used

by speed independent circuit researchers, is the Petri net. This formalism, de-

veloped by C.A. Petri, is widely used as a model of concurrent systems. Struc-

turally, a Petri net is a bipartite directed graph with two types of nodes: places

and transitions. This graph represents the relationship between conditions and

events in a system. The places (represented graphically by circles) correspond to

conditions and the transitions (represented graphically by thick lines) correspond

to events.

Definition 6 A Petri net is a four-tuple (F, T, F, M0), where P 18a set of places,

T is a set of transitions and F is the flow relation between the places and the

transitions F ç (P x T) U (T x P) and M0 is the initial marking (or "state") of

the net.

Places within the net are capable of containing some number of 'tokens' or

'markers', such that a place is said to hold or be true if a token is present in it.

Places are connected by directed arcs, via transitions, along which tokens may

pass. The movement of tokens along the arcs is controlled by the occurrence of a

firing of a transition, known as an event.

A condition is said to be incident on an event if there is a directed arc from the

condition to the event. If there exists a directed arc from an event to a condition,

the condition is a successor of that event. If all members of the input set of an event

Chapter 2. Behavioural Specification 	 29

hold, the event is "enabled" and sometime later will "fire", removing the tokens

from its input set and placing tokens in all members of its output set. Multiple

arcs directed away from a place indicate that a token may travel over either arc,

but not both. Multiple arcs directed to a condition indicate that a token may enter

the condition through one of several paths. The marking M (or state) of a Petri

net is the set of conditions which hold at an instant of time (the assignment of

tokens to places).

A net is live if, for any event, it is impossible for the net to reach a state from

which that event cannot be enabled. A net is safe if there can never be more

than one token in a condition at one time. Two events which share a common

input place can be in conflict if both events are enabled at the same time. If there

exist 'conflicting' events, it is indeterminate which will occur; however the first will

disable the other. A net which is not safe or has conflicting events can often have

these situations resolved by properly constraining the inputs to the net. If a Petri

net has an upper bound on the number of tokens that can appear in a marking (in

which case it is said to be bounded), it can be regarded as a regular sequence of

transition firings.

The directed labelled transition system represented by a labelled bounded Petri

net, or STG, is obtained by "executing" the net. A Petri net is executed by

examining all the markings reachable from M0. There exists a transition si 4 S2

in the DLTS, if there exists a marking M2 (corresponding to state 32) which is

reached from marking M1 (corresponding to state si) by firing a single transition

1, where t is labelled by the communication action a. The state so of the DLTS

represents the net's initial marking M0.

The example Petri net given in figure 2-4 below, denotes the same directed

labelled transition system as given by the transition graph in figure 2-1.

C? 	 a?

Figure 2-4: Example Petri net circuit specification

Chapter 2. Behavioural Specification 	 30

Speed independent circuit researchers conventionally annotate Petri net trans-

itions with both the signal name and whether the signal changes from high-to-low

or low-to-high. This leads to larger Petri nets than those that do not differentiate

polarity, and requires the specification to be checked that the rising and falling

transitions of each signal strictly alternate (called switch-over correct [124]).

2.3 Circuit Composition

In this section, we develop a composition operator on directed labelled transition

systems that models interconnection of asynchronous components. This allows

us to define an algebra of asynchronous circuit behaviour, and provides a basis

for our design methodology. The definition of circuit composition states that all

communication is point-to-point and hence all internal behaviour is hidden from

the environment. Although this is reasonable for delay insensitive circuit synthesis,

a more general operator is required for speed independent design.

We consider the composition of two directed labelled transition systems P

and Q, written ?Q, where the elements of? and Q are (S,po, I, O, T) and

(Sq , qo, I, °q, Tq) respectively. Because the composition operator is both associat-

ive and commutative, arbitrary networks may be composed in any order.

For these components to be composed, we require that their input and output

ports be disjoint, O. fl O = 0 and 1p fl 1q = 0. This constraint on outputs

means that circuits containing bidirectional wires and buses cannot be modelled.

However, because such components are not insensitive to wiring delays, we are not

restricted by this formalism. The disjoint input constraint requires that inputs

common to different components are modelled explicitly by fork components. It is

possible to define a composition operation on components with shared inputs, as

'syntactic sugar', by renaming the appropriate ports and composing the resulting

composite component with the required forks.

The set of ports O fl 'q represent the internal wires used for signalling from?

to Q and the set °q fl I. the internal wires from Q to P. Composition of directed

labelled transition systems hides all internal terminals used for communication and

synchronization between the components. Hence, the observable input and output

port sets of PQ are given by (I - Oq) U (Iq - O) and (O - Iq) U (Oq - I)

respectively. In order to define the operational behaviour of PJJ Q, we shall make

Chapter 2. Behavioural Specification 	 31

use of the notion of a composite state. The set of composite states of the DLTS

PQ is the cartesian product of S. and Sq . The initial composite state of the

composition of two directed labelled transition systems is the tuple formed from

the initial states of each DLTS, (p0, qo).

In order to define the observable behaviour of the composition of two directed

labelled transition systems, it is necessary to introduce a number of useful defini-

tions. For example, it is convenient to distinguish between communication actions

that are internal to the composed system from those that are externally observable.

An very important property of a state of a transition system is its stability. This

property, based upon a state's ability to emit an output signal, will fundamental

to much of the theory described in this thesis.

Definition 7 The state s of the directed labelled transition system (5, so, I, 0, T)

is stable, written Stable(s), if there does not exist any output transition s - s' for

any output label o € 0. Similarly, the state s is unstable, written Unstable(s), if

it is not stable, i.e. the state is the prestate of an output transition.

A composite state is unstable, if either of its members is unstable. An un-

stable composite state may perform an output communication action and evolve

into another composite state, which may also be unstable. We distinguish between

internal communication actions and those observable by the composition's envir-

onment. The internal derivatives of a composite state are the composite states

that are reachable by internal communication actions only.

Definition 8 The set of internal derivatives of a composite state (p, q) of directed

labelled transition systems P and Q, written int(p, q), is defined as

(p, q) e int(p, q)

For any (r, s) E int(p, q), if there exists a label a E (Op fl Iq) U (Oq fl Ip)

such that r -4 r' and s 3 s' then int(r', s') c int(p, q).

Nothing else is in int(p, q).

The set of internal derivatives of a state are the states of the composite circuit

that are indistinguishable to the composition's environment. After a visible trans-

ition, all that may be assumed about the state of the composite circuit is that it

is one of the internal derivatives of the destination state. Similarly the observable

derivatives of a composite state are all those composite states that may be reached

by only internal or output communication actions.

Chapter 2. Behavioural Specification 	 32

Definition 9 The set of observable derivatives of a composite state (p, q) of dir-

ected labelled transition systems T' and Q, written obs(p, q), is defined as

int(p,q) E obs(p, q)

For any (r, s) E obs(p, q), if there exists a label a E (Op - Iq) such that

r 4 r' then obs(r',$) c obs(p, q).

For any (r, s) E obs(p, q), if there exists a label a E (Oq - Ii,) such that
S 4 s' then obs(r, .s') c obs(p, q).

Nothing else is in obs(p, q).

The set of observable derivatives of a state are those states that may be reached

by the composition's own actions. Once a given state is reached via interaction with

the environment, the environment can do nothing to prevent the circuit entering

any of the observable derivatives of that state, they are in some sense 'inevitable'.

The principal condition for correct operation of a connection of components is

that it is free from interference. A composition of two circuits exhibits interference

when an internal signal may be generated by one component before it is ready to

be received by the other. In this case, the first component violates the constraints

placed on the environment of the second by its behavioural specification.

Definition 10 The composite state (p, q) of directed labelled transition systems

P11 Q is defined to interfere, written p<--"q, if either there exists a transition p 4 p'

where a E O, n I and there is no state q' such that q 4 q' or there exists a

transition q 4 q' where a E °q fl J. and there is no state p' such that p 4 p'.

We state that the communication actions permissible at the interface of P I I Q
guarantee that the composition can never reach a state where the components could

interfere and that internal communication actions are synchronized. The behaviour

of PjQ is defined using a mapping from composite states to states of the directed

labelled transition system, the initial state of which is (po, qo). Two DLTSs may

be composed only if there is no interfering state in the observable derivatives of

the initial state.

Definition 11 The composition of two directed labelled transition systems P and

Q, written P 1 Q, has the set of input labels (I'. - Oq) U (Jq - O,,), the set of output

labels (O. - Iq) U (Oq - Ii,) and initial state (p0, qo). The transition relation of

P 	contains the transition (p, q) 3 (p', q') when

i) For a E O - 'q, if r 4 p' for some composite state (r, q') E int(p, q).

Chapter 2. Behavioural Specification 	 33

For a E °q - I, ifs 4 q' for some composite state (p', s) E int(p, q).

For a E 1p - °q, if r 4 p' for some composite. state (r, q') E int(p, q) and

this input action cannot result in the composition entering a state that could
interfere, i.e. for all states (r, s) E int(p, q) and transitions r 4 r' for some

state r', there is no state (u, v) E obs(r',$) that interferes, u-v.
For a E 'q - O, if s 4 q' for some composite state (p', s) e int(p, q) and

this input action cannot result in the composition entering a state that could
interfere, i.e. for all states (r, s) E int(p, q) and transitions s 4s' for some

state s', there is no state (u, v) E obs(r,s') that interferes, u+-"v.

Our notion of circuit behaviour places very strong constraints on input and

output communications. An input communication may only be sent to the com-

position in an observable state, if all internal derivatives of that state allow the

receipt of that signal. Otherwise there is a possibility of the circuit being in a

non-receptive state when the signal is sent causing interference between circuit

and environment. Similarly, an input may only be sent to a composition, if it is

impossible for any of the observable states of any of the destinations to interfere.

Note that the composition is only strongly determinate if the effects of receiving

an input signal are the same for every internal derivative of the observable state.

With the above definition of composition, it is possible for a composite circuit to

become live-locked. This is a condition that can arise if there exists a cycle or loop

in the internal derivatives of a state, i.e. if there are two states (r, s) and (u, v) in

the derivative set int(p, q) such that (r, s) E int(u, v) and (u, v) E int(r, s). In such

a state, the circuit may always decide to perform an internal communication action

rather than generate an output signal. This possibility of 'indefinite postponement'

means that the outputs from that state can no longer guaranteed to be live. An

environment may wait indefinitely for such an output signal that may never be

generated. If the outputs generated by a circuit are required to be live, the circuit's

behaviour must be shown to avoid the possibility of entering a live-locked state.

This can be done by using a method similar to that for avoiding interference in the

definition above.

Chapter 2. Behavioural Specification 	 34

2.4 Implementation Relation

In the previous sections, we defined a model for reasoning about the behaviours

of asynchronous circuits. Directed labelled transition systems may be used both

to describe the actual and required behaviours of a circuit. This notion of circuit

specification prescribes formally a number of desired properties of a correct im-

plementation's operational behaviour. In this section, we define what it means for

one transition system to implement or refine another.

A specification can be regarded as an idealized component, which may be used

conceptually in an abstract design. A valid implementation of this specification

is a circuit behaviour that can be 'substituted' for an idealized component while

preserving the correct behaviour of the design in which it is instanced. The ad-

vantage of using the same formalism for both specification and implementation is

that it allows both hierarchical design and verification of circuits. The description

of a component at one level of abstraction may be used as a circuit specification

at lower level of abstraction. Among the many advantages this approach offers is

the use of libraries of common subcircuits as abstract components at higher levels

of design.

The relationship between a specification and an implementation should allow

the implementation to exceed the minimum requirements stated in the specifica-

tion. This is similar to other engineering disciplines where a component with a 1%

tolerance may be used safely in a design that specifies a 5% component. Similarly,

we also allow the specification to describe a number of design alternatives. Hence,

we allow a non-deterministic circuit specification to be replaced with an indistin-

guishable deterministic one. This appeals to the engineering maxim, "a component

is correct if it can not be shown to be faulty".

It is possible to use bisimulation equivalence as potential implementation rela-

tion, but this would be overly restrictive, requiring the actual implementation to

be 'identical' to the specification. An alternative implementation relation, between

prefix closed directed trace structures, has been proposed by Dill [34]. This rela-

tion, called conformation, is used by his model checking software to automatically

verify asynchronous circuit designs.

Chapter 2. Behavioural Specification 	 35

Definition 12 Dill's conformation states that the behaviour of an implementation

P conforms to a specification Q, written P Q when

P<Q 	if QQ'P-4P' and P'-Q'

and PP'=QQ' and P-<Q'

Dill's notion of a conformation requires that an implementation must be able

receive any input that may be sent by the specification's environment and may

only generate those outputs permitted by the specification.

This potential implementation relation has the advantage over bisimulation that

the implementation may have more behaviours than the minimum requirements of

a specification. As an example of this property, consider the two circuit behaviours

specified by CCS agents below. The first agent Merge describes a general merge

component that accepts an input transition from either of two inputs and gener-

ates a transition at its single output. The AitMerge combines strictly alternating

input signals. By Dill's definition the general merge element 'conforms' to the

specification of the alternating merge.

bi Merge a?.c!.Merge + b?.cLMerge

bi AitMerge a?.c!.b?.c!.AltMerge

The principal drawback with this method is that it places no 'liveness' con-

straints on an implementation. Consider a circuit that can accept any input and

that never produces an output, termed a 'Universal Do-Nothing' module by Charles

Molnar. Such a component conforms to any specification. Dill uses this example to

justify the development of complete trace structures to express liveness properties

of circuits.

An improved notion of implementation is given by Ebergen [36]. Although

Ebergen only defines the decomposition specifications, it is possible to determine

the relation used to state when one prefix closed directed trace structure 'satisfies'

a specification. This satisfaction relation places a stronger constraint on an im-

plementation than Dill's conformation. A correct implementation must be able to

generate exactly those outputs performed by the specification.

Definition 13 Ebergen's satisfaction relation states that the behaviour of an im-

plementation P satisfies a specification Q, written P D Q when

PQ 	if Q4Q'P--4P' and P'Q'

and PP'QQ' and P'::] Q'

Chapter 2. Behavioural Specification 	 36

Both Dill's and Ebergen's implementation relations permit the general merge

element as a valid implementation of an alternating merge element. However, a

Universal Do-Nothing module will not satisfy every Ebergen specification.

One further property of an implementation relation that would be beneficial in

an asynchronous circuit synthesis is the ability to treat "static" non-determinism

as describing design alternatives. In this way, specifications that state an arbitrary

decision may be made at some point in a circuit's behaviour can be implemented

by' circuits that make a fixed decision. One example of this is shown by the pair

of CCS agents below. A Choice component receives an input signal then makes a

completely arbitrary choice between which of its two outputs to generate. A valid

implementation of this circuit is the Toggle component that strictly alternates

between its outputs after each input transition.

bi Choice a?.(b!.Choice + c!.Choice)

bi Toggle a?.b!.a?.c!.Toggle

An improved implementation relation with all of these properties is given in

the following definition.

Definition 14 A directed labelled transition system P implements a directed la-

belled transition system Q, if the initial state po of P implements the initial state

q0 of Q, written P0 i ü, where

PJ 1 Q 	if QQ'PP' and P' i Q'

and PP'QQ' and P' i Q'

and Unstable(Q) = Unstable(P)

In this defintion the addition of the Unstable constraints is used to impose a

liveness constraint on the implementation that is weaker than Ebergen's equival-

ence. The statement Unstable(Q) => Unstable(P) should be interpreted that if Q

can make an output transition then P muct be able to make an output transition.

This forces P to implement atleast one, but not all, of Q's possible output actions.

This is enough to ensure that if the environment is waiting for Q to generate a

signal, then it will not deadlock if Q is implemented by P.

This definition of implementation is similar to Larsen's definition of refinement

in model process logic [67]. This is due to the similarity between the 	and 4
transitions of directed labelled transition systems and the —+o and - modalities

Chapter 2. Behavioural Specification 	 37

of modal process logic. The principal difference in interpretation resulting from

the lack of an analogue for -+0c--+.

2.5 Delay Insensitivity

In this section we formalize the notion of delay insensitivity based previous trace

theoretic results [34,36,112]. Informally, a network of components is 'delay insens-

itive' (DI) if its correct operation is independent of any delays in the response

times of its components and the wires connecting those components, provided such

delays are finite. An individual component is called delay insensitive if its correct

operation is independent of any finite delays in the wires attached to its interface.

For networks of components, delay insensitivity requires two conditions to be

complied with under composition [121]. These conditions are absence of computa-

tion interference and absence of transmission interference. Computation interfer-

ence occurs when a signal arrives at a receiver before it is ready for it. Transmission

interference occurs when there is more than one transition propagating along a wire

at a time. Both of these types of interference result in ill defined voltage transitions

and malfunctioning components. In this thesis, we shall consider transmission in-

terference to be a special case of computation interference involving explicit 'wire'

components.

The definition of circuit behaviour composition given previously assumes com-

munications between components to be instantaneous and explicitly prohibits in-

terference between components. It is possible to use this composition operator to

define a composition operation in which all the connection wires between the two

subprocesses are taken into account. This is the method used by Snepscheut in

his 'agglutination' composition operator. An alternative approach is based upon

the so-called Foam Rubber Wrapper (FRW) principle, proposed by Molnar [91].

This requires that the component behaviours being composed be delay insensitive,

i.e. invariant under extension by 'wire' components. The composition of two such

delay insensitive component behaviours is independent of any finite delays in its

observable or internal connecting wires. A formalization of the FRW principle is

given in Ebergen's thesis [36].

As mentioned above, an individual component behaviour is delay insensitive if

its behaviour is invariant of inserting wire delays at the interface between the corn-

Chapter 2. Behavioural Specification 	 38

ponent and its environment. To ensure a network is delay insensitive, we require

that it be formed solely from the composition of delay insensitive behaviours. One

method of determining if a circuit behaviour, directed labelled transition system,

is delay insensitive is to explicitly check whether the component may be composed

with a wire component at each terminal without affecting its observable behaviour.

This is the technique used to test delay insensitivity by Dill's state based model

checker [34] and Ebergen and Gingras' network verifier [39].

An alternative method of checking an asynchronous circuit behaviour for delay

insensitivity is to test Udding's rules [113]. These are a set of four restrictions (and

their variants) derived by Udding for prefix closed directed trace structures that are

necessary and sufficient conditions for a behaviour to be delay insensitive. Proofs

that these rules are equivalent to the FRW postulate are presented in Udding's

thesis [112]. Udding's principal rules are presented below for any state si E S of

the directed labelled transition system (S,po, 1p, Op, Tn).

It0 For any symbol a E I U O, if there exists a state 32 such that 31 24 5 2 then

there exists no state 53 such that 2 3 .53.

R1 For any pair of symbols a and b of the same type (either a, b E I or a, b E Or),

if there exists two states S2 and 33 such that si 3 32 and S2 -4

53 then there

exist a pair of states 2 	3and s such that si 4 4 and 4 4 4 and 33 4.

It2 For any pair of symbols a and b of different types (either a E I and b e O

or a e O and b E In), if there exist three states S2, 33 and 4 such that

i 4 S, S2 4 S3 and si 4 4 then there exists a state 4 such that 4 4 4
and 53 	S3.

R'3 For any pair of distinct symbols a and b, a, b E I U O if there exist two

states 52 and 4 such that .si 3 s2 and s -4 4 then there exists a state 33

such that S2 -4 33.

R' For any pair of distinct symbols a and b, a, b E I, U O, not both input

symbols (either a E O or b E Or), if there exist two states 52 and 4 such

that s 4 2 and si -4 4 then there exists a state 33 such that 52 4 33.

R'31' For any pair of symbols a and b of different types (either a E I and b E O

or a E O and b E In), if there exist two states 32 and 4 such that .si 4 S

and s 44 then there exists a state 33 such that 2 4 53.

Chapter 2. Behavioural Specification 	 39

Rule R0 guarantees the absence of transmission interference by limiting the

number of consecutive transmissions on a wire to at most one. Rule R1 states that

two signals being sent one after another in the same direction via different wires

need not be received in the order in which they are sent. All delay insensitive trace

structures satisfy rules R0 and R1. Note that rule R0 forces the DLTS transition

relation to be antireflexive, i.e. the prestate and poststate of every transition of a

delay insensitive DLTS must be different. Rule R2 states that if at some phase

of a computation signals are not ordered, then the order should be 'intuitively'

immaterial.

The remaining rules may be used to form a classification of delay insensitive

behaviours. The class satisfying rules R2 and R'3 is called the synchronization

class, denoted by C1. A specification of this class allows synchronization only,

due to the absence of internal decisions. The class allowing decisions to be made

as due to input, satisfying rules R2 and R, is called the data communication

class, denoted C2. Class C3, called the arbitration class, allows a circuit to chose

between two output symbols (rules R2 and R'). Obviously, Ci c C2 c C3 since

	

=* R" and R'3 	33' R'3".

Udding [113] then states that the intuitive reasoning behind rule R2 is overly

restrictive to ensure that a trace structure is delay insensitive. To relax or weaken

this condition, he derives the following rule:

	

R 	for traces s and t and for symbol b E aT of another type than symbols a E aT

and c E aT sabtc E tT A sbat E tT sbatc E tT

The class of trace structures that satisfy rules 0, 1, 2' and 3" is called C4 or the

class of delay insensitive trace structures. Notice that R2 = R and that therefore

C3 c C4. Udding [112] proved that the rules for this class are both necessary

and sufficient to guarantee the absence of both communication and transmission

interference, i.e. formalize to the FRW principle.

One of the principal advantages in using Udding's rules to check the delay in-

sensitivity of an asynchronous circuit behaviour is that this approach also provides

a useful classification of delay insensitive circuits. Each of these rules is easily

translated into a formula in a suitable temporal logic such as Computation Tree

Logic (CTL) [28] or the modal n-calculus [66]. By considering the directed la-

belled transition system a model for the logic, it is possible to check whether the

model satisfies a given formula. This approach is termed 'model checking' and a

Chapter 2. Behavioural Specification 	 40

number of efficient algorithms have been developed to perform such checking. All

example of such a model checker for CTL is described by Clarke et al. [29,35]. By

identifying which of Udding's rules of delay insensitivity are violated, it is possible

to determine whether the circuit is delay sensitive or to which class a component

behaviour the circuit belongs.

Typically in a delay insensitive circuit synthesis system, once the model checker

determines a circuit specification violates delay insensitivity, compilation is termin-

ated with an error message. However, it is possible to modify some delay sensitive

specifications to enforce their delay insensitivity. This ability to 'correct' partially

delay insensitive specifications allows a shorthand representation of DI circuit be-

haviour. For example, the interleaving of communication actions of the same type

requires the user to specify all permutations of a given set of signals. By automat-

ically determining all such permutations, the designer need only describe a single

representative permutation of the circuit's required behaviour.

Of the four rules, only rules R1 and R2 may be 'corrected'. Rule R0 and the

variants of rule R3 determine the required behaviour of the circuit, and breaking

these rules reflects a fundamental flaw in the specification. Violations of rules R1

and R2 may be considered an abbreviated form of the required behaviour, and

the complete behaviour may be determined by adding states and transitions to

ensure their satisfaction. The first form of contravention to be handled, occurs

where an interleaving of signals is not given. By adding either a single transition,

or an extra state and two transitions (depending on whether a partial interleaving

exists) the interleaving requirement is met. The other form of exception occurs

when interleaving of communication actions lead to non bisimilar states. In this

case, a construction similar to that for determining the 'safe' strongly determinate

behaviours of a non strongly determinate specification can be employed. Also

notice that by adding transitions, the modified DLTS may no longer satisfy rule

R0 in which case the original specification is reported as being erroneous.

Stack Example

A demonstration of 'correcting' a delay sensitive circuit specification is given in

the following stack element example due to Josephs and Udding [60]. A delay

insensitive stack of finite capacity may be decomposed into a number of identical

stack elements. The example below describes the control section of a stack element,

Chapter 2. Behavioural Specification 	 41

which when composed with a stack of capacity N yields a stack of capacity N + 2.

One of the interesting properties of this circuit is that it has constant response

time; the time taken to respond to a 'push' or 'pop' request is independent of the

stack's size and its current contents/depth. Extending the specification to handle

data values is straightforward.

A stack element has two inputs, push? and pop? used to add and remove items

from the stack respectively. In response to a push? request, the stack element may

respond with an ack-push! if the request was successful or a full! if the stack

is already full to capacity. In response to pop? request, the stack element may

acknowledge success with an ack-pop! acknowledgement or output an empty!

signal if the stack is currently empty. The specification insists that push and

pop operations are mutually exclusive, and that further requests may only be sent

once the previous request has been acknowledged. A stack of zero capacity may be

implemented by two wires, one connecting push? to full! and the other connecting

pop? to empty!. The suggested decomposition of an arbitrary finite stack is given

in figure 2-5 below.

push? >dpush!

ack-push! < 	dack-push?

full! < 	dfull?

Stack Element
pop? >dpopt

ack-pop!

~--dempty?

dack-pop?

empty!

Figure 2-5: Delay insensitive stack decomposition

In this decomposition, a stack element has "upward" terminals .push?, pop?,

ack-push!, full!, ack-pop! and empty! that are used to communicate with the

stack's environment, and the "downward" terminals dpush!, dpop!, dack-push?,

dfull?, dack-pop? and dempty? that are connected to the rest of the stack. In

Josephs and Udding's decomposition, a stack element is conceptually in one of

three states, either empty (E), partially full (P) or full (F). In the empty state

a push is immediately acknowledged and the state changes to P. In a partially

full state, a push is immediately acknowledged and the current value is pushed

downwards. If this downward push is successful, acknowledged by dack-push?,

the element remains partially full otherwise on receipt of dfull? the stack element

enters the full state, F. When full, a stack immediately declines push requests with

Chapter 2. Behavioural Specification 	 42

full The actions performed when popping a stack are similar due to symmetry.

The CCS specification of the behaviour of an (empty) stack element is given in

figure 2-6.

bi E pop?.empty!.E + push?.ack-push!.P

bi P pop? .ack-pop! .dpop! .W1 + push? .ack-push! .dpush! .W2

bi F pop?.ack-pop!.P + push?.fullLF

bi Wi dack-pop?.P + dempty?.E

bi W2 dack-push?.P + dfull?.F

Figure 2-6: Original stack element specification

The DLTS states denoted by the CCS agents Wi and W2 in the above spe-

cification correspond to the points ('states') in the stack element's behaviour in

which the circuit is quiescent waiting for the stack below to respond to either a

dpop or dpush! signal This behavioural specification denotes the directed labelled

transition system represented by the transition graph displayed in figure 2-7.

empt

Figure 2-7: Original stack transition graph

Applying the model checking procedures described earlier, the above strongly

determinate directed labelled transition fails to satisfy Udding's rules of delay

insensitivity for certain states. For example, the specification states that after

a partially full stack element receives a push? input it must first generate an

ack-push! output and then generate a dpush!. This strict sequential ordering on

communication actions of the same type is prohibited by rule R1 which requires

such signals to be reordered. Intuitively, by attaching.wires with unknown delays

Chapter 2. Behavioural Specification 	 43

to such a circuit, even if dpush! is generated after (or even because of) ack-push

it may reach the stack element's environment first due to adverse delays in the

connecting wires. This situation may be remedied adding the requisite transitions

to also allow the circuit to generate these two signals in the reverse order. Applying

this 'correction' approach to the whole directed labelled transition system results

in the DLTS represented by the transition graph in figure 2-8 below.

r7 	push?

I / \dempty? 	. -

emPtY 1/ / \\\\\ pu5h?

pop?

dapopi

-.apopl

pop?
dempty?, 	dpopi dpopl

-1'...........apop!
dapop..

dapopI. .dapushi

push? 	dpushl

Japush
apushi 	 dfull?

.push? 	-.
dpush!

T) dapushi 	 t r 	,

	

POP? 	push?

;dfull?

pop?

Figure 2-8: Complete stack transition graph

This modified directed labelled transition system now satisfies the constraints

imposed by Udding's rules of delay insensitivity. It satisfies rules R0, R1, R2

and R' but breaks rule R'3. This identifies the stack element as a valid data

communication (Udding C2) class component. The complete transition system

contains 19 states and 34 transitions whilst the original consisted of only 13 states

and 18 transitions. The advantage in 'correcting' delay sensitive behaviours is

demonstrated by considering the relative sizes of the specifications for the two

DLTSs. The original specification given in figure 2-6 is almost half the size of

its delay insensitive equivalent in figure 2-9 below. These savings are even more

dramatic for circuit behaviours that exhibit a significant amount of concurrency.

Chapter 2. Behavioural Specification 	 44

bi E push?.ack-push!.P + pop?.empty!.E

bi P push?.Mpush + pop?.Mpop

bi F push?.full!.F + pop?.ack-pop!.P

bi Mpush ack-push! . dpush! Wpush + dpush! ack-push! .Wpush

bi Mpop ack-pop' .dpop! .Wpop + dpop! .ack-pop! .Wpop

bi Wpush dack-push?.P + dfull?.F + push?.WFpush + pop?.WFpop

bi Wpop dack-pop?.P + dempty?.E + push?.WEpush + pop?.WEpop

bi WFpush dack-push?.Mpush + dfull?.full!.F

bi WFpop dack-push?.Mpop + dfull?.ack-pop!.P

bi WEpush dack-pop?.Mpush + dempty?.ack-push!.P

bi WEpop dack-pop?.Mpop + dempty?.empty!.E

Figure 2-9: Complete stack element specification

2.6 Interface Partitioning

Delay insensitive circuits operate in input-output mode. Input signals may be sent

to a component or circuit as soon as the preceding outputs have been generated.

Hence an input may only be sent to a delay insensitive component if it may be

sent initially or in response to an 'enabling' output communication. Typically,

when a delay insensitive circuit is specified, its environment is assumed to consist

of a single component or mechanism that is able to observe all of the circuit's

outputs and hence regulate when it sends signals to the component to the allowed

points in the behaviour. The principal assumption is that for each input signal,

the signal's enabling output action can be observed by the same environment that

generates that input. Commonly however, a circuit's interface may be divided

among a number of autonomously operating mechanisms or subenvironments. The

specifications for these circuits must ensure that each interface may independently

operate correctly. The hazard is that a subenvironment has to assume that an

input signal is enabled by the previous output signal at its interface, rather than

its 'true' enabling output. This requires that each input signal and its enabling

output must be in the same partition of the interface.

Definition 15 A directed labelled transition system (8, so, I, 0, T) may have an

independent environment consisting of a set of input signals, 'E c I, and output

Chapter 2. Behavioural Specification 	 45

signals GE c 0, if for all states Si E S both the following conditions hold

i If there exists a pair of transitions s1 4 s 2 and S2 - 53 where a E 0 - GE

and b E 'E then there exists a transition s1 4 s

ii) If there exists a pair of transitions si 4 S2 and S2 4 83 where a E GE and

b E I - 'E then there exists a transition 8i 4 s

A corollary of this definition is that if the subenvironment formed by IE and

GE is a valid independent environment then so is the subenvironment formed by

the remaining terminals I - 'E and 0 - OE-

A useful operation on directed labelled transition systems is the automatic

partitioning of its environment. Much like 'correcting' delay (in)sensitivity above,

this operation adds the necessary states and transitions to ensure that a given set

of inputs and outputs is a valid independent environment of the circuit's behaviour.

Using the names introduced in the above definition, every violation of the above

rule may be 'corrected' by introducing a new state .34 such that it has transitions
a1

si -4 s4 and 94 -4 53. Once this construction has been applied to all states in the

circuit's behaviour, the DLTS may need to be rechecked for delay insensitivity.

This construction allows a subenvironment to send a transition to the circuit as

soon as it can determine the input may be accepted, and this input is ignored by

the circuit until such time as the original specification was ready for it. A circuit

level construction that performs a similar operation using decision wait elements

will discussed in a later chapter.

An example of partitioning a circuit's environment is given in the one-place

buffer circuit specification given below. This example is due to Martin [79] and

is translated directly from the handshaking expansions used in his original paper

to the CCS process algebra used in this thesis. The one place buffer has two

inputs, xi? and yi?, and two outputs, xo! and yo!, that are used to implement

two four-phase handshaking channels to independent environments {xi?,xo ! } and

{yi?,yo ! }. The behaviour of this component is to receive a single 'token' on its

passive X channel and then output it on its active Y channel (These terms will be

described in more detail in the later section on communications protocols). The

circuit initially receives an xi? input indicating that the environment wishes to

place a token in the buffer. This request is then acknowledged by the output xo!.

Once the environment receives this acknowledgement it withdraws the request xi?,

to which the component withdraws xo!, to complete the four-phase handshake

Chapter 2. Behavioural Specification 	 46

on channel X placing a single token in the buffer. The circuit then attempts

to output the value via the Y channel, by signalling the request yo!. When the

environment is ready to accept the token, it acknowledges with yi?. And the cycle

is completed by withdrawing the request yo! and waiting for the acknowledgement

to be withdrawn. Martin's specification for this component is given by the CCS

agent Buffer in figure 2-10 below.

bi Buffer xi?.xo!.xi?.xo!.yoLyi?.yo!.yi?.Buffer

Figure 2-10: Original one place buffer specification

Once this specification is corrected for being delay sensitive (caused by no in-

terleaving of the signals xo! and yo! or yi? and xi?), this specification describes

the directed labelled transition graph given in figure 2-11 below. Note the ad-

ditional states and transitions added to ensure the circuit is a delay insensitive

synchronization (Udding C1) class component.

X01

Figure 2-11: Original one place buffer transition graph

Implicit in the high level description of the one place buffer is the fact that

the circuit's environment consists of two independent interfaces, {xi?,xo ! } and

{yi?,yo 1 }• In his paper, Martin even gives potential implementations of the en-

vironment as two distinct components, a wire and an invertor. The behavioural

Chapter 2. Behavioural Specification 	 47

specifications of these components (appropriately labelled) are given by the two

CCS agents below.

bi Invertor xi' .xo?.Invertor

bi Wire yo?.yi!.Wire

However, careful inspection of the transition graph given in figure 2-11 reveals

that composition of these components with the original buffer specification leads

to interference. This is because {xi?,xo ! } is not a valid independent environment

of the original buffer specification. Consider the point in the circuit's behaviour

once a token has just been placed in the buffer and the acknowledgement xo! has

been withdrawn. To the 'sending' X environment, the buffer is now observation-

ally indistinguishable from the point when it may receive another xi? request.

This is because one of xi?'s enabling outputs, yo!, is not part of xi?'s partition

of the circuit's interface. However, if the above construction to partition an en-

vironment is applied to the specification this problem is resolved. The resulting

directed labelled transition system has the transition graph given in figure 2-12

below, which has the intended behaviour, and hence may safely be composed with

the components described above. This construction provides another convenient

'short-hand' method for specifying complex circuit behaviours.

xo!

xi? 	.yo!

xo,V

X' ' '\

	'yi?

? xi? 	'yo!
Y

YO! 	-, 	yi?

i?

V

Figure 2-12: Complete one place buffer transition graph

Chapter 2. Behavioural Specification 	 48

2.7 Compiler Representation

A delay insensitive circuit synthesis system must perform some or all of the trans-

formations and checks described in this chapter. This requires the abstract model

of a circuit behaviour to be efficiently represented on a computer and suitable

algorithms to apply the above techniques to this representation. The principal

aim is to avoid the problem of state explosion, namely that a system of N com-

ponents with n states each may have n N states. Luckily, a number of approaches

have been developed that permit the efficient checking and manipulation of circuit

specifications.

Binary Decision Diagrams

A suitable data structure for representing directed labelled transition systems is

the binary-decision diagram (BDD). A BDD is a normal form representation of a

boolean function f : 	-+ B, where B = {O, 11, that is often much smaller than

other normal forms [15]. The BDD is used to encode a binary representation of the

characteristic function of the transition relation. This representation allows very

large transition systems to be compactly represented within a computer. The use

of additional BDD techniques, such as partitioned transition relations [18], permit

current computer workstations to manipulate transition systems with several orders

of magnitude more states than would be possible/practical with explicit transition

graph based data structures.

An efficient implementation method for a BDDs, using reduced ordered BDDs

has been described by Brace, Ruddel and Bryant [9]. Burch at al. [19] describe how

to efficiently implement BDD model checking for a powerful modal j-calculus (that

includes bisimulation testing), and Enders, Filkorn and Taubner [42] describe a

technique for construction of BDD transition graphs directly from process algebras

such as CCS, using the parallel composition, restriction and relabelling operators.

The resulting BDDs from such a technique grow only linearly in the number of

parallel components, and hence avoid the problem of state explosion.

Chapter 2. Behavioural Specification

State Minimization

In order to reduce the time complexity of many of the operations performed on dir-

ected labelled transition systems, the specification is processed at several stages to

reduce the number of states in the transition system. This amounts to determining

the minimal normal form of a DLTS as described in section 2.1.1. Calculating

the normal form, called state minimization, removes redundant and unreachable

states. This procedure is one of the major advantages of using a behaviour based

synthesis method over existing syntax directed translation techniques. It enables

global optimization of circuit specifications, reducing a specification to a minimal

behaviourally equivalent form by examining all of the circuit's states. This step

typically results in significant improvements in the quality of circuits generated

over existing delay insensitive circuit synthesis systems [119,14]. The algorithm

used to minimize the number of states in the specification is based on 'partition

refinement'. Such algorithms are commonly used to minimize the number of states

in the finite automata used by lexical analyzers. An example of such an application

is presented by Aho, Sethi and Ullman [1].

