
T h e P o s t O ffice E x p e r ie n c e :
D e s ig n in g a L arge A sy n c h r o n o u s C h ip

Al Davis
Bill Coates

HP Laboratories
Palo Alto, CA 94019

A b str a c t

The Post Office is an asynchronous, 300,000 tran
sistor, full-custom CMOS chip designed as the com
munication component for the Mayfly scalable parallel
processor. Performance requirements led to the devel
opment of a design style which permits the design of
sequential circuits operating under a restricted form
of multiple input change signalling called burst-mode.
The Post Office complexity forced us to develop a set
of design tools capable of correctly synthesizing tran
sistor circuits from state machine and equation specifi
cations, and capable of verifying the correctness of the
resultant circuitry using implementation specific tim
ing assumptions. The paper provides a case study of
this design experience.

1 Introduction

The Post Office was designed to support inter
node communication for the Mayfly parallel processing
system[8]. The Post Office handles all of the physical
delivery aspects of packet communication. This in
cludes local buffering, dynamic adaptive routing and
congestion avoidance, deadlock avoidance, and virtual
cut-through. The Mayfly topology was designed to
be extensible and permits an unbounded number of
PEs to be interconnected. This implies that the phys
ical extent of the system is not fixed and poses serious
problems when considering an implementation strat
egy which uses a common global clock. Clock skew is
a possible headache for any synchronous design style,
and is magnified as technology progresses[l]. In the
case of extensible systems such as Mayfly, where the
total number of boards is unbounded, the synchronous
choice becomes intractable. We therefore chose an
asynchronous design style for the Post Office imple
mentation.

Ken Stevens

Computer Science Department
University of Calgary

Calgary, Alta T2N 1N4

Another critical design constraint was the need for a
high performance implementation, since message pass
ing performance would be critical to the success of the
Mayfly system. Proponents often argue that asyn
chronous circuits are inherently faster since they are
controlled by locally adaptive timing rather than the
usual global worst-case clock frequency constraints.
While we believe that this claim has merit, we feel
that in general it is misleading. Asynchronous circuits
require more components to implement the same func
tion. This may result in longer wires, increased area,
and reduced performance. When compared to a very
well tuned synchronous design, a functionally equiv
alent asynchronous implementation may actually run
slightly slower. The need for speed heavily influenced
our particular asynchronous design style.

N o ta tio n a l C om m en t: We use the terms asyn
chronous and self-timed synonymously. All asyn
chronous or self-timed design styles are fundamentally
concerned with the synthesis of hazard free circuits
under some timing model. DI (delay-insensitive) cir
cuits exhibit hazard free behavior with arbitrary de
lays assigned to both the gates and the wires, and SI
(speed-independent) circuits are hazard free with ar
bitrary gate delays but assume zero wire delays.

There are a large number of rather different de
sign styles in today’s asynchronous design commu
nity. One partition of design styles can be based
on the type of asynchronous circuit target: locally
clocked[17,10,7], delay-insensitive[12,3,23,16], or var
ious forms of single- and multiple- input change
circuits[22]. Yet another distinction could be made
on the nature of the control specification: graph
based[15,4], programming language based[12,23,2], or
finite state machine based[17,10]. For the finite state
machine based styles, there is a further distinction
that can be made based on the method by which state
variables are assigned[ll,21]. The design style space

0-8186-1060-3425/93 $03.00 © 1993 IEEE
409

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276286852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is large and each design style has its own set of merits
and demerits. It is worthwhile to note that virtually
all of the design styles focus on the design of the con
trol path of the circuit.

Compiled implementations based on programming
language like specifications[12,3,23,2], while elegant
and robust, suffer in performance because they are
presently compiled into intermediate library mod
ules rather than into optimized transistor networks.
A module of significant concern is the C-element.
C-elements are common circuit modules in asyn
chronous circuits and eliminating them completely is
unlikely. C-elements are both latches and synchro
nization points. Too much synchronization reduces
parallelism and performance.