The minimization algorithm maintains a partitioning of the nodes of the graph

G, which is a set of blocks, where each block is a set of nodes such that each node

of C is contained in exactly one block. Such a partitioning naturally induces an

equivalence relation on the nodes of the graph: two nodes are related if they are in

the same block. The algorithm starts with the initial partition containing only a

single block and then successively refines this partition. It terminates when the in-

duced equivalence relation becomes an observational equivalence on the behaviour

of the circuit. Finally, all the nodes within a single block are collapsed to a single

node, to produce an equivalent graph with the minimum number of states. The

current implementation is based upon the algorithm described by Kanellakis and

Smolka [63], as used in the 'Concurrency Workbench' process algebra tool [30].

An improved algorithm, described by Paige and Tarjan [94], would shorten the

execution time even further from 0(mn) to (9(m log n) for determining the normal

form of an n-state DLTS having m transitions.

In addition to the advantage of reducing the size of the specification, state min-

imization has the added benefit that no two distinct states in a circuit behaviour's

normal form are bisimilar. Two states in the original specification are bisimilar

if they correspond to the same state in its normal form. This greatly reduces

the time complexity of many of the tests performed during the synthesis process

Chapter 2. Behavioural Specification
	

50

since testing for bisimulation equivalence reduces to testing for state equality. Hav-

ing performed state minimization all of the test described in this chapter may be

performed by simple local model checking. These tests may even be optimized

in the compiler, allowing a number of properties to be tested simultaneously and

hence reducing the number of times a given state is examined. For example, all of

Udding's rules may be checked concurrently.

In the current delay insensitive circuit compiler implementation, each state of

the state graph is initially tagged with the location in the source specification file

at which it is defined. This allows diagnostic error messages, such as those caused

by delay sensitivity, to be presented to the user indicating the erroneous point in

the specification.

Chapter 3

Basic Components

One of the original difficulties in asynchronous design until recently has been the

unavailability of appropriate components. The advent of semiconductor technology

has made it easier to design asynchronous circuits. VLSI design tools have expan-

ded the menu of components that a designer can use. If necessary, new primitives

can be custom-designed.

3.1 Handshaking

Since there are time and energy costs associated with driving a transition onto

a wire, it pays to use as few transitions as possible in asynchronous signalling

conventions, commonly referred to as handshaking. It is clear that there must be

at least one transition, or change of voltage, on a wire to signify the occurrence

of an event. Hence consecutive signals or events may be indicated by alternat-

ing high-to-low and low-to-high transitions. This signalling scheme is variously

called transition, two-phase or non-return-to-zero (NRZ) signalling. The major

advantages of two phase handshaking are that it is as fast and as energy efficient

as possible. However, additional logic and state information may be required in

each element since logic devices tend to be sensitive to voltage levels or transitions

in a particular direction.

The only real alternative to two-phase handshaking is a protocol first used

by Muller and used in many of his examples of speed independent circuits. It is

sometimes referred to as either Muller, four-phase or return-to-zero (RZ) signalling.

The return to zero character of four-phase handshaking tends to result in very

Chapter 3. Basic Components 	 52

simple and natural circuit implementations but uses twice as many transitions as

transition signalling. Whenever wire delay is a substantial fraction of the operation

time, the extra trip required by a single communication is a serious performance

penalty.

In four-phase handshaking all wires are initially low, and after each message

is sent are returned back to their initial low state. This is given the name 'four

phase handshaking' owing to the fact that both transitions are accompanied by

an additional acknowledgement, resulting in four phases for a complete message

transfer. One principal advantage of this approach is it limits the number of wire

state patterns that may occur with each wire pattern indicating a unique datum.

3.2 Primitive Components

One of the advantages of the described methodology is that it decomposes the delay

insensitive specification into a finite basis of standard primitive components. By

using standard primitive components instead of custom designing, the investment

in finding an especially good design may be amortized over all its uses. This

usually reduces design time and results in faster implementations.

In much the same way as conventional clocked circuits are composed out of

standard primitive components such as AND and OR gates, speed independent

and delay insensitive circuits are frequently composed purely of common elements.

Owing to the constraints placed on this class of digital circuit it is not surpris-

ing that these components are not those normally used in conventional design.

The operation of a few of the more common primitive building blocks is given in

the sections below. A more complete list of such devices may be found in the

literature [10,14,20,60,641110].

Keller [64] determined a set of primitive modules that were "universal" with

respect to a class of speed independent circuits. This is a similar result to the fact

that the NAND gate and the NOR gate are both universal to synchronous designs,

i.e. all such designs may be implemented entirely of such primitives. Keller showed

that only three elements were required for four-phase speed independent circuits.

These three elements were the Merge, the Select and the Arbitrating Test-and-Set

elements.

Chapter 3. Basic Components
	 53

3.2.1 Merge

A merge produces an output transition for each transition on either input. This

component is commonly realized with an XOR gate. The merge element in trans-

ition signalling is analogous to an OR gate in conventional level signalling. Merges

are commonly used to connect several components to a shared bus in data path

based systems. The use of an XOR gate places several constraints on the environ-

ment, since there is a possibility of transmission interference if both inputs change

simultaneously.

bi Merge a?.p!.Merge + b?.pLMerge

Figure 3-1: Merge element

3.2.2 Muller C-element

The Muller C-element is a very useful device for the design of self-timed circuits.

Its output goes low when all of its inputs are low and becomes high when all of its

inputs are high, and otherwise the output stays in whatever condition it was. In

transition signalling terms, a c-element produces an output transition after every

pair of transitions on its inputs. Russian terminology refers to a c-element as

a hysteresis flip-flop (F-flip-flop). Delay insensitive use of the c-element places

the constraint on the environment that it may not send two transitions down an

input without sending a transition to the other input and waiting to receive the

output transition between them. This is a fundamental difference in the use of the

c-element between delay insensitive and speed independent circuits.

p1

bi CElem a?.b?.p!.CElem+ b?.a?.pLCElem

Figure 3-2: Muller c-element

Chapter 3. Basic Components
	

54

3.2.3 Keller Select

The primary state holding element is the select element, or SR. Its state is set by a

signal on its S input, reset by a signal on its R input and tested by a transition on its

T input. The receipt of an S input is acknowledged by a S' output, and a R request

produces a R' acknowledgement. When the state of the select element is tested,

the two output signals TO and Ti indicate the result of the test and acknowledge

the T. For correct operation each input transition must be acknowledged by an

output transition, before any further requests are sent.

bi SelO t?.tOLSe1O + r?.r"!.SelO + s?.s!.Se11

bi. Sell t?.ti!.Seli + r?.rLSe1O + s?.s!.Sell

Figure 3-3: Keller Select element

An instance of a select element may be used within a circuit in one of two

ways. In the first, the environment always guarantees to send either a set or reset

signal before the state of the select is tested. The other mode of operation relies

on the initialization of the select element to a default state. Because the signals

R, R' and TO are completely symmetric to S, S' and Ti respectively, the default

state is conventionally chosen to be reset. The implementation of the initialized

selects is not covered by the design methodology, but may be achieved by the use

of a global reset signal. Such reset signals are not usually displayed in schematic

representation of delay insensitive circuits.

Occasionally, a Keller select element is used within a circuit where it is never

reset. In such a case the select element is used as a 'switch' component. All tests

on the state of a switch element result in the acknowledgement TO until the circuit

receives its first set signal 5, whereafter all further tests return Ti. Hence the select

element is only used as a simple switch, and never has a state transition from set

to reset. This restriction on its behaviour results in more efficient implementations

of switch elements than of generic select elements.

Select elements may be implemented using decision wait elements (as described

in the next section). The ability to use decision waits to create select elements and

Chapter 3. Basic Components 	 55

vice versa, allows either component to be used as a primitive basis component. In

the delay insensitive circuit synthesis procedure described later, the select element

is preferred as it is considered the principal state holding component and the Muller

c-element the principal synchronization component. The decision wait element,

performing both these roles, is considered as a composition of the two. However,

in line with current delay insensitive research, many circuit synthesis steps are

explained in terms of both select elements and decision waits.

The select element may be fabricated from a 2 x 3 decision-wait and four 2-

input merge gates, as shown in figure 3-4 above. The test, set and reset signals

form one dimension and the state of the select forms the other dimension. Two

merges are used to combine the set and reset outputs into a pair of single set and

reset acknowledge. The remaining merges are used to generate the feedback inputs

for the next state.

r? 	t? 	SI

r'

to! ti!

Figure 3-4: Select element implementation

3.2.4 Decision-wait elements

The circuit synthesis method makes use of either of two circuit bases at the lowest

level of abstraction. The first circuit basis consists of the merge, c-element and

Keller's select element. Although this is the smallest basis for the class of determin-

istic delay insensitive circuits considered, other researchers use the class of M x N

decision-wait elements in place of the select element. In general any decision-

wait element may be delay insensitively decomposed into a network of merges,

c-elements (lxi decision-waits), 2x1 decision-waits and 2 x 2 decision-waits. This

collection of primitive components forms the second circuit basis of the synthesis

method.

Chapter 3. Basic Components 	 56

The schematic representation of a decision wait element is shown in Figure 3-5.

Conventionally, two dimensional decision wait elements are depicted as a matrix

of cells, with inputs along two perpendicular edges and the corresponding outputs

being generated in the centre of each cell.

c bi? 	 i!

c2!

a?

bi DW21 b1?.a?.c1!.DW21 + b2?.a?.c2!.DW21 +

a?.(b1?.c1!.DW21 + b2?.c2!.DW21)

Figure 3-5: 2x1 decision wait

A 2 x 1 decision-wait is implemented by merging the set and reset acknowledges

of a select element and combining the output and the column input with a c-element

which is fed back into the test input of the select element. The select element and

merge gate are often combined into a single call element (see section 3.3.3), if such

a component exists as a standard cell.

a?
b1?—s

R' N T]i- Ci!
TO -BR- c2!

Figure 3-6: Decision wait implementation

In addition to the 2x1 decision wait element, the 2x2 decision wait element

is required in order to implement arbitrary two (and higher) dimensional decision

wait elements.

Unlike one dimensional decision waits, instances of higher dimension decision

wait elements may have outputs that never transition. This is caused when a

particular row/column combination is guaranteed never to occur. These outputs

are termed 'unused' or 'non-live', while outputs that do transition are termed 'live'.

The non-live outputs of a decision wait are denoted in schematic diagrams by not

marking the row/column position with a 'dot' and also omitting the output wire.

Chapter 3. Basic Components
	

57

bi DW22 aO?.bO?.cOO!.DW22 + aO?.bl?.cOl!.DW22 +

al?.bO?.clO! .DW22 + al?.bl?.cll! .DW22

Figure 3-7: 2x2 decision wait

In the one dimensional case, an N x 1 decision wait with a non-live output can

be replaced with an (N - 1)xl decision wait. This is because a non-live output

can only be caused by a non-live input.

Transistor level implementations of small decision-wait circuits tend to be more

efficient than the corresponding select element implementations. However, in the

general case, the choice of circuit basis depends upon the specification being im-

plemented.

3.2.5 RGDA Arbiter

The RGDA Arbiter is another primitive arbitrating component with a slightly more

complicated communication protocol communication protocol. Each subenviron-

ment of the arbitration has four signals, two inpts r? and d? and two outputs g!

and al. The protocol as observed by each subenvironment is a strict sequencing of

input and output actions. The subenvironment initially requests to enter its crit-

ical region by sending a request r? which is eventually acknowledged by a grant

output. To leave the critical region, the subenvironment sends a done signal d?

which is confirmed by a final acknowledge output al. This sequence of operations

leads to the RGDA name of the arbiter.

Chapter 3. Basic Components

Ri 	Gi
Dl 	Al

GiD
R2 	G2
D2 	A2

Figure 3-8: RGDA Arbiter

3.3 Standard Components

Although the design methodology decomposes all circuit specifications into the

three 'atomic' primitive components described above, it also refers to common

connection topologies of these components. These common components, or sub-

circuits, do not increase the generality of the existing primitives, but are frequently

used by other asynchronous circuit researchers, and are used effectively as a con-

venient representation for the subcircuit they denote.

Although the primitive components are sufficient to fabricate any data commu-

nication class component, the actual implementations derived from them are not

necessarily optimal in terms of speed, area or power consumption. The advantage

of using standard macro components is that if efficient implementations of these

circuits exist in a library of parts, they may be instantiated directly into the final

design. This enables circuits to be fabricated from a minimal cell library of only

three parts, and still take advantage of the benefits of larger cell libraries.

3.3.1 IWire

The IWire component is commonly used in delay insensitive circuits to set up

initial conditions. An Mire (Initialized Wire) has a single input a? and a single

output b?. It behaves by initially generating an output transition and subsequently

generating an output in response to each input. By considering voltage levels,

an IWire component can be seen as equivalent to an invertor or NOT gate in

conventional digital design. As such it may be implemented using an XOR gate

(primitive merge component) with one input connected to logic high. This then

behaves as an invertor.

Chapter 3. Basic Components 	 59

However, as described in section 3.6, the initialization of delay insensitive cir-

cuits poses a number of problems. Hence an IWire is often implemented as a merge

component with one input connected to a 'hidden' initialization wire.

a? 	 p!

bi IWire pLa?.IWire

Figure 3-9: IWire component (Invertor)

3.3.2 Toggle

The toggle element is a commonly used component in delay insensitive circuit

design. A toggle element has a single input a? and two outputs p' and q'. A

toggle element is a state holding component that routes an input transition altern-

ately to its two outputs. The first input transition generates the output p and

subsequent input transitions will generate alternating output signals. The schem-

atic representation of a toggle element marks its initial output with a dot, as shown

in figure 3-10 below. VLSI implementations of the toggle element typically require

'hidden' reset circuitry to initialize its internal state.

P1
a?

bi Toggle a?.p!.a?.q!.Toggle

Figure 3-10: Toggle element

The toggle element is easily constructed from an initialized select, where the

results of the test input are used to set or reset the select element into the opposite

state. The set and reset acknowledge outputs of the select element then form

the toggle outputs. Similarly, the toggle element may also be implemented by an

initialized 2x1 decision wait element, where the two outputs are used to define the

next (row) state and the column input forms the toggle's input.

Chapter 3. Basic Components 	 60

r1S 	S'
	 a?

III
I 	4R 0 R'

a?
	TO

Figure 3-11: Toggle implementation

3.3.3 Call Element

A call module implements the hardware equivalent of a subroutine call. It combines

two pairs of request/ acknowledge signals, Ri?/Al! and R2?/A2!, into a single

pair R! /A?. This allows two mutually exclusive 'processes' to share a common

communication channel. After a request from either Ri? or R2?, the call component

generates the output R!. When this request is acknowledged by the input A?, the

call acknowledges the appropriate source; generating Al' if the original request

was Ri? or A2! if the original request was R2?. Much like a software subroutine

call, the call module is responsible for remembering which of the two 'clients' made

the request in order to acknowledge the correct 'client'.

Ri
Al 	R

R2 A
A2

bi Call rl?.r! .a?.al! .Call + r2?.r! .a?.a2! .Call

Figure 3-12: Call element

There are two common ways to implement a call module depending upon the

choice of primitive basis. The first method requires a Keller select element and a

merge gate, and the second method uses a 2 x 1 decision wait and a merge gate.

The select implementation uses Ri? and R2? to set and reset the select element

respectively. The set and reset acknowledge signals are then merged to create the

R! output. The returning A? input is then used to test the state of the select

element, the TO! output is used to generate A2! and the Ti' output generates Al!.

The alternative, and potentially faster, implementation is to use a 2 x 1 decision

wait element. The Ri? and R2? inputs are forked and merged to generate the

ri? all

a2!

rI 	a?

Chapter 3. Basic Components 	 61

R! output. The other branches of the fork are fed into the rows on the decision

wait. The acknowledge input A? is then used as the decision wait's column input,

and the two decision wait outputs for the acknowledge signals Al! and A2!. This

implementation is potentially faster than the select method described above, since

the state setting/resetting is performed in parallel with the communication action

on the shared channel.

rl?S

iifiiI7II-.. r I

all a? -.lT 	TOjillilli: a2 I

Figure 3-13: Call element implementation

3.3.4 Conventional Logic Gates

The normal logic gates used in conventional logic synthesis (AND, OR, NAND

and NOR) may also be used in delay insensitive circuits. Typically they are used

as efficient implementations of merge elements (XOR gates) that have appropriate

restrictions on the environment's behaviour. In addition to the invertors mentioned

above, a subset of delay insensitive specifications will generate conventional logic

implementations, which are guaranteed both race and hazard free. This feature of

the synthesis process allows the use of multi-level logic optimization and technology

mapping to existing technology libraries. However, extreme care must be taken to

ensure that the delay insensitivity of the resulting circuit is not compromised by

the logic minimization. Suitable minimization algorithms are described by several

of the researchers mentioned in section 1.4.2.

Although the proposed circuit synthesis methodology does not use conventional

logic gates during the synthesis steps, the peephole optimization and technology

mapping phases (section 6.1.9) replace primitive delay insensitive components with

conventional gates that have efficient transistor level implementations.

Chapter 3. Basic Components
	 62

3.3.5 Choice Element

Another common component in delay insensitive circuit synthesis is the choice

element that non-deterministically chooses between one of two possible output

events. A choice element has a single input a? and two symmetric outputs p! and

q!. After each transition on the input, the circuit generates a single transition on

either of the two output terminals. This component is the canonical example of a

statically non-deterministic' component. The schematic representation and C C S

behaviour of the choice are given in figure 3-14.

a? — j
r:~- q I

bi Choice a?.(p!.Choice + q!.Choice)

Figure 3-14: Choice element

Depending upon the notion of implementation, it may be permissible to imple-

rhent a choice element with a deterministic component such as a toggle element

or even a single wire connecting the input to one of the outputs. One possible

implementation is to fork a signal and feed the two branches into an arbiter to

determine which arrived first, relying on our non-deterministic model of delays.

However, once fabricated such an implementation would typically make the same

decision under identical operating conditions. The problem is that there no no-

tion of fairness or probability attached to the generation of either output. It may

sometimes desirable to make a truly random 'fair' choice between outputs, but this

cannot be expressed in the current formalism.

General N-output choice components can be implemented by simply generat-

ing a binary tree of N - 1 two-output choice elements. If the probabilities of each

output on the primitive choice are known, the choice tree may be skewed/balanced

to improve performance. It is also possible to generate an N-output choice com-

ponent with equal probability outputs from individual choice elements with equal

probability outputs. The technique is to use a statistical 'test and reject' method.

A balanced 2'-output choice tree is constructed, where k = 1092 Ni, which gener-

ates outputs with equally probability. N of the outputs are then nominated as the

choice's outputs and the other 2" - N outputs are then combined in a merge tree

and merged with the input to produce the root signal of the choice tree. Hence,

Chapter 3. Basic Components 	 63

if one of these outputs is ever produced, it is 'rejected' and the signal used to

generate another possible output. Note, this construction only makes sense if the

'fairness' properties of the individual components are known.

3.4 Generalized Components

Throughout the description of the circuit synthesis process, the design methodo-

logy assumes the existence of several classes of circuits that are generalizations of

the standard primitive components. Typically these generalized delay insensitive

components are abstractions of primitive components with an arbitrary number of

inputs or outputs. These macrocomponents are parameterized on the number of

inputs or outputs and instantiated during the synthesis process. These circuits,

and methods of decomposing them into delay insensitive networks of primitive

components, are introduced in this section.

One advantage of this approach is that efficient implementations can often

be developed for a given size macrocomponent which may then be added to a

designer's parts library. When an asynchronous circuit compiler requires this

particular size of component, the optimized version may be taken from the cell

library. However, if no such custom design exists, the generalized component may

be implemented using standard primitive components.

3.4.1 N-Input C-Elements

The simplest form of generalized component are the N-input merge and the N-

input c-element. The semantics of the N-input c-element is to generate an output

only after all of its inputs have arrived, and those of the N-input merge element

are to generate an output after any of its inputs arrive. The usual restrictions on

input event occurrences on these parts follow from their primitive counterparts.

Both of these macro components may be synthesized by constructing a binary tree

of N - 1 primitive 2-input components.

A typical standard cell library may contain efficient implementations for some

of these components for N > 2, that may be used in the decomposition of other

macro-cells. For example, a very efficient CMOS transistor implementation of a

3-input c-element exists. In order to minimize the total number of standard cells

Chapter 3. Basic Components 	 64

in such trees, the maximum number of input signals should be combined to form

a single intermediate signal and the process applied recursively. This technology

mapping decomposes a 6-input c-element (using the cells described above) into two

3-input elements feeding their results into a single 2-input element. This requires

fewer cells than the three 2-input elements into a 3-input element decomposition.

For the N-input c-element, the synchronization tree may be biased on the

arrival times of each input signal. Those inputs that arrive first may be com-

bined lower in the tree, with the intermediate value being generated one c-element

transmission delay after the later of the two signals. This method may be used

in completion detectors of multiplier circuits where the least significant bits are

typically generated before the most significant bits.

p1
C?

Figure 3-15: 3-input c-element

3.4.2 N-Input Merges

An N-input merge is simply an abstraction of the merge gate to have N inputs. The

trivial cases where N = 1 and N = 2 are implemented by a wire and a standard

merge gate respectively. For the remaining cases, an N-input merge gate, N > 3,

is implemented by a balanced binary tree of N - 1 two input merge gates.

a?

C?

Figure 3-16: 3-input merge component

If the transition time for a single merge is i, the minimum propagation delay

through a balanced N-input merge is k, where k = [1092 N], and the maximum

delay is (k + 1). The typical case delay (assuming all inputs are equally likely)

is given by the expression ((k + 2)N - 2')/N.

Chapter 3. Basic Components 	 65

The average case performance of the N-input merge can occasionally be im-

proved by using Huffman encoding. If the relative frequencies of each of the merges

inputs are known (or can be approximated) the balance of the merge tree may be

biased by the frequency of arrival of each input. Using this technique, frequent

inputs pass through less levels of the tree than infrequent signals improving the av-

erage case performance. Huffman encoding first combines the two most infrequent

input signals to generate an intermediate signal with their cumulative frequency.

This step is repeated until only a single output remains. Given exactly equal in-

put frequencies, the process prefers to combine the shallowest tree which results in

balanced binary trees of merge gates. For Udding C1 synchronization class delay

insensitive circuits, input signal frequency can be determined at 'compile' time.

For the remaining data dependent classes of circuit behaviour, frequency figures

can be determined by circuit simulation or profiling using typical environment be-

haviour. A circuit designer can also provide 'compiler' hints on which signals are

typical and which are exceptions that rarely occur.

If Huffman encoding is used, an unbalanced or skewed tree may actually in-

crease the worst case delay path through the network. However, the typical case

path is reduced such that the average case performance is improved. This is an

example of the difference between self-timed and synchronous design; self-timed

design may improve a circuit's overall performance at the expense of the worst

case delay.

3.4.3 Generalized Call Components

A general call component combines N > 1 mutually exclusive pairs of request and

acknowledge signals into a single pair. The trivial case when N = 1 is simply

implemented by using the only input request /acknowledge pair as the required

multiplexed signals, and when N = 2 is implemented by a standard Call element.

For N > 3, a call element is decomposed by continually multiplexing pairs of

request /acknowledge signals using standard call elements. Each call element will

combine two handshaking pairs, that will need to be combined by an N - 1 'in-

put' call, hence an N 'input' general call component can decomposed into N - 1

standard 2 'input' call elements.

In order to reduce the average period/response time of the general call com-

ponent, the call elements are typically organized as a binary tree. However, if

Chapter 3. Basic Components

ri? 	Al

a1 I 	Al 	A

r2? 	AZ
A

a2! 	A2 	 Al

r3? AZ A a?
a3! AZ

Figure 3-17: general call component

the frequency of each of the inputs is known Huffman encoding may be used to

improve the typical performance as described previously.

3.4.4 Generalized Select Element

A general select element is a Keller select element that has an arbitrary number

of set or reset signals (and their corresponding set and reset acknowledge signals).

This allows the compiler to describe a state holding device whose state may be

modified independently by any number of external inputs, provided that these

requests are mutually exclusive.

For the trivial case, when the select element has no set inputs, a general select

element is implemented by a wire connecting the test input T? to the TO! output

(using the convention that a Keller select element is initially in its reset state).

If the select element has any reset inputs, each of these is wired directly to their

corresponding reset acknowledge outputs. Notice, that because the trivial case is

not state holding, it requires no 'hidden' initialization circuitry at the transistor

level.

A general select element with a single set input and a single reset input is a

standard Keller select element, and one with a single set input and no reset inputs

is the 'switch' component described in section 3.2.3 on page 54.

The standard constructions for decomposing a general select element is to use

a general call element to combine together all the set (or reset) signals to produce

a single set (or reset) request which is fed into the single Keller select (or switch

component) that holds the state. The set (or reset) acknowledge signal generated

by the component is then fed into the single acknowledge input of the general call

element, which in turn produces the appropriate individual set (or reset) signals for

each input. If the general select element has no reset inputs, a single general call

component is used to combine the set/set acknowledge pairs which feed a single

Chapter 3. Basic Components 	 67

switch component. Otherwise two general call elements are used to combine the

set/set acknowledge pairs and reset/reset acknowledge pairs which are the connec-

ted to a Keller select element's set/set acknowledge and reset/reset acknowledge

terminals respectively. This single Keller select element needs to be initialized to

the reset state, if the general select can be tested before it is set or reset.

The frequency with which each input is used to set or reset a general select

element can be used to optimize the decomposition of the general call element (see

section 3.4.3).

3.4,5 Nxl Decision Wait Elements

The trivial case for an Nxl decision wait applies when N = 1, in which case

the 1 x decision wait element may be implemented by a single Muller c-element.

When N = 2, the standard implementations of a 2x1 decision wait may be used

(see section 3.2.4).

For N > 3, an Nxl decision wait elements may be implemented using an

N-input call module and a single Muller c-element. As described in the previous

section, the N-input call module may be decomposed into N - 1 merge gates and

either N—i 2x1 decision waits or N—i Keller select elements. The construction is

to multiplex the N row inputs using the call component to produce a single signal

which is synchronized with the single column input using the Muller c-element. The

output of this c-element is then used to acknowledge the call and hence generate the

appropriate output depending upon which of the N row inputs arrived. Initialized

decision wait elements may be constructed using an asymmetric c-element and

an initialized general call component. The asymmetric c-element allows the first

synchronization to require either only a row or a column input, and the initialized

call tree allows the correct initial output to be generated if only the column input

is required.

3.4.6 NxM Decision Wait Elements

The decomposition of two dimensional decision wait elements is far more complex

than the decomposition of the one dimensional N 1 decision wait. The two sec-

tions below describe the decomposition of N x M decision waits, where N > 2 and

M > 2, using a decision wait and select element bases respectively.

Chapter 3. Basic Components

bi? 	b2?b3?

a

C11 	c2c3I

Figure 3-18: 3x1 decision wait component

Decision Wait Method

An efficient decomposition of two-dimensional decision waits into merges and 2 >< 2

decision wait elements is given by Patra and Fussell [97]. Their method recursively

subdivides the decision wait into four quadrants. A central 2x2 decision wait

element is then used to determine which quadrant contains the output transition

and then directs the relevant input transitions to that quadrant. For a complete

exposition of this technique, the reader is referred to the original paper [97].

Patra and Fussell's method is an improvement over Mark Joseph's that reduces

the number of merge gates by reusing common subexpressions (as described in sec-

tion 6.1.3). This both improves performance (as detailed in the paper) and reduces

hardware. Using this technique an N x M decision wait may be implemented using

(N-1)(M-1) 2x2 decision wait elements and N+M-4 2-input merge gates.

Figure 3-19 below demonstrates the result of this decomposition strategy on a

4 x 4 decision wait. This implementation requires a total of nine 2 x 2 decision wait

elements and four merge gates.

From this example, it is clear that hardware implementations of large two-

dimensional decision waits require a very large number of transistors. Luckily, it

is easy to implement small decision waits directly as 'macro components' using

speed independent techniques. However, decomposition methods are still required

for decision waits larger than equipotential regions.

Chapter 3. Basic Components

ri? r2?

c2

ci

c4?

c3?

r3? r4?

Figure 3-19: 4x4 decision wait decomposition

Select Element Method

An N x M decision wait can also be implemented using the Keller select element

basis. The select element decomposition strategy effectively constructs a two-level

binary tree of select elements. The first (or top) level of the tree implements the

N rows of the decision wait and the second (or lower) level implements the M

columns. The top level of the tree contains N - 1 select elements and N - 1 merge

gates organized as an N x 1 decision wait element, as described in the previous

section. Each of the N outputs of this tree (one-dimensional decision wait) are

fed into 'root' of one of N identical select trees of M - 1 select elements. Each of

these trees records which of the M columns of the decision wait transitioned. The

organization of these N(M - 1) decision waits may be understood by considering

the implementation of an M-input call element, but where each select element

is repeated N times. These repeated select elements are formed by sequentially

connecting the R' and S' outputs of one select element to R and S inputs of the

next. This 'minimal' hardware arrangement requires an additional M - 1 merge

gates (though faster organizations requiring additional hardware are described in

section 6.1.8). The root output of the 'wide call' element is used as the single

column input to the top level one-dimensional 'decision wait'.

This implementation strategy requires a total of NM - 1 select elements, M +

N —2 merge gates and a single 2-input c-element. This can be considered 'optimal'

as the c-element is required for synchronization, and the NM - 1 select elements

are required to generate NM distinct outputs from a single synchronization signal.

Chapter 3. Basic Components 	 70

The merge gates are necessary to preserve connection parity, i.e. the appropriate

number of external inputs and outputs.

3.4.7 N-TOGGLE Circuits

An N-toggle is the generalization of a toggle element to multiple outputs. An

N-toggle, sometimes referred to as a 'Johnson counter', has a single input a? and

N outputs, labelled po!,pi!,.. - pN_1!. After each transition on the input, the N-

toggle cyclically produces a transition on a successive output. After the initial input

transition, it produces the output p0!, after the next input p1! and so on. After

N input excitations, the cycle starts again from the beginning with the output

p0!. The environment may only send another input upon receipt of the pi! output

caused by a previous input.

The trivial cases for constructing an N-toggle from primitive components are

the 1-toggle, which is implemented by a wire, and the 2-toggle which is imple-

mented by a standard toggle component. For N > 3, there are several possible

decomposition strategies for generating N-toggles. The following section present

several methods using decision-waits, toggles, select elements and hybrid methods

respectively.

Decision Wait Method

Perhaps the easiest way to implement an N-toggle is to use a single N x 1 decision-

wait element. The approach uses the decision wait to synchronize the N-toggles

input, on the single row input, with one of the N state inputs, one per column. On

receipt of both the N-toggle's input and the appropriate state signal, the decision

wait produces one of N outputs. This signal is forked, with one branch used to

generate the p! output of the toggle and the other branch is used to indicate the

next state to the decision wait. The output of the last state in the sequence is used

to reset the sequence to its start state. The decision wait element is initialized with

an input to place it in the N-toggles initial state. This implementation is insensitive

to differing delays of the branches in the output forks. The next input will only

be sent after output transitions have been received by the circuit's environment.

Hence even if there is a large delay in the state feedback wires, the decision wait

will wait until both the state signal and input signal have arrived before generating

Chapter 3. Basic Components 	 71

an output. An example implementation of a 3-toggle using this approach is shown

in figure 3-20.

a?

Figure 3-20: Decision wait 3-toggle circuit

Toggle Method

An alternative implementation method is to decompose an N-toggle into several

toggle components and merge gates. When N = 2' for any integer k, k > 2, an N-

toggle may be implemented by a balanced k-level binary tree of toggle components.

The N-toggle's input is fed into the input of the toggle at the base of the tree, the

outputs of which are used to fed the inputs of two 2' 1-toggles that form the

left and right siibtrees. This decomposition is applied recursively until k = 1,

which is implemented using a standard toggle component. The outputs of these

N/2 toggles at the leaves of the tree, form the outputs of the N-toggle. Using

this decomposition an 2' -toggle may be constructed using 2/c - 1 toggles. The

construction is demonstrated by the 4-toggle example, given in figure 3-21 below.

a?

Figure 3-21: 4-Toggle circuit

Some care must be taken to associate each output with its position in the

toggle's sequence. The subtree fed by the root toggle's initial output generates all

even number outputs (po!,p2!,p4! ...) and its other subtree the odd number outputs

Chapter 3. Basic Components 	 72

(p1!, p3! . . .). One method of assigning the correct outputs is to associate a pair of

numbers, representing the 'start' and the 'step' respectively, to each toggle in the

N-toggle. The root toggle is assigned the value (0, 1). If an internal toggle has the

value (u, v), then the toggle at its initial output is assigned the value (u, 2v) and

the toggle at its other output is given the value (u + v, 2v). For a leaf toggle with

the value (u, v), its initial output generates the output Pu ! and its other output

generates the signal pu+v!. A delay insensitive circuit compiler can implement this

technique efficiently using binary representations and bit vectors.

For the cases where N 	2", the required behaviour is achieved by creating

an M-toggle, where M = 2Iog2 Ni The surplus M - N outputs are then merged

together and combined with the input signal a?. This has the effect that if one of

the 'surplus' output is reached in the M-toggle sequence, that signal is not output

but used to advance the toggle to the next state. By combining M - N outputs, the

circuit generates a cyclic sequence of N signals, an N-toggle. This decomposition

requires M-1 toggles and a single (M—N)+ 1-input merge (typically decomposed

into M - N merge gates). Using the Huffman coding optimization, the a? input

appears at the very top of the merge tree because it occurs more frequently than

any of the feedback signals. This significantly improves the performance of the

decomposition. Figure 3-22 below demonstrates this construction applied to a 3-

toggle circuit. Note that the choice of which outputs to merge is arbitrary, but may

have an effect on the worst case response time of the toggle. Hence, combining

consecutive outputs will cause several iterations of the M-toggle before an output

is generated.

a?

P0 I

P, 1

Figure 3-22: 3-Toggle circuit

Performance analysis of the above decompositions is straightforward. Let k =

11092 Ni. For the case N = 2", the period of the N-toggle is given by Nki and

the response time is ki, where I is the transition time for a single toggle. When

Chapter 3. Basic Components 	 73

N 	2k, the minimum response time is kZ + i where is the transition delay of

a single merge gate. Provided that consecutive outputs are not used as feedback

signals, the worst case response time is given by 	 +2), i.e. the

worst case delay through the merge tree plus twice the delay through the 2ktoggle.

Determining the period, and therefore the average response time, is slightly more

complex. The period of the 2k-toggle is 2"kt, the merge gate at the toggle input

has a period of 2' and the merge tree for the M = 2' - N feedback signals has a

period of ((M - 2) [M] + 2) (using the result given in section 3.4.2). This merge

tree is balanced by Huffman coding because all inputs occur with equal frequency.

This gives the total period of a N-toggle by the following equation.

2kk'+ ((2" - N - 2)[2k - NJ + 2k + 2)

Select Element Method

An alternative approach is to implement an N-toggle using Keller select elements.

It is more efficient to implement an N-toggle directly rather than using the toggle

decomposition method and then implementing each toggle with a select element.

The principal reason is the use of feedback signals, in the N 2" decomposition

method, to skip surplus outputs. This tests and toggles the state of components

that can be avoided by directly implementing the N-toggle using selects. Another

reason for the inefficiency is that every tested select element changes its state,

i.e. there are at least [1092 NJ state changes after each input transition.

The basic arrangement of select elements in an N-toggle is to create a balanced

binary tree of N - 1 select elements. The TO! and Ti! outputs of each select

element are used to generate the T? input on the next level of the select tree. The

N 'intermediate' signals at the leaves of this select tree are then used to modify

the state of the appropriate selects before generating the N-toggle's outputs. A

binary vector may be used to represent each state by concatenating the states of

each select tested for a given input. For a perfectly balanced tree when N is a

power of two, all state vectors have the same length 1092N. Changing state from

a state represented by the vector Ui to the state vector Vj1, requires setting all the

selects that are not part of their common prefix. Hence a state assignment that

maximizes the shared prefix length and only sets and resets each select once in the

N-toggle's sequence (in order to avoid additional components) is required.

Chapter 3. Basic Components 	 74

Optimal state assignments are achieved by assigning consecutive states to one

subtree followed by consecutive states to the remaining subtree. Keller select ele-

ments at the leaf nodes should encode two consecutive states. This ensures that

each select is only set and reset once in a sequence and that prefixes are max-

imized. When N is a power of two, the binary tree is perfectly balanced and all

binary state vectors have the same length; 1092 N bits. For this case, using the

binary representation of each signal's position in the sequence is an optimal state

encoding. If such an optimal state encoding is used, an N-toggle is implemented

using N - 1 select elements. Each select is set and reset once, hence the period

of an N-toggle is 2N - 2 state changes and (k + 2)N - 2k+1 state tests, where

k = [1092 NJ. This has the same 0(1092 N) state tests per input transition as the

toggle decomposition, but only 0(1) average state changes per input transition.

The hidden reset circuitry may be reduced by noting that only the selects on

the path encoding the initial state must be initialized. All the remaining selects

elements are either set or reset before they are tested. If this optimization is

used, the 'initial path' may be made shorter at the expense of performance. When

N =A 2k, the state encoding should assign one of the short binary state codes to the

initial state.

An example implementation of a 3-toggle using this decomposition method is

given in figure 3-23. This 3-toggle is formed using only two select elements, only

one of which must be initialized. The three internal states (outputs) are given the

binary state vectors 0, 10 and 11 respectively. This circuit has a period of 4 state

modifications and 5 state tests.

> p0 1

::_ >

Ti 	 Ti'-'
a?

tT

TO 	TO

Figure 3-23: 3-toggle select decomposition

Chapter 3. Basic Components
	

75

Hybrid Method

Another approach to decomposing N-toggles is to use a combination of the above

techniques. When N is composite (i.e. not prime), an N-toggle may be decom-

posed into several generalized toggles components of lower order. For example,

an nm-toggle (for positive integer constants n and rn) may be decomposed into

an n-toggle and n rn-toggle components. The input signal is fed into the n-toggle,

and each of its n outputs is fed directly into one of the rn-toggles. This circuit will

then cycle through the nrn outputs of these rn-toggles. The required n-toggle and

rn-toggle components can be implemented by any of the implementation methods

described in the previous sections.

3.5 Arbitration Protocols

3.5.1 Mutual Exclusion Element

A common component used in asynchronous circuit design is the mutual exclusion

element (ME). This is a minimal arbitration device with just one input r? and

one output a! per subenvironment. The complete RGDA protocol is multiplexed

onto these this pair of handshaking signals. A request to enter a critical region is

initially sent on r? and granted on al. Similarly, an indication to leave a critical

region is also sent on r? and acknowledged on the same output al.

r 	

al!

r2? i.? 11J a2!

Figure 3-24: Mutual exclusion element

Figure 3-25 below shows how to convert an ME arbitration protocol into an

RGDA arbitration protocol and vice versa. This allows the use of either of these

components to be used as the primitive arbitrating component in a circuit basis.

In practice this decision is based upon transistor level implementation details.

Chapter 3. Basic Components
	 76

ri? 	 • Ri Gl ~~a> all
01 Al

ARB
R2 G2

r2? 	
• 02 A2-TD— a2l

ri? S 	gil

di? all

ME

 r2? 	 2 I

d2 ?:I> a2 I

Figure 3-25: ME to RGDA and RGDA to ME protocol conversion

3.5.2 RGD Arbiter

A performance improvement to the RGDA arbiter results in an RGD arbiter.

There is no reason for the subenvironment to have to wait for the final acknow-

ledge in the above protocol. Once a subenvironment sends the d? to indicate

it has left its critical region, the environment can immediately begin performing

is non-critical actions. Subsequent requests are simply delayed until the arbiter

receives a done d? signal indicating that the subenvironment has left the critical

region. It should be noted that due to the delays in the wires connecting an RGD

arbiter to its environment, a request to re-enter the critical region may be received

before the signal indicating that that subenvironment has left the critical region.

In this case, the arbiter waits until the appropriate done signal is received and then

arbitrates between the re-request and any other requests that may be outstanding,

acknowledging the winner as usual.

Ri

Dl
Gl

GED

R2 G2
D2

Figure 3-26: RGD arbiter

Figure 3-27a below shows how an RGD arbiter may be implemented using an

RGDA arbiter and asymmetric Muller c-elements, and figure 3-27b shows how

an RGDA arbiter may be constructed from an RGD arbiter. This equivalence of

arbitration protocols allows either component to be used as the arbitrating member

of a universal circuit basis.

gil 	 dl?

> all

gi!
Di

G1 rl?R1

g2! EIED I
r2? R2

g2!
d2? D2

> a21

ri?
dl?

d2?
r2?

Chapter 3. Basic Components

Figure 3-27: RGD to RGDA and RGDA to RGD protocol conversion

3.5.3 k-SEQ Component

Another Arbitration protocol examined by delay insensitive circuit researchers is

Ebergen's class of k-SEQ components. These components have a single enable

input b? and k pairs of handshaking signals r? and a!, for 0 < i < k - 1.

The circuit receives an arbitrary number of concurrent r? request signals and the

enable input and generates a single acknowledge a! for one of the received request

signals. For each subsequent enable input one of outstanding requests is granted.

If there are no outstanding requests, the k-SEQ waits for one to arrive.

bi SEQO n?.(rO?.(aO!.SEQO + rl?.SEQ1) + rl?.(al!.SEQO + rO?.SEQ1))

bi SEQ1 aOLn?.(rO?.SEQ1 + al!.SEQO) + a1Ln?.(r1?.SEQ1 + aO!.SEQO)

Figure 3-28: 2-SEQ component

The k-SEQ component operates much like a k x 1-decision wait element with

concurrent row inputs. In fact, a kx 1-decision wait may be implemented by a

k-SEQ component. An alternative form of this component is the initialized k-SEQ

component which behaves as though an enabling b? input has initially be received.

Schematically this is denoted by drawing a circle at the enable input of the k-SEQ

symbol.

Much like the decomposition method given for decomposing N x 1-decision wait

elements into N - 12 x 1-decision wait elements, Ebergeri showed in section 6.2.6 of

his doctoral thesis how to decompose a k-SEQ component into 2-SEQ components

Chapter 3. Basic Components 	 78

and merge gates. Ebergen's initial analysis stated that the decomposition required

less than 2k merge gates and 2k 2-SEQ components, but noted that several of the

2-SEQ components could be replaced /implemented by CAL (2x1-decision wait)

components. A more detailed study shows that his decomposition requires 2N - 4

merge gates, N - 2 initialized 2-SEQ components, N - 2 2x1-decision wait ele-

ments and a single standard 2-SEQ component. The decomposition is to combine

two pairs of request/ acknowledge signals into a single handshaking pair using the

construction shown in figure 3-29. This method is used to construct a binary tree,

which once again may be Huffman encoded to improve average case performance.

rO? 	 ri? r2?

aOl 	all a21

Figure 3-29: 3-SEQ decomposition

Ebergen also gave a methods for implementing a k-SEQ component using a

k-input RGDA arbiter and a k x 1-decision wait element and also for implementing

a k-input RGDA arbiter using an initialized k-SEQ component and a k-input

merge component in section 7.5 of his doctoral thesis. This equivalence means

that Ebergen's 2-SEQ component could be used as the arbitrating element in a

universal component basis.

ri? 	r2? 	 dl? d2?

LIIKIH
gi! g2l 	 al!a2!

a?

bJ

Al

GiD
1 R2 G2 qi

A2 D2

Figure 3-30: SEQ to RGDA and RGDA to SEQ protocol conversion

Chapter 3. Basic Components
	

79

3.6 Initial Conditions

The question arises of the semantics of circuit specifications where the initial state

of the signal transition graph is unstable, i.e. so v. It is assumed by convention

that all wires in the circuit initially have a low voltage. The problem occurs

when the initial actions in a circuit's behaviour state that some of these signals

should rise. In real VLSI implementations it is far from clear at which point an

asynchronous circuit begins operating. There are three potential solutions to this

problem.

The first solution is to ignore the initial output actions and start the circuit

with all wires low in the initial stable state, v. Similarly the DI synthesis system

could enforce that the initial state of the circuit specification is stable.

The second approach is to implement a 'hidden global reset' input signal, Rst?,

that must be received before the circuit becomes operational. Upon receipt of this

signal, transitions are sent on all output wires that occur in the maximal output

event sequence from so and the circuit enters the initial stable state v. This

approach may naïvely be implemented by merging the appropriate outputs from

the synthesized circuit with the global reset signal to generate the actual outputs.

If synthesized circuit does not contain an output corresponding to a signal a in

the maximal output sequence from so, the signal Rst? may be wired directly

to the output port a. Details of how to optimize the use of merge gates in delay

insensitive circuits are discussed later.

The final interpretation to the semantics of initial output communications is to

treat the wires involved as being initially logic high, instead of the conventional

logic low. The naïve approach to such an implementation appends invertors to

all the appropriate outputs of the synthesized circuits. If such an output does

not exist, for a communication action in the initial maximal output sequence, this

may be fabricated by directly connecting the output to a logic high voltage source.

For use with restricted standard cell libraries, invertors may be implemented by

'merging' the required signal with a logic high source.

Each of the above approaches has its merits and disadvantages. The first

uses less hardware than the remaining solutions. The choice between the last

two options depends primarily on the intended environment for the circuit. If an

output is intended to be connected to a transition based component such as a

Chapter 3. Basic Components 	 80

select element, the second solution must be used; however, if the output is to be

connected to a level-oriented component such as a C-element or standard logic

gates, the final solution requires fewer transistors and pins of VLSI package. A

typical implementation may use different approaches to the solution for each output

in the initial maximal output event sequence as required.

3.7 Asynchronous VLSI Circuits

The implementation of asynchronous digital circuits is fraught with hidden com-

plexity. This difficulty is caused by the design abstractions traditionally used by

conventional circuit compilers. The ubiquitous use of clocks in digital circuits over

the past 40 years has resulted in a number of assumptions that are taken for gran-

ted by current day designers and engineers. Not all of these implicit assumptions

are well founded for asynchronous design styles. Hence, the implementation of

digital circuits without the use of a global clock signal can often lead to anomalous

and potentially hazardous behaviour. To date, several asynchronous VLSI circuits

have been shown to be faulty when fabricated [12,77]. However, by fully under-

standing the underlying assumptions and abstractions used in the design process,

it is possible to produce correct and reliable asynchronous circuits.

The principal pitfall with implementing asynchronous circuits is that the clas-

sical notions of delay and 'digital abstraction' may no longer apply. Electronic

circuits consist of components that manipulate voltages, current and capacitances

as continuous, real-valued functions of time. To reason about such systems form-

ally, circuit designers create abstract discrete models of this analogue behaviour.

By using a clock signal, time is quantized into discrete intervals and voltages quant-

ized into digital 'on' and 'off' values. This allows transistors to be idealized as

switches, and switches idealized as boolean functions. These abstractions enable

the physical semiconductors underlying a VLSI circuit to be viewed as a discrete

mechanism capable of performing computation. The mathematical theory of finite

state machines (FSMs) may then be used to model their behaviour.

In conventional MOS logic design, voltage values less than about 1.5 volts are

considered to be 'false' or 'low', and voltages above about 3.5 volts to be 'true'

or 'high'. In these regions MOS transistors operate as perfect restoring switches.

These switches can then be organized to form boolean functions (combinational

Chapter 3. Basic Components 	 81

logic) and state holding storage elements. In conventional synchronous design,

finite state machines are implemented by combinational logic, evaluating the output

and next state functions, and storage elements (flip-flops) that decouple the next

state outputs from the current state inputs. On each global clock tick, the flip-

flops latch the values of the next state outputs and present them as the current

state inputs to the combinational logic. Hence each clock tick performs a FSM state

transition. Using this universal model, it is possible to implement any computation

given physical constraints on the maximum number of states.

This design style has several fundamental properties that enable the discrete

abstraction to apply. The first is the 'voltage restoring' nature of the combinational

logic and the latches.

The dynamic behaviour of a MOS VLSI circuit can accurately be described by

a set of non-linear ordinary differential equations (ODEs). This basic equations

are formed from Kirchoff's laws and branch equations describing the behaviours of

individual devices. These equations represent the relations between voltages, cur-

rents, charges and fluxes and are often highly non-linear. This system of equations

may be presented as a dynamical system in the following form:

aq
= —f(v(t),u(t)) v(0) = V

at

where v(t) E T1 	is an n1-dimensional vector of the unknown voltages at the

internal nodes of the circuit and u(t) E RTh2 is an n2-dimensional vector of the

known voltages at the circuit's inputs (both parameterized as a function of time

t e R+), q is the sum of charges due to the capacitors connected to a node, f is

the sum of the currents charging each node.

qi C11 C12 ... 	Cln V1

q2 = 	C21 C22 .. 	C2 V2

qn C i C2 ..Cn. V

The function f determines the current at each node, which may be decomposed

using Kirchoff's current law to the sum of currents through each device connected

to a particular node. The current through a particular device is then determined

using an appropriate model of its behaviour. For example, the equations describe

an ideal (Shichman and Hodges) model of a MOS N-type transistor [127].

Chapter 3. Basic Components
	

EMI

Cutoff V,-14<O

Id, = 0

Linear 0 < Vd3 < V9. - Vt

Vd2 \
iDS_((V9s_V)Vd8_)

Saturation 0 < V - 4 < V 8

DS = —(V98 - V)2

where Id,, is the drain-to-source current, V is the gate-to-source voltage, 14 is the

device threshold and 3 is the MOS transistor gain factor, which is given by

where t is electron mobility, C0 is the thin oxide layer capacitance and W and

L are the width and length of the device respectively.

3.8 Transistor-level Implementation

Each of the primitive components that form the basis of the described delay in-

sensitive design methodology must itself be implemented in terms of logic gates

or transistors. It has been shown that it is impossible to implement these delay

insensitive primitives in a strictly delay insensitive way. Proofs of this result,

showing that the class of entirely DI circuits is extremely restricted have been

published by both Martin [79] and by Brzozowski and Ebergen [16,17]. To over-

come this limitation different design methodologies distinguish themselves in their

choice of compromises to pure delay insensitivity.

The design methodology presented in this document partitions the design and

implementation of asynchronous circuits in two stages. The first decomposes the

circuit specification in a network of primitive delay insensitive components. At this

level of abstraction the correct operation is independent of the delays in the prim-

itive operators and in wires connecting these operators (except that the delays be

finite). This level of design is able to take advantage of the composition properties

of self-timed circuits in order to reduce design complexity. This enables func-

tionally equivalent modules or subcircuits to be interchanged without affecting the

Chapter 3. Basic Components 	 83

operation of the circuit. The second stage then defines each of these primitive com-

ponents as 'speed independent' network of transistors or logic gates. It is assumed

that because the minimum number of primitive components is low, each of these

operators is implemented as a standard or semi-custom cell.

This approach is advantageous for a number of reasons. The principal gain

from splitting the methodology into two stages, is that global routing of wires

between cells may be performed without regard to wire lengths without affecting

the correctness of the circuit's behaviour. Obviously the circuit performance may

be improved by shortening the lengths of the wires on the critical paths. Similarly,

the only wires of the circuit whose relative lengths are critical to correct operation,

are hidden inside the standard cells implementing the primitive components. These

standard cells only need to be designed once, with the design engineer having

complete control over the semiconductor geometry.

The correct physical implementation of speed independent standard cells is

based upon the ability to fabricate 'isochronic forks' [76]. An isochronic constraint

on a fork or branch in a wire requires the difference in propagation delays between

branches to be negligible. This relies on two physical parameters, the capacitance

difference between the wires composing the branches and the threshold voltages

of the destination transistors. Reducing the difference in capacitances effectively

requires the layout to ensure that wires are short and of approximately equal length.

This is aided by the fact that the typical size of a standard cell is small enough

to be considered an 'equipotential' region [106]. This is a portion of a circuit

within which propagation delays are considered negligible. Techniques to achieve

uniform logic threshold voltages have been investigated by van Berkel at Philips

Research [117].

Several researchers have designed low level transistor implementations of the

more common asynchronous primitive components. The' merge elements is gener-

ally implemented as standard XOR gate. Example CMOS XOR gate designs may

be found in Weste and Eshraghian [127] and similar text books; There exist fewer

examples of Muller C-element designs, however possible CMOS implementations

have been given by van Berkel [117], Brunvand [12], Sutherland [110] and an op-

timized version of a "Martin style" c-element is given by Burns and Martin [22].

Implementation of select elements has only been discussed by Keller [64] in his

original paper, although Brunvand [12] details a similar level-based component.

Chapter 4

Stable State Synthesis Methodology

This chapter introduces an automatic method for transforming behavioural spe-

cifications into delay insensitive circuits. This technique forms the basis for the

described compilation methodology. The first section describes an intermediate

representation for delay insensitive behaviours, called the stable state graph. This

formalism provides an efficient compact representation and allows a classification

of delay insensitive circuit behaviours of increasing level of 'complexity'. The re-

maining sections of this chapter and the next describe the generation of circuitry

from stable state graphs.

4.1 Stable State Theory

The first stage of the automated delay insensitive circuit synthesis methodology is

conversion of behavioural specification into a stable state graph (SSG). A stable

state graph is a compact representation of a delay insensitive directed labelled

transition system (DLTS), as described in chapter 2, that makes use of the prop-

erties of delay insensitive circuit behaviours to reduce the amount of information

explicitly stored. This representation also has a compact textual notation that

makes it more suitable format for presentation than large transition graphs. A

behavioural specification is typically converted into an SSG by an asynchronous

circuit compiler, once it has been checked for delay insensitivity and strong de-

terminacy. However, it is possible to generate an SSG directly from a suitable

specification formalism or to use an SSG as the initial specification, thus poten-

tially avoiding examination of a large proportion of the circuit behaviour's state

space.

Chapter 4. Stable State Synthesis Methodology

4.1.1 Stable States

Stable states are those states of a DLTS that have no out-going output transitions

(formally introduced in definition 7 on page 31). Such states are of special interest

in the synthesis/behaviour of delay insensitive circuits. In the absence of input

excitations, a DI circuit will remain in a stable (or quiescent) state indefinately.

A state of a directed labelled transition system is terminal if it has no out-

going transitions. A terminal state indicates a point in the circuit's behaviour

when the circuit no longer wishes to send or receive signals from its environment.

By definition, all terminal states are stable.

Definition 16 The state s E S of the DLTS (S, so, I, 0, T) is terminal, if there

does not exist any transition s - s' for any input or output label a E I U 0.

When in a stable state, an output signal may only be generated by a circuit

once it receives one or more input signals that excite it into an unstable state. Such

a sequence of input signals, that lead from a stable to an unstable state is termed

a stimulus (or cause) sequence. Udding's rule R1 states that every permutation

of inputs in a stimulus sequence will lead to the same unstable state, and all of

these sequences must be present in the circuit's behaviour (DLTS). From Udding's

rules R0 and R1, each input can occur only once in a firing sequence. This means

that these stimulus sequences may be represented as stimulus (or cause) sets. A

corollary of the fact that each input can occur only once, is that circuits with a

bounded number of terminals have finite stimulus sets.

Definition 17 A set, {ai , a2,. .. a} c I, is a stimulus set (or cause set) of a

stable state si ES of a DI DLTS (S, so, I, 0, T), iffVa.1 < i < n. s, - s ji , for

any intermediate states 82 . . . 5n+1 E S, and UnstabIe(s +i).

Once in an unstable state, a 'live' circuit will generate the appropriate sequence

of one of more output transitions and (in the absence of further inputs) settle in a

subsequent stable state. In a symmetric way to the stimulus sets defined above, we

can define the response (or effect) sets and result states of an unstable state. From

Udding's rules, the ordering of outputs in a response sequence is unimportant as

every permutation leads (can lead) to the same result state, and each output can

occur at most once.

Chapter 4. Stable State Synthesis Methodology 	 86

Definition 18 A set, {pl,p2,... p} c 0, is a response set (or effect set) of an

unstable states1 E of DI DLTS (S, so, I,O,T), iffVpi . 1 < i < n.s -4 s j1,

for any intermediate states s2.. . 8n+1 E S, and Stab1e(s +i). The final stable

state, s,,, is termed a result state of the response set.

For deterministic DI circuits, both the outputs generated and destination stable

state depend only upon the input signals received and the current state. For this

class of DI circuit each unstable state has only a single response set and a single

(unique) result state. Non-deterministic circuits may make an arbitrary choice of

outputs and resultant stable state from the alternatives allowed by the specification.

This means that a unstable state can have several response sets, and each response

set may have more than one result state. However, all 'safe' strongly determinate

behaviours (section 2.1.2) have a unique result state for each response set. The

restriction to strongly determinate non-determinism is only for convenience, not a

limitation of SSGs.

In the exposition above we have assumed that the circuit generates its output

sequence "in the absence of further input excitation". Udding's rule R2 states that

if an input signal (or signals) is received by the circuit while it is in an unstable

state, then its behaviour is identical to receiving that input (or those inputs) once

the circuit has reached the next stable state.

This feature of delay insensitivity suggests an implementation model of cir-

cuit behaviour. The behaviour of a delay insensitive circuit may be considered

to be a number of transitions between stable states. At each stable state, the cir-

cuit receives an enabling 'stimulus' sequence of inputs and generates a resultant

'response' sequence of outputs and enters the destination stable state. If the gener-

ation of outputs and stable state transition is instantaneous, further input signals

from the environment cannot interfere with the computation.

The effect of an instantaneous (atomic) stable state transition may be achieved

by updating the state of the circuit after the inputs have arrived and before any

outputs have been generated. The acknowledgement of the state transition may

then be used to concurrently form the outputs. Although the environment may

send further inputs after the receipt of the first output, the circuit (less the output

[merge] circuitry) is already stable prepared for the next input. The delay insensit-

ivity of the circuit specification means that although a further stable state transition

may fire before one of the first's outputs has reached the environment, the second

Chapter 4. Stable State Synthesis Methodology 	 87

stable state transition cannot generate that output (and therefore interfere with the

first).

4.1.2 Stable State Graphs

With the 'reactive system' interpretation of delay insensitive circuit behaviour

given in the previous section, it is reasonable to define a representation based

on transitions between stable states. These representations have a number of

advantages over directed labelled transition systems.

A stable state graph consists of a finite set of vertices, vo, v1,. . . v, that denote

stable states of a DLTS and a number of transitions between them. By convention,

the initial stable vertex is denoted v0. Each of the transitions between states is

labelled by a pair of non-empty sets, called the cause and effect sets respectively.

The cause set of a transition contains a finite number of distinct input signals, and

the effect set a finite number of distinct output signals. These sets correspond to

the stimulus and response pairs of the reactive behaviour. Mechanistically, in a

given stable state, a transition may fire after all of the input signals in its cause

set are received in any order, in which case the circuit generates transitions on

each of the terminals of the effect set and the circuit enters the destination stable

state of that transition. Only a single transition from a vertex may 'fire' at a time

(the state of a circuit is always denoted by a single SSG vertex) and if several

transitions satisfy the above firing condition, a non-deterministic choice is made

between them.

Definition 19 A stable state graph (SSG) is a pair (V T), where V is a finite

non-empty set of vertices (stable states) and T is a labelled transition relation

T c V x IF (I) x P (0) x V, where I and 0 are non-empty sets of input and

output ports respectively and P denotes the non-empty powerset operator (i.e. P (x)

denotes the set of non-empty subsets of x). For each vertex v of an SSG, we define

an auxiliary function, E(v) c IF (I) x IF (0) x V, that describes the set of outgoing

transitions from state v. For each element (transition), t, in E(v), the terms

cause(t), effect(t) and next(t) denote the first, second and third elements of the

triple respectively.

Vv E V . Vt E E(v) . (v, cause(t), effect(t), next(t)) E T

Chapter 4. Stable State Synthesis Methodology 	 88

Labelling transitions between stable states by sets of input and output signals

creates a very concise representation. Udding's rule R1 states that consecutive

transitions of the same type may be arbitrarily ordered, which is reflected by the

lack of ordering within a set. Hence a single set is used to represent all sequences

that are permutations of the elements of that set. Similarly Udding's rule R0

requires that a delay insensitive behaviour contain no consecutive transitions on

a single wire. When combined with rule R1, this means that no sequence of

communication actions of the same type may contain repeated signals. Once again

this is modelled by our use of sets that cannot contain duplicates. Because of the

restriction on a circuit to have a bounded number of terminals, these sets are finite.

In this thesis, I shall make use of a textual notation for stable state graphs.

This system of representation simply states the value of the auxiliary function

E(v) for each vertex v of an SSG. This concise notation is sufficient to uniquely

denote a given SSG, and therefore the delay insensitive DLTS that it represents.

The question mark and exclamation mark suffices of input and output signals are

normally omitted as these may be inferred by membership of the cause and effect

sets respectively.

An example stable state graph expressed in this notation is given in figure 4-

1 below. This SSG precisely abbreviates the delay insensitive behaviour of the

example circuit behaviour described in chapter 2. The behaviour of this SSG is

identical to the transition graph given in figure 2-1, the CCS (process algebra)

given in figure 2-2 and the Petri net of figure 2-4. Note that the SSG specification

concisely describes the 8 transitions of the transition system and the 6 places of

the Petri net in only 3 stable state transitions from 2 stable states.

E(vo)

({c}, {p}, VO)}

E(vi) =

Figure 4-1: Example stable state graph (SSG)

A stable state graph is easily generated from a delay insensitive DLTS specific-

ation using depth first traversal of the transition system. The technique builds a

mapping from stable states (states with no outgoing output transitions) from the

DLTS to vertices of the SSG, since not every stable state of the DLTS corresponds

Chapter 4. Stable State Synthesis Methodology 	 89

to an SSG vertex. Initially only the initial stable state of the DLTS is mapped

to the initial SSG vertex: The construction of the rest of the SSG proceeds as a

two phase depth first search from this start state. The first phase of the search

recursively follows all input transitions exploring all states reachable through only

input signals. At every unstable (and terminal) state reached by this search, the

algorithm initiates the second phase search following output only transitions look-

ing for stable states. If this destination stable state does not yet have a mapping,

a new SSG vertex is created to represent it. A transition from the previous SSG

vertex to this vertex is then added, labelled by the sets of inputs and outputs tra-

versed by the first and second phases of the search respectively. This procedure is

repeated until every SSG vertex has been examined.

It is possible to optimize the above SSG generation procedure by making use

of Udding's rule R1 that all permutations of a set of signals of the same type

lead to the same state in the normal form of a DLTS. Hence the algorithm can

significantly prune its search space by avoiding those states that have already been

examined. Continuing to search beyond these states would only find transitions

between stable states that have already been discovered.

4.1.3 Unstable Initial States

One problem that arises from the use of a stable state transition model occurs

when the initial state so of a directed labelled transition system is unstable. In

the proposed method, the initial state of an SSG, v0, must always be stable. This

means that the circuit should generate a number of output signals before reaching

an initial stable state. As described in section 3.6, the generation of transitions

as soon as power is applied to a VLSI circuit raises a number of implementation

and semantic issues. There are several alternative solutions to dealing with this

'unstable initial state' problem.

The first solution is simply to ignore the initial output transitions and treat

the result state of an arbitrary initial response set as the initial stable state. A

improved solution is to attach IWire components to each of the output terminals

of the above implementation that are in the choosen initial response set. The

outputs of these IWire components then serve as the real output terminals. The

semantics of the IWire component imply an initial output transition. If all outputs

are assumed to initially have a low voltage, the interposition of IWire components

Chapter 4. Stable State Synthesis Methodology 	 90

ensures that the appropriate outputs are high at the initial stable state. In the

above solutions the appropriate number of outputs are maintained by creating low

terminals for any output not implemented by the SSG.

Both of the above solutions make use 'static' non-determinism to choose at

compile time which of the initial response sets to implement. When the initial

unstable state has more than one response set, the circuits implemented by the

SSG formed from the result state may be different. Hence it may be reasonable

for an automated synthesis system to select the initial response set that leads to

the stable state that may be implemented with the least hardware.

Another approach is to introduce a 'hidden global reset' input signal that must

be received before the circuit becomes operational. Such a signal is probably

already required in order to initialize c-elements and select elements. Using this

approach the circuit designed can decide either to use a choice element to imple-

ment initial non-determinism or directly select an initial response set (and choose

an implementation as described in the paragraph above). As will be explained in

later sections, because the 'global reset signal' is used only once its implementation

is quite straightforward. In the case when the initial outputs are deterministic, or

when using static determinism to choose an initial output sequence, the reset input

is merged with each of the appropriate outputs, or connected directly to an output

if that output only occurs in this initial sequence. For dynamic non-deterministic

solutions, the reset is fed into an N-output choice element, where N is the number

of alternative output sequences, and each of these outputs are used prescribed

above to generate the required initial outputs.

4.1.4 Terminal States

The second problem introduced by the use of the stable state transition model of

circuit behaviour is the implementation of terminal states. The handling of terminal

states is considered a special case by the design methodology, as these 'rare' states

complicate the exposition of the synthesis method. Indeed, most behavioural spe-

cification formalisms are unable to describe terminal states, including Ebergen's

DI commands, Martin's handshaking expansions and Josephs and Uddillgs' DI

algebra. Interestingly, because the DLTS is usually state minimized before conver-

sion into an SSG, there is only a single terminal state, as all terminal states are

bisimilar.

Chapter 4. Stable State Synthesis Methodology 	 91

Two types of terminal states are encountered in the generation of an SSG from

a DI DLTS: The terminal states that are the destination vertices of stable state

transitions and those terminal states that are reachable by stimulus sequences

from an SSG stable state.

The first of these cases is handled by conceptually extending the set of stable

states of an SSG to include the terminal stable state I. This state is only used as

the destination vertex of stable state transitions, i.e. next(t) =1. This requires

the type T of the SSG (V, T) to be extended to V x P (I) x P(0) x (VU{I}). The

'logical' stable state I does not necessarily require additional state in synthesized

hardware. One property of the terminal state, I, is that it is implemented by

any stable state, using the implementation relation defined in section 2.4. Taking

advantage of this property, stable state transitions leading to terminal states can

internally perform a hardware state transition to any implemented stable state.

Better still, stable state transitions to terminal states need not perform an in-

ternal (hardware) state transition at all. Such transitions need only generate the

appropriate output signals.

The remaining case occurs when a stimulus set of a stable state of an SSG

leads to a terminal rather than an unstable state. These 'partial' transitions must

be represented in an SSG in order for a circuit to be correctly implemented by

the proposed circuit synthesis methodology. Without such transitions, the meth-

odology would not consider the arrival of the input signals from such a stimulus

set at that stable state. The receipt of such signals may interfere with the opera-

tion of the circuit generating additional outputs, thereby breaking the behavioural

specification.

In order to represent such 'partial' stable state transitions, the definition of an

SSG is extended even further to allow empty effect sets, in addition to terminal

destination states, i.e. effect(t) = 0 which implies that next(t) =1. This requires

the type T of the SSG (V, T) to be further expanded to V x P (I) >< Po (0) x (V U

III), where Po denotes the usual powerset operator containing the empty set,

Po (x)=P(x)U0.

Such 'placing holding' stable state transitions are not really transitions at all.

They simply state that the circuit, at the source stable state, should be able to

receive the cause (or stimulus) set of inputs without generating any outputs. The

proposed method typically implements these 'partial' transition, by treating them

as normal transitions generating a signal corresponding to that transition firing

Chapter 4. Stable State Synthesis Methodology 	 92

which is subsequently ignored. The inclusion of these partial state transitions,
with empty effect sets, allows the use of specific optimizations such as terminal
state collapsing (see section 6.2.2).

Stack Example

The stable state graph of the current delay insensitive stack element example is
given in figure 4-2 below. This SSG precisely abbreviates the behaviour of the
stack element presented in section 2.5. The given SSG concisely encodes the
19 state transition system in figure 2-8 in only 5 stable states, and 14 stable
state transitions. Note that the signals ack-push!, ack-pop!, dack_push? and

dack-pop? have been abbreviated for brevity throughout the rest of this thesis to

apush!, apop!, dapush? and dapop? respectively.

E(v4) = {({push},{full},v4),

({pop}, {apop}, v1)}

E(v3) 	= {({ push, dapush}, {apush,dpnsh} , v3),

({ push, dfull}, {full}, v4),

({ pop, dapush}, {dpop,apop}, v2),

({ pop, dfull}, {apop}, vi)}

E(v2) 	= {({dapop,push},{apush,dpush}, v3),

({dapop, pop }, {dpop,apop} , v),

({dempty,push}, {apush}, vi),

({dempty,pop}, {einpty}, vo)}

E(vi) = 	{({push}, {apush,dpush}, v3),

({pop}, {dpop,apop}, v2)}

E(vo) = 	{({push},{apush},vi),

({pop}, {ernpty}, vo)}

Figure 4-2: Stack element stable state graph (SSG)

Chapter 4. Stable State Synthesis Methodology 	 93

4.2 	Properties of Stable State Graphs

It is possible to define a classification of stable state graphs based on properties

of their stable states. This is similar to Udding's classification system based upon

traces. The proposed synthesis methodology makes use of this classification system

to determine the most appropriate synthesis strategy for parts or all of the stable

state graph.

Definition 20 A stable state graph (V, T) is termed sequential if every stable

state has at most a single outgoing transition, Vv E V. E(v) 	1.

Definition 21 The reachable state set, reachable(t) of a stable state transition,

t, is defined to be the transition's destination state and all reachable states of that

state, next(t) U reachable(next(t)). The reachable state set, reachable(s) of a

stable state, v, is defined to be the union of the reachable states of all of that state's

outgoing transitions, UteE() reachable(t).

Definition 22 A stable state transition t from stable state v of a stable state graph

(V, T) can only be fired once, written once(t), iffy is not a member oft 's reachable

set, v 	reachable(t). A stable state v can only ever be reached once if all of

its outgoing transitions can only be fired once, i.e. v is not a member of its own

reachable set.

Definition 23 An input signal i of a sequential stable state graph (V, T) is termed

stateless if every occurrence of that signal synchronizes with the same set of input

signals to produce the same set of output signals. Vt1,t2 E T, if i E cause(ti) and

i E cause(t2) then cause(t i) = cause(t 2) and effect(t i) = effect(t 2). A sequen-

tial stable state graph is termed stateless if all of its input signals are stateless.

Definition 24 An input signal i of a sequential stable state graph (V, T) is termed

trivially stateless if that input signal only appears in a single stable state transition

from a single stable state, Vt1 , t 2 E T, if i G cause(ti) and i E cause(t2) then

tl = t2. A sequential stable state graph is termed trivially stateless if all of its

input signals are trivially stateless.

Chapter 4. Stable State Synthesis Methodology 	 94

Definition 25 A stable state v of astable state graph (V, T) is termed concurrent

if more than one stable state transition may fire, 3tl,t2 E E(v) . cause(t1) C

cause(t 2). A stable state that is not concurrent is termed distinct, where every

potential set of permissible input signals uniquely identifies a single stable state

transition.

Definition 26 A stable state transition t j E E(v) from a stable state v is termed

atomic, written atomic(t i), if there are no transitions from v whose cause sets

are subsets of t1 's cause set.

-'t2 c. E(v) . cause(t 2) C cause(t i)

Definition 27 Two distinct stable state transitions t1, t2 E E(v) from a stable

state v are termed concurrent, written concurrent(ti , t 2), if they can occur sim-

ultaneously.

E E(v) . cause(t i) C cause(t3) A cause(t 2) C cause(6) A t 1

In the definition of transition concurrency above, the existance of transition t3

indicates that all of the inputs in its cause set may be sent to the circuit simultan-

eously. The concurrent arrival of these input signals is sufficient for transitions t1

and t2 to become enabled to fire simultaneously. It is the task of the circuit imple-

mentation to ensure that either the concurrent firing of transitions either does not

violate the circuit's specification or to arbitrate between the two transitions.

Definition 28 A stable state v of a stable graph (V, T) is said to exhibit complex

concurrency if it has two concurrent atomic transitions that share one of more

output signals in their effect sets.

t2 E E(v) . atomic(ti) A atomic(t 2) A concurrent(t i , t 2) A

effect(t i) fl effect(t2) $ 0

Definition 29 A stable state v of a stable state graph (V T) is non-deterministic

if there exist two stable state transitions from that state with the same cause sets

but with differing destination states or effect sets.

tl, t2 E E(v) . cause(t i) = cause(t 2) A

(effect(t i) 	effect(t 2) V next(t i) 	next(t2))

Chapter 4. Stable State Synthesis Methodology 	 95

Astable state that is not non-deterministic is termed deterministic. Astable state

graph is deterministic if all of its states are deterministic and non-deterministic

if any of its states are non-deterministic.

Definition 30 A stable state v of a stable state graph (VT) exhibits dynamic

non-determinism if it arbitrates between two (or more) concurrent input signals.

This may be detected at a stable state when the effects of one stable state transition

are disabled by the concurrent arrival of additional input signals, that is

ti, t2 e E(v) . cause(t i) C cause(t) A effect(ti) 	effect(t) A

,t3 E E(v) . cause(t3) = cause(t i) A effect(4) E effect(t 2)

4.3 Signal Instance Graphs

An important abstraction used by the proposed circuit synthesis methodology is the

Signal Instance Graph (SIC). Signal instance graphs are a reduced representation

of the stable state graphs introduced in the previous sections. At each stable state,

the environment is allowed to transition a subset of the available input signals, the

union of the cause sets of transitions from that stable state. Although a given input

signal may occur in more than one cause set, they refer to the same signal instance.

In a directed labelled transition system, it is not clear whether two transitions,

with the same label, refer to different instances or alternative interleavings of the

same concurrent signal instance. A SIG is a data structure describing the 'use' (or

effect) of a particular input signal during the delay insensitive circuit's behaviour.