The methods which produce DI circuits, while not
perfect[13], are the most tolerant of variations in de
vice and wire delays. This tolerance improves the
probability that a properly designed circuit will con
tinue to function under variations in supply voltage,
temperature, and process parameters. We chose to
slightly expand the domain of timing assumptions
which must remain valid to retain hazard free imple
mentation since this permits higher performance im
plementations at the expense of reduced operational
tolerance. Our view is motivated by the reality that
our designs have to meet certain performance require
ments. For any given layout and fabrication process,
we have models which predict the speeds of the wires
and transistors for the desired operational window.
We also know the percentage of error that can be tol
erated in those predictions. We could not live with ar
bitrary delays for performance reasons and therefore it
seems impractical to assume arbitrary delays in order
to ensure hazard free operation of the circuits. Our
approach has therefore been to insure hazard free op
eration under sets of timing assumptions that can be
verified as being within acceptable windows of fabri
cation and operational tolerance.

We chose to pursue a finite state machine based
style for two reasons: 1) the finite state machine con
cept is a familiar one for hardware designers like our
selves, and 2) the graph and programming language
based synthesis methods that we knew about were
too slow for our purposes. The finite state machine
based design style does not use C-elements, although
C-elements are used sparingly and in stylized ways in
interface circuits such as arbiters.

In order to achieve the necessary hazard free asyn
chronous finite state machine (A F S M) implementa
tion, it is necessary to place constraints on how their
inputs are allowed to change. The most common is the

single input change or SIC constraint[22]. SIC circuits
inherently require state transitions after each input
variable transition. In cases where the next interest
ing behavior is in response to multiple input changes,
the circuit response will be artificially slow, either due
to too many state transitions or due to the external ar
biters required to sequence the multiple inputs. Multi
ple input change or MIC circuit design methods have
been developed[22,5] but either required input restric
tions or involved implementation techniques that were
unsuitable for our purposes. As a result we developed
a design style that we call b u r st-m o d e which per
mits a certain style of multiple input change. Our
burst-mode implementation method does not require
performance inhibiting local clock generation or flip-
flops.

As our Post Office state machines got too complex
for hand synthesis, we decided to create a tool kit that
was capable of automatically synthesizing the transis
tor level circuits from burst-mode specifications. We
call this tool kit M E A T . During the development of
MEAT, we were fortunate to have Steve Nowick spend
two summers with us. He incorporated David Dill’s
verifier[9] into the tool kit, and modified the verifier
to accommodate our burst-mode timing model. Steve
had considerable influence on our ideas and his locally
clocked design style[17] is another outcome of these
earlier interactions. We are indebted to Steve for his
influence on our design style.

The Post Office was fabricated using MOSIS revi
sion 6 design rules in a 1.2 micron CMOS process. The
circuit contains 300,000 transistors and has an area of
11 x 8.3 mm. There are 95 AFSMs, most of which
operate concurrently and which account for 19% of
the chip area. Datapath circuitry takes up 45%, pads
cover 11%, wire routing requires 19%, and the other
6% is unused space on the rectangular die.

Our view in the beginning of the Post Office de
sign effort was that we could use existing tools for the
datapath, but that since adequate performance ori
ented synthesis tools did not exist for asynchronous
controllers, we would have to create such a tool. Hence
the focus of our design method and the MEAT tools
was directed at the control path. The goal was to syn
thesize optimized transistor level schematics that were
fast. It was our mistaken impression that once MEAT
worked, the design of such a large and complex de
vice would be well supported by our CAD capability.
What follows is a brief description of our design style,
the MEAT tools, and a retrospective view of how well
the design process went.

410

The Post Office datapath circuitry was designed us
ing a style similar to that used for conventional syn
chronous circuits. The differences are minor and are
a direct result of the need to cooperate with the sig
nalling protocols imposed by the AFSMs in the control
path. Data is transferred between elements using a
four-cycle self-timed bundled-data protocol[19]. This
is a weaker model than that of speed-independence
used for control signals inside state machines[14].
There are also some datapath circuits which are con
trolled in a clocked domain, rather than in a self
timed fashion. These datapath cells contain a stop
pable clock or are clocked by state machine outputs.
The stoppable or raw clock signals are usually burst
mode generated in parallel with an associated set of
asynchronous hand-shake signals. The minimum delay
of these hand-shake signals must be greater than the
maximum delay required by the clocked circuitry. We
use conventional timing analysis tools on these paths
to insure that the assumption is correct given our ex
pected process parameters and an error margin.