It records the stable states at which that input signal occurs and possible transition

paths between them. In this way, a SIG may be considered the result of a projection

(or hiding) operator, such as the restriction operator in trace theory or the hiding

operator \ in CCS.

The SIC of a given input signal is a subgraph (embedded graph) of an SSG

formed by only those vertices at which that input signal occurs. There is a directed

transition between two vertices (stable states) of a signal instance graph, if it is

possible to reach the destination vertex from the source vertex either directly or

via intermediate stable states at which the input signal does not occur. Once an

input signal transitions at a stable state, the next transition of that signal is at one

of the stable states reachable by a single transition in that input's SIC.

Chapter 4. Stable State Synthesis Methodology 	 96

Definition 31 An input signal, i E I, may be received at a stable state v E V of

the stable state graph (V, T), written Occurs(i, v), if 3t E E(v) . i e cause(t).

Signal instance graphs are conceptually similar to the use of internal derivatives

and observed derivatives of a composite state, introduced to aid the definition of

circuit composition in section 2.3. In circuit composition, transitions used for

internal communication between components are hidden. In SIGs, the synthesis

task complexity is reduced by hiding states at which the given input does not

occur.

Finally, to aid circuit synthesis and optimization, each SIG transition is labelled

with additional information. Each label consists of a non-empty set of signal

instance paths, where each signal instance path is a non-empty set of stable state

transitions. The set of signal instance paths represent the connected paths through

the SSG between the source and destination vertices of that SIG transition. Each

signal instance path is represented by a set of SSG transitions, rather than a list or

sequence, because ordering information is not required and this avoids problems

with unbounded path lengths. Infinite transition paths can occur when an SSG

contains a cycle, where the input does not occur at any of the states in the cycle.

The DI circuit synthesis methodology makes use of these SIG transition labels

when choosing which hardware signals are to be used to update internal state

machines.

Definition 32 A signal instance transition sequence, .s, of a stable state graph,

(V, T), and an input signal, i E I, is a sequence of stable state transitions,

S = (t1, t2.... t,), that forms a connected path, V1rnn. 3v,EV. tm E E(Vm)

and next(tm) = Vm+1, and the input signal i does not occur at any of the interme-

diate states, V1<m<n. -iOccurs(i,vm). The notation src(s) refers to the initial

state v1, dst(s) to the final state v 1, and set(s) to the set of transitions of s,

UTh M=J ftnf .

Definition 33 The signal instance graph (SIC) of a stable state graph, (V T),

and an input signal, i E I, is a pair (V, T), where V = {v E VOccurs(i,v)}.

T is a transition relation between vertices of Vi labelled with a non-empty set of

non-empty sets of stable state transitions in T, Tic V x P (P (T)) x Vi . There

is a transition between two states u and v, (u, L, v) E T, if there exits a signal

instance transition sequence, s, starting at u and ending at v, i.e. src(s) = u

Chapter 4. Stable State Synthesis Methodology 	 97

and dst(s) = v. The label L of a transition t E T, between stable states u and

V, written label(t), is defined to be U{set(s)} for all signal instance transitions

sequences, s, such that src(s) = u and dst(s) = v.

This abstraction provides a 'view' of the behaviour of an asynchronous circuit

from the perspective of a single input signal. The action of an input signal at each

stable state may be considered stateless, and independent of its occurrence at any

other stable state.

4.4 Generic Implementation Strategy

Before presenting the proposed SSG-based circuit synthesis method, the follow-

ing sections describe of simple (naïve) generic implementation strategy for any

delay insensitive specifications. The 'generic' strategy serves as a suitable start-

ing point, as the SSG method can assume in its circuit decomposition algorithms

that any resulting circuit can always be implemented (inefficiently) by the generic

implementation strategy. A widely known result in the delay insensitive circuit

community is that any delay insensitive circuit may be constructed systematically

from an rn-input SEQ element, an rnxn-input decision wait element and a number

of merge components [5,97]. The organization of these components is given below.

MxN Decision Wait

ri

II
II

I • a
. 	SEQ 	

• 	 . 1 1 1 I 	•Iii
I.

I
.I 	

a
I 	Ii
I_IJ 0

...
Reset

State Merges

Figure 4-3: Generic DI circuit implementation

This solution uses the rn-SEQ element to process the circuit's rn inputs signals.

This SEQ element arbitrates between all input signals, effectively removing all

Chapter 4. Stable State Synthesis Methodology 	 98

concurrency from the specification, serialising the input transitions. Internally, all

input signals transition one at a time. Once each input has been processed, the

SEQ element is re-initialized and the next input is allowed to enter the circuit.

Inside the circuit, the circuit function or computation is performed by an rnxn

decision wait element, much like a PLA is often used to implement an arbitrary

finite state machine in a conventional synchronous circuit. The row inputs (the m-

input axis) consists of the 'serial' input transitions generated by the SEQ element.

The columns (the n-input axis) maintain the current internal circuit state. The

column corresponding to the initial state of the circuit has an initialized column

input. The mn outputs of the decision wait are generated as a result of each input

signal/state combination. These signals are then used to i) determine the 'next'

internal state, ii) generate the appropriate output signals and iii) reset the rn-SEQ

component to allow the next input.

The number of merge gates required to generate the appropriate set of outputs

and internal state signals is dependent upon the behaviour of the circuit. However,

the signal required to reset the SEQ element may be obtained by merging the n

internal state signals (or n - 1 state signals if the initial state is never revisited).

The number of internal states, n, required by this method can be determined by

analysis of the stable state graph of a circuit. The total number of states required

by the SSG (V, T) is given by the expression

U 	[Po (cause(t)) \ cause(t)]
vEV tEE(v)

where P0 denotes the powerset operator containing the empty set, 0, i.e. Po (x)

represents the set of all possible subsets of the set x.

This expression is derived from the fact that a state is needed for each inter-

mediate interleaving of input signals. For a given stable state transition, t, the

intermediate states are represented by the elements of Po (cause(t)), less the state

represented by the element cause(t) which corresponds to the output/active state

when all prerequisite signals have arrived. These states must be summed for each

transition from a stable state, taking into account the shared states that occur

when cause(ti) fl cause(t2) 0.

Each internal state may now be uniquely identified by the value (v, i), where

v is a stable state, and i is the set of the input signals that have been received at

Chapter 4. Stable State Synthesis Methodology 	 99

that state, i E UteE() P0 (cause(t)) \ cause(t). Note that there is no internal state

corresponding to an 'unstable' state, of the form (v, cause(t)), but instead it is

represented by the destination of the stable state transition, (next(t), 0).

Each internal state transition can be classified as either inter-stable state or

intra-stable state. At a state, (v, i), when an input signal j is received, then

if i U {j} = cause(t) for any t E E(v), then the corresponding decision wait

output forms an inter-stable state transition and is used both to generate the

outputs, effect(t), and to form the state input to the state (next(t), 0). Otherwise,

iU{j} E UtEE(V) P (cause(t)) cause(t), the decision wait output is an intra-stable

state transition to the state (v, iU{j}). For non-deterministic inter-state transitions

an arbitrary transition is selected from the circuit's specification.

In the above definition, an inter-stable state transition takes precedence over

an intra-stable state transition. This may cause some unreachable internal states

when cause(ti) c cause(t2) for transitions t1, t2 	E(v). For this reason (and

others described in the next section), the value n determined above is only a close

upper bound.

The decision wait element is often 'sparse' since the input j cannot occur at

the state (v, i) when either j E i or Vt E E(v), i U {j} cause(t). In such a case,

the output of the decision wait element is not used.

Outputs are only generated by transitions between stable states. The circuit's

output signals are implemented by merging together the internal inter-stable state

transition signals of all such transitions that generate that output. Hence, the

output o is created by merging together the inter-state transition signals t where

o E effect(t). For circuits with non-deterministic output behaviour, an arbitrary

output sequence is chosen from the circuit's specification.

One major disadvantage of this generic synthesis approach is the combinatorial

state explosion that results from concurrent input signals. Concurrent output

signals, however, do not cause such a problem.

Consider the specification of the Muller C-element. This has only a single stable

state and a single stable state transition. Using the generic design methodology,

this circuit requires three internal states, which are denoted (0, 0), (0, {a}) and

(0, {b}). The corresponding implementation is given below.

This example demonstrates that this method tends to generate decision wait

Chapter 4. Stable State Synthesis Methodology
	 100

C!

Figure 4-4: Generic implementation c-element

elements that are sparsely populated, due to the large number of invalid and un-

specified input transitions at each state of the specification.

4.5 Improved Generic Solution

There are a number of improvements that greatly improve the efficiency of the gen-

eric implementation strategy described above. These improvements either reduce

the size of the central decision wait element or reduce the complexity of the SEQ

element.

4.5.1 Decision Wait Improvements

The size of the Mx N decision wait element may often be reduced because it is

typically sparsely populated. This is because the circuit's behavioural specification

often guarantees that a given input signal (row) can never occur at a particular state

(column). The corresponding output co-ordinate is therefore not live, and hence

never used. Row/column compression (as described in section 6.1.6) implements

two rows (or columns) of a sparse decision-wait element using a single row (or

column). Two rows may be 'compressed', if at every column position the two

outputs are not both 'live'.

For example, column compression can be applied to generic implementation of

the c-element given in the previous section. The sparse decision wait in figure 4-

4 has two columns, corresponding to states (0, {a}) and (0, {b}), that may be

compressed. The resulting circuit is given in the figure below.

Chapter 4. Stable State Synthesis Methodology 	 101

C!

Figure 4-5: Improved generic implementation c-element

The above implementation can be improved further by recognising that the two

rows are never distinguished, as their outputs are always merged together. This

allows the row/column elimination optimization of section 6.1.5 to be applied. This

circuit transformation replaces the 2 x 2 decision wait and two merge gates with a

single 2 x 1 decision wait element. The final optimization is to recognize that the

resulting 'cross-coupled' 2>< 1 decision wait implements a toggle element (as shown

in figure 3-11).

Hence, starting with the generic c-element implementation given in figure 44,

a delay insensitive circuit compiler can generate the circuit given below.

Figure 4-6: Final generic implementation c-element

The behaviour of this circuit has an obvious interpretation based on its im-

plementation; the arrival of the second input, either a? or b?, causes the output

c!. This is a correct implementation of a Muller c-element. Although still very

inefficient, this implementation is an improvement upon the original generic im-

plementation given in figure 4-4. Infact an arbitrating implementation of a Muller

c-element similar to this one was presented in Keller's original paper [64]. In

the next chapter, we present a synthesis methodology that implements the above

specification by a single primitive component; a standard two-input c-element.

Chapter 4. Stable State Synthesis Methodology 	 102

4.5.2 SEQ element Improvements

The role of the k-SEQ element in the generic implementation methodology is to re-

move all concurrency between the circuit's input signals. However, there are several

situations when alternative methods can be used to ensure that input transitions

occur sequentially.

The simplest case is where an input signal is constrained by the circuit specific-

ation to never occur concurrently with any of the other inputs. This occurs when

the input signal, i, only occurs on its own in a cause set, Vt E T if i E cause(t)

then cause(t) = {i}. In this case, the input i does not need to be fed into the

k-SEQ element, but may be passed directly to the row input of the decision wait

element. Similarly, because the SEQ element does not perform an arbitration, the

decision wait outputs from the corresponding row of the decision wait element are

not merged into the SEQ-element's reset input.

A more advanced approach is to only arbitrate between those signals that could

occur concurrently. However, because each signal is fed into only a single arbiter,

all signals that can occur concurrently with a given signal (even at different stable

states) must also share the same SEQ element. This induces a partitioning,

I -+ N, of the input signals. Two signals are in the same partition if they can occur

concurrently. Formally two input signals, i and j, of the SSG (V, T) are in the same

partition, ir(i) = 7r(j), if It E T such that {i,j} c cause(t). The synthesis method

determines the unique maximum partitioning and uses a single SEQ element to

arbitrate between that partition's input signals. This transformation improves the

circuit because several small arbiters typically require less hardware than a single

large arbiter. However, for 0(n) decompositions (e.g. ring arbiters) this may not

be much of an improvement.

For example, consider the stable state graph in figure 4-1 on page 88. This

circuit has four input signals, a?, b?, c? and d?, that may be partitioned into

three sets, {a?, b?}, {c?} and {d?}. Hence this circuit may be implemented by the

generic implementation strategy using only a 2-SEQ element (to arbitrate between

a? and b?) instead of a 4-input SEQ component.

One consequence of splitting the SEQ element in the generic implementation

strategy is that the resulting smaller SEQ elements need not always be reset. If

the inputs of a SEQ element are guaranteed never to occur after a final arbitration

is made, there is no need to reset that SEQ element. This is demonstrated in the

Chapter 4. Stable State Synthesis Methodology 	 103

example used in the previous paragraph, taken from figure 4-1. In this example,

once the SSG reaches the stable state v1, the a? and b? inputs can never transition

again. Hence, the single SEQ element needs only be reset by the transitions from

(0, 0) to (0, {a}) and (0, 0) to (0, {b}). This saves the merge circuitry required on

the (0,{a}) to (1,0) and (0,{b}) to (1,0) transitions.

4.6 Proposed Synthesis Methodology

This section outlines the proposed delay insensitive circuit synthesis methodology.

The synthesis method compiles behavioural specifications described as stable state

graphs (SSGs) into delay insensitive compositions of primitive circuit elements.

Because the method uses a canonical graph-based representation of a circuit's

global behaviour, the resulting circuit implementations are more efficient than those

generated by existing syntax-directed translation based compilers.

4.6.1 Implementation Model

The great advantage of the SSG representation of a circuit's behaviour is that

it distinguishes between the transitions that occur due to concurrency and those

'causal' transitions that prescribe the circuit's functional behaviour. This distinc-

tion of transitions reveals the important role of stable states in delay insensitive

reactive systems. This forms an interesting asymmetry as stable states are more

important in circuit synthesis than maximally unstable states.

The synthesis methodology is based upon the interpretation of delay insensitive

circuit behaviour as a series of transitions between stable states. Conceptually,

each stable state is implemented independently and these subcircuits combined to

produce the desired global behaviour. This decomposition takes advantage of the

fact that transitions occurring at different stable states represent distinct actions

and not just concurrent interleavings of the same signal. These distinct actions

of the same input signal may be described using a traditional state graph model

and implemented using a delay insensitive finite state machine. Distinct actions

of the same output signal may be trivially combined using 'merge' circuitry. In

the middle, the subcircuit for each stable state receives all of the input for each of

the external signals that can occur at that state and generates a single transition,

Chapter 4. Stable State Synthesis Methodology 	 104

representing the stable state transition that 'fires'. The transition signal is then

used to generate the required output signals and change the state of the routing

circuitry to direct the appropriate inputs to the subcircuit implementing the next

stable state.

This decomposition conceptually separates out the implementation of delay

insensitive circuits into three layers; the routing layer, the synchronization (and

arbitration) layer and the output layer. The routing layer receives external input

signals and generates internal input signal instances for the synchronization layer.

This layer is implemented as a number of delay insensitive finite state machines,

one for each external input. This layer implements the main state holding functions

of the final circuit. The synchronization layer performs the synchronization and

arbitration of the final circuit. This layer is conceptually organized as a separate

subcircuit for each stable state. Finally, the output layer combines the results of

the synchronization layer to generate the outputs, the finite state transition signals

for the routing layer and the resulting external outputs.

These layers are depicted in the proposed circuit "model" shown in figure 4-7

below. Boxes R1 . . . R77, represents the routing layer circuitry, one subcircuit for

each of the n external input signals. Boxes S . . S represent the synchronization

layer subcircuits, one for each stable state in the SSG. Finally the box labelled 0

depicts the output layer circuitry. There is an output from each Si to the output

layer for each stable state transition that can occur at the stable state 'implemented'

by S.

Routing Synchronization Output

Inputs Outputs

Figure 4-7: Proposed implementation model

Chapter 4. Stable State Synthesis Methodology 	 105

This model only describes the conceptual decomposition of a circuit into com-

ponents. In practice a circuit may not necessarily contain hardware for all of the

above layers. For example, a circuit that performs no synchronization or arbit-

ration between input signals will have no synchronization layer, and a stateless

circuit will have no routing layer. In these cases the appropriate layer consists en-

tirely of 'wiring' connecting the inputs to the outputs. For some classes of circuits,

the next state of the routing circuitry is always known so there is no need for feed-

back signals from the output circuitry following a stable state transition. Finally,

the physical separation of the circuit into distinct layers may be obscured by the

circuit optimizations and other transformations applied during circuit synthesis.

Hence it may be impossible in the final circuit to assign a component to a single

layer in the above model.

Given this systematic decomposition strategy, it is possible to define the delay

insensitive behaviours of each of the subcircuits. These subcircuit behaviours when

composed, using the composition operator of section 2.3, implement the desired

global behaviour, using the notion of implementation defined in section 2.4. One

possible approach is to implement each of these subcircuit specifications using the

(improved) generic implementation strategy described previously. However, there

exist much more efficient implementation strategies for classes of these circuits,

as will be described in the rest of this thesis. These strategies can be shown to

be optimal for certain classes of circuits. For example, the behavioural specifica-

tions of a merge gate, a c-element and a select element result in implementations

containing a single merge, c-element and select respectively. Similarly, the behavi-

oural sepcifications of call elements and 2x1 decision wait elements, result in the

standard decompositions into primitive elements described in chapter 3.

Unfortunately, there still exist some classes of subcircuits for which the only

automated implementation strategy (to the author's knowledge) is the improved

generic implementation approach. These are those specifications containing com-

plex forms of arbitration. However, even for these cases, the initial decomposition

into subcircuits allows the introduction of concurrency that cannot be exploited in

a purely generic implementation.

Chapter 4. Stable State Synthesis Methodology
	

106

4.6.2 The Committee Problem

Central to the synthesis methodology is the implementation of the synchronization

layer subcircuits. Conceptually these correspond to individual stable states. As

will be shown below, stable state implementation is identical to the well known

committee problem in parallel program design [24]. This problem, capturing many

synchronization and exclusion problems, is also sometimes known as the n-party

rendezvous or multirendezvous. The problem is defined in Chandy and Misra's

book in terms of professors and committees.

Professors at an academic institution organize themselves into com-

mittees. Each committee has an unchanging membership of one or

more professors. From time to time a professor may decide to attend

a committee meeting. He (or she) waits until a meeting of a committee

of which he (she) is a member is started. The restrictions on meetings

are as follows: (1) a committee meeting may be started only if all mem-

bers of that committee are waiting; (2) no two committees may meet

simultaneously if they have a common member. Given that all meet-

ings terminate in a finite time, the problem is to devise a committee-

meeting scheduler that satisfies these restrictions. The scheduler must

also guarantee that when all members of a committee are waiting, at

least one of them will attend some meeting.

From the above description it is clear that the committee problem includes as-

pects of both synchronization and mutual exclusion. Synchronization is required

because all members of a committee must be waiting before a meeting can start;

mutual exclusion is required, because two committees with a common member

cannot meet at the same time. This mutal exclusion also implies the need for arbit-

ration for example when a common member of two otherwise waiting committees

arrives (starts waiting) or when two members of mutually exclusive committees

arrive. It can also be seen that the committee problem is a generalization of the

dining philosophers problem.

The equivalence between single stable state implementation and the committee

problem can be seen by considering each stable state transition as a committee and

each permissible input signal as a professor. The membership of each committee

is defined by the cause set of each state transition. It is also possible to extend

Chapter 4. Stable State Synthesis Methodology 	 107

this equivalence to ensure that stable state transitions are mutually exclusive. This

needs to be done for complex forms of arbitration. This is achieved by adding a

common member to each committee, thereby ensuring that only a single transition

can fire at a time. This condition severely restricts the concurrency of the resulting

implementation. However, this restriction is only imposed on a small class of stable

states.

Central to the proposed synthesis methodology is the ability to efficiently im-

plement individual stable states and thereby find solutions to subproblems of the

committee problem. This is essential to producing high quality circuit implement-

ations requiring the minimal amount of hardware. One possible solution is to use

the improved generic implementation strategy described above. An alternative

solution is to make use of the token-ring based solution, recently presented by

Benko [5]. However, there are a large number of stable states that do not require

the generality of these solutions, and may therefore be implemented using fewer

components.

At the very simplest, the problem defined by a single committee containing a

single professor, is easily implemented by a wire. Any problem that is defined

by only a single committee may be implemented by a c-element (synchronization)

of all the members of that committee. This solution corresponds to the class

of sequential circuits given in the next chapter. One property that is extremely

useful in decomposition of the committee problem is that the problem may be

partitioned into several smaller subproblems tht share no professors in common.

This means that if all professors only belong to a single committee, the solution

may be implemented by a number of c-elements, one for each committee.

A large number of special cases apply to subproblems where no committee is

a subset of any other committee. These correspond to the non-concurrent circuits

described in the next chapter. Any set of N committees with identical membership,

may be implemented by a single committee of the same membership, and when it

meets (the state transition fires) the output may be fed into an N-choice element,

making an arbitrary decision between the original committees. This class of cir-

cuits is also amenable to synchronization rollback and partitioning decomposition

methods as described in sections 5.2.3 and 5.2.4 respectively.

Many of the synchronization layer decomposition methods described in this

thesis represent novel solutions for special cases of the committee problem. As

further new delay insensitive solutions are found to special cases of this problem,

Chapter 4. Stable State Synthesis Methodology
	 HE

these strategies /theorems may be included in this design style and improve the

quality of the resultant implementations.

Chapter 5

Circuit Synthesis

This chapter presents a detailed description of the proposed delay insensitive cir-

cuit design methodology, outlined in the previous chapter. Each section describes

synthesis 'rules' for an increasingly large class of circuit behaviours. These rules

automatically determine the connectivity of networks of primitive components re-

quired to implement the specification. Although some of these circuit classes can

be considered special cases of later ones, their incremental exposition makes the

design methodology easier to understand. Each of the rules presented in this

chapter is applicable to the whole class of circuits being examined. Techniques

for efficiently handling special cases and circuit optimizations are discussed in the

following chapter.

5.1 Sequential Circuit Synthesis

This section describes an algorithmic method for generating sequential delay in-

sensitive circuits from stable state graph behavioural representations. The class

of sequential delay insensitive circuits is those that have at most a single outgo-

ing transition from each stable state, i.e. for every vertex v, 	1. Such a

circuit permits no alternatives of either input or output signals beyond the non-

deterministic re-ordering of concurrent signals. Hence both the specified circuit

and its environment are completely deterministic. This restrictive class of cir-

cuit behaviour is a subset of Udding's Cl (synchronization) class of circuits. All

circuits specified by handshaking expansions or taxograms (without environment

partitioning) belong to this class.

109

Chapter 5. Circuit Synthesis 	 110

The class of sequential circuit can be subdivided further into three smaller

subclasses. These are acyclic sequential circuits, partially cyclic sequential circuits

and completely cyclic sequential circuits. From the above definition, a sequential

circuit behaviour is a connected finite stable state graph with at most one transition

incident from each vertex. If there exists a state with no outgoing transitions

then the circuit is acyclic, and each vertex is visited only once during a circuit's

finite operation. If all vertices have a single incoming transition, then the circuit's

behaviour is completely cyclic, i.e. its SSG consists of a simple cycle. In this case

every vertex is visited repeatedly during the circuit's operation. The remaining

partially cyclic class of sequential behaviours occurs when there are some 'initial'

transitions that fire before the circuit enters a cycle of stable states. In this case

the initial stable state has no incoming transitions and the first vertex of the cycle

has two; one from the transition that enters the loop and the other from the last

vertex of the cycle.

5.1.1 Stateless Sequential Circuits

The first category of sequential circuits that we shall consider is the class of stateless

sequential circuits, those that do not require any 'state holding' components such

as Keller select elements or decision waits. The class of trivially stateless circuits

is characterized as those where transitions on a given input may only occur at

a single stable state. This constraint may given as for every two distinct states

v1 and v2 of an SSG, the cause sets of all their outgoing transitions are disjoint,

Vt1 E E(vi), L2 E E(v2) . cause(ti) fl cause(t2) = 0. From this definition, all

sequential circuits with only a single stable state are trivially stateless.

Trivially Stateless Sequential Circuits

Construction of trivially stateless sequential circuits proceeds in two steps. The

first step generates any required synchronization circuitry and the next generates

the appropriate outputs from each transition. The aim of the synchronization in

this synthesis step is to generate a single signal for each state to indicate that its

outgoing transition has fired, called the transition signal. For all SSG transitions

where cause(t) = 1, the single input signal in its cause set may be used as its

transition signal. For the remaining cases, Icause(t) > 2, the transition signal is

generated by detecting the arrival of all the inputs in the cause set. This is done

Chapter 5. Circuit Synthesis 	 111

by combining all N inputs with an N-input c-element and using the output of this

c-element as the transition signal. The constraints on the c-element's environment

are ensured by the circuit specification and the completion tree is independent

of any delay in the input wires. If the generalized c-elements are constructed

by building completion trees of 2-input Muller c-elements, the total number of

c-elements required for synchronization in a trivially stateless sequential circuit is

III - V, where I is the set of input signals and V is the set of vertices in the SSG.

Once a transition signal has been generated it must trigger the required set

of output signals. We first consider the case where each output only occurs at

single stable state (analogous to inputs in trivially stateless circuits): this is the

case when transitions t and t2 from disjoint vertices of an SSG have disjoint

effect sets, effect(ti) fl effect(t2) = 0. Each output is generated in response to

the transition signal of the appropriate SSG transition. If only a single output is

generated by a transition (effect(t) I = 1), the transition signal may be connected

directly to this output terminal, otherwise several outputs need to be generated by

the firing of an SSG transition (effect(t) > 2), so the transition signal must be

forked to branch the signal to the appropriate outputs.

In the remaining case, output signals may occur at several stable states of a

circuit's behaviour. This requires a given output to be generated in response to

(caused by) any of a number of transition signals. Because transition signals are

mutually exclusive, such an output may be produced using an N-input merge to

combine the transition signals of all the N vertices where that particular output

must be generated. If a transition signal is required as an input for more than one

merge element, it should be forked and a branch connected to each merge. The

number of merge gates required by this general case construction can typically be

reduced by applying the 'common subexpression elimination' circuit optimization

described in section 6.1.3. The average case performance of the general merge

elements in partially cyclic sequential circuits may also be improved using the

'Huffman decomposition' of section 3.4.2.

A demonstration of this synthesis procedure applied to this class of circuit is

given below. Figure 5-1 contains the SSG for a trivially stateless sequential circuit

and the resulting implementation derived from it. This stable state graph has three

stable states, each with a single outgoing transition denoting a cyclic sequential

circuit. Because there is no transition t such that next(t) = vo, it does not form

a single cycle of all stable vertices and is therefore a partially cyclic sequential

Chapter 5. Circuit Synthesis 	 112

a? 	 p1

E(vo) =

E(vi) = {({b,c},{q},v2)} 	
C? 	 qI

E(v2) = {({d},{q,r},vi)}
rI

Figure 5-1: Trivially stateless sequential circuit example

circuit. Of the three transitions to, t1 and 12, from the stable vertices v0, vi and

V2 respectively, only cause(t2) > 2, hence a? is the transition signal for to, d? is

the transition signal for t2, and b?©c? is the transition signal for ti (where x©y

denotes the output of the Muller c-element with inputs x and y). The Output p! is

only generated by transition to, so a? is connected directly to p!. The initial stable

state v0 is implemented completely by this single wire. The output q! is generated

by two transitions, and is therefore implemented by merging b?©c? and d?. The

remaining output r! is obtained from the other branch of the d? fork.

One effect of the above synthesis procedure is that the behavioural specifica-

tions of the Muller c-element and the merge element are implemented by a single

component of the appropriate type.

Non-trivially Stateless Sequential Circuits

In addition to trivially stateless sequential circuits, it is also possible to generate

stateless sequential circuits using a special case of the 'state collapsing' optimization

of section 6.2.2. The principal consideration in the synthesis of stateless circuits

is that the operation of each stable state is independent of all the remaining stable

states. This is obviously the case for sequential circuits that have no input signals

shared between transitions (trivially stateless circuits). However, it is also the

case when two stable states can be implemented using identical hardware. This is

because there is no need to use a state holding device to distinguish between two

'identical' states. Hence we term a sequential circuit stateless, if for every pair of

transitions t1 and t 2 , if cause(t1) fl cause(t2) 0 then cause(ti) = cause(t 2) and

effect(ti) = effect(t 2)-

Synthesis of circuitry for this class of circuits is almost identical to the method

described for trivially sequential circuits above. Only a single representative syn-

chronization layer implementation need be constructed for each set of 'identical'

stable states, i.e. those stable states whose outgoing transitions have identical cause

Chapter 5. Circuit Synthesis 	 113

and effect sets. The output layer circuitry then treats this set as one vertex with

just a single transition signal. This has the net effect of removing all duplicate

stable states from the SSG specification. Because the frequency of transition sig-

nals during a circuit's operation is now no longer equal but known, the average

case performance of output layer general merge elements may improved using the

'Huffman decomposition' optimization described in section 3.4.2. Similarly, some

of the output layer merge elements may be implemented using standard OR logic

gates as described in section 6.1.9.

An example of this synthesis of a non-trivially stateless sequential circuit is

given in figure 5-2. This SSG specification is an example of a completely cyclic

sequential circuit. The transitions from states v0 and v1, and from v2 and v3 are

equivalent. These pairs can both be collapsed, with the resulting vertices requiring

no synchronization hardware and having transition signals a? and b? respectively.

The output p! is then produced by both these 'collapsed' vertices and is therefore

generated using a two input merge of their transition signals. Although the SSG

of the state minimized transition system contains four stable states, the resulting

implementation consists of only a single merge element.

E(vo) =

E(vi) = {({a}, {p}, V2)} 	 a?

= {({b},{p},v3)} 	 b? ::I)— P!

= {({b},{p},vo)}

Figure 5-2: Stateless sequential circuit example

The class of stable state graphs that generate stateless sequential circuits may

be extended by performing the 'state combining' optimization of section 6.2.3.

However, due to the complexity of this optimization, it is presented in its own

section and not described as part of the general case design methodology.

5.1.2 State-Holding Sequential Circuits

State holding components are typically required to implement specifications where

the effect of receiving an input signal is dependent upon when in the circuit's

behaviour the signal occurs. The circuit requires some internal state to distinguish

Chapter 5. Circuit Synthesis 	 114

between these signal occurrences in order to produce a different response to each.

Hence a sequential circuit behaviour is termed state holding if for some two distinct

transitions t1 and t2, cause(ti) fl cause(t) 	0 and either cause(ti) =A cause(t)

or effect(ti) 	effect(t2). From this definition, a sequential circuit specification

is either state holding or stateless and must contain at least two stable states to be

state holding.

Note that the above definition does not determine whether the resulting circuit

need contain any state holding primitive components. There are several optimiza-

tion techniques, discussed in sections 6.2.3 and 6.2.4, which describe special cases

of state holding circuits that may be implemented without using select elements or

decision waits.

Cyclic Sequence Generators

The class of cyclic sequence generators (CSG) circuits is those state holding sequen-

tial circuits with a single input terminal (i.e. I I I = 1) that have a completely cyclic

stable state graph. Cyclic sequence generators form an important classification of

delay insensitive circuits as general state holding sequential circuits are typically

decomposed into a number of CSGs. The predetermined operational behaviour of

CSGs also enables detailed analysis of their performance and power consumption

characteristics. For this reason CSGs, and in particular modulo-N counters, have

been extensively studied by a number of researchers [41,104,114,118].

The starting point for synthesizing a cyclic sequence generator is an N-toggle

circuit, where N is the length of the repeated sequence. This N-toggle may be

implemented using any of the decomposition techniques given in section 3.4.7 on

generalized toggle elements. The single input of the CSG is then used as the input

to the N-toggle, and the N outputs are used as the 'transition' signals for each of the

stable states of the CSG's behavioural specification. If every stable state transition

t1 has a single unique output, i.e. jeffect(t i) l = 1 and effect(ti) fl effect(t2) = 0

for any transition t2 	t1, then the specification is directly implemented by the

N-toggle and each of its outputs is used to generate one of the CSG's output

signals.

Chapter 5. Circuit Synthesis 	 115

For the remaining forms of cyclic sequence generator circuits, output circuitry

consisting of forks and merges is needed. Generation of this circuitry from trans-

ition signals is identical to the approach described for trivially stateless sequential

circuits above. Each transition is forked as appropriate and merged with other

transition signals to form the required outputs. Common subexpression elimin-

ation allows these signals to be merged before they are forked, thereby reducing

the number of merges required (section 6.1.3). In addition to this general de-

composition, a number of CSG specific optimization strategies are described in

section 6.1.10.

An example application of this synthesis procedure is described for a four phase

toggle circuit below. A four phase toggle is a toggle component that uses a 'four

phase' or return-to-zero handshaking convention with its environment. It is a

good example of the ability of transition signalling to describe other signalling

protocols, such as those used in 'conventional' or speed independent design. The

stable state graph for a four phase toggle is shown in figure 5-3 together with

its implementation. From its specification, this circuit has a completely cyclic

sequential behaviour and hence is implemented as a cyclic sequence generator.

The state holding portion of the circuit is a 4-toggle (implemented using the toggle

decomposition method into three standard toggle components). The p! output is

then generated by merging together the transition signals for v0 and v1, and the

q! by merging those of v2 and v3. Hence the circuit is decomposed into a delay

insensitive network of three toggle components and two merge gates.

E(vo) = {({a},{p},vi)}

E(vi) =

= {({a},{q},v3)} 	
a?

= {({a},{q},vo)}

P!

qi

Figure 5-3: Four phase toggle example

The completely deterministic and data-independent behaviour of sequential cir-

cuits permits detailed performance analysis. Analysis of the four phase toggle cir-

cuit given in figure 5-3 reveals that the response time of the above circuit is 21+

for all instances of the input a?, where I and are the transition times for a toggle

and a merge gate respectively. The period for a completely cyclic sequential beha-

Chapter 5. Circuit Synthesis 	 116

viour is the sum of the response times of all transitions in the stable state graph.

The period of the circuit for the current example is 8' + 4.

Sequence Generators

The class of sequence generator circuits is those sequential circuits with a single

input. The name is derived from the fact that a single signal may be used to pro-

duce an acyclic, partially cyclic or completely cyclic sequence of output transitions.

Sequence generators for completely cyclic specifications are implemented using the

CSG techniques described in the previous section. A CSG circuit may also be

used to implement acyclic sequence generator circuits, since the behaviour of the

circuit after that prescribed by the specification is never examined. However, the

decomposition techniques for N-toggle circuits, using the decision-wait and select

element methods of section 3.4.7, may be optimized for acyclic sequence generat-

ors. This is to avoid the transition signal for the final stable state resetting the

circuit to its initial state.

Partially cyclic sequential specifications consist of two parts; A sequence of

stable state transitions that fire only once, called the head of the specification,

and a repeated cycle of stable states, called the loop of the specification. Such

specifications may be implemented using one of the decomposition strategies given

below. These strategies reflect the ways in which generalized toggle circuits may

be implemented.

The decision wait implementation method requires a N x 1 decision and a two-

input merge gate, where N is the total number of stable states in the acyclic

sequential specification. Much like the decision wait N-toggle decomposition, the

row is fed by the sequence generator input and each column represents the current

stable state. The decision wait is initialized to be in the appropriate initial state.

Each output of the decision wait is forked to produce the appropriate transition

signal and also fed back as a column input to set the next state. The single merge

gate is used to combine the two signals which set the state of the DW to the first

state of the specification's 'loop'. Precisely, the other branches of the transition

signals of the last state of the head and the last state of the loop are merged and

used as the column input representing the first state of loop.

The composite implementation method decomposes the specification into an

acyclic sequential subcircuit for the head and a completely cyclic sequential sub-

Chapter 5. Circuit Synthesis

E(vo) = 	{({a},{p},vi)}
E(vi) = 	{({a},{q},v2)}
E(v2) = 	{({a},{r},vi)}

Figure 5-4: Decision Wait PCSG implementation

circuit for the tail. These subcircuits can be implemented using any of the methods

described above. The behavioural specification of the head must ensure a distinct

transition signal for the final state of the head. This constraint reduces the oppor-

tunity to apply any of the state reduction optimizations presented in section 6.2.

This final transition signal is used to modify (set) the state of the switch element,

redirecting the input signals from the head subcircuit to the loop subcircuit. The

set acknowledge from the switch is then used as the transition signal for the fi-

nal state of the head. Output level circuitry then merges and forks the transition

signals from both subcircuits to generate the appropriate outputs. If Huffman en-

coding of merge trees is used, the loop transition signals are assumed to occur far

more frequently than the head transition signals.

E(vo) = {({a},{p},vi)} 	 S S' 	 p1

E(vi) = {({a},{q},v2)}
	

qi

E(v2) = {({a}, {r}, Vi)} 	
a? 	 r!

Figure 5-5: Composite PCSG implementation

Finally, partially cyclic sequence generators (PCSGs) may also be implemented

using the select decomposition method. Much like the select decomposition of N-
toggle circuits, this technique constructs a binary tree of Keller select elements.