Making timing assumptions for datapath logic has
two consequences. First, the logic is smaller and sim
pler because no completion signals are generated. Sec
ond, there is an increased potential for errors, as cor
rect operation is now dependent on physical circuit
layout, process, and environmental parameters. The
result is that these timing assumptions must only be
made within a module which can be subsequently ver
ified. It is dangerous to export timing assumptions be
tween modules since the transitive nature of the path
inequalities rapidly leads to intractable analysis and
verification complexity.

The control path is specified as burst-mode AFSMs
and their implementation is synthesized by the MEAT
tool. Burst-mode permits a conjunctive input burst to
arrive prior to responding with an output burst. There
is an implicit fundamental mode assumption similar to
SIC AFSMs in that once an input burst is received,
the AFSM must be given time to respond with its
output burst and settle into a new stable state prior
to the arrival of a new input burst. Burst-mode is a
restricted form of MIC signalling best illustrated by a
simple example.

For any given exit arc from a state, the arc is la
belled with the input burst that will cause the transi
tion, and the associated output burst that will be the
AFSM’s response. As such this looks like a traditional
Mealey FSM model. Let there be 4 input variables (̂ 4,
B , C, and D) and 3 output variables (R , S, and T). A
state transition may be labelled] A] B \ C / \ R] T . We

2 D e s ig n S t y l e use a positive logic convention and hence the mean
ing is that if signals A and B go high and C goes low
then the AFSM should result in a low going transition
of R and a high transition on T. The order of the
3 input transitions is unspecified and therefore may
occur in any order including concurrently. The same
unspecified order applies to the output burst.

The MIC restriction is that for any set of arcs
leaving a single state, completion of their input
bursts must be mutually exclusive. For example,
given a state with the previous state transition, an
other state transition from the same state could be
] A] B i D / l R] S . However a state transition labelled
] A] B / \ R] S would be illegal. There is no way to
safely distinguish in the asynchronous world whether
C is still supposed to occur or whether AFSM should
just respond to changes on A and B. It would also be
illegal for a transition to be labelled]A [B [C / [R]T
since each state inherently must look for a known tran
sition direction for each input variable that it must
respond to.

The other consistency requirement is that input and
output transitions must strictly alternate, e.g. for any
given directed path in the AFSM for any input vari
able X ,]X must follow a [X and vice versa. Omitting
X on an intervening transition implies no change. The
same must be true for output variables. A corollary
to this requirement is that any circuit in the AFSM
description will have an even number of alternating
input and output variable changes. The MEAT tools
analyze the AFSM specification and signal an error if
these MIC restrictions are not met. If the specifica
tion is valid then MEAT generates the logic equations
which are then folded into a complex CMOS gate. A
schematic is also produced.

3 MEAT - a Tool for Control Circuit
Synthesis

The MEAT synthesis tool is fast enough that alter
native design options can be explored. The designer
is freed from the task of understanding the underlying
transformations required to produce hazard-free asyn
chronous circuits. The burst-mode specification has
proven to be both a natural and efficient method for
specifying AFSMs. Presently MEAT does not contain
a state graph editor so the graphical state machine de
scription is then specified textually in the MEAT entry
format. Each arc in the state diagram is mapped to
a single statement in the text file, which indicates the
source and destination states along with the associ-

411

ated input and output bursts.
The first automated task performed by MEAT is

to generate a primitive flow table[22] from the textual
AFSM specification. This is a two-dimensional array
structure which captures the behavior represented by
the state diagram. Each row of this table represents
a node in the state diagram; each column represents
a unique combination of input signals. Each entry
in the table thus represents a position in the possible
state-space of the AFSM. For each entry, the value
of the output signals and the desired next state may
be specified. If a next-state value is the same as that
of the current row, the state machine is said to be
in a s ta b le s ta te . If the next-state value specifies a
different row, the table entry represents an u n sta b le
s ta te .

All rows will have a stable entry where an input
burst begins. Other entries in the same row may be
visited when an input burst occurs. In order for MIC
behavior to be correctly represented, it must be guar
anteed that the circuit will remain stable in the initial
row until the input burst is complete. At this point,
an unstable state will be entered which will cause a
transition to the target row specified and fire the out
put burst. Any entry in the flow table not reachable
by any allowed sequence of input bursts is labeled as
a don’t care and can take on any value for the outputs
or next-state values. As it is not immediately evident
which values will lead to the simplest circuit, the as
signment of specific values to the don’t care entries is
deferred for as long as possible.