The test outputs of each select are used as the inputs to the next level in the

tree, and the sequence generator input is fed into the root select of the tree. If the

numbers of stable states in the head and the loop of the specification are denoted by

NH and NL respectively, this decomposition requires NL + NH - 2 select elements

and one switch element. The technique is to construct a binary tree of N. - 1

elements to cycle through the loop of the specification. The initial output of the

circuit is fed into a switch that initially feeds the input to a binary tree of NH - 1

Chapter 5. Circuit Synthesis 	 118

selects that implements the head of the specification. The transition signal of the

last stable state of the head sets the switch element. The remaining output of the

switch element acts as the transition signal for the first stable state of the loop,

and is used to set the state for the second state of the loop. This decomposition

strategy is illustrated by the PCSG example in figure 5-6 below.

E(vo) = {({a},{p},vi)} 	 - s 	
::i.J ri: 	:: > 	p1

E(vi) = {({a},{q},v2)} 	 I I (1) 	 (1)

E(v2) = {({a},{r}, vi) } 	a?— 	T 	 I

Figure 5-6: Select element PCSG implementation

General Sequential Circuits

We now consider the implementation of general sequential circuits, those whose

only restriction is that I E(v) I < 1, for any state v. We initially restrict our discus-

sion to circuits that only require a single input transition stimulus, i.e. I cause(t) I =
1 for all stable state transitions t. In this case, the behaviour of the circuit may be

decomposed into the parallel composition of several sequence generators, one for

each of the circuit's inputs. The outputs of these sequence generator circuits are

used as transition signals and combined using the standard constructions to gener-

ate the output signals. These sequence generator circuits may then be implemented

by any of the methods above.

This partitioning of the circuit behaviour is based upon the instance graphs of

each input signal, as defined in section 4.3. For a stable state graph, the instance

graph of a given input signal is a subgraph whose vertices are the stable states of

the SSG at which the given input may be received. The vertex vi is connected

by a directed arc to vj in an instance graph if vj may be reached from vi by a

sequence of stable state transitions in the SSG without passing through any of

stable states in the instance graph. If the initial stable state is not a vertex of the

instance graph, the initial states are those states that may be similarly reached

from the initial stable state of the SSG. For sequential circuits, there is always a

single initial state.

Chapter 5. Circuit Synthesis 	 119

For a circuit specification with only a single input, the instance graph of this

input is isomorphic to the circuit specification's stable state graph. All instance

graphs of an acyclic circuit behaviour are acyclic and all instance graphs of a

completely cyclic behaviour are completely cyclic. However, instance graphs of

a partially cyclic behaviour may be either acyclic, partially cyclic or completely

cyclic. The strict sequential nature of 'sequential' circuit behaviours ensures that

stable state transitions can not be concurrent and that the state circuitry associ-

ated with each input is independent of the remaining inputs. Hence, the parallel

composition of delay insensitive subcircuits implementing each instance graph (to-

gether with the necessary output circuitry) is delay insensitive and implements the

original circuit specification.

Once a circuit behaviour is decomposed into several instance graphs, these

instance graphs may not be 'state minimal' even if the original behaviour was

minimal. Minimizing each signal instance graph can then improve the quality of

the resulting circuit by reducing the number of states in each subcircuit. Because

minimization preserves observable functionality, the final circuit obtained by com-

posing these minimal subcircuits implements the original specification. The ability

to do state minimization at several stages in the synthesis methodology results in

more efficient circuits than those produced by syntax directed translation.

Given the subcircuits that implement the signal instance graphs of a sequential

circuit behaviour, synthesis of the necessary synchronization and output circuitry is

quite straightforward. All those stable states whose outgoing transition t contains

more than one input in its cause set use general N-input c-elements (where N =

cause(t)j) to perform the synchronization and generate the stable state transition

signals. Each of these transition signals is then forked and merged to produce the

required outputs.

An example of this synthesis procedure is given below. Consider the general

sequential circuit behaviour described by the stable state graph given in figure 5-7

below. This SSG has four stable states, three inputs and is an example of a partially

cyclic behavioural specification. The signal instance graph for the input a? has

two vertices, which being identical (having no other inputs in the relevant cause

sets and equal effect sets) may be state minimized to a single state. Hence the state

holding subcircuit for a? consists of a wire and a single output (which happens to

be the state transition signal for vertices v0 and v2). The signal instance graph for

input b? is completely cyclic having two vertices, hence b?'s state holding circuitry

Chapter 5. Circuit Synthesis 	 120

may be implemented by a toggle. Finally, c? has no state holding circuitry, only

a wire, as its signal instance graph contains only a single vertex. The transition

signal for state v1 is the initial output of b?'s toggle element and the transition

signal for state v3 is obtained by combining c? and the remaining output of b?'s

toggle in a Muller c-element. The output p! is produced at states v1 and v2 and is

always generated by a?. Output q! is generated at states v0, v1 and v2 and hence

is obtained by merging a? with the initial output of the toggle. And finally, output

r! is only produced at state v3 and therefore takes its output from the c-element.

E(vo) = {({a},{p,q},vi)} 	a?

E(vi) = {({b}, {q}, V2)}

= {({a},{p,q},v3)}

= {({b,c},{r},vi)} 	C?

P1

qi

Figure 5-7: Sequential circuit example

Although this synthesis method is applicable to all general sequential circuits,

there are large numbers of optimizations applicable to the implementation of se-

quential circuits where III > 1. These can result in a significant reduction in

the amount of synchronization and state holding circuitry required to implement

sequential circuits that meet the required criteria. These optimization techniques

are described in chapter 6.

5.2 Non-Concurrent Circuits

A more general class of delay insensitive circuits than strictly sequential circuits is

the class of non-concurrent circuits. Whereas sequential circuits are distinguished

by having at most one transition from each stable state, non-concurrent circuits

may have multiple transitions from each stable state, provided these transitions

do not occur concurrently, i.e. they must be both distinguishable and mutually

exclusive. This condition is formally characterized by the condition cause(ti) c
cause(t2) = t1 = t 2 for any pair of transitions t1, t2 E E(v) from a stable state V.

By definition, this class also contains all sequential circuits.

The mutual exclusive nature of stable state transitions makes non-concurrent

circuits an interesting class for circuit synthesis, permitting much simpler decom-

Chapter 5. Circuit Synthesis 	 121

position than concurrent circuits such as those with non-deterministic behaviour.

Because the environment of a non-concurrent circuit may choose which inputs to

send at points in its behaviour, this class is a subset of Udding's C2 data commu-

nication class. However, because some Udding synchronization class behaviours

are concurrent, they are not a superset of C1 .

The general decomposition strategy for non-concurrent circuits is to divide the

implementation of the circuit into three levels. These levels form the input rout-

ing circuitry, the synchronization circuitry and the output generation circuitry as

described in chapter 4. Each input is fed into a routing circuit which generates

an input instance corresponding to each stable state, these signals are then 'syn-

chronized' to generate a single unique state transition signal from that state, which

is used to update the state of the routing circuitry and generate the appropriate

set of outputs by branching merging. The principal differences from the model of

sequential circuits is that the synchronization circuitry may now be more complex

than a single completion tree, and the stable state transition signal may now be

required to update circuit state. This is because the 'next' state may depend upon

which state transition fires, rather than being uniquely determined by the circuit's

specification. The single unique stable state transition property makes the 'com-

mittee problem' much easier to deal with for generating the synchronization layer.

It also makes synthesis of the routing layer much easier as the next input transition

and all state change transitions are guaranteed to be non-concurrent. This means

that there is no need for arbitration in the routing layer.

5.2.1 Non-Concurrent Routing Synthesis

General Implementation Strategy

This section considers the implementation of the routing layer circuitry for non-

concurrent circuits. The routing layer of the proposed circuit synthesis method-

ology is responsible for converting an external input signal to one of n internal

input signal instances where n is that number of stable states at which that circuit

appears. Obviously an input signal that only ever occurs at a single stable state

does not need any routing circuitry, and may be implemented as a single wire

connecting the external input to the appropriate internal signal instance.

As described in section 5.1, the next stable state of a sequential circuit at which

a given input signal occurs is always known from the circuit's behavioural specific-

Chapter 5. Circuit Synthesis 	 122

ation. Hence, the routing circuitry for each input signal is able to determine for

itself the next internal signal instance to generate in response to a transition on

its external input. Such autonomy is generally not possible with non-sequential

circuits. A routing layer circuit for an input to a sequential circuit, as designed

above, would always have just a single input and n outputs, one for each stable

state at which that input arrives. A routing circuit for an input to a non-concurrent

circuit may require up to an additional n inputs and n outputs. These are organ-

ized as request acknowledge pairs, and set the state of the routing layer so that

the next signal instance to be generated appears at the specified instance output

terminal. The actual routing layer circuit for a non-concurrent circuit input may

be implemented by a single general n state select element. The external input is

connected to the select element test input, the n test output signals then form the

internal input signal instances. The n set and set-acknowledge terminals then form

the handshaking pairs for setting the state of the circuitry.

The proposed circuit methodology uses these additional terminals to change the

state of each input using stable state transition signals. State transition signals are

generated by synchronization layer circuits to indicate which of the possible state

transitions has 'fired'. Before this signal is used to generate the outputs (effect set)

associated with the appropriate state transition, it is used to update any internal

routing layer state ready for the next stable state. As an initial implementation

strategy, each transition signal is used to update the routing circuitry of all states

that occur at the destination state. As described in section 6.1.8, the routing circuits

of these inputs can either be updated sequentially or in parallel. Assuming the state

changes occur sequentially, the state transition signal is fed into the appropriate

set state input of the first routing circuit. The acknowledge output associated with

this input is used to set the appropriate state of the next routing circuit, and so on,

until the state change acknowledge of the final routing circuit is used to generate

the state transition's effect set.

If more than one transition has a destination stable state that requires routing

circuitry to be updated, i.e. has inputs that also occur at other stable states, then

additional hardware needs to be used to share the state set and acknowledge ter-

minals. This additional hardware consists of an n-call component, where n is the

fan-in of the destination stable state, which multiplexes the state transition signals,

triggers the updating of all the routing circuits (sequentially) and then generates

a unique acknowledge for each transition signal. These unique acknowledges are

Chapter 5. Circuit Synthesis 	 123

then used to generate the effect set outputs of each stable state transition. It is

assumed that the routing circuitry of all inputs occurring at the initial stable state

vertex, v0 , is initialized to its initial signal instance state. One further refinement

is to notice that reflexive stable state transitions, i.e. those transitions whose des-

tination state is the same as their source state, need not update the internal state

of any input routing circuitry. This is because the routing circuits of all inputs

occurring at that stable state are already set to the desired internal state.

As an example application of these synthesis steps, consider the stable state

graph specification given in figure 5-8 below. This behaviour describes a non-

concurrent circuit with three stable states and six stable state transitions. The

circuit's interface has three inputs, a?, b? and c?, and six outputs, one for each of

the stable state transitions, p!, q!, r!, s!, t! and u!.

E(vo) = {({a},{p},vi), ({b},{q},vo)}

E(vi) = {({b},{r},vi), ({C},{8},V2)}

E(v2) = {({a}, {t}, VO), ({c}, {u}, vi)}

Figure 5-8: Non-concurrent routing example SSG

Analysis of the above stable state graph reveals that all three input signals occur

at exactly two stable states; a? occurs at v0 and v2, b? occurs at v0 and v1 and

occurs at v1 and v2. This indicates that the routing circuits of all three inputs

will consist of a 2-select component (a standard Keller select element). Assuming

that Keller select elements are initially reset, the a? and b? instances at v0 are

generated from the appropriate TO! Keller select outputs as both of these inputs

occur at the initial state. A design decision is made that the v1 instance of c?

occurs at output TO! and the v2 instance of c? occurs at output Ti! of the c?'s

routing circuit. Further analysis reveals that transition q and transition r (using

the convention that each transition is identified by its unique output) are both

reflexive. This means that once these transition signals are generated they are

not required to change the states of any routing circuitry. Of the remaining stable

state transitions, transitions p and u move to state v1 and both must therefore set

V's select and reset c?'s select, transition s moves to state v2 and must set both

a?'s and c?'s select, and finally transition t moves to state v0 and must reset both

a?'s select and V's select. In order for both p and u to update the same routing

circuits to the same state they must be multiplexed using a standard two-input call

Chapter 5. Circuit Synthesis 	 124

module. The resulting implementation generated using this decomposition method

is given in figure 5-9 below.

a? 	 b? 	 C?

T 	SR 	T @ R'S' 	RS'

OT1 S'R' 	TOT1 R S 	R'S

81 	q! r! t!

U1 	A2

Figure 5-9: Non-concurrent routing example

Improved Implementation Strategy

From the above implementation strategy, it can be seen that each routing layer

circuit is effectively an asynchronous finite state machine (FSM) implementing the

appropriate input's signal instance graph (as defined in section 4.3).

The first optimization that may be applied to the implementation of non-

concurrent routing is to observe that inputs with sequential signal instance graphs

(SIGs) may be implemented by sequence generator circuits, as described in sec-

tion 5.1.2. An SIG is sequential if at all vertices, all outgoing transitions have the

same destination vertex. In this case, the next signal instance to be generated at

any state is known, and the routing circuit may update its own state rather than

rely on feedback from transition signals. In such a case, the implementation tech-

niques described for the routing circuitry of sequential SSGs are applicable. As an

example, consider the behaviour of the routing circuitry for signal a? in the non-

concurrent SSG specified in figure 5-8. The signal instance graph of this input has

two states, where all transitions from the first lead to the second, and vice versa.

This indicates that the routing circuitry for input a? may be decomposed using the

methods presented for cyclic sequence generators (section 5.1.2) and results in a

single toggle component. The external input a? is fed into the toggle's input and

the instance of a? at v0 is generated at the initial output, and a? at v2 at the other

output. The use of autonomous routing circuitry also simplifies the result of the

Chapter 5. Circuit Synthesis 	 125

circuit, in the above example transition r need now only modify the state of c?'s

routing circuit.

A similar optimization may be applied when only some of the vertices in an

input's signal instance graph are sequential. In these cases, the routing circuitry

is again able to update its own state, but just at the sequential vertices. This may

result in a hardware saving if the destination vertex has a stable state transition

fan-in greater than one. In such a case, a call component may be saved if this is

the only input that needs to have its routing circuitry updated at that state.

It is also possible to implement some non-concurrent routing layer circuits using

an Nxl decision wait element, where N is the number of stable states at which

the appropriate input occurs. The constraint on using a decision wait is that the

external input signals and the state update signals must strictly alternate. This

constraint is satisfied if all the states of the stable graph, (V, T), at which a signal

i can occur, it must occur. This is expressed formally as the condition Vv E V

if Occurs(i, v) then Vt E E(v) i E cause(t). This is a weaker condition than

sequentiality. If this condition holds, the routing circuit may be implemented using

the external input i as the single row input, and generating the N internal signal

instances from the decision wait outputs. The request-acknowledge pair state

setting signals are implemented by forking each set signal, one branch forming a

column input, the other producing the acknowledge. The acknowledge output may

be generated immediately as the decision wait forces any subsequent input signal

to wait until the next state signal arrives. The major advantage of decision wait

routing circuitry is that call elements are not required to multiplex state update

signals. Instead the transition signals are simply forked and merged with the merge

output forming the decision wait column input. Another subtle difference is that

reflexive stable state transitions must update the decision wait routing circuits of

all the inputs in their cause sets.

Select Tree State Assignment

As described in section 3.4.4, a general N-input select element may be implemen-

ted using an N x 2 decision wait element, an Nxl decision wait element and two

N-input merge gates. This permits any non-concurrent routing circuit to be im-

plemented in a decision wait basis. However, as will be described below, there are

a number of optimizations that may be applied if routing circuits are decomposed

in a Keller select element basis.

Chapter 5. Circuit Synthesis
	

126

b? 	C?

E(vo) = {({a,b},{p},vi),
p

({a, c}, {q}, VO)}

E(vi) = {({a},{r},vo)} 	 a

ri

Figure 5-10: Decision wait routing layer implementation

For a select element implementation, an N state input routing circuit is organ-

ized as a central binary tree of Keller select elements, surrounded by a number

of general call components to multiplex the state change signals (as described in

section 3.4.4). The N - 1 select elements are arranged as a tree where each test

output, TO' and Ti!, is either connected to the test input, T?, of another select

element or forms one of the N instance signals. The external input is then used

as the test input to the root select element of this tree. Note this tree need not be

balanced, and the tree topology represents a state encoding. A binary vector may

be used to represent each instance signal by concatenating the states of the selects

on the path from the root to the given instance signal output. Each state vector v j

has a minimum length of 1 and a maximum length N - 1.

This select element topology may be used to reduce the amount of hardware

required to multiplex and demultiplex set/reset signals and reduce the number of

select elements that need change their states.

The first point to notice is that changing state from a state 15i to a state ?J,

requires setting all the selects of v j that are not part of their common prefix. This

means that if a state encoding is found that maximizes the common prefix between

the source and destination states of a stable state transition, this will require less

circuitry to be updated. The second point to notice is that in typical operation

some state transitions are known to occur more frequently than others. Hence the

performance of the resulting circuit may be improved by speeding up the commonly

occurring transitions at the expense of the rare ones. Optimizing these constraints

is the goal of state assignment.

State assignment is the task of finding a mapping from signal instances to state

vectors (the select element topology) so as to minimize the required 'call' hardware

and maximize performance. The quality of a state assignment may be judged on

Chapter 5. Circuit Synthesis 	 127

three criteria. The first is the number of additional Call elements necessary to

implement the state transitions, the second is the number of select element tests

required to determine a signal's instance (biased by instance frequency) and finally,

the number of select element state changes required to perform a state transition

(biased by state transition frequency). The relative priorities of these criteria

depends upon the additional hardware 'cost' of additional Call elements and the

relative performance of modifying to testing a Keller select elements.

The algorithm currently used to determine a state assignment is to iteratively

group sets of states together using heuristics. Initially, the N states of a given

routing circuit are associated with an empty state vector (of length zero) and

organized as N distinct sets each containing a single state. The state assignment

proceeds by selecting two sets of states and combining them to form a single set,

prefixing the vectors of all the states in one set by zero and all the vectors of the

other set by one. The choice of which set is prefixed by a given value is arbitrary

unless the speed of a select element is dependent upon its state. This step is applied

N-i times with the resultant and remaining sets until only a single set of states

remain. This technique can generate any possible state assignment, the quality

of which is dependent upon the selection criteria (heuristics) used to identify the

two state sets to combine. Four heuristics have been implemented in a prototype

circuit compiler, these (ordered by priority) are listed below.

Maximize Internal Communication. When combining vertices together,

preference is given to strongly connected pairs of vertices. This means that

state transitions tend to be kept locally in the same subtrees. Because a

transition between two states changes all the select elements up to their

common ancestor, keeping related vertices in the same subtrees improves

performance.

Minimize Incoming Transitions. The total of hardware required by call

trees to set or reset a Keller select element is proportional to the number of

signals that need to be combined. This heuristic attempts to minimize this

overhead. The other advantage is that it tends to encode the initial states

that have no incoming transitions deep in the tree. This heuristic, however,

is in direct conflict with the first heuristic.

Chapter 5. Circuit Synthesis
	 128

Minimize Total Depth. This heuristic works by Huffman encoding the

vertices into the select tree. In order to make the select tree as balanced/low

as possible, this heuristic gives preference to combining shallow trees.

Maximize Incoming Depth. This final low priority heuristic is applied

if all other factors are equal. It is used as a packing constraint to avoid

imbalance in the select trees.

State Transition Selection

In the above synthesis strategy, it was assumed that every stable state transition

would update the routing circuitry state of those input signals that occur at its

destination stable state. In fact, the only requirement on the routing circuitry is

that it is in the appropriate state when the external input signal arrives. Hence,

any of the transition signals that fire between one instance of an input and the next

may be used to appropriately update the routing circuitry. Indeed the state may

be updated several times between instances provided that it is in the correct state

when the next external input arrives. The task of determining which transition

signals to use to update a routing circuits state is called state transition selection.

Alternative algorithms for state transition selection are not described in this

thesis. The use of the final state transition before each stable state, as described

above, suffices to demonstrate the circuit synthesis techniques described in this

thesis. However, alternative state transitions, that may require less hardware, are

possible through analysis of the signal instance graph (see section 4.3) of each

external input signal.

Equivalent Instances

One final set of non-concurrent routing circuit optimizations are those based on

signal equivalences. Informally two signals i and j are equivalent if they have

the same observable effect on the circuit, written equivalent(i, j). The circuit

synthesis method can make of the knowledge that two signals are equivalent to

reduce the amount of hardware required by an implementation. For example,

a call element need not be used to demultiplex a request into two equivalent

signals. Because they both have the same effect on the rest of the circuit, they are

indistinguishable and transitioning either will preserve the behaviour of a circuit.

Chapter 5. Circuit Synthesis 	 129

The easiest case of detecting equivalent signals in a circuit are those signals

that are fed directly into a merge element without branching. There is no point

in distinguishing two signals that will subsequently be merged. This is in fact an

instance of one of the circuit identity optimizations described in section 6.1.2.

Consider the case of two stable state transition signals that have the same

effect sets. Once the state of any routing circuitry has been updated, the resulting

signals are equivalent as they are both just forked and merged with the same set of

external output signals. If the above two 'equivalent' signals emerge from a single

call element, because they update the same routing circuits to the same state, they

need not be distinguished but can be merged together before being used to update

the state of the routing circuitry, the acknowledge being used to generate the effect

set outputs. This means that two transition signals that have the same effect sets

and update the same routing circuitry to the same states are equivalent. Finally,

routing circuitry need not maintain distinct states for two equivalent input signal

instances.

5.2.2 Disjoint Transitions

The simplest form of synchronization circuitry for a non-concurrent delay insens-

itive circuit is that required to handle disjoint transitions. The transitions from a

given stable state are termed disjoint if the cause sets of each transition share no

input signals. Hence for any stable vertex v, the transitions are disjoint if

Vt1,t2 E E(v) cause(ti) fl cause(t2) 	0 = t 1 = t2

This restriction has the effect that the circuit's environment may only send to

those input signals involved in a single transition's synchronization. This avoids the

synchronization tree of any other state transition receiving a subset of its cause set.

Each state transition's synchronization circuitry may therefore be implemented by

a single completion tree of the instances in its cause set. Each completion tree is

implemented by a binary tree of cause(t)I - 1 two-input Muller c-elements. The

transition signals is then generated at the output of each tree.

For example, consider the non-concurrent behavioural specification described

by the SSG in figure 5-11 below. This specification has only a single stable state

and hence requires no routing circuitry as each input has only a single instance.

The cause sets of the two transitions are disjoint and are implemented by two

Chapter 5. Circuit Synthesis 	 130

c-elements using the construction described above. The specification also requires

no output circuitry or state transition feedback signals and hence the c-element

outputs form the circuit's outputs.

	

E(vo) = {({a,b},{p},vo), 	 L.P!

	

({c, d}, {q}, vo)} 	 c?

Figure 5-11: Disjoint transition example

5.2.3 Distinct Transitions

The largest class of non-concurrent circuits is those with distinct transitions. The

only requirement on this class of circuits is the non-concurrency requirement for

each stable state v, that the cause set of any state transition is not a subset of any

other. This class of circuit behaviour requires extra circuitry to roll-back partially

committed synchronization trees. The delay insensitivity constraints on a Muller

c-element require that once one input is asserted it may not be retracted. Hence

during a state transition, any c-element that receives only a subset of its inputs

must be 'reset' to its initial state. This requires additional logic to generate inputs

on each of the remaining inputs and to manage the outputs from each synchron-

ization tree. This additional hardware has been termed 'forgetting' circuitry by

several researchers. The class of distinct transitions is therefore characterized by

the following condition.

	

Ve1, e2 E E(v) cause(ei) c cause(e2) 	el = e2

For disjoint transitions, each synchronization circuit consists of a single comple-

tion tree of I cause(t) I - 1 I c-elements. For non-disjoint transitions, each synchron-

ization circuit also requires a number of merge gates and Keller select elements.

The output of each completion tree, for a transition t E E(v), is fed into the test

input of an N-input initialized select component, where N is the number of trans-

itions that have an input in common with t1, i.e. N = j{t2 cause(t i)flcause(t2) :~

0, Vt2 E E(v)}I. For a stable state transition with distinct inputs, N = 1 and the

N-input select is replaced by a wire generating the state transition input. Other-

wise, N > 2, there are N - 1 partially completed trees to be 'rolled back'. This

Chapter 5. Circuit Synthesis 	 131

N-input select component is typically decomposed into N - 1 standard 2-input

Keller select elements.

When a completion tree 'fires', it tests the initialized select component at its

output and generates one of the N-outputs. If a select component's initial output

is generated, this is the first tree to fire and the required stable state transition.

This 'initial' output signal is then used to set the state of the select components

of the remaining N - 1 partially committed completion trees, and provide the

required 'stimuli' to cause them to fire. If the select component generates one of

the remaining outputs, one of the other completion trees fired first, and caused this

tree to rollback. This output is used to reset this select component to its initial

state and acknowledge that this transition has been rolled back.

The false 'stimuli' required to fire a partially committed completion tree is

formed by using a merge gate to combine the rollback signal with each of the

inputs of the partially committed completion tree that are not in the cause set

of the firing completion tree. Hence, for any pair of transitions ti, i2 E E(v), if

cause(ti) fl cause(t) 	0 then cause(t2) - cause(ti)j merge gates are required

to stimulate t2 's completion tree after tj fires. This construction can lead to a

very large number of merge gates, for complex stable states. In practice, however,

this worst case bound can be significantly improved by applying a number of the

optimizations described below.

There is an area/performance tradeoff that can be made when rolling back a

number of completion trees. It is possible to rollback each partially committed

tree either concurrently, sequentially or some combination of the two. Trees can be

rolled back in parallel by forking the initial output of the firing transition's select

component to form N - 1 branches, one for each tree to be rolled back. Each

branch is then used to set the state of the chosen transition's select component to

indicate which transition fired. The set acknowledge is then forked to produce one

rollback signal for each input to be stimulated, which is merged with that input

to form the completion tree's inputs. This then excites the completion tree and

generates the rollback acknowledge output. All N—i rollback acknowledge outputs

generated by the initial firing are then combined with an N - 1 input c-element

which generates the required state transition output. Alternatively, trees can be

rolled back sequentially, using the rollback acknowledge of each tree to rollback the

next (in an arbitrary order) and the rollback acknowledge of the last tree forming

the state transition signal. This tradeoff is discussed in detail in section 6.1.8.

Chapter 5. Circuit Synthesis 	 132

Consider the example specification given in figure 5-12 of a 2 x 1 decision wait

element. This has two transitions that are not disjoint from a single stable state,

the input a? is common to the cause sets of both transitions. Hence, once the

completion tree for either state transition 'fires', the remaining tree is a partially

completed state. Each c-element requires a single select element to differentiate

between a true firing and a rollback initiated by the other c-element.

E(vo) = {({a,b},{p},vo),

({a, c}, {q}, VO)}

S,
	S

S

TI

C 	 TO

TO
Ti c? 7L

7V R' R
S

Figure 5-12: Distinct transition rollback example

The complex behaviour of the above example deserves a little more explanation.

Consider the arrival of the two inputs signals a? and b? that are required for the first

stable state transition to fire. The a? input is forked and partially commits (primes)

both Muller c-elements. The b? input passes straight through the merge gate and

fires the remaining input of the first c-element. At this point in the behaviour

of this circuit, one of the c-elements will fire and the other will have a single a?

input commited. The correct delay-insensitive behaviour of the c-element requires

that the remaining input on this second c-element must fire before the circuit can

return to its initial state. Hence the select elements that appear after each c-

element indicate whether this is the first firing of the c-element (the stable state

transition signal) or the result of the other c-element firing first and attempting

to reset/rollback this c-element.. To continue our example, a?©b? is used to test

the top select element, which by convention is reset. The TO! output of this select

indicates that the bottom c-element needs to be rolled back. This output is used

to set the state of the bottom select element, the set-acknowledge is then merged

with c? to fake a pseudo-input into the bottom c-element. As the c-element has

now received both a? and a fake c?, it fires and the output a?©c? is used to test

the bottom c-element. This time the state is set, indicating that the c-element is

being reset, the Ti! output is then used to reset this bottom select element and

the reset acknowledge is used to to generate the output signal p! indicating that the

stable state transition has completed. It can be seen that the circuit is symmetric

and the behaviour of the second stable state transition is analogous to the first.

Chapter 5. Circuit Synthesis 	 133

There are a number of optimizations that can be applied to this general syn-

chronization level construction. Perhaps, the most powerful is the partitioned

transitions optimization that is discussed in the following section. However, this

optimization is only applicable to a particular class of behavioural specifications.

Some delay insensitive circuits, such as n-of-m code detectors require rollback cir-

cuitry.

The two remaining 'rollback' implementation optimizations take advantage of

the fact that not every c-element in a completion tree may have been committed.

The first optimization is to notice that the false stimuli need not be inserted at

the base (leaves) of a completion tree, but may be introduced in the middle of

the completion tree. This optimization is a special case of the general 'common

subexpression elimination' optimization described in section 6.1.3. The principle

is illustrated by the circuits shown in figure 6-5 on page 156. As part of a larger

completion tree, inputs a? and b? need to be rolled back by a false stimulus c?, this

stimulus may be inserted higher in the completion tree. The other optimization

is to notice that the select element need not always be placed at the root of a

completion tree. It is possible to rollback only a subtree of the completion tree

and place the select element at the root of this subtree. This removes the need to

stimulate the inputs of the completion tree that are not part of the subtree.

Both of these optimizations are demonstrated in the circuit implementation

given in figure 5-13 below. As can be seen from the stable state graph specification,

this function of this circuit is symmetric with b, c and d, e being symmetrical. For

the purposes of illustration, however, the implementation is asymmetric showing

the two different optimization strategies described above. The completion tree of

the first (top) transition is organized as (a©b)©c and the completion tree for the

second transition is organized (d©e)©a. Both completion trees need to be able to

rollback the a? input signal. The top implementation makes use of the fact that the

select element need not be placed at the root, but instead only rolls back the a©b

subtree, by inserting a false stimulus to b. The lower implementation makes use

of the fact that the false stimulus may be inserted above all non-committed inputs

in the tree, and hence rolls back the top c-element by inserting a false stimulus at

d©e.

Chapter 5. Circuit Synthesis 	 134

i S, 	5 I
R

	

	 I
®ii

_J 	 I
b?- 	

I1 37f _ TO 	 I
iCr-i!

	

E(vo) = {({a,b,c},{p},vo), 	_____________
_________________ 	 I a?

	

({a, d, e}, {q}, vo)} 	
TO

I R' R

Figure 5-13: Distinct transition partial rollback example

5.2.4 Partitioned Transitions

An extremely useful decomposition technique for non-concurrent circuits is the

partitioned transitions optimization. This optimization improves the quality of

synchronization circuitry by avoiding the need for synchronization rollback (for-

getting circuitry), as described in the previous section. This decomposition method

may be applied when a set of mutually exclusive input signals can be found, such

that one signal from this set occurs in each transition's cause set. This condition

may be expressed formally by the statement below.

lb c I: Ve E E(v) x fl cause(e) = 1

This input set, x, effectively partitions the transitions from a stable state into

a number of discrete sets, one for each input signal, hence the name of the optim-

ization.

Partition Signal

The obvious special case of this condition occurs when one signal occurs in the

cause sets of all the transitions, i.e. IxI = 1. When this is the case, none of the

transitions is allowed to fire until that single signal, i E x, has arrived. This form

of stable state may be decomposed by implementing the stable state formed by

removing i from each cause set. The outputs, transition signals, from each of

these n transitions may be fed into an n x 1 decision-wait, whose single column

input is the enabling input i. The n outputs of this decision wait then form the

true outputs of the stable state. Alternatively, the n x 1 decision wait may be

implemented using an n-call component and a two-input Muller c-element.

Chapter 5. Circuit Synthesis 	 135

A example application of this transformation to the specification of a 2>< 1 de-

cision wait is shown in figure 5-14 below. Here the input signal a? occurs in both

of the stable state transitions. Once this input signal is removed, the two cause sets

of the transitions become {b} and {c}. These transitions are both trivially imple-

mented by wires. The resulting implementation is then these wires fed directly into

a 2 x 1-decision wait whose outputs are the required state transition signals. This

is large improvement above the synchronization rollback implementation given in

figure 5-12.

a?

E(vo) = {({a,b},{p},vo), 	
9

R1 	 C i
 -Al

({a, c}, {q}, VO)}
C? R2 A
CII 	A2

Figure 5-14: Partitioned transition example

A slightly more complex example is the SSG specification shown in figure 5-15

below. Once again this stable state has two transitions, both of which contain the

single input signal a? in their cause sets. The reduced synthesis task now becomes

the cause sets {b, c} and {d, e}. These can be seen as disjoint transitions and

implemented as a pair of 2-input c-elements. With the substitution of wires for

c-element outputs, the complete circuit is almost the same as the one presented

above. As can be seen by comparison with figure 5-13, this circuit is once again

an improvement upon the synchronization rollback implementation.

C 	
a?

R C? 	 i E(vo) = {({a,b,c},{p},vo), 	p1 Al R

({a,d, el, {q},vo)}
R2

C

Figure 5-15: Partitioned transition example

Partition Set

When the partitioning set x contains more than a single input signal, a similar

but more complex decomposition strategy can be applied, provided that we place

a constraint upon the partitioning set x. This simple constraint requires that after

the removal of the appropriate symbol from the cause sets, that no cause set is a

subset of another. This constraint may be expressed as

Chapter 5. Circuit Synthesis 	 136

V11, t 2 E E(v) (cause(ti) - x) 	(cause(t2) - x)

This case is always met when jxj = 1 for non-concurrent stable states. Note

that in the above expression it is permitted to have one of the new cause sets equal

another. Once a suitable partition is found, the stable state can be decomposed

using a Mx N-decision wait element, where the number of column inputs M equals

J xj the number of signals in the partition set, and the number of row inputs N

equals the number of unique new cause sets. Once again, the stable state formed

by removing the appropriate member of x from each cause set is implemented,

and the N unique outputs fed into the row inputs of the decision-wait element.

Similarly, each of the M members of x is fed into the column inputs. The output

transition signals are then generated from the appropriate cell in the decision wait

matrix, i.e. the transition signal for transition t E E(v) is generated from the

column corresponding to cause(t) fl x and the row corresponding to cause(t) - x.

An application of this optimization is the decomposition of a 2 x 2 decision

wait element. The stable state graph specification of this component is given in

figure 5-16 below. This specification has 4 inputs and 4 outputs. The two row

inputs are labelled aO? and al? and the two column inputs are labelled bO? and

bi?. The four outputs, cOO!, cOl!, dO! and cli!, are generated upon receiving

one row input and one column input. The arrival of a? and b3 results in the

generation of c 3 !.

E(vo) = {({aO,bO},{cOO},vo),

({aO, bl}, {cOl}, vo),

({al, b0}, {clO}, vo),

({al, bl}, {cll}, vo)}

Figure 5-16: 2x2 decision wait SSG

A suitable partition set for this stable state is the set {aO?, al?} as each signal

occurs once in each transition's cause set. Upon removing the partition signals,

the there are only two unique cause sets {b0?} and {b1?}. Obviously from these

two sets, the subset condition is met and hence the partitioned transitions de-

composition may be applied. Both reduced cause sets only contain a single input

Chapter 5. Circuit Synthesis 	 137

signal, and hence are both implemented by wires. This then results in the final

implementation being a 2 x 2-decision wait with the wires from bO? and bi? as the

row inputs and aO? and al? as the column inputs. Using the Keller select element

basis, the resulting implementation of the above SSG specification is the circuit

shown in figure 5-17.

bO? 	R 	R' 	 RI

bi? 	S 	S R2 	R

al?

Figure 5-17: 2x2 decision wait implementation

Because the decision waits resulting from this implementation method are often

sparsely populated, they can often be optimized further using row/column elim-

ination (section 6.1.5), row/column compression (section 6.1.6) and decision wait

splitting (section 6.1.7).

5.2.5 Synchronization Decomposition

There are a number of optimizations to the generic 'distinct' transitions imple-

mentation strategy described above that help to simplify the task of generating

synchronization layer circuits.

The first simplification is that the committee problem may be subdivided into

smaller problems, provided that each smaller problem does not contain any mem-

bers (input signals) in common. If it is possible to find a set of transitions,

E C E(v) from a stable state v, such that for any transition ti E E and any

transition t 2 E E(v) - E, then cause(ti) fl cause(t) = 0, then the stable state

may be implemented by parallel composition of the implementation of the stable

states (transition sets) defined by E and E(v) - E.

The next property is that any set of input signals that only ever occur to-

gether in the causes sets of the transitions at a stable state, may be replaced by a

single input signal, that is generated by synchronizing all of those inputs together

with a c-element. [This is very similar to the global input clustering described in

section 6.2.11.

Chapter 5. Circuit Synthesis 	 138

In non-concurrent circuits, any transition whose cause set contains only a single

input signal may be implemented by a single wire, where the transition signal for

that transition is generated from the single input. In non-concurrent circuits, any

input signal that only occurs in a single transition's cause set, where that cause set

with the signal removed is not a subset of any other transition, may be removed

from the cause set and combined with the resulting state transition signal using a

Muller c-element.