The next step is to attempt to reduce the number
of rows in the flow table by merging selected sets of
two or more rows into one while retaining the speci
fied behavior. After specifying the reduced flow table,
MEAT calculates the set of m a x im a l co m p a tib le
states. The set of maximal compatibles consists of the
largest sets of state rows which can be merged, which
are not subsets of any other such set. There may be
various valid combinations of the maximal compati
bles that can be chosen to produce a reduced table
with the same behavior.

The final choice of minimized states must be chosen
by the designer. There are three constraints on this
choice. First, and obviously, only compatible states
may combined (c o m p a tib ility constraint). Second,
each state in the original design must be contained
in at least one of the reduced states (co m p le ten ess
constraint). Third, selecting certain sets of states to
be merged may imply that other states must also be
merged (c lo su re constraint). If any of the above con
straints are not satisfied, MEAT will inform the user

that the covering is invalid.

A set of state variables must be assigned to uniquely
identify each row of the reduced flow table. In contrast
to synchronous control logic design, state codes may
not be randomly assigned, but must be carefully cho
sen to prevent races. The MEAT state assignment al
gorithm is based on a method developed by Tracey[21].
The Tracey algorithm has the advantage that it pro
duces S in g le T ra n sitio n T im e (S T T) state assign
ments. In cases where two or more state variables
must change value when transitioning to a new state,
all variables involved are allowed to change concur
rently, or race. It must be guaranteed that the out
come of the race is independent of the order in which
the state variables actually transition in order to pro
duce a non-criiical race which exhibits correct asyn
chronous operation. Several valid assignments may be
produced, and each will be passed to the next stage for
evaluation. This will result in unique implementations
for each state assignment.

After state codes are assigned, the next synthesis
stage computes a canonical sum of products (SO P)
boolean expression for each output and state variable.
A modified Quine-McCluskey minimization algorithm
is used. The resulting expression includes all essen
tial prime implicants, and possibly other prime im
plicants and additional terms necessary to produce a
covering free of logic hazards. It may be possible for
each output or state variable to be specified using sev
eral alternate minimal equations. The large number
of don’t care entries typically present in the flow ta
ble increase the likelihood that more than one mini
mal expression will be found. Each equation is given
a heuristic “weight” that indicates the expected diffi
culty of implementation and speed of operation using
complex CMOS gates. When multiple state assign
ments have been produced in the previous step, the
total weight of each unique SOP equation is used to
choose between various instantiations.

The minimized equations produced in the previous
step are then used to automatically generate tran
sistor net lists, suitable for simulation, representing
complex CMOS gates. A graphical schematic dia
gram is also produced to help guide the layout pro
cess. The complementary nature of CMOS n-type and
p-type devices is exploited to generate a single, com
plex, static gate through simple function preserving
transformations. These transformations can increase
performance while reducing the area and device count.
As a sum-of-products equation is folded into a single
complex gate, the number of logic levels required to
generate the output can be reduced. If the function

412

is complex, it can easily be broken up into a tree of
complex gates with improved overall performance[‘20].
Typical state machines in the Post Office have an in
put to output delay of 2 to 5 inverter delays.

4 Design Example

In order to illustrate the synthesis process from the
designers point of view we will use a Post Office state
machine called sbuf-send-ctl as a design example. The
state machine is specified in Figure 1. We have cre
ated a pool of Post Office AFSMs that we have made
available to other researchers and synthesized imple
mentations of this state machine in other methods can
be found in[18,17].

The specification of sbuf-send-ctl from Figure 1 is
textually entered for MEAT by describing the AFSM
name, input variables, output variables, and then each
state transition in 2 text lines. The first line de
scribes the current state and the input burst, while
the next line specifies the destination state and the
output burst. In the text A would correspond to \A
and A would be equivalent to J, A from the graphical
version of the state machine. The textual sbuf-send-
ctl specification is:

:fsm sbuf-send-c t l

: in (Deliver Begin-Send Ack-Send)
:out (Latch-Addr IdleBAR Send-Pkt)
s ta te 0 (Deliver)

1 (IdleBAR * Latch-Addr)
s ta te 1 (Deliver")

2 0
s ta te 2 (Begin-Send)

3 (Latch-Addr")
s ta te 3 (Begin-Send")

4 (Send-Pkt)
s ta te 4 (Ack-Send)

5 (Send-Pkt")
s ta te 5 (Ack-Send")

0 (IdleBAR")
s ta te 4 (Deliver)

6 ()
s ta te 6 (Deliver" * Ack-Send)

7 (Send-Pkt" * Latch-Addr)
s ta te 7 (Ack-Send")

2 0

The following is a transcript from a MEAT session.
The specification resulted in a single implementation
with two state variables.