The final optimization is dependent upon transitions that have the same result

on the state of the circuit and the same generated output signals. Typically, this

is the case for transitions t1 and t2, if they have the same effect sets, effect(ti) =

effect(t2) and next(ti) = next(t2). However, the condition is neither necessary

nor sufficient for some routing layer synthesis strategies. The result of a transition

on a circuit is not necessarily determined by its next state, but by whether and how

it is used to update the routing layer circuitry. This is explained in greater detail

in the discussion on transition signal selection, which is covered in section 5.2.1.

If this criterion is met, the fact that the two transitions t1 and t2 have the same

'effect' or 'result' is denoted as equivalent(t i ,t2). Two transitions from the same

stable state are not equivalent if they leave the circuit in different internal states,

or generate different outputs.

The final complex optimization is termed input merging. Two input signals a

and b that occur at a stable state v may be merged, if they do not occur in the same

cause sets, and for every cause set that one of them appears in, the other appears

in an equivalent transition with an identical cause set except for the substitution

of the first input for the second. Having identified such a pair of input signals, all

equivalent transition pairs may be replaced by a single transition containing a b.

The statement that the two inputs a and b never occur in the same cause set, may

be expressed as Vt e E(v). cause(t) fl {a, b} I < 1. The fact that they occur in

equivalent transition pairs may be expressed as Vti G E(v) if a E cause(ti) then

E(v) such that equivalent(t i,t2) and cause(t2) = (cause(ti) - {a}) U {b},

and the symmetric condition for b.

An example application of this optimization is shown in figure 5-18 below.

The top two stable state transitions in the given stable state graph are 'equival-

ent'. They both produce the same output, and because the SSG only has a single

stable state there is no routing layer circuitry to be left in a different state. The

two input signals b? and c? may be 'input merged' as they only occur in the

Chapter 5. Circuit Synthesis 	 139

top two stable state transitions and the cause sets are otherwise identical. These

top two stable state transitions can therefore be replaced by the single transition

({a, bc}, {p}, vo). The resulting stable state graph is equivalent to figure 5-14,

and the resulting implementation is as shown below.

a?

E(vo) = {({a,b},{p},vo),

({a, c}, {p}, VO),
A

({a,d},{q},vo)}

Figure 5-18: Input merge example

5.3 Concurrent Circuits

This section describes the decomposition of the remaining (most general) classes

of delay insensitive circuits, concurrent circuits. Whereas state transitions of non-

concurrent circuits cannot occur simultaneously, concurrent stable states may have

transitions with identical cause sets or transitions whose causes sets are subsets of

other cause sets. In addition to traditional concurrency, this section also describes

the synthesis of non-deterministic circuits such as those that perform arbitration

between signals.

One consequence of considering concurrent stable state graphs is that the beha-

viour of stable states is no longer independent. For two transitions ti and t2 from

stable state v such that cause(ti) C cause(t) there are several things that can be

said about the stable state transitions from the stable state next(ti). One property

that is used through out the derivation of many of the synthesis rules described

below is that *1, t2 e E(v) if cause(t i) C cause(t) then E16 E E(next(t i)) such

that (cause(t2) - cause(t i)) c cause(6). Simply stated, if the environment can

send more input signals than are required to fire a stable state transition, then

these outstanding signals must be accepted in the destination stable state of that

transition. This is effectively enforced by Udding's rule R3 in its different forms.

One consequence is that both the current state E(v) and the state E(next(ti))

must have circuitry to handle the arrival of the signals cause(t 2) - cause(t i). One

driving principle in many of the synthesis methods introduced below is the ability

to reuse the same hardware for implementing both stable states.

Chapter 5. Circuit Synthesis
	 140

5.3.1 Static Non-determinism

The first class of concurrent circuits to be considered is those containing static

non-deterministic stable states. Static non-determinism in a circuit specification

occurs when the circuit may make an arbitrary choice between the outputs that

it can generate and this non-determinism is not caused by 'racing' concurrent

signals (dynamic non-determinism). Non-deterministic circuits may be considered

a simple extension of non-concurrent circuits, where otherwise distinct, mutually

exclusive stable state transitions may have identical cause sets and differing effect

sets (or next states). This class of circuits may be defined formally by the constraint

cause(ti) c cause(t2) = cause(ti) = cause(t2), i.e. the only 'concurrency' in the

circuit is caused by transitions with identical cause sets.

This implies that simple static non-determinism occurs when the same stimulus

may have several potential responses, i.e. there exist two transitions ti, t2 E E(v)

for any stable state v, such that cause(ti) = cause(t2) and either effect(ti)

effect(t2) or next(ti) 	next(t2). Such circuits may be implemented using

the techniques described elsewhere in this thesis, replacing the statically non-

deterministic transitions with one with the same cause set. Once the corresponding

state transition signal is generated it may be used as input to an N-choice element

where each of the N outputs form the stable transition signals for the original non-

deterministic outputs. These state transition signals are then used to update the

appropriate routing circuitry and generate the external output signals as discussed

previously.

One of the useful properties of static non-determinism is that, with an appro-

priate implementation operator, the result of the non-deterministic choice may be

made at compile time, i.e. when the circuit is designed or fabricated. Dynamic

non-determinism, on the other hand, is an intrinsic characteristic of the 'run-time'

behaviour of asynchronous circuits. Hence, a circuit specification that contains

dynamic non-determinism must be implemented by a circuit containing an arbiter

or similar dynamic component.

Taking advantage of the above 'alternative implementation' property of static

non-determinism, a circuit compiler may attempt to generate several alternative

deterministic (or dynamically non-deterministic) implementations and output the

resulting implementation with the best performance/ cost. Making such choices at

design time can drastically reduce the amount of hardware required to synthesize

Chapter 5. Circuit Synthesis 	 141

all potential non-deterministic behaviours. The resulting implementation remain

observationally identical to the original circuit specification.

5.3.2 Premature Concurrency

An input signal i at a stable state v is said to exhibit premature concurrency if

it may occur at v but the circuit does not acknowledge its receipt by generating

any additional (or different) output signals. This can be tested by the following

condition. Vt1 E E(v) such that i E cause(ti) then 3t2 c E(v) where cause(t2) =

cause(ti) - {i}. The name 'premature' is due to the fact that such signals are

received by the circuit before it is ready to process it.

An example of an SSG specification exhibiting premature concurrency is shown

in figure 5-19 below. In this example, the input signal a? at stable state v0 is

premature. The arrival (or not) of this signal has no effect on the behaviour of

that stable state, the arrival of input c? generates output q! regardless.

E(vo) =

({a,c}, {q},v2)} 	 a?4Th

E(vi) = {({a,b},{p},vo)}

E(v2) = {({b},{p},vo)} 	
>

Figure 5-19: Premature concurrency example

The appropriate implementation strategy for such stable states is to ignore all

stable state transitions in which the premature input occurs, but instead handle the

arrival of that input in later stable states. In this example, input a? is processed

correctly in stable state v1. This behavioural transformation relies on the routing

circuitry for the premature input to be correctly updated before this state. This is

trivially achieved in this example as the input a? only occurs at a single stable state

in the transformed stable state graph. The transformed stable state graph, i.e. the

one that effectively needs to be implemented in shown in figure 5-20 below. Notice

that this specification removes all stable states that are only reachable from deleted

stable state transitions. The resulting circuit has only two stable states instead of

the original four and requires no routing circuitry. The resulting implementation of

this specification is given with the original SSG specification in figure 5-19 above.

Chapter 5. Circuit Synthesis 	 142

E(vo) =

- E(vi) = {({a,b},{p},vo)}

Figure 5-20: Transformed premature concurrency SSG

5.3.3 Classical Concurrency

One of the most common classes of delay insensitive circuit specification is non-

arbitrating concurrent circuits. However, correctly identifying the behavioural class

of concurrent circuits is a complex task. The principal forms of concurrency classi-

fied in this thesis are static non-determinism, classical concurrency, simple concur-

rency, synchronization roll-back concurrency, complex concurrency and dynamic

non-determinism (arbitration). The potential presence of combinations of any of

these forms at a single stable state make their classification difficult.

The first step is to decompose a single specification stable state vertex into a

number of independent transition sets (stable states) using the rules introduced

in section 5.2.5. This results in several smaller stable states such that there must

be an interdependence of the signals that can occur in that cluster. All premature

concurrent signals (as described in section 5.3.2) are then removed from each stable

transition. All stable state transition clusters that can immediately be classified as

non-concurrent (possibly with static non-determinism as described in section 5.3. 1)

may be implemented independently using the decomposition strategies described

previously in this chapter.

The second step in the decomposition is to classify the remaining stable state

transitions as either atomic or composite, as defined in definition 26 in section 4.2.

A stable state transition t from a stable state v is atomic if there are no transitions

from v that have a cause set a subset of t1's cause set, i.e. -ER2 E E(v) . cause(t2) C

cause(ti). Any transition that is not atomic is classified as composite.

Classical concurrency occurs when the stable state transitions in a given trans-

ition set T may be partitioned into two independent transition sets, T1, T2 and a

set of composite state transitions, T3 that occur due to the simultaneous firing of

the transitions in T1 and T2. The partitioning constraint may be expressed as the

conditions VO<i3 . T C T, VO<j<3 . Ti fl T = 0 and T1 U T2 U T3 = T. The

independence of inputs occurring in T1 and T2 may be expressed as the condition

Chapter 5. Circuit Synthesis
	 143

that (UtET1 cause(t)) fl (UT, cause(t)) = 0. The composite constraint on T3 is

expressed as Vt E T3 . composite(t).

The simultaneous independent firing of T1 and T2 may be expressed by the

following set of conditions. For every transition t3 E T3, there exists ti E Ti and

t 2 E T2 such that cause(ti) U cause(t) = cause(6), effect(ti) fl effect(t2) = 0

and effect(ti) U effect(t) = effect(6). Finally in the case that t1 and/or t 2

are composite, the subsets must also be independent and simultaneous: Vt4 E T

such that cause(t) C cause(t) then 3t5 E T3 such that cause(4) = cause(t) U

cause(t3) and effect(4) = effect(t) U effect(t3) and effect(t) fl effect(t3) = 0.

These conditions may at first seem cryptic but allow the partitioning of many

of the forms of concurrency that can occur at a stable state. For example, consider

the stable state specification given in figure 5-21. This specification describes the

behaviour of two concurrent wires, which satisfies the conditions described above.

This specification may be partitioned into the two independent 'wire' stable state

transitions, and the third transition that is the composite behaviour of both wires
firing simultaneously. In this case, the recognition of the stable state behaviour

as being classically concurrent allows the two independent partions (wires) to be

implemented independently.

	

E(vo) = {({a},{p},vo), 	
a? 	> p1

	

({b},{q},vo), 	
b?

({a, b}, {p, q}, VO)}

Figure 5-21: Classical concurrency example

However the portion of a stable state graph specification given in figure 5-22

is not separable by classical concurrency due to the repeated output signal. This

signal must be implemented using the general arbitration method described at the

end of the chapter.

Given that a stable state may be partitioned into classically concurrent signals,

the resulting implementation may be fabricated as separate synchronization layer

subcircuits. The only potential hazard occurs if transition signals from different

concurrent synchronization sub circuits are required to update the routing layer

circuitry of the same input. In this case, a SEQ element is required to enforce

mutual exclusion of the updating of the routing circuit.

Chapter 5. Circuit Synthesis 	 144

E(vo) = {({a},{p},vo),

({b}, {p}, VO),

({a, b}, {p, q}, VO)}

Figure 5-22: Classical concurrency counter example

Altough this property is not formally proved here, a simple justification for it

exists. The conditions above are sufficient to create two partitions of the stable state

transitions that contain no common input or output signals. With the constraint

that the circuit implementing one partiton need not update the other's routing layer,

these two circuits are completely independent with no communication between

them. Similarly each of these circuits is completely specified by a stable state

whose only stable state transitions are those in its partition. We now consider the

behaviour of the parallel composition of these two independent subcircuits using

the defintion given in section 2.3. The concurrent firing of stable state transitions

in each subcircuit results in "observable" stable state transitions that have causes

sets that are the union of the subcircuit transition's cause sets and effect sets that

are the union of the subcircuit transition's effect sets. These composite transitions

form a superset of the composite partition described above.

5.3.4 Simple Concurrency

A simple non-classical form of concurrency in delay insensitive circuits occurs

when a set of input signals is synchronized, but a set of outputs may be generated

by synchronization of a partial subset of these signals. Behaviours in Udding's C1

synchronization class of circuits are typically sequential, because at each stable

state there is a fixed set of inputs that must eventually be received. However, a

circuit may be permitted to generate a set of output signals once a subset of this

fixed input set has been received. Hence the stable state graph of a synchronization

class component may have several outgoing transitions from a stable state. For a

behaviour to belong to Udding's synchronization class, there must exist a 'maximal'

transition 	E E(v) from any stable vertex v, such that for any transition

t E E(v), cause(t) c cause(tmax).

For the time being we place a strange constraint on concurrent behaviours

in that for any three transitions t1,t 2,t3 E E(v) from a stable state v, such that

Chapter 5. Circuit Synthesis 	 145

cause(ti) c cause(6), cause(t2) c cause(t3) and cause(ti)flcause(t2) = 0 then

effect(ti) fl effect(t2) = 0. We shall call this constraint the Verhoeff condition

which is covered in detail in section 5.3.6.

Given this condition, the most restricted form of concurrency occurs when after

a 'non-maximal' partial synchronization has occurred, the only inputs that may

occur are those necessary to complete the synchronization. This condition is called

simple concurrency. This is when for any transition i1 E E(v) from a stable state

v such that cause(ti) C cause(tmax) where tmax is the maximal transition from v,

then next(t i) has a maximal transition t2 with cause set cause(tmax) - cause(t i).

An example of an SSG specification with this property is given in figure 5-23

below. In this specification, the stable state v0 has a maximal transition {a, b},
but the circuit is able to generate outputs after the receipt of the signals a? and

P. Simple concurrency circuit specifications may be implemented very easily. As

shown in the implementation of the above example, only the maximal transition

from the initial 'simple concurrent' stable state need be physically implemented.

All the remaining subset stable state transitions and their reachable stable states

are implemented by forking the appropriate signal in the synchronization tree.

This implementation strategy may effectively remove a large number of stable

states from a specification SSG and result in much smaller routing circuitry. For

example, the above circuit specification has three stable states, but only one needs

to be implemented physically. Hence the routing circuitry for a? and b? may be

trivially implemented by wires rather than Keller select elements.

E(vo) = {({a}, {p},vi), ({b},{q},v2),
> p!

({a,b},{p,q,r},vo)} 	 a?
E(vi) = {({b}, {q, r}, vO)} 	 b?I 	

r!

E(v2) = {({a},{p,r},vo)}

Figure 5-23: Simple concurrency example

This decomposition strategy even applies when the subset stable state trans-

itions share input signals in common. A more complex example of simple concur-

rency is shown in figure 5-24. Such common signals require multiple instances of

individual input signals in the same synchronization tree. For example, the input b?
in the current example needs to be forked to allow completion trees for both {a, b}

Chapter 5. Circuit Synthesis 	 146

and {b, c}. In the general case, simple concurrent circuits may be implemented by

a number of c-elements, one for each transition signal.

E(vo) = {({a,b},{p},vi),({b,c},{r},v2), 	a?

C 	p1
({a,b,c},{p,q,r},vo)} 	

b? !

E(vi) = {({c},{q,r},vo)}
rl

E(v2) = {({a},{p,q},vo)} 	 c?

Figure 5-24: Simple concurrency example

5.3.5 Synchronization Rollback

In the above class of non-classical concurrent behaviours, the maximal transition

tmax is always guaranteed to eventually fire by the circuit's behavioural specific-

ation. However, a similar implementation strategy may be applied even when a

central synchronization tree is not guaranteed to complete. This may be achieved

using the synchronization rollback techniques first introduced in section 5.2.3.

A good example of this type of concurrent circuit behaviour is demonstrated

by Ebergen's RCEL component. The "RCEL with two replicated inputs" was first

defined by Ebergen in section 2.2.3 on page 29 of his Ph.D. thesis by the trace

command given below [36].

pref [(a?; P!)2 I (b?;q!)2 (a?;p! 11 r!)j(b?;q! 11 r!)]

The particular interest in this circuit results from the fact that its behaviour

cannot be expressed in the most expressive delay insensitive grammar, r(G4),

developed by Ebergen as mentioned on section 4.7 on page 72 of his thesis. This

means that it can not automatically be decomposed by his synthesis methodology,

and therefore no automatic delay insensitive decomposition, syntax-directed or

otherwise, has yet been presented in the literature.

The stable state graph specification for this component is given in figure 5-25

below. The principal stable state of interest is v0. At this state, a synchronization

is required by both signals a? and b? to generate the set of outputs p!, q! and

r!. However the circuit may also generate the outputs p! and q! in response to

Chapter 5. Circuit Synthesis 	 147

receiving the inputs a? and b? respectively. This stable state is identical to state

v0 of the simple concurrency example given in figure 5-23 above. The difference

is that once a? or b? is acknowledged, the circuit enters a stable state where the

remaining half of the synchronization does not have to occur. In the case of the

RCEL sending a second a? without sending a b? (or sending a second b? without

sending an a?) results in a stable state transition where the synchronization of the

c-element is never completed.

E(vo) = {({a}, {p}, vi), ({b}, {q}, V2),

({a,b},{p,q,r},vo)}

E(vi) = {({a}, {p}, VO), ({b}, {q,r}, VO)}

E(v 2) = {({a}, {p, r}, VO), ({b}, {q}, VO)}

Figure 5-25: SSG specification of Ebergen's RCEL

As described in section 5.2.3, an implementation strategy involving rolling back

(un-committing) synchronization inputs has already been developed. This strategy

makes use of Keller select elements at the output of the completion tree and the

use of merge gates at appropriate c-element inputs to generate a stimulus to fire the

c-element. Complete details of such implementations can be found in section 5.2.3.

It is sufficient to state that the stable state transition signals at the point when

the synchronization is known to be abandoned is used to rollback the c-element

circuitry. Although not discussed here, all of the circuit optimizations for rolling

back only parts of a completion tree, as described at the end of section 5.2.3, may

also be applied. The resulting circuit implementation is given in figure 5-26 below.

It is interesting to compare this complex implementation with the relatively trivial

implementation of the almost identical stable state graph given in figure 5-23.

5.3.6 General Arbitration

In this final section on the proposed delay insensitive circuit synthesis method-

ology, a generic decomposition strategy is suggested for any stable state graph

specification. This decomposition strategy often results in circuits that are far

more efficient than those produced by the generic and the improved generic imple-

mentation strategies described in sections 4.4 and 4.5. However, there remains a

small number of pathological circuit specifications for which the improved generic

Chapter 5. Circuit Synthesis

Figure 5-26: Implementation of Ebergen's RCEL

method developed in section 4.5 results in better circuits than those given here.

One possible solution to an asynchronous circuit compiler is to compare the results

of both strategies and output the best, thereby taking advantage of this method for

the majority of cases where it produces better results. However, whenever possible,

a circuit compiler should attempt to use the appropriate decomposition strategy

for that class of circuit described previously in this chapter.

The central circuit model remains the same as originally described in chapter 4.

The decomposition strategy decomposes a circuit behaviour into a number of sub-

circuits implementing distinct stable states in the circuit's behavioural specification.

Each stable state, for which a special case decomposition has not been described in

this chapter, is implemented using a generic 'committee problem' circuit. As men-

tioned in section 4.6.2, potential delay insensitive implementations of such circuits

include Benko's token-ring based solution or the improved generic implementation

described in section 4.5. These subcircuits consider each input signal transition

sequentially and generate a single unique state transition signal as soon a stable

state transition can fire.

The principal enhancement made for general arbitration circuits is the correct

handling of concurrent circuits. In non-concurrent circuits, once a stable state

transition fires the transition signal simply updates any required routing layer cir-

cuitry and generates the prescribed effect set external outputs. The non-concurrent

nature of such circuits guarantees that another input signal will not be received

until the outputs reach the external environment. This introduces two great sim-

plifications; first that testing and updating of routing of circuits never occurs sim-

ultaneously and secondly that no further input signals arrive at the stable state

Chapter 5. Circuit Synthesis 	 149

circuit once it has fired until the circuit behaviour reaches that stable state once

again.

Routing Layer Race Conditions

The general arbitration circuits under consideration in this section can not depend

upon such simplifications. In the first case, a transition signal may need to update

the routing circuit of an input that still may be sent to the current stable state. In

which case, there is a race condition between updating the routing layer circuitry

and the arrival of the test input. The solution to this problem is to use a SEQ

element to keep these signals mutually exclusive. Such a 2-SEQ element effectively

implements a hardware semaphore enforcing a critical region around a routing layer

circuit. One input to the 2-SEQ element is formed by the external input, the other

input is generated from a CALL element of all the transition signals that must

update the state of the routing circuitry that 'race' the test input. State change

requests that are guaranteed never to occur simultaneously with the state change

circuitry need not respect the critical region, and can update the routing circuitry

directly. If the test input wins the arbitration and enters the critical section, it

tests the state of the routing circuitry and generates the appropriate instance signal.

This instance signal is then forked, one branch is fed to the appropriate input of

the stable state subcircuit requiring that instance. The remaining branches from

all input signal instances are merged together and used to re-prime the 2-SEQ

element. If an update request wins the arbitration, the 2-SEQ output is fed back

to the CALL element such that the required transition signal is demultiplexed, this

signal then performs the updating of the circuitry and once acknowledged is forked.

Once again one fork is used to generate the effect set outputs, the other branches

are merged together and again re-prime the 2-SEQ element. This construction

guarantees that the routing layer circuitry has no interface violations.

Input Signal Instance Forwarding

The remaining simplification that needs to be handled for general delay insensitive

circuits is caused by the arrival of signals at a stable state once that sub circuit has

already fired. Consider, for example, the effect of the input signal winning the race

condition arbitration described in the paragraph above. In this case, the routing

Chapter 5. Circuit Synthesis 	 150

circuitry is tested and the signal instance for the stable state that has just fired is

generated.

The solution to this problem is signal instance forwarding. In order to maintain

the correct behaviour of the global circuit, any input signals arriving at a stable

state after it has fired need to be directed to the appropriate destination stable

state subcircuit. Of course in the case where the stable state transition that fired

is reflexive, no forwarding need be performed as the new signal instance will be

processed at this stable state (synchronization layer circuit). The mechanics of

forwarding an input signal instance is relatively straightforward. A transition can

simply be merged with the signal instance (generated by the routing layer) that

is fed into the synchronization circuit of the destination stable state. The delay

insensitivity of the circuit's behaviour guarantees that another external instance

cannot possibly arrive until the previous one has been processed and acknowledged

by the circuit's behaviour.

Previously the functional interface of a synchronization layer circuit has been

an input for each of the input signals that can occur at that state and an output for

each of the stable state transitions from that state. This simple behaviour now has

to be augmented to handle the potential race conditions introduced by arbitrary

arbitration protocols. A synchronization layer circuit now needs an output for

each input that needs to be forwarded, and an additional input to indicate that

this is now the currently active stable state.

Conceptually, the circuit model now exists as a token-passing implementation.

Initially, the circuit is initialized such that the synchronization layer circuit imple-

menting the initial stable state has the 'token'. As stable state transitions fire, the

token is based to the destination stable state. Any inputs that arrive at a stable

state that currently holds the token are processed and the appropriate stable state

transition signals generated. Input transitions that arrive at a stable state without

the token are forwarded (redirected) to the destination stable state of the last stable

state transition to fire at that stable state. In this way, forwarded input signals

follow the 'token' possibly over several stable states if the token has since moved

on.

At the circuit level, token passing is easily implemented using the transition

signals that are already generated by the synchronization layer. In these circuits,

a transition signal needs to update the appropriate routing layer circuitry, signal

the token to the next stable state and finally output the appropriate effect output

Chapter 5. Circuit Synthesis 	 151

signals. Typically, many stable states of a circuit specification may be implemented

using the less general decomposition strategies described in this chapter. In such

cases, these stable state implementations need not receive a token signal. The

concept of a token is only used at general arbitration states. Conceptually, a

circuit may lose a token on a stable state transition to a special case stable state

(such as a sequential or non-concurrent state), and needs to generate one on return

to general arbitration.

One implementation issue to be aware of is the possibility of 'live-lock'. There

is an instant in a delay insensitive token passing structure as described above

when the token is effectively in flight between synchronization layer circuits. As

detailed above, a signal instance arriving at a stable state without the conceptual

token forwards it to the next state. If the next state does not have the token,

this state forwards it further. Due to arbitrary delays in the wires connecting

subcircuits, it is possible for a forwarded instance to be passed in a continuous

cycle until the token eventually arrives at the destination stable state. Provided

that any arbitration performed between the incoming token signal and a forwarded

input is fair, i.e. the token is eventually processed then the circuit should never

'live-lock'. In practice this should be quite rare as the time taken for a token to

cycle between states is fairly large, allowing a synchronization layer circuit plenty

of time to process a token. An alternative approach is to provide an acknowledge

signal in the token passing circuit such that inputs are not forwarded until an

acknowledgement has been received that the destination stable state has accepted

the token.

Unfortunately, the schematic diagrams of circuits resulting from this decom-

position are complex even for the smallest circuit specifications requiring general

arbitration. Hence, no examples are presented to illustrate this generic decomposi-

tion strategy. However, the above textual description provides enough information

to reproduce results presented here and generate a delay insensitive circuit imple-

mentation of an arbitrary delay insensitive behavioural specification.

Chapter 6

Advanced Synthesis

The following sections detail a number of improvements that can be made to the

proposed synthesis methodology described in the previous chapter. The improve-

ments described here are classified into two categories, circuit level optimization

and behavioural optimization. Circuit level optimization improves the quality of

the resulting circuit once a stable state graph has been translated into a network

of components. Behavioural optimizations are transformations of the delay insens-

itive behaviour that preserve the implementation relation described previously in

this thesis. These transformations preprocess the circuit's SSG into a form more

suitable for efficient implementation, for example reducing the number of stable

states.

6.1 Circuit Level Optimization

Peep-hole optimization is a technique commonly used in conventional software

compiler design [1]. This optimization improves the quality of the generated ma-

chine code by recognizing commonly occurring inefficient sequences of instructions

and replacing them by improved, functionally equivalent sequences.

The circuit and behaviour transformations and optimizations described in this

section are presented as examples of many potential optimizations that are avail-

able in delay insensitive circuit synthesis. Rather than be an encyclopedic cata-

logue, this section describes many of the transformations used in this thesis and

implemented in the prototype circuit compiler..

152

Chapter 6. Advanced Synthesis 	 153

The correctness of these transformations can be verified using trace theoretic

model checking, as implemented by several existing automated systems [30,34,

391. Unfortunately, there does not currently exist a formalism for mathematically

proving these rules in their generality. However, the sections below outline the

reasoning behind each transformation and many individual instances have been

verified using the Concurrency Workbench (CWB) and the other tools described

above.

6.1.1 Component Generalization

Although technically not an optimization (unless used with technology mapping

as explained below), component generalization is a semantics preserving circuit

transformation that .can enable the application of many of the optimizations de-

scribed in this chapter. Component generalization takes advantage of the asso-

ciativity and commutativity of merge gates and c-elements, to allow networks of

these components to be abstracted as a single generalized component (as described

in section 3.4). Component generalization can be applied whenever the output of

a merge element (or c-element) is fed directly into another merge element (or

c-element respectively) without being forked/branched to other components or ex-

ternal outputs. When such a topology is identified it may be considered a single

generalized n - 1-input component, where n is the sum of the components' in-

puts before the transformation. An example of this transformation is shown in

figure 6-1 below.

a?

b?LID- p! C C? 	 ?

Figure 6-1: Component generalization transformation

With merges and c-elements, the generalized components can take advantage

of commutativity and associativity to identity further optimizations, such as cir-

cuit identities and subexpression elimination described below. This process may

be considered the inverse of decomposing a generalized component into a circuit

basis. The original circuit topology may be recovered using a generalized circuit

decomposition.

Chapter 6. Advanced Synthesis 	 154

Similar generalization transformations may also be applied to other components

to identify generalized call elements, generalized select elements, (sparse) decision

waits, CSGs and k-SEQ components. However, these require more complex tests

to correctly identify the appropriate functionality.

6.1.2 Circuit Identities

Perhaps the simplest type of circuit optimization is the detection of circuit identit-

ies. There are a number of times when the local composition of primitive compon-

ents results in circuits with no function. These subcircuits may be replaced with

the appropriate wiring connecting the inputs directly to the output.

The simplest occurrence of a circuit identity is when a signal is forked and

fed into a Muller c-element, as shown in figure 6-2 below. The forked signals are

synchronized and produce an output signal functionally equivalent to the input

signal. Using the associativity and commutativity of c-elements and the component

generalization transformation described above, it is possible to detect this identity

in large component networks.

a?

a?___ __ p1

Figure 6-2: C-element circuit identities

Further examples of circuit identities involving toggles and merge gates are

shown in figure 6-3. These local circuit topologies are often generated during

the synthesis of cyclic sequence generators (CSGs). By merging together the two

outputs of a toggle element, the actual state retained by this component is never

used. Hence both the toggle and the merge gate may be replaced by a single wire.

The remaining example in the figure below, shows one of the outputs of a toggle

being merged with the toggle's input. In this case, the state is again lost as the

toggle is forced to alternate, always reproducing the behaviour of a single wire.

a? 	 b 	

a? 	 b!

Figure 6-3: Toggle circuit identities

Chapter 6. Advanced Synthesis 	 155

The first toggle example above is actually a representative of a class of similar

circuit identities. If both test outputs of a Keller select element are merged without

branching, the select element's state is similarly lost. In this case, the select element

and merge gate may be replaced by three wires. One connects the test input to

the output generated by the merge gate, the other two connect the set and reset

inputs to the set and reset acknowledge outputs respectively.

Another (very rare) circuit identity is discovered by considering the select ele-

ment implementation of a toggle element. When expanded this consists purely of

a select element and a merge gate. However, because the test outputs are used to

set and reset the select element's state before the acknowledge outputs are merged,

this circuit is not recognized as a circuit identity using the previous rule.

The combination of the standard basis decompositions and the select element

circuit identity leads to a large number of circuit optimizations. For example,

row/column elimination (described below) can be considered an application of

the select element circuit identity, when the select element is used to implement

a decision wait element. Similarly, call elements (and generalized call elements)

may be simplified when two (or more) acknowledge outputs are merged together, as

there is no need to maintain a 'state bit' identifying which of the two corresponding

requests originated the call. Similarly, the select element optimization may be used

to reduce the states of generalized select elements.

One final circuit identity occurs from merging together both outputs of a choice

element. Here, once again, because the actual choice that has been made is ignored,

the choice element and merge gate may be replaced with a single wire.

6.1.3 Common Subexpression Elimination

For delay insensitive circuits (sub-circuits) that contain only merge gates and

Muller c-elements, the outputs of a circuit may be considered a 'function' of its

inputs. Common subexpression elimination detects circuitry that generates 'equi-

valent' signals (i.e. computes the same function) and removes this duplication of

hardware by sharing the common outputs.

For example, consider the two circuits given in the figure below. The outputs

p! and q! are generated by both inputs a? and b?. The standard construction for

generating output circuitry is to use a pair of merge gates combining a? and b?,

one for each output. Both input signals are forked and fed into each merge gate

Chapter 6. Advanced Synthesis 	 156

which generates a single output. By removing the common circuitry, the inputs

are fed directly into a single merge gate whose output is forked to produce p! and

q! outputs.

a? :D-E
P.,

Figure 6-4: Subexpression factorization example

We use the symbol ED as binary infix operator denoting the merge of two inputs.

Similarly, the symbol © is used to denote the output of the c-element combining

its two operands. From the properties of these primitive components, both these

operators are commutative and associative. Similarly e distributes over ©, but ©

does not distribute over ED. These properties allows us to use an algebraic notion

of subexpression equivalence.

—\

C?
	

a?
	 P!

C

Figure 6-5: Subexpression factorization example

6.1.4 Technology Mapping

Hardware synthesis systems typically contain a technology mapping stage during

circuit synthesis. This technology mapping process is analogous to the generation

of machine-dependent instruction sequences in a conventional software compiler.

Technology is typically applied as there may exist libraries of efficiently imple-

mented components that may be used in place of subcircuits of primitive basis

components. For example, if a circuit synthesis system had an efficient standard

cell corresponding to a toggle element, a better circuit may be constructed by

using these toggles rather than implementing them using select elements of 2 x 1

Chapter 6. Advanced Synthesis 	 157

decision wait elements. However, in a different implementation technology or with

an alternative parts library, a select element may be a better decision than a toggle.

The decision of which components (and subcircuits) to replace with functionally

equivalent library parts (and subcircuits) depends both upon the parts available

and the relative merits of each implementation. The word 'merit' in the previous

sentence may be measured in terms of (or combination of) performance, circuit

area, cost, power consumption, testability or any other metric desired by the de-

signer. Hence, a delay insensitive circuit synthesizer should be able to perform

general peephole optimization using 'subgraph matching' to identify all potential

instantiation candidates.

Many of the basis level implementations described in chapter 3 may be con-

sidered suitable circuit transformations. Each circuit may be implemented by its

decomposition and (often) its decomposition may be implemented by the original

circuit. This class of circuit optimization is similar to the circuit identities de-

scribed above. However, it is assumed that circuit identity optimizations should

always be applied as a functionally equivalent implementation requiring physic-

ally less hardware is always considered to be an improvement over its original

unoptimized circuit.

6.1.5 Row/Column Elimination

An optimization that can be applied to both one and two-dimensional decision-

wait elements is row/column elimination. This optimization is used to remove

redundant rows or columns from the decision wait element. Rows (columns) in

decision wait elements are used to distinguish transitions between different input

signals. However, if all the outputs from a row (or column) are merged with the

corresponding outputs from a second row (or column), before being used as inputs

to other components, then no distinction is made between the two row inputs. In

such a case, the inputs of these two rows (or columns) may be merged and fed into a

single row (or column) in the decision-wait element. The outputs of this single row

then replace the outputs of the original merge elements. Hence this transformation

effectively removes a whole row (or column) from the decision wait.

This optimization can easily be checked/tested by algorithmic methods on cir-

cuits as a 'peephole' optimization. Although this optimization is unlikely to occur

a? 	b? 	C?

iil

i21

all a2!

Chapter 6. Advanced Synthesis 158

a? b? C?

011 	 if 17

all a21 oil o21

Figure 6-6: Row/Column elimination

in hand-designed circuits, it often arises through the use of automated synthesis

methods, such as the generic implementation strategy given in section 4.4.

Note that multiple row/column eliminations may be applied in any order, since

the application of the optimization does not prohibit its application on adjacent

rows or columns. The use of merge associativity and symmetry is useful to identify

potential optimization targets.

6.1.6 Row/Column Compression

Unlike one-dimensional decision-wait elements, it is often the case that not all of

the outputs of an MxN decision wait element are used. In a one-dimensional

decision wait element, an output is unused only if there can never be a transition

on its associated input. In such a case, the Nxl decision wait element may be

replaced by an (N - 1)xl decision wait.

An output of a two-dimensional decision wait element may never transition if

that particular combination of row and column inputs can never occur together.

This often occurs when rows and columns encode data and/or state information.

For example, in the generic implementation strategy of section 4.4 some inputs are

known not to occur in a given state.

Row/column compression makes use of the unused circuitry that implements

non-live outputs to implement some of the live outputs. This is done by corn-

pressing (or folding) two rows (or columns). Two rows (or columns) may be

'compressed' if they do not both contain a live output in the same column (row)

position. This means that the combination of either of those rows and a given

a? b? C?

a1 I a2!blI c21

Chapter 6. Advanced Synthesis 	 159

column position is either not live or is formed by the live row output. Hence the

inputs to the two rows may be merged together as the input to a single 'compressed'

row and the outputs of this row correctly assigned at each column position.

To clarify this transformation, consider the example sparse 2x3 decision-wait

element given in figure 6-7 below. [This example is taken from the generic imple-

mentation of the Muller c-element in figure 4-4]. Of the six possible outputs, only

four are used/live. This is because the input combinations b? and ±2?, and ii?

and c? can never occur in the circuit's behaviour.

a? 	b? 	C?

ii?

12?

a1a2b1! 	c2!

Figure 6-7: Row/Column compression

In this example, columns bT and c? may be compressed since they share

no common live row positions. Notice that the two rows cannot be compressed

because both al! and a2! are live, and that the a? column (being non-sparse)

may not be compressed with columns b? or c?. In the above example, a 3x2

decision wait element is replaced by a 2><2 decision wait element and a single

merge gate. However, much larger savings are possible with larger sparse decision

wait elements.

The order in which row/column compression optimizations are applied can

affects the quality of the resulting circuit. Applying this optimization may prohibit

its use on other pairs of rows or columns. This can often lead to less than 'optimal'

circuits. One solution to this problem is to use a depth first search to determine the

optimal sequence of row/column compressions. The search recursively considers

each pair of rows/columns that can be compressed, and records the smallest circuit

when no further compressions can be applied.

One further refinement of this transformation is to combine row/column com-

pression with row/column elimination. This allows two rows to be compressed

Chapter 6. Advanced Synthesis 	 160

when they both have live outputs at a given column position, provided that the

two outputs are immediately merged together. For example, in figure 6-7 above,

the two rows could be combined if the outputs al! and a2! are merged together

and not used as inputs to any other components or outputs. This can be used to

replace the 3 x 2 decision wait with a 3 x 1 decision wait.

6.1.7 Decision Wait Splitting

Decision wait splitting is an optimization that is applicable to small and very

sparsely populated 2-dimensional decision wait elements. The aim of decision wait

splitting is to divide a large sparse decision wait element into two smaller inde-

pendent decision waits. The set of row inputs to the large decision wait forms the

set R and the set of column inputs the set C. Such a decision wait may be de-

composed into two smaller decision waits, with row inputs R1 and R2 respectively

and column inputs C1 and C2 respectively if R1 and R2 partition R, C1 and C2

partition C and all of the outputs formed by R1 x C2 and R2 x C1 are not live. Two

non-empty sets x and y partition a set z if x fl y = 0 and x U y = z.

Consider as an example the sparse 3 x 2 decision wait given in figure 6-8. This

circuit has three column inputs, a?, b? and c?, and two row inputs, ii? and i2?.

These inputs generate the three outputs al!, bi! and c2!. Analysis of the distribu-

tion of live outputs reveals that the column inputs C = {a, b, c} may be partitioned

into C1 = {a, b} and C2 = {c} and that the row inputs R = {il, i21 may be parti-

tioned into R1 = fill and R2 = {i2} with the prescribed properties. This means

that the 3 x 2 decision wait may be split into a 2 x 1 decision wait and a 1 x 1 decision

wait (2-input Muller c-element).

a? 	b? 	C?

If 	 a? 	b? 	c? i2?

ii?

i2?

all 	bl! 	c21

all 	bl! 	c2!

Figure 6-8: Decision wait splitting

Chapter 6. Advanced Synthesis
	 161

6.1.8 Serial-Parallel Tradeoffs

A large number of the circuit constructions that have been described previously

use a single signal, such as a stable state transition signal, to set or reset several

Keller select elements. In the examples given, these select elements have their

states modified sequentially. The set or reset acknowledge of each select element

is used to set or reset the next. An alternative approach is to perform all N

state changes concurrently by forking the signal to each of the set/reset inputs

and combining the corresponding acknowledges using a c-element completion tree.

This improves the performance of this (state transition) operation at the expense

of additional hardware in the form of an N-input c-element. The time taken for a

state transition operation is reduced from Nth to ffi + 1092 N, where ih and a are

the time taken to set/reset a select element and the transition time for a c-element

respectively. In fact, for small values of N and slow c-elements it may be faster to

perform the state modifications sequentially.

Typically, design constraints force an intermediate trade-off between speed

and area/power consumption. This may be achieved by choosing an integer value

M < N and dividing the task of updating the N selects into M parallel tasks,

updating approximately MIN selects each. This results in a state transition time

of [N/M] ñì + [1092 M] a at the hardware expense of an M-input c-element. For

example, by choosing M = 2, the time to update a large number of select elements

is approximately halved at the modest cost a c-element.

The example of updating select elements above is most common in updating

routing layer circuitry with a transition signal before any outputs can be generated.

However, there are a number of cases where independent subprocesses are known by

the synthesis methodology to be initiated sequentially. These two can be performed

in parallel, if appropriate. Typically, a combination of serial and parallel operations

is made, with several approximately equal length sequences of operations being

performed concurrently. The number of concurrent sequences depending upon the

urgency of the operations and the transmission delay of the c-elements used.

In the proposed synthesis method, such decisions are postponed until techno-

logy mapping where the appropriate trade-off is finally made. For intermediate

representation purposes, the synthesis methodology inserts a sequencer pseudo-

component. This component effectively maintains a list of request and acknow-

ledge pairs that are to be performed by a given signal. When the circuit is finally

Chapter 6. Advanced Synthesis 	 162

implemented this 'sequencer' may be implemented either by wires, simply con-

necting the acknowledge of one pair to the request of the next, or appropriately

using forks and c-elements.

6.1.9 Standard Logic Gates

One of the principal arguments against the use of delay insensitive circuits is that

each of the 'primitive' components is much larger than those used in conventional

synchronous design. One possible opportunity for improving the quality of syn-

thesized is detecting subcircuits where standard logic gate implementations may

be used. Conventional AND and OR gates may be used in delay insensitive cir-

cuits as a specialized form of merge element. This specialization constrains the

environment of the merge to very restrictive behaviour.

The general rule is that a conventional logic gate can be used in those modes

where an output is generated to acknowledge the arrival of each input or set of

inputs. For example, consider an OR gate that initially has all of its inputs and

output low. On the arrivial of the first input, the output transitions to acknowledge

the arrival. Now its behaviour is restricted; sending the other input high has no

effect on the output, hence there is no indication as to whether the input has yet

reached the gate or has been delayed. If it hasn't yet arrived, retracting the first

input may result in a spike or glitch in the output (communication interference).

Hence the valid delay insensitive modes of operation of a conventional OR gate is

to raise one of the inputs, wait for the output change, lower that input and again

wait for the output change. Repeating this behaviour with either of the inputs.

Consider the CCS process algebra specifications given below.

bi XOR. 	a'?.c! .XOR + b?.c! .XOR

bi OR 	a?.c!.a?.c!.OR+b?.c!.b?.cLOR

bi ORNOT a?.c!.OR

bi AND 	a?.b?.c!.OR

Figure 6-9: Logic gate specifications

As has been described previously, the conventional logic XOR gate is synonym-

ous with the delay insensitive merge gate. An OR gate implements a merge gate

that guarantees that each input will transition an even number of times, before the

Chapter 6. Advanced Synthesis 	 163

other input transitions (an even number of times). The AND gate initially per-

forms a synchronization before continuing to behave as an OR gate. Conventional

boolean algebra may be used to manipulate the invertors required to establish the

initial conditions in the circuit. If these invertors are placed around standard logic

gates, the invertor(s) and logic gate may be replaced with the appropriate complex

gate, using fewer transistors in the final circuit. The use of OR gates is also par-

ticularly useful in reducing the multiplexor costs of buses that use the four phase

handshaking convention.

Unfortunately, checking each merge gate to determine whether it can be imple-

mented by a conventional logic gate is a computationally difficult problem. The

task is to consider all possible execution traces of the input behaviour to guarantee,

for example, the double aternating behaviour of the OR gate. The two signals that

have to be proven to alternate may be complex functions of the circuit's state, and

all possible execution paths must account for all possible valid environment and

circuit data communication and arbitration events.

However, there are a number of merge gates that may be readily tested. These

are predominantly the output layer merges used to generate output signals, whose

behaviours may be analyzed by examining local stable states.

As an example, consider the implementation of the stable state graph given in

figure 6-21 on page 174. The given implementation uses requires a single c-element

and a two input merge gate. From the specification, the a? input signal only occurs

once, after this, only the other input to the merge gate ever transitions. In this case,

the merge gate maybe implemented using the standard logic gate AND(a,NOT(p)).

Alternatively, a much better implementation would be to implement the whole

circuit using the single standard logic gate AND(a,b).

6.1.10 N-Toggle Optimization

There are a number of circuit optimization strategies that are only applicable to a

restricted class of circuits. A example of this form of optimization is the synthesis

of N-toggle circuits. Consider the implementation of a 5-toggle given in figure 6-

10 below. This is the circuit generated by the decomposition method described in

section 3.4.7, that merges together the outputs of a 2 P'92 NLtoggle.

The first improvement to notice is that it contains a toggle that has both of

its outputs merged. As described above this forms a circuit identity and the

Chapter 6. Advanced Synthesis
	 IDA

a?

Figure 6-10: Original 5-Toggle implementation

appropriate toggle and merge gates may be replaced by a single wire. By choosing

the appropriate M - N outputs of the M-toggle to be merged together, where
M = 2Iog2 N], the above optimization may be used to significantly improve the

size and speed of N-toggle circuits. The number of toggles and merges saved is

given by the recurrence function optsize(n) given below.

optsize(n) = if ii <2 then 0
else let t = 2 (jog2 nj

in optsize(n - t) + t - 1
end;

Note that this recurrence equation has the following properties, optsize(2') =

- 1 and Vn > 0. optsize(n) < n. Using this recursive function, the number

of components required to implement an N-toggle is (M - 1) - optsize(M - N)

toggles and (M - N) - optsize(M - N) merge gates.

Another point to note is that the inputs to the merge gates now occur with

uneven frequencies, hence the tree may be rebalanced using Huffman encoding.

The external input always occurs most frequently, and the remaining inputs should

be ordered by their depth in the toggle tree. We can also determine the performance

improvement of these optimizations over the equations given in section 3.4.7. The

reduction in the period of the circuit is given by the expression optspeed(n)(+i),

where and are the average transition times for a merge gate and a toggle

respectively, and optspeed(n) is given by the recurrence function below.

optspeed(n) = if n < 2 then 0
else let k = 1092 nj

Chapter 6. Advanced Synthesis 	 165

in optspeed(n - 2k) + 2k

end;

The result of these optimizations produces the 5-toggle implementation shown

in figure 6-11 below, which is an improvement over the original implementation

shown in figure 6-10 above. The period of the original 5-toggle was 241 + 16 (or

24t+ 13 with a Huffman encode merge tree), whereas the optimized circuit now

has a period of 221+ 11.

a?

Pt

SI

rI

ti

(11

Figure 6-11: Optiniized 5-Toggle implementation

6.1.11 CSG Optimization

Another example of a set of optimizations that are applicable to a small class of

circuit is synthesis of cyclic sequence generators (CSGs). In the general case, CSGs

are implemented using the standard strategy described in section 5.1.2, based upon

the use N-toggles. As has been shown in the previous sections, these N-toggles

themselves may be improved.

The simplest form of improvement for CSGs is simply to generate an optimal

N-toggle as above and then merge the appropriate outputs, where N is the length

of the cycle of output signals to be repeated. If there exist any toggles where both

output signals merged these can be removed using the circuit identity optimization

described in section 6.1.2. An example, of this synthesis applied to the cyclic

sequence 'PRQR' is shown in figure 6-12 below. In this section, we shall refer to

CSGs by a string of capital letters, where each letter represents a different output

signal. The first letter is the first output to be generated, and so on. The stable

state graph corresponding to 'PRQR' is also shown below.

Chapter 6. Advanced Synthesis 	 166

E(vo) = {({a},{p},vi)}
•

E(vi) = {({a},{r},v2)}

= {({a},{q},v 3)}
ri

= {({a}, {r}, VO))

Figure 6-12: Optimized 'PRQR' cyclic sequence generator

For the case, where all of the inputs in a sequence are the same, the circuit

identity option will reduce the implementation to a single wire. In the event where

all the outputs in a sequence are unique, the N-toggle implementation is optimal.

The circuit given above for the cyclic sequence 'PRQR' happens to be an optimal

implementation for that sequence. However, there are two cases where circuit

implementations can be found, that are better than those using an independently

synthesized N-toggle.

The first case occurs for sequences that are not powers of two, and therefore the

N-toggle is implemented starting from an M -toggle, where M = 2[l0g2 N] In this

case, the choice of the M—N feedback signals in the N-toggle may affect the quality

of the resulting circuit. Consider for example, the two possible implementations of

the CSG 'PQRPQRS' shown in figures 6-13 and 6-14 below.

Figure 6-13: Original 'PQRPQRS' CSG implementation

The difference between the two implementations is the choice of M -toggle out-

puts to be used as feedback to create the N -toggle. In the example, choosing the

last output of the 8-toggle results in a circuit requiring 7 toggles and 4 merges,

while choosing the penultimate output requires only four toggles and a single merge.

The approach used by the current circuit compiler is to consider all possible com-

Chapter 6. Advanced Synthesis 	 167

binations of outputs to determine the best resulting circuit. The current choice

(permutation) of M-toggle outputs is represented by a single of length M, that

contains the CSG specification string, with the feedback outputs represented by

the character "-". The M character positions in the string represent which output

or feedback signal is associated with each of the M-toggle's. outputs. The single

restriction is that the string must contain the characters of the CSG specification

in order, but the "-" characters can occur at any position. For example, the imple-

mentation in figure 6-13 is denoted by the sequence 'PQRPQRS-' and figure 6-14

by the sequence 'PQR-PQRS'. For a given sequence, it is a straightforward task

to determine how many circuit identities are available in the resulting circuit. A

simple 'butterfly' permutation can be used to order the signals as they would occur

in the schematics shown. Pairs (quadruples, octuples ...) at the appropriate pos-

itions in the sequence indicate that a toggle/merge pair may be eliminated from

the resulting circuit.

Figure 6-14: Optimized 'PQRPQRS' CSG implementation

The other case where improved CSG implementations can be found occurs

when the sequence length is not a prime number. As an example, consider the

implementation shown below for the CSG 'PQPRPS'. In the CSG implementation

methodologies given above this circuit would be based upon an 8-toggle with the

appropriate number of feedback signals. The best possible implementation using

this strategy would result in an implementation requiring 6 toggles and one merge

gate.

The given implementation requires only four toggles and a single merge gate.

Close inspection of the circuit reveals its organization. It is composed of a single

toggle, with one of the outputs fed into a 3-toggle. This decomposition can be

applied to any non-prime cyclic sequence generator. A CSG of length mm may

be decomposed into a single rn-toggle and m CSGs of length n. These smaller

CSGs consist of every m th output, each CSG starting at the next position in the

Chapter 6. Advanced Synthesis

a

SI

ri

Figure 6-15: Optimized 'PQPRPS' cyclic sequence generator

sequence. These CSGs may then be recursively decomposed using this method or

implemented using any of the synthesis methods above. For the 'PQPRPS' CSG,

the above implementation made use of a toggle with the first output being fed into

a 'PPP' CSG, and the second output being fed into a 'QRS' CSG. As mentioned

above, a 'PPP' CSG is trivially implemented by a wire.

At the risk of increasing the search space to find CSG implementations, a

further optimization can be applied to this CSG factoring optimization. By merging

together some of the outputs from the initial n-toggle, it is possible to produce

a variety of smaller CSGs with lengths multiples of n. For example, the CSG

'PQRQPRQR' could be implemented using the methods above using toggles and a

single merge gate. However, it may be decomposed into a 4-toggle and four CSGs

of length two. These CSGs generate the sequences 'PP', 'QR', 'RQ' and 'QR'. As

can be seen the first CSG may be implemented by a wire. If the remaining three

outputs of the toggle are merged together (eliminating a toggle from the 4-toggle),

they may be fed into a single CSG that implements 'QRQRQR'. This CSG can be

seen to be implemented by a single toggle. The resulting implementation, shown

in figure 6-16 below, requires only three toggles and one merge rather than the six

toggles and one merge required by the original.

Figure 6-16: Optimized 'PQRQPRQR' cyclic sequence generator

One nice feature of implementing these CSGs is that their specifications may be

represented by finite length strings. These strings can then be easily manipulated

Chapter 6. Advanced Synthesis 	 169

to specify the intermediate CSGs required by the recursive decomposition strategy

above.

6.1.12 Constant Time Counters & CSGs

One of the results of the research into delay insensitive modulo-N counters has

been the design of constant response time counters by several groups [104,41,40,

114,118]. These methods are based upon speculative evaluation. Because modulo-

N counters (or CSGs) have only a single input, the next result of the counter may

be determined in advance and stored in a 2 x 1 decision wait element (or N x 1 for

a CSG). The arrival of the next external input signal fetches the result from the

decision wait and triggers the next speculative evaluation. If such a 'lookahead'

scheme is implemented at regular intervals in the decomposition, the resulting

circuit can be shown to have a constant response time to an external request. In

typical operation of such a circuit, many of the subunits of a module-n counter (or

CSG) subunits are precomputing the results of the next input transition in parallel.

This optimization has been included in the current circuit synthesis system.

The compiler can be told to use constant response time implementations where

appropriate. The compiler uses a threshold on the maximum number of outputs

a 'cached' CSG can have. For modulo-N counters, there are always two potential

outputs p! and q! at any stage of the decomposition, which are easily held in a

2x1 decision wait element. However with CSGs, there may be a large number

of potential outputs, requiring a large one-dimensional decision wait. Obviously

there is a threshold above which the time saved by pre-evaluating a query is lost

by the decision wait overhead in area and time. Finally, it should be noted that

not all CSGs, even with small numbers of outputs, have constant response time

implementations. Unlike modulo-N counters, the recursive CSG decomposition

strategies described above are only applicable when the length of the sequence

was not prime. This leads to the conclusion that the performance of a CSG is

proportional to the largest prime factor of its cycle length.

Chapter 6. Advanced Synthesis 	 170

6.2 Behavioural Transformation

The following sections describe optimizations that are made before the synthesis

of a circuit from a behavioural specification. The transformations are designed to

produce specifications that 'implement' the original specification, but are (by some

measure) easier to synthesize into efficient circuits. For example, many of these

optimizations attempt to reduce the number of stable states in a circuit specifica-

tion. As described in the previous chapters, the proposed design methodology is

dependent upon the number of stable states in the circuit specification. However,

it is possible for a circuit with a number of stable states, to implement a circuit

containing more.

6.2.1 Input Clustering

The first and conceptually most simple transformation of a stable state graph is

clustering of its input signals. This transformation attempts to identify sets of

input signals that only ever occur concurrently in the cause sets of stable state

transitions. At every stable state where such input sets occur, the circuit imple-

mentation attempts to synchronize the signals as part of determining which stable

state transition to fire. When this is the case, the clustered set of input signals may

be abstracted to a single 'external' input signal. This signal may be generated by

an external c-element that synchronizes the true external input signals.

A pair of input signals a and b, of a stable state graph (V, T) may be clustered

together, if they only ever occur together in all stable state transitions of T. i.e. Vt E

T . a E cause(t) -+ b E cause(t). Clustering of all input signals can be performed

in time proportional to the number of stable state transitions by maintaining a

compatibility matrix of input signals. Such a matrix may even be constructed a

the stable state graph is generated. As an example application of input clustering

consider the stable state graph and its implementation given in figure 6-17 below.

This is the implementation that would be generated for the input stable state

graph using the proposed design methodology. The SSG specification is recognized

as state-holding, sequential circuit and is generated using the method described in

section 5.1.2 for general sequential circuits. The routing circuits for both inputs a?

and b? are implemented using a cyclic sequence generator on their signal instance

Chapter 6. Advanced Synthesis 	 171

p!
E(vo) = {({a,b},{p},vi)} 	

a?
—<

E(vi) = {({a,b},{q},vo)} 	
b?::::

a 	
C

Figure 6-17: Input clustering example

graphs, both being implemented by toggles. The two sequential stable states are

then implemented with two input Muller c-elements to generate the appropriate

outputs.

Analysis of this stable state graph reveals that inputs a? and b? always occur

together in transition cause sets. These two external input signals may therefore

be combined using a Muller c-element. Its output, denoted here as a©b, is then

replaces both inputs a? and b? in all the cause sets of the original SSG in which

they appear. The resulting circuit specification is shown in figure 6-18 below.

This stable state graph can be seen to be the specification of a toggle element. The

resulting, functionally equivalent implementation, is also shown in the same figure.

E(vo) = {({a©b}, {p}, v)} 	
a?I3jI

qi E(vi) = {({a©b},{q},vo)}

Figure 6-18: Input clustered implementation

6.2.2 State Collapsing

Potentially one of the most powerful stable state graph transformations is stable

state collapsing. Conceptually, this transformation is quite simple: two stable

states may be implemented by a single synchronization layer circuit if that single

subcircuit implements all of the stable state transitions of both original states. This

optimization makes use of the implementation operator defined in section 2.4 where

a valid implementation may implement additional stable state transitions that are

not prescribed by the circuit specification. More formally, two stable states v1 and

V2 may be collapsed to produce a single state v3 where E(v3) = E(vi)UE(v2), if no

cause set of a transition from v1 is a subset of a cause set of a transition from v2 ,

and vice versa, any transitions from v1 that have identical cause sets to transitions

Of t2 have identical effect sets and next states. This is expressed by the following

Chapter 6. Advanced Synthesis 	 172

conditions Vt1 E E(vi) . Vt 2 E E(v2) . cause(ti) c cause(t 2) -+ ti = t 2 , where

tl = t 2 if cause(t i)= cause(t2) A effect(ti) = effect(t 2) A next(ti) = next(t2).

Technically, the above condition on the next set of the two states is overly

restrictive. For example, consider the SSG specification given in figure 6-19 below.

The two states satisfy all the criteria for state collapsing except that the next state

of {a, b} is different between them. However, these two next states are those

states being collapsed. This then forms a circular argument, the two destination

states are the same if the two states are collapsed. Hence the above condition

may be relaxed to include identical next states or states that will be collapsed by

this transformation. In the current example, the two states may be collapsed to

produce a stable state graph with a single state having three transitions with cause

sets {a, b}, {c} and {d} respectively.

E(vo) = {({a,b},{p},vi), 	

a?Lj. ({c},{q}, Vi) }

E(vi) = {({a,b},{p},vo), 	 a?
({d},{r},vo)} 	 ri

Figure 6-19: State collapsing example

During circuit synthesis further states may be collapsed once the state trans-

ition signals have been selected to update routing layer circuitry (as described in

section 5.2.1). At this later stage, two stable states may be combined with the

above conditions except that two transitions with identical cause sets need only

have identical effect sets and update the same routing layer circuits to identical

states. This allows the above optimization to be applied to an even larger class

of circuits specifications. It also creates the need for powerful 'state transition

selection' algorithms as the set of signals selected to update routing circuit state

directly affects the number of routing layer states.

Finally, above definition prohibits the state collapsing of stable states where one

or both identical transitions from each stable state exhibit static non-determinism.

It is possible to extend the above conditions to correctly handle such cases, where

cause(ti) = cause(t 2), depending upon the implementation operator being used.

If using Ebergen's satisfaction relation, , the two statically nondeterministic

stable state transitions may only be merged if they have identical non-deterministic

Chapter 6. Advanced Synthesis
	 173

choices, i.e. Vt E E(vi) . cause(t) = cause(ti) - 	t' e E(v2) . cause(t') =

cause(t2) A effect(t) = effect(t') A next(t) = next(t'). Using this implement-

ation operator, the resulting collapsed state contains a single non-deterministic

transition with the same choices. However, using the improved implementation re-

lation proposed in this thesis, 71, it is possible to implement a non-deterministic

choice with a more deterministic implementation. Using this operator, two stat-

ically non-deterministic transitions with identical cause sets may be collapsed

if they have at least one output choice in common, i.e. there is a valid 'fir-

ing' that implements both choices. This may be expressed by a condition 3t E

E(vi) . cause(t) = cause(ti) and t' E E(v2) . cause(t') = cause(t2) such that

effect(t) = effect(t') A next(t) = next(t'). The resulting collapsed state con-

tains transitions for each choice outcome both stable states have in common.

Vt3 E E(v3) . cause(t3) = cause(ti) then t3 E E(vi) and t3 E E(v) [with the

less strict constraints on next(t3)1-

As an example of the use of the introduced implementation operator to simplify

the resulting circuit by specifying potential design alternatives, consider the SSG

specification given in figure 6-20 below. This specification contains two statically

non-deterministic stable states. At state v0 the input a? creates an arbitrary choice

between outputs p! and q!, and at state v1 the input a? makes a choice between

outputs p! and r!. Using Ebergen's implementation relation this circuit would be

implemented by a toggle element feeding two choice elements that produce the

appropriate oñtputs. However, using the new improved implementation operator

introduced in section 2.4, the circuit specification below may be state collapsed

and implemented by a single wire connecting the input a? to the output p!.

E(vo) = {({a},{p},vi), ({a},{q},vi)}

E(vi) = {({a}, {p}, vO), ({a}, {r}, VO)}

Figure 6-20: Static non-determinism state collapsing

6.2.3 State Combining

Another powerful SSG optimization technique is state combining. A stable state

may be combined with another if their behaviours are equivalent after a number of

input signals have been received. This is a more general form of the state collapsing

Chapter 6. Advanced Synthesis 	 174

optimization described in the previous section. This is a commonly occurring case

in real circuit specifications, such as the stack element example given in section 7.1.

This thesis makes use of the notation v\i to denote the behaviour of the stable

state v after receiving the set of input signals i C I. This expression is well

formed if no state transition from v may be fired by the input signal set i, Vt e
E(v) cause(t) V= i, and that there remain some stable state transitions that can

fire on upon receipt of further signals, 3t E E(v) . I C cause(t). The \ operator is

similar to that used in Josephs and Udding's DI algebra [59].

The simplest form of state combining when a single state v1 already implements

a second state v2 after a set of inputs i has been received, i.e. v2 	vi\i. This may

be tested with the conditions that for every transition t in E(v2), cause(t) fl i = 0

and 	t' E E(vi) . cause(t') = cause(t) U I A effect(t') = effect(t) A next(t') =

effect(t) and there are no spurious output signals generated. The test for spuri-

ous signals is identical to that described for such signals in the previous section,

section 6.2.2, on state collapsing. This even applies to statically non-deterministic

signals as discussed in that section.

An example stable state graph that is amenable to this transformation is given in

figure 6-21 below. This SSG contains two stable states, where the behaviour of v1 is

identical to the behaviour of v0 upon receipt of the single input a?, i.e. v1 = vo\{a}.

In such cases, state v1 may be implemented using the synchronization layer cir-

cuitry for state v0. The only change at the circuit implementation level is that state

transition signals in addition to updating any necessary routing layer circuitry must

also generate the required pseudo-inputs to the destination synchronization layer

circuit. These pseudo-inputs are generated by simply merging a transition with

the appropriate internal input signal instance before it is fed into the synchron-

ization circuit. In the example below, every time the Muller c-element fires, the

pseudo-input a? needs to be generated and this is achieved using a merge gate on

the trivially stateless a? input.

E(vo) = {({a,b},{p},vi)}

E(vi) = 	 a?
b?

Figure 6-21: State combining example

Chapter 6. Advanced Synthesis
	 175

6.2.4 Initial State Combining

If the optimization described above is used to combine the initial stable state v0

with another vertex, additional hardware must be used to establish the circuit's

initial conditions. This is done by placing iwire components at the initial instance

of all the input signals occurring in the 'initialization set'.

Several optimizations may be performed to move the iwire components around

in a circuit. For example, if iwire components are placed at all the inputs of a

Muller c-element, they may removed and replaced by a single iwire component at

its output. Similarly, if only a subset of c-element inputs have iwire components on

them, the c-element and the iwire(s) may be replaced by an asymmetric c-element.

An example of such a transformation is given in the initial state combining example

shown below in figure 6-22.

E(vo)

E(vi) = {({a,b},{p},vi)} 	 :iEIIII- p1

Figure 6-22: Initial state combining example

An iwire component placed at a set or reset input of a Keller select element

may be implemented by using a select element initialized to the appropriate value

with an iwire component on the appropriate acknowledge output. Similarly, an

iwire component placed at the test input of a select element may be moved to the

appropriate output depending upon its current (initial) value. Care must be taken

with busy waiting circuits whose iwires are inserted in the 'waiting' loop. In this

case, a compiler may attempt to move an iwire component an unbounded number

of times 'abstractly interpreting' a non-terminating computation. This may be

avoided by placing an arbitrary upper limit on the number of such iterations.

Chapter 7

Case Studies

This chapter demonstrates the application of the circuit synthesis strategy de-

scribed in the previous chapters on some example circuit specifications. Many of

the examples used in the previous section were chosen to demonstrate a particular

stable state configuration or semantics preserving transformation. In the follow-

ing sections, we describe the synthesis of several larger circuits whose behavioural

specifications have been taken from delay insensitive circuit literature.

7.1 Stack Element

A good example of the application of the proposed design method to a complex

specification is the stack element. The delay insensitive stack element was first

used as an example by Josephs and Udding [60]. In their paper, they describe

the derivation of an implementation using their CSP-based DI algebra. Their

formal derivation (and the full verification [61]) of the hand designed circuit are

quite involved covering several pages. This design was considered a good test

study to compare against the presented fully automated procedure. Similar delay

insensitive stack element designs have also discussed by other researchers [62,65].

The formal specification of the behaviour of this stack element has already been

presented in section 2.5 on page 40. In this section, a shorthand description of a

stack element's functional behaviour (given in CCS in figure 2-6) is translated into

a complete delay insensitive description of its behaviour with all signal leavings

explicitly represented (given in CCS in figure 2-9). This specification may then

be converted directly into a stable state graph. The SSG corresponding to the full

176

Chapter 7. Case Studies 	 177

behaviour is given in figure 4-2 on page 92. This SSG, with 5 stable states and 14

stable state transitions, acts as the input to the circuit synthesis part of the circuit

methodology.

Analysis of each the stable state graph reveals that this class of circuit is a non-

concurrent state-holding circuit. The four input signals dempty?, dapop?, dapush?

and dfull? all only occur at a single state, and hence their routing circuitry will

be trivially stateless. However, the two remaining inputs push? and pop? occur

at all five stable states. The next step in the synthesis process is the behavioural

transformations described in section 6.2. Input cluster analysis reveals that none of

the inputs can be clustered, but state reduction is able to greatly reduce the number

of required stable states. The initial state v0 may be state combined with v2 as

v2\{dempty}, state v1 may be combined with either state v2 or v3 as v2\{dapop} or

v2\{dapush} respectively, states v2 and v3 may be state collapsed (both before and

after state combining), and state v4 may be combined with v3 as v3\{dful1}. The

result of applying all of these behavioural transformations is the modified stable

state graph shown in figure 7-1 below.

E(vi) = {({push,dapop}, {apush,dpush}, vi),

({ push, dapush}, {apush,dpush}, v1),

({ push, dfull}, {full}, vi \{dfnll}),

({push,dempty}, {apush}, vi \{dapush}),

({ pop, dapop}, {apop,dpop}, vi),

({ pop, dapush}, {apop,dpop}, vi),

({pop,dfull}, {apop}, vi \{dapop}),

({pop, dempty}, { empty}, vi \{ dempty}) }

E(vo) = E(vi)\{dernpty}

Figure 7-1: Optimized stack element SSG

This modified stable state graph can be shown to implement the original stack

element SSG given in figure 4-2 using the implementation operator defined in sec-

tion 2.4. The principal advantage of these transformations is that the resulting

stable state graph effectively only contains a single stable state. This means that

the resulting circuit will require no routing level circuitry, as all 6 inputs are now

trivially stateless. The next step in the synthesis is to implement this single stable

Chapter 7. Case Studies 	 178

state. The first point to notice is that the inputs dapop and dapush are 'input

mergeable' as described in section 5.2.5. The resulting circuit can then be imple-

mented directly using the partitioned transition method described in section 5.2.4.

The initialization conditions are then handled by abstract interpretation, creating

an asymmetric c-element and several initialized Keller select elements. The res-

ulting circuit is shown in the figure below. In this design, all select elements are

assumed to be initialized to zero (reset) and all call elements initialized to Ri.

[The call schematic symbol is used to represent a Keller select element where both

set and reset acknowledge are fed into a merge gate].

d,u.h! 	 doe.]
lempty?

Figure 7-2: Stack element implementation

The partition transition method applied to this circuit generates the above

circuit, based upon a 3x2 decision wait element. The above schematic diagram is

shown using the select element basis, where 5 Keller select elements and a Muller

c-element are configured to implement the decision wait. However, the partition

method can also instantiate a 3 x 2 decision wait directly.

Interestingly, this circuit is identical to the hand designed implementation given

by Josephs and Udding in their original paper [60].

7.2 Modulo-N Counters

An interesting common test case in the field of delay insensitive design are the class

of modulo-N counters. This class of circuit has been investigated by a number of

researchers using different design styles [41,104,114,118,120]. A modulo-N counter

has a single input, a? and two outputs p! and q!. In response to the first N - 1

transitions on the input a?, the circuit generates a single output transition on

Chapter 7. Case Studies 	 179

On the Nth transition of the input, the circuit generates a single output on

Hence the function of the circuit is to count the number of occurrences of an

input signal modulo the constant value N. The behaviour of a modulo-N counter,

N > 1, is specified by the trace command below.

pref[(a?;p.,)N-1
; a?; q!]

Translation of this circuit specification into a stable state graph results in a

strictly sequential cyclic SSG with N vertices. Using the proposed design method-

ology, this class of circuit is identified as a non-concurrent, state-holding sequen-

tial circuit and implemented using the techniques described for cyclic sequence

generators given in sections 5.1.2 and 6.1.10. Using these techniques the op-

timized implementation of a modulo-17 counter, specified by the trace command

pref* [(a?; q!)' 6; a?;p!], is shown in figure 7-3 below.

Figure 7-3: Modulo-17 counter

As has been described in section 6.1.10, this implementation is based upon a

32-toggle, where 16 outputs have been merged to form the p! output, 15 outputs

have been merged to form a 15-toggle and the remaining output used to generate q!.

Circuit identities (both outputs of a toggle fed into a merge gate) are then identified

and replaced with wires, and the remaining merge gates Huffman encoded. This

automatic decomposition results in a circuit that is composed of 5 toggles and 4

merges.

It is interesting to compare this automatically generated circuit with the hand-

designed one presented by Ebergen (on page 139) in his Ph.D. thesis [36]. In his

implementation, he constructs a modulo-17 counter from two modulo-3 counters,

a toggle and two merge gates. The standard construction for a modulo-3 counter

is shown in figure 7-4 below.

Using this modulo-3 counter as a building block, Ebergen decomposes the

modulo-17 counter circuit into the implementation given in figure 7-5. This

Chapter 7. Case Studies
	

IM

- qI

a? p1

Figure 7-4: Modulo-3 counter

a? 	
Mod-3 	Mod-3 	 P!

?~> -

Figure 7-5: Ebergen's modulo-17 counter

modulo-3 counter is exactly the same implementation as is generated by the pro-

posed synthesis methodology.

Interestingly, although the two compositions look quite different, they both use

exactly the same hardware, 5 toggles and 4 merge gates. With a little thought, it

can be seen that this is the minimum possible hardware that could implement the

required specification. A modulo-N counter must uniquely represent N possible

states, this requires a minimum of [l092 Ni bits of a binary encoding. This value is

both necessary and sufficient. Each of these bits may be maintained by a primitive

two state component such as a toggle or a Keller select element. Similarly, because

a modulo-N counter has one input and two outputs, an implementation with this

many toggles requires [1092 Ni - 1 two input merge gates to maintain the correct

number of inputs and outputs. Each toggle has one input and two outputs and

each merge has two inputs and one outputs, assuming that not input or output is

left unconnected, there must always be one less merge gate than toggle element to

construct a circuit with a single input and two outputs (i.e. a modulo-n counter).

Because both modulo-17 counter implementations use exactly the same hard-

ware, the remaining metric to compare the two circuits is performance. Using the

notation that I represents the average transition delay for a toggle, and repres-

ents the average transition delay for a merge gate, the period (the time to cycle the

counter back to its initial state) was determined for each design. The generated

circuit has a period of 621 + 57 and Ebergen's circuit has a period of 501 + 66.

If we assume that I = , Ebergen's circuit is faster than the compiler generated

Chapter 7. Case Studies 	 181

example with 116 rather than 119 transitions (in reality t> , so Ebergen wins by

a bigger margin).

Given the performance of Ebergen's modulo-17 counter, it was decided to de-

termine a systematic method for generating more efficient modulo-N counters and

adding this procedure to the synthesis methodology. According to Ebergen in his

thesis, the decomposition of his modulo-17 counter is based on the calculations

17 = 18 - 1 and 18 = 3 x 3 x 2. It turns out that his hand design was effectively

solving a set of recurrence equations to generate a modulo-17 counter.

The efficient design of modulo-N counters may be solved by the solution of

a recursive recurrence equations. There are three possible cases that may be

applied. These cases and their hardware implementations are shown below. These

equations are more general forms of those presented by Ebergen et al. [40,41] who

only consider the cases where m = 2.

[1] Case 2

a?

Case mn - (mn - 1)

>

.L/r • a? 	
Mod-N 	Mod. M

Case mn

VE
a? > Mod-N 	Mod-M

The first case is the base case of the recursion; a modulo-2 counter is implemented

as a single toggle. The next recursive case constructs a modulo-(m(n - 1) + 1)

Chapter 7. Case Studies 	 182

counter from a modulo-m counter, a modulo-n counter and a single merge compon-

ent. The final recursive case constructs a modulo-mn counter from a modulo-m

counter, a modulo-n counter and a single merge component. It is easy to show that

all possible values of N > 2 are covered by these equations by assuming that in

the recursive cases the value m is always 2 (using case 1). Then the two recursive

cases have the form 2ri - 1 and 2n. These forms can then be used to decompose

modulo-N counters for odd and even values of N respectively.

The performance of each of these cases can also be given in terms of a set of

recursion equations. We denote the period of a modulo-n counter as period(n).

Then each of the decomposition cases given above have periods given by the three

equations below respectively.

period(2) = 2

period(m(n - 1) + 1) = mperiod(n) + period(m) + mn

period(rnn) = rnperiod(n) + period(m) + (mn - 1)

Using the above recursion equations, a compiler can determine the fastest pos-

sible implementation of a modulo-N counter for a given value of N. In addition, the

circuit compiler can make use of frequency information in the decomposition pro-

cess to Huffman encode each of the merge trees in the circuit. Using this strategy,

the circuit compiler currently generates a Huffman balanced implementation of

Ebergen's circuit with a period of 50' + 55. This circuit is believed to currently

be the fastest known delay insensitive modulo-17 counter implementation (of this

type).

One benefit (side-effect) of this work on modulo-N counters was the inclusion

in the proposed design methodology of the ability to implement constant response

time CSGs (see section 6.1.12).

Chapter 7. Case Studies
	 183

7.3 One Place Buffer

The next circuit synthesis example, the four-phase handshaking one-place buffer,

is taken from Martin's paper "The Limitations to Delay-Insensitivity in Asyn-

chronous Circuits" [79]. Martin describes this circuit as a basic building block of

asynchronous circuit design, since it is used to implement the sequencing of two

(four-phase communication) actions. The original specification for the circuit's

behaviour, given in his C.SP-like specification language, are given below.

*[[xi]; xot; [-'xi]; xo; yot; [yi]; yo; [yi]]

Figure 7-6: One-place buffer handshaking expansion

The circuit has two inputs xi? and yi7 and two outputs xo! and yo! re-

spectively. The CCS version of this specification and a more detailed description

of the circuit's intended behaviour are given in section 2.6. As described in that

section, the above single handshaking expansion is insufficient to specify the circuit

intended behaviour precisely, and interface partitioning must be applied. After this

transformation has been applied the buffer's transition graph is as shown in fig-

ure 2-12 on page 47. This corresponds to the stable state graph shown in figure 7-7

below.

E(v4) = 	{({yi},{xo},vi)}

E(v3) = 	{({xi, yi}, {xo}, vi)}

E(v2) = 	{({yi},{yo},v3),

({yi, xi}, {yo}, v4)}

E(vi) = 	{({xi}, {xo, yo}, v2)}

E(vo) = 	{({xi}, {XO}, vi) }

Figure 7-7: One-place buffer SSG

Initial analysis of the 5 vertex stable state graph reveals that the circuit ex-

hibits premature concurrency. Otherwise the specification is a cyclic, state hold-

ing sequential circuit. Behavioural transformation reveals that no inputs may be

Chapter 7. Case Studies 	 184

combined, but that the initial state v0 may be 'initial state combined' with v3 as

v3\{yi} (state v4 may also be combined with v3 but is eliminated due to the pre-

mature concurrency). The resulting effective stable state graph has three vertices

(corresponding to v1, v2 and v3 in the SSG above). The input signal xi occurs in

states v1 and v3 and its signal instance graph (SIG) forms a sequential cycle of two

states and hence may be implemented as a single toggle. The implementation as

a toggle satisfies the transition signal selection criteria for premature concurrency.

Similarly yi appears at two states, v2 and v3, forming a two state sequential cycle

and may also be implemented as a toggle component. The synchronization layer

circuitry for state v2 consists of a single Muller c-element and the remaining two

stable states require no additional hardware. Finally, the initial conditions are sat-

isfied by abstract interpretation resulting in an asymmetric c-element for state v3.

The automatically synthesized circuit is shown in figure 7-8 below.

xo 	yo

Figure 7-8: One place buffer implementation

The circuit correctly implements the one place buffer as specified by Martin

in his paper. Interestingly, Martin argues in his paper that the above circuit

cannot be implemented delay insensitively without reordering the communication

actions at the circuit's interface. The above circuit implementation shows that a

delay insensitive decomposition does exist for toggles and c-elements. Assuming

Martin's low level implementation result is valid, this design forms a proof that the

toggles themselves cannot be implemented in a truly delay insensitive way. This

result, that there does not exist a delay insensitive gate circuit for a toggle, has

independently been shown by Seger [105].

Chapter 8

Conclusions

8.1 Summary

The immediate goal of the research presented in this dissertation is to develop an

automatic method to translate behavioural descriptions into asynchronous circuits.

The potential size and complexity of modern digital systems continues to increase

at a phenomenal rate due to advances in VLSI fabrication technology. At the same

time, this continual improvement results in a rapid succession of technology gen-

erations, putting ever more pressure on circuit and product design times. These

constraints are forcing systems engineers to consider novel design strategies and

adopt new tools that increase design productivity and reduce design times. The

approach to these problems advocated by this thesis is the use of automated com-

pilation techniques to generate delay insensitive circuits. In addition to solving the

complexity issues facing designers, asynchronous circuits, and particularly delay

insensitive circuits, offer a large number of natural benefits to the technological

problems facing by VLSI engineers.

Conventionally, asynchronous circuits have been notoriously difficult to design.

The huge simplification achieved by discretizing time allows powerful mathematical

formalisms, such as the theory of finite state automata, to be brought to bear on the

analysis of system behaviour. This has allowed synchronous design techniques to

build up, over the years, a huge number of automated tools and a large knowledge

base to ease the design process. However, recent developments in the theory of

concurrent systems coupled with the computational power of modern workstations

promise to redress the balance. This thesis introduces a novel formal model of

delay insensitive behaviour that drastically reduces the complexity of the design

process by eliminating much of the interleaving caused by concurrent events.

185

Chapter 8. Conclusions 	 186

Self-timed modules are easily composed to create larger structures and therefore

form convenient building blocks for VLSI system design. Because a module's

interface is defined purely by its function and not timing, any component (or

network of components) may be replaced by a functionally equivalent one, without

the need for global retiming analysis. Such a design style permits the reuse of

well designed modules and allows incremental performance improvement, through

either faster building blocks or improved fabrication technology. Considering that

some current synchronous designs use as much as half of a chip's power budget

and 40% of its area for clock distribution, the single fact that asynchronous circuits

need no global clock makes such a design style attractive.

The advantage of an automated circuit compiler is that the complexity of asyn-

chronous circuit decomposition is hidden from the circuit designer by providing

the abstraction of a formal specification language. This abstraction allows cir-

cuit design to be viewed as a 'programming' problem, taking advantage of the

achievements in computer science (and software engineering) to bridle complexity.

This allows systems to be designed by system (application) specialists, away from

the details of low-level circuits and to think of system behaviour in higher level

(algorithmic) terms. Because the circuit specification is effectively a concurrent

program, simulation and formal proof techniques may be used to verify that the

program meets the system specification. Self-timed modules may be designed (and

implemented) independently and expected to work together when integrated into a

system. This permits a designer to rapidly consider different design alternatives.

Once a designer is satisfied with a circuit specification, it can be automat-

ically translated into circuit-level implementation. This avoids the costly, time-

consuming, tedious and often error-prone task of manually generating the circuit

or converting the specification into a form suitable for existing tools. If the cir-

cuit compiler is implemented correctly the resulting circuit should be correct-by-

construction and faithfully implement the behaviour of the original specification.

Ideally, the correctness of the translation process could be proven. Unfortunately,

no mathematical formalism currently exists in which to perform such a proof. Al-

ternatively, because the behaviour of the resulting circuit may be expressed in

terms of the composition of the primitive component behaviours it is possible to

automatically verify each decomposition against the original specification. Indeed

such a verification has been applied to many of the circuit implementations given

in this thesis.

Chapter 8. Conclusions
	 187

8.2 Evaluation

The principal results of this thesis are the development of an abstract model

of delay insensitive behaviour, and an efficient automated synthesis method for

translating behavioural specifications into delay insensitive circuits based upon

the above model. The stable state graph representation makes use of the con-

straints imposed upon a system by Udding's rules of delay insensitivity to avoid

explicitly representing the interleaving of concurrent signals. The circuit synthesis

method presented automatically decomposes arbitrary behavioural specifications

into delay insensitive networks of primitive components. The quality of circuits

generated by this procedure is shown in chapter 7 to be as good as, and often

better than, many hand designed circuits. Indeed this synthesis method can be

shown to be optimal for large classes of circuits, as mentioned in section 4.6.1.

As reviewed in chapter 1, a number of other researchers have suggested auto-

matic compilation methods for asynchronous circuits [10,14,21,36,117]. All of these

existing methods make use of syntax-directed translation to reduce the complexity

of the synthesis task. This technique uses the syntactic structure of the circuit's

behavioural specification (when described in a suitable formalism) to determine

the decomposition of components.

The principal problem with syntax-directed translation is that the quality of

the resulting circuit is dependent upon the way its behaviour is specified. This

places a burden on the circuit designer to understand how the circuit compilation

method works, and to specify the problem in such a way that the most efficient cir-

cuit is generated. Ideally, two functionally equivalent circuit specifications should

result in the generation of the same (best) circuit implementation. Although, the

respective authors argue the advantages of directing a circuit compiler towards

the desired implementation, the history of compilers for software programming

languages reveals that this leads to specifications that are tied to given implement-

ation technologies and do not allow the full power of current algorithmic methods

to be brought to bear. For example, the computational advantage of global state

minimization during circuit synthesis greatly reduces the size and improves the

quality of circuits generated from most behavioural specifications.

Another claim made by syntax-directed translation methods, such as Ebergen's,

is that the size of the resulting circuit is linear in the size of the specification. This

Chapter 8. Conclusions 	 188

can be shown a tight bound since some classes of circuits, such as N-toggles, re-

quire 0(n) components (from a finite circuit basis), where n is the specification size.

However, it is often possible to do much better. Unfortunately for syntax-directed

translation styles both the worst case and the best case are linear in specification

size. For this reason, non-syntax-directed approaches are required to efficiently

implement the extremely large class of circuits which require less than 0(n) com-

ponents. To overcome this limitation, some syntax-directed circuit compilers apply

peep-hole optimizations to improve the quality of resulting circuits. However for

typical large circuit specifications, local transformations cannot correct the global

inefficiencies in decomposition strategy.

One limitation with previous delay insensitive circuit synthesis methodologies

has been the use of restrictive circuit models and specification formalisms. Most

previous circuit compilers impose a predefined synthesis model, such as four-phase

handshaking bundles for each communication action. This means that it is im-

possible to precisely define an arbitrary interface behaviour. This constraint means

that it is impossible to specify the primitive components used to implement the

circuit in the specification language itself. This makes it much harder to verify

that a circuit meets its prescribed behaviour, as the compiler inputs and outputs

are described in different formalisms. The one exception to this statement, Eber-

gen's design methodology, allows the specification of arbitrary interface behaviours

provided that they may be represented as DI commands. Unfortunately, there are

number of perfectly valid delay insensitive behaviours, such as the RCEL imple-

mented in section 5.3.5, that cannot be expressed as such commands.

Prior to the work described in this thesis, the attempt to generate delay in-

sensitive implementations of arbitrary interface specifications was based on the

inefficient generic implementation strategy described in section 4.4 [5,97]. This

thesis also details several improvements to this strategy that produce more effi-

cient implementations that require less hardware.

Chapter 8. Conclusions

8.3 Future Work

The main portion of this work consists of a large number of theorems or tactics

on how to decompose delay insensitive behaviours into networks of primitive com-

ponents. It would be nice to be able to formally prove these theorems and thereby

validate a circuit compiler based upon this method. Unfortunately, no suitable

formalism exists that can describe manipulations of classes of circuit behaviours.

If such a formalism could be developed, the circuits generated by this method could

be shown 'correct-by-construction'. At present, confidence that a circuit meets

its specification is provided by verification. An intermediate approach would be

to integrate the proposed circuit decomposition method into a higher-order logic

hardware theorem prover. Although it is not currently possible to prove (or dis-

prove) the generic theorems described in this thesis, it is possible to make use of

them to direct a proof that each specific application of them to a given circuit is

valid (semantics preserving).

An alternative course of investigation, is to consider the use of the above circuit

synthesis strategy as a back-end and/or module generator to a conventional high-

level synthesis system. Such systems take a high-level algorithmic description

and automatically generate a synchronous digital data-path circuit that meets that

specification. The input high-level description is expressed either in a conventional

programming language such as Pascal, or in a hardware description language such

as VHDL. The use of high-level hardware description languages should abstract the

designer from a particular implementation technology, and allow such a synthesis

system to decide upon an appropriate, possibly asynchronous, design style. Indeed,

the composition properties of self-timed modules makes them ideal for the register

transfer level components, such as ALUs, registers and multiplexors, used by high-

level synthesis systems. In such a 'silicon compiler', the presented circuit synthesis

methodology provides the means to synthesize the complex asynchronous controller

circuits required by such data-path designs.

Finally, application of delay insensitive decomposition methods may be applied

to fields outside that of VLSI circuit design. One potential use of the methodo-

logy presented in this thesis is in the design of distributed systems and parallel

programs. Each communication action (voltage transition in circuit terms) can be

considered to be a packet (or message) transmitted over a computer network. The

Chapter 8. Conclusions
	 190

utility of program design styles that are tolerant of network communications delays

between communicating machines is obviously desirable. Rather than completely

decompose the specification into trivial primitive operations the decomposition is

halted at an intermediate level. Because all internal communication actions are

delay insensitive, the assignment of different modules to different processors may

be arbitrary. Indeed this provides a mechanism for dynamic load balancing.

Glossary

Asynchronous An asynchronous circuit is an 'unclocked' circuit, i.e. a circuit

which does not rely on global synchronization by an external clock signal.

Asynchrony implies the absence of any timing bounds on the operation of a

circuit (whose duration may be subject to many uncontrolled factors).

Delay Insensitive A circuit is delay insensitive if its correct operation is inde-

pendent of any assumptions about the delays of the individual components or

wires in the circuit except that those delay be finite. c.f. speed independent.

Equipotential An equipotential region is a portion of a circuit within which

propagation delays in wires are considered to be negligible. The smaller the

area of the region, the more validity this assumption has in practice.

Isochronic A fork or branch of a wire in a circuit is considered to be isochronic

if the difference in propagation delays between branches is negligible. This

is obviously the case if all branches of the fork are contained in an equipo-

tential region. A delay insensitive circuit in which all forks are isochronic is

effectively only speed independent.

Self-Timed Self-timed circuits are those which are characterized by the use of

asynchronous initiation and completion (or request/ acknowledge) signals.

This is sometimes referred to as "self-synchronization" by the Russians. The

class of self-timed circuits includes all delay insensitive, speed independent

and self-clocked circuits.

Self-Clocked Self-clocked circuits are self-timed designs that are implemented

using a hidden internal clock within an equipotential region. Although in-

ternally they are composed of clocked synchronous elements, self-clocked

circuits retain an external asynchronous interface.

191

Glossary
	 192

Speed Independent A circuit is said to be speed independent if its correct oper-

ation is independent of the delays in the individual components of the circuit

except that those delay be finite. It is assumed there is no propagation delay

associated with the wires of the circuit. c.f. delay insensitive. A speed inde-

pendent circuit is often called a "Muller circuit" or "aperiodic" in translation

from Russian.

References

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

Douglas B. Armstrong, Arthur D. Friedman, and Premachandran R. Menon.
Design of asynchronous circuits assuming unbounded gate delays. IEEE Trans-
actions on Computers, 18(12):1110-1120, December 1969.

J. C. M. Baeten. Applications of Process Algebra. Cambridge University Press,
1990.

Clifford Barney. Logic designers toss out the clock. Electronics, pages 42-45,
December 1985.

Igor Benko and Jo C. Ebergen. Delay-insensitive solutions to the committee prob-
lem. In Advanced Research in Asynchronous Circuits and Systems, pages 228-237,
Salt Lake City, Utah, November 1994.

Gerard Berry and Georges Gonthier. The ESTEREL synchronous programming
language: Design, semantics, implementation. Technical Report 842, Institut Na-
tional de Recherche en Informatique et en Automatique (INRIA), May 1988.

Hans Bisseling, Hank Eemers, Michiel Kamps, and Ad Peeters. Designing delay-
insensitive circuits. Technical Report VOC, Eindhoven University of Technology,
September 1990. Final Report of the Software Technology Postgraduate Pro-
gramme.

David L. Black. On the existence of delay-insensitive fair arbiters: Trace theory
and its limitations. Distributed Computing, 1:205-225, 1986.

Karl S. Brace, Richard L. Rudell, and Randal E. Bryant. Efficient implementation of
a BDD package. In 27th Design Automation Conference, pages 40-45. ACM/IEEE,
June 1990.

Geoffrey M. Brown. Towards truly delay-insensitive circuit realizations of process
algebras. In Designing Correct Circuits, September 1990.

E. K. Brunvand and M. Starkey. An integrated environment for the design and
simulation of self timed systems. In A. Halaas and P. B. Denyer, editors, VLSI 91,
page 4a.2, August 1991.

193

References
	 Iui

Erik Brunvand. Parts-R-Us a chip apart(s)... Technical Report CMU-CS-87-119,
Carnegie Mellon University, May 1987.

Erik Brunvand. Translating Concurrent Communicating Programs into Asynchron-
ous Circuits. PhD thesis, Carnegie Mellon University, September 1991. CMU-CS-
91- 198.

Erik Brunvand and Robert F. Sproull. Translating concurrent communicating pro-
grams into delay-insensitive circuits. Technical Report CMU-CS-89-126, Carnegie
Mellon University, 1989.

Randal E. Bryant. Symbolic boolean manipulation with ordered binary decision
diagrams. Technical Report CMU-CS-92-160, Carnegie Mellon University, July
1992.

J. A. Brzozowski and J. C. Ebergen. Recent developments in the design of asyn-
chronous circuits. Technical Report CS-89-18, University of Waterloo, Computer
Science Department, May 1989.

J. A. Brzozowski and J. C. Ebergen. On the delay-sensitivity of gate networks.
IEEE Transactions on Computers, 41(11):1318-1327, November 1992.

J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with par-
titioned transition relations. Technical Report CMU-CS-9 1-195, Carnegie Mellon
University, October 1991.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
model checking: 1020 states and beyond. In Proceedings of the 5th Annual Sym-
posium on Logic in Computer Science, pages 428-439, Philadelphia, June 1990.

Steven M. Burns. Automated compilation of concurrent programs into self-timed
circuits. Master's thesis, California Institute of Technology, 1988. Caltech-CS-TR-
88-2.

Steven M. Burns and Alain J. Martin. Syntax-directed translation of concurrent
programs into self-timed circuits. In Advanced Research in VLSI: Proceedings of
the 5th MIT Conference, pages 35-50, 1988.

Steven M. Burns and Alain J. Martin. Performance analysis and optimization of
asynchronous circuits. In Advanced Research in VLSI 1991: Proceedings of the
University of California, Santa Cruz, Conference, pages 71-86, 1991.

Luca Cardelli. An Algebraic Approach to Hardware Description and Verification.
PhD thesis, Department of Computer Science, University of Edinburgh, 1982.

M. K. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1988.

Thomas J. Chaney and Charles E. Molnar. Anomalous behaviour of synchronizer
and arbiter circuits. IEEE Transactions on Computers, 22(4):421-422, April 1973.

Tam-Anh Chu. On the models for designing VLSI asynchronous digital systems.
INTEGRATION, the VLSI journal, 4(2) :99-113, June 1986.

References
	

195

W. A. Clark and C. E. Molnar. Macromodular computer systems. In R. Stacy and
B. Waxman, editors, Computers in Biomedical Research, chapter 3, pages 45-85.
Academic Press, 1974. Vol. IV.

E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons us-
ing branching time temporal logic. In Dexter Kozen, editor, Logics of Programs
Workshop, pages 52-71. Springer—Verlag, May 1981. LNCS 131.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite state
concurrent systems using temporal logic specifications: A practical approach. In
Tenth Annual ACM Symposium on Principles of Programming Languages, pages
117-126,1983.

Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The concurrency work-
bench: A semantics based tool for the verification of concurrent systems. Technical
Report LFCS-89-83, Laboratory for Foundations of Computer Science, Dept. of
Computer Science, University of Edinburgh, August 1989.

Al Davis, Bill Coates, and Ken Stevens. Automatic synthesis of fast compact
asynchronous control circuits. In Working Conference on Asynchronous Design
Methodologies, Manchester, England, March 1993.

Jack B. Dennis. Modular asynchronous control structures for a high performance
processor. In Record of the Project MAC Conference on Concurrent Systems and
Parallel Computation, pages 55-80. ACM, New York, 1970.

Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18(8):453-457, August 1985.

David L. Dill. Trace Theory for Automatic Hierachical Verification of Speed-
Independent Circuits. ACM Distinguished Dissertations. The MIT Press, 1989.

David L. Dill and Edmund M. Clarke. Automatic verification of asynchronous
circuits using temporal logic. In Henry Fuchs, editor, 1985 Chapel Hill Conference
on VLSI, pages 127-143. Computer Science Press, 1985.

Jo C. Ebergen. Translating Programs into Delay-Insensitive Circuits. PhD thesis,
Eindhoven University of Technology, 1987.

Jo C. Ebergen. Arbiters: An exercise in specifying and decomposing asynchron-
ously communicating components. Technical Report CS-90-29, University of Wa-
terloo, Computer Science Department, 1990.

Jo C. Ebergen. A formal approach to designing delay-insensitive circuits. Distrib-
uted Computing, 5(3):107-119, 1991.

Jo C. Ebergen and Sylvain Gingras. A verifier for network decompositions of
command-based specifications. In T. Mudge, V. Milutinovic, and L. Hunter, ed-
itors, Proceedings of the 26th Annual Hawaii International Conference on System
Sciences, volume 1, pages 310-318. IEEE Computer Society Press, January 1993.

References
	 196

Jo C. Ebergen and Ad M. G. Peeters. The modulo-N counter: Design and analysis
of delay-insensitive circuits. Technical Report CS-91-25, University of Waterloo,
Faculty of Mathematics, June 1991.

Jo C. Ebergen and Ad M. G. Peeters. Modulo-N counters: Design and analysis of
delay-insensitive circuits. In 2nd Workshop on Designing Correct Circuits, pages
27-46, Lyngby, January 1992.

Reinhard Enders, Thomas Filkorn, and Dirk Taubner. Generating BDDs for sym-
bolic model checking in CCS. Distributed Computing, 6:155-164, 1993.

A. D. Friedman and P. R. Menon. Synthesis of asynchronous circuits with multiple-
input changes. IEEE Transactions on Computers, 17(6):559-566, June 1968.

Arthur D. Friedman and Premachandran R. Menon. Theory & Design of Switching
Circuits. Digital Systems Design Series. Computer Science Press, 1975.

S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods. A micropipelined
ARM. In VLSI 93, September 1993. (submitted).

Dov Gabbay, Amir Pneuli, Saharon Shelah, and Jonathan Stavi. On the temporal
analysis of fairness. In Seventh Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 163-173, 1980.

J. D. Garside. A CMOS VLSI implementation of an asynchronous ALU. In
Working Conference on Asynchronous Design Methodologies, Manchester, England,
March 1993.

M. A. Gavrilov. The Theory of Relay-Switching Circuits. Analysis and Synthesis
of Relay-Switching Circuit Structure. USSR Academy of Sciences Press, Moscow
and Leningrad, 1950. (in Russian).

Rix Groenboom, Mark B. Josephs, Paul G. Lucassen, and Jan Tijmen Udding. Nor-
mal form in a delay-insensitive algebra. In Working Conference on Asynchronous
Design Methodologies, Manchester, England, March 1993.

Scott Hauck. Asynchronous design methodologies: An overview. Technical Re-
port TR93-05-07, Department of Computer Science and Engineering, Univeristy of
Washington, 1993.

Scott Hauck. Asynchronous design methodologies: An overview. Proceedings of
the IEEE, 83(1):69-93, January 1995.

Alan B. Hayes. Stored state asynchronous sequential circuits. IEEE Transactions
on Computers, 30(8):596-600, August 1981.

C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666-677, August 1978.

C. A. R. Hoare. A model for communicating sequential processes. Technical Report
PRG-22, Programming Research Group, Oxford University Computing Laboratory,
1981.

References
	 197

Lee A. Hollaar. Direct implementation of asynchronous control units. IEEE Trans-
actions on Computers, 31(12):1133-1141, December 1982.

D. A. Huffman. The synthesis of sequential switching circuits. Journal of the
Franklin Institute, 257:161-190, 1954.

David A. Huffman. The design and use of hazard-free switching networks. Journal
of the ACM, 4(1):47-62, January 1957.

Mark B. Josephs and Jan Tijmen Udding. An algebra for delay-insensitive circuits.
Technical Report WUCS-89-54, Washington University, St. Louis, 1989.

Mark B. Josephs and Jan Tijmen Udding. Delay-insensitive circuits: an algebraic
approach to their design. In J. C. M. Baeten and J. W. Klop, editors, CONCUR
'90, Theories of Concurrency: Unification and Extension, pages 342-366. Springer—
Verlag, August 1990. LNCS 458.

Mark B. Josephs and Jan Tijmen Udding. The design of a delay-insensitive stack.
In Geraint Jones and Mary Sheeran, editors, Designing Correct Circuits. Springer-
Verlag, September 1990.

Mark B. Josephs and Jan Tijmen Udding. Designing a delay-insensitive stack.
Technical Report CS9004, Department of Computer Science, Groningen University,
1990.

Mark B. Josephs and Jan Tijmen Udding. Implementing a stack as a delay-
insensitive circuit. In Working Conference on Asynchronous Design Methodologies,
Manchester, England, March 1993.

Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state processes
and three problems of equivalence. In Proceedings of the Second Annual ACM
Symposium on Principles of Distributed Computing, pages 228-240, August 1983.

Robert M. Keller. Towards a theory of universal speed-independent modules. IEEE
Transactions on Computers, 23(1):21-33, January 1974.

Joep Kessels and Martin Rem. Designing systolic, distributed buffers with bounded
response time. Distributed Computing, 4:37-43, 1990.

D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333-354, 1983.

Kim G. Larsen and Bent Thomsen. A modal process logic. In Proceedings of the
3rd Annual Symposium on Logic in Computer Science, pages 203-210, Edinburgh,
1988.

L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli. Algorithms for synthesis
of hazard-free asynchronous circuits. In 28th Design Automation Conference, pages
302-308. ACM/IEEE, June 1991.

Luciano Lavagno, Kurt Keutzer, and Alberto L. Sangiovanni-Vincentelli. Synthesis
of verifiably hazard-free asynchronous control circuits. In Advanced Research in
VLSI 1991: Proceedings of the University of California, Santa Cruz, Conference,
pages 87-102, 1991.

References

S. C. Leung and H. F. Li. On the realizability and synthesis of delay-insensitive
behaviors. IEEE Transactions on Computer-Aided Design, 14(7):833-848, July
1995.

Kuan-Jen Lin and Chen-Shang Lin. Automatic synthesis of asynchronous circuits.
In 28th Design Automation Conference, pages 296-301. ACM/IEEE, June 1991.

P. F. Lister and A. M. Aiheiwani. Design methodology for self-timed VLSI systems.
lEE Proceedings, Pt. E, 132(2):25-32, January 1985.

C. N. Liu. A state variable assignment method for asynchronous sequential switch-
ing circuits. Journal of the ACM, 10, 1963.

Yonatan Malachi and Susan S. Owicki. Temporal specifications of self-timed sys-
tems. In H. T. Kung, Bob Sproull, and Guy Steele, editors, VLSI Systems and
Computations, pages 203-212, 1981.

Alain J. Martin. The probe: An addition to communication primitives. Information
Processing Letters, 20:125-130, April 1985.

Alain J. Martin. Compiling communicating processes into delay-insensitive VLSI
circuits. Distributed Computing, 1:226-234, 1986.

Alain J. Martin. The design of a delay-insensitive microprocessor: An example of
circuit synthesis by program transformation. In M. Leeser and G. Brown, editors,
Hardware Specification, Verification and Synthesis: Mathematical Aspects, pages
244-259. Springer—Verlag, 1989. LNCS 408.

Alain J. Martin. Programming in VLSI: From communicating processes to delay-
insensitive circuits. In C. A. R. Hoare, editor, UT Year of Programming Institute
on Concurrent Programming. Addison-Wesley, 1989.

Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In
W. J. Daily, editor, Sixth MIT Conference on Advanced Research in VLSI. MIT
Press, 1990.

Alain J. Martin. Synthesis of asynchronous VLSI circuits. Course Notes, VLSI 91,
Edinburgh, August 1991.

David May. Occam 2 language definition. In Dick Pountain, editor, A Tutorial
Introduction to OCCAM Programming. INMOS, March 1987.

Anthony J. McAuley. Dynamic asynchronous logic for high-speed CMOS systems.
IEEE Journal of Solid-State Circuits, 27(3):382-388, March 1992.

E. J. McCluskey. Fundamental mode and pulse mode sequential circuits. In In-
formation Processing 62, pages 725-730. IFIP, 1962.

Carver Mead and Lynn Conway. Introduction to VLSI Systems. Addison-Wesley,
1980.

Michael Mendler and Terry Stroup. Newtonian arbiters cannot be proven correct.
In 2nd Workshop on Designing Correct Circuits, pages 47-66, Lyngby, January
1992.

References
	 199

Teresa H.-Y. Meng, Robert W. Brodersen, and David G. Messerschmitt. Automatic
synthesis of asynchronous circuits from high-level specifications. IEEE Transac-
tions on Computer Aided Design, 8(11):1185-1205, November 1989.

George J. Mime. Circal and the representation of communication, concurrency and
time. ACM Transactions on Programming Languages and Systems, 7(2):270-298,
April 1985.

R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267-310, 1983.

Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

David Misunas. Petri nets and speed independent design. Communications of the
ACM, 16(8):474-481, August 1973.

Charles E. Molnar, Ting-Pien Fang, and Frederick U. Rosenberger. Synthesis of
delay-insensitive modules. In Henry Fuchs, editor, 1985 Chapel Hill Conference on
VLSI, pages 67-86. Computer Science Press, 1985.

David E. Muller and W. S. Bartky. A theory of asynchronous circuits. In Proceed-
ings of an International Symposium on the Theory of Switching, pages 204-243.
Harvard University Press, April 1957.

Steven M. Nowick and David L. Di!!. Practicality of state-machine verification
of speed-independent circuits. In International Conference on Computer Aided
Design, pages 266-269. ACM/IEEE, November 1989. ICCAD-89.

Robert Paige and Robert E. Tarjan. Three partition refinement algorithms. SIAM
Journal of Computing, 16(6):973-989, December 1987.

D. Park. Concurrency and automata on infinite sequences. In Peter Deussen, ed-
itor, Proceedings of the 5th GI-conference, pages 167-183. Springer—Verlag, March
1981. LNCS 104.

S. Patil. Circuit implementation of petri nets. Technical Report Computation
Structures Group Memo 73, Project MAC, Massachusetts Institute of Technology,
Cambridge, Massachusetts, December 1972.

P. Patra and D. S. Fussell. Efficient building blocks for delay-insensitive circuits.
In Advanced Research in Asynchronous Circuits and Systems, pages 196-205, Salt
Lake City, Utah, November 1994.

Gordon Plotkin. A structural approach to operational semantics. Technical Report
DAIMI, FN 19, Aarhus University, Denmark, 1981.

Martin Rem. Concurrent computation and VLSI circuits. In M. Broy, editor,
Control Flow and Data Flow: Concepts of Distributed Programming, pages 399-
437. Springer-Verlag, 1984.

Marly Roncken and Ronald Saejis. Linear test times for delay-insensitive circuits:
A compilation strategy. In Working Conference on Asynchronous Design Method-
ologies, Manchester, England, March 1993.

References 	 200

Fred U. Rosenberger, Charles E. Molnar, Thomas J. Chaney, and Ting-Pien Fang.
Q-modules: Internally clocked delay-insensitive modules. IEEE Transactions on
Computers, 37(9):1005-1018, September 1988.

L. Ya. Rosenblum. Petri nets. Izvestiya Akademii Nauk SSSR, 5:12-40, 1983. (In
Russian).

L. Ya. Rosenblum and A. V. Yakovlev. Signal graphs: From self-timed to timed
ones. In Proceedings of the International Workshop on Timed Petri Nets, Torino,
Italy, July 1985, pages 199-207. IEEE Computer Society Press, 1985.

Roger Sayle. On the synthesis of modulo-n counters. In Proceedings of the ACiD-
WG/EXACT Workshop on Asynchronous Controllers and Interfacing, IMEC,
Leuven, Belgium, September 1992.

C.-J. Seger. On the existence of speed-independent circuits. Technical Report
CS-87-63, University of Waterloo, Computer Science Department, November 1987.

Charles L. Seitz. System timing. In Carver Mead and Lynn Conway, editors,
Introduction to VLSI Systems, chapter 7, pages 218-262. Addison-Wesley, 1980.

N. A. Starodubtsev. Autonomous, Antitone, Sequential Circuits. I. Definitions
and Interpretation. Engineering Cybernetics, 19(4):111-116, 1982. II. Cyclograms
and Their Properties. Engineering Cybernetics, 19(5):74-79, 1982. III. Minimiza-
tion. Engineering Cybernetics, 19(6):63-67, 1982. IV. Estimates of the Complexity.
Engineering Cybernetics, 20(l):92-98, 1983.

N. A. Starodubtsev. Synthesis of Contol Circuits for Parallel Computer Systems.
PhD thesis, The USSR Academy of Sciences, Leningrad, USSR, 1984. (Russian).

J. Staunstrup and M. R. Greenstreet. Designing delay insensitive circuits using
using 'synchronized transitions'. In J. Staunstrup, editor, Formal VLSI Specifica-
tion and Synthesis. VLSI Design Methods, pages 209-226. North-Holland/Elsevier,
1990.

Ivan E. Sutherland. Micropipeliries. Communications of the ACM, 32(6):720-738,
June 1989.

J. H. Tracey. Internal state assignments for asynchronous sequential machines.
IEEE Transactions on Electronic Computers, 15:551-560, August 1966.

Jan Tijmen Udding. Classification and Composition of Delay-Insensitive Circuits.
PhD thesis, Eindhoven University of Technology, September 1984.

Jan Tijmen Udding. A formal model for defining and classifying delay-insensitive
circuits and systems. Distributed Computing, 1:197-204, 1986.

Jan Tijmen Udding. Algebraic verification of a modulo-n counter. In Proceedings of
the ACiD-WG/EXACT Workshop on Asynchronous Controllers and Interfacing,
IMEC, Leuven, Belgium, September 1992.

Stephen H. Unger. Asynchronous Sequential Switching Circuits. John Wiley &
Sons, 1969.

References 	 201

Stephen H. Unger. Asynchronous sequential switching circuits with unrestricted
input changes. IEEE Transactions on Computers, 20(12):1437-1444, December
1971.

C. H. (Kees) van Berkel. Beware the isochronic fork. Nat. Lab. Unclassified Report
UR 003/91, Philips Research Laboratories, Eindhoven, The Netherlands, January
1991.

Kees van Berkel. An asynchronous systolic modulo-n counter and its CMOS realiz-
ation. In Proceedings of the ACiD- WG/EXACT Workshop on Asynchronous Con-
trollers and Interfacing, IMEC, Leuven, Belgium, September 1992.

Kees van Berkel. Handshake Circuits: An intermediary between communicating
processes and VLSI. PhD thesis, Eindhoven University of Technology, 1992.

Kees van Berkel. VLSI programming of a modulo-n counter with constant response
time and constant power. In Working Conference on Asynchronous Design Meth-
odologies, Manchester, England, March 1993.

Jan L. A. van de Snepscheut. Deriving circuits from programs. In 3rd CALTECH
Conference on Very Large Scale Integration, pages 241-256, 1983.

Jan L. A. van de Snepscheut. Trace Theory and VLSI design. Verlag—Springer,
1985. LNCS 200.

P. Vanbekbergen, F. Catthoor, C. Goossens, and H. De Man. Optimized syn-
thesis of asynchronous control circuits from graph-theoretic specifications. In In-
ternational Conference on Computer Aided Design, pages 262-265. ACM/IEEE,
Novemeber 1990. ICCAD-90.

V. Varshavsky, M. Kishinevsky, V. Marakhovsky, V. Peschansky, L. Rosenblum,
A. Taubin, and B. Tsirlin. Self-Timed Control of Concurrent Processes. Kluwer
Academic Publishers, 1990. (Russian Edition Nauka, Moscow, 1986).

V. Varshavsky, L. Rosenblum, V. Marakhovsky, A. Astanovsky, V. Peschansky, and
N. Starodubtsev. Aperiodic Automata. Nauka, Moscow, 1976. (in Russian).

V. I. Varshavsky and L. Y. Rosenblum. Dead-beat automata and asynchronous par-
allel process control. In Proceedings of the First IFAC-IFIP Symposium, SOCOCO-
76, pages 161-164, Tallin, USSR, 1976.

Neil Weste and Kamran Eshraghian. Principles of CMOS VLSI Design, A Systems
Perspective. Addison-Wesley, 1985.

Alexandre Yakovlev. Designing self-timed systems. VLSI Systems Design, 6(9):70-
90, September 1985.

Meng-Lin Yu and P. A. Subrahmanyam. Hazard-free asynchronous circuit syn-
thesis. In Working Conference on Asynchronous Design Methodologies, Man-
chester, England, March 1993.