> (meat " sbu f-send -c t l .da ta")

Max Compatibles: ((0 5) (1 2 7) (3 4) (6))
Enter S tate se t : ’((0 5) (1 2 7) (3 4) (6))

SOP fo r "Yl":
18: DELIVER + Yl+BEGIN-SEND"

SOP fo r "Y0M:
28: BEGIN-SEND + Y0*ACK-SEND" + Y0*DELIVER

SOP fo r LATCH-ADDR:
12: Y1*Y0"

SOP fo r IDLEBAR:
30: ACK-SEND + BEGIN-SEND + YO + Yl

SOP fo r SEND-PKT:
12: YO+BEGIN-SEND"

HEURISTIC TOTAL FOR THIS ASSIGNMENT: 100

The implementation is then verified for hazard-free
operation by the verifier. The verifier reads the spec
ification and implementation. For this example, the
state variables and outputs generated by MEAT are
implemented as two-level A N D /O R logic. Each sig
nal is generated independently of the others. Only
direct inputs are shared, so the same inverted signal
in different output logic blocks will use separate in
verters. Separate inverters will result in verification
errors in the burst-mode speed-independent analysis.
In this example, the begin-send signal is shared by Y l

413

5 I n R e t r o s p e c t

Figure 2: Complex CMOS G ate for sbuf-send-ctl YO

and send-pkt. T he tw o inverters are merged and the
ou tpu t is forked to both logic blocks. This implemen
tation is then verified. T he verifier points out a d-trio
hazard[22] which is removed by adding an inverter to
change the sequencing of begin-send into the YO logic.
A M EAT transcrip t of these verification steps follows:

> (ve r if ie r-read -fsm "sbu f-send-c t l .da ta")

Max Compatibles: ((0 5) (1 2 7) (3 4) (6))
Enter S ta te s e t : ’ ((0 5) (1 2 7) (3 4) (6))

> (se tq *impl* (merge-gates ’ (1 11) *impl*))
> (verify-module *impl* *spec*)
10 20 30 40 50
Error: Implementation produces i l l e g a l output.

> (se tq *impl* (connect- inverter 10 6 *impl*))
> (verify-module *impl* *spec*)
10 20 30 40 50 60 70 79 s ta te s .
T

T he canonical SOP equations generated by MEAT
are then transform ed into complex gates for implemen
tation . T he CMOS circuit for y o is shown in Figure 2.
T he complex gates are then m anually im plem ented
using the Electric layout editor. T he physical layout
is then sim ulated with COSMOS to check for layout
errors. Some m inor m odifications to COSM OS were
required in order to sim ulate the entire chip.

W hen we s ta rted the P ost Office effort we had
all been actively designing reasonably complex asyn
chronous hardw are system s for a t least 8 years, and
in one case since the early 1970’s. W ith the excep
tion of the ISM chip[6], these system s, including full
scale computers[7], were board level designs rather
than chips. We had also designed a num ber of com
plex synchronous widgets as well. T he experience im
posed a common belief th a t while it was undeniably a
b it harder to design and im plem ent the AFSMs cor
rectly, the inherent m odularity of asynchronous sub
system s was a trem endous advantage a t the system
level. W hat we did not appreciate was the fact th a t
all of our previous asynchronous designs were proof-
of-concept p ro to types whose goal was to dem onstrate
functional feasibility ra ther th an perform ance. The
performance oriented Post Office project caused us to
reexam ine much of we considered to be s tandard asyn
chronous design practice. We also failed to appreciate
some of the problems im posed by the im provem ent of
IC technology. Some of these problem s were coupled
with a desire to use the scalable design rules and the
convenience of fabrication through M OSIS, and the
eventual reality th a t the project would span a period
of approxim ately 7 years (a research politics side effect
in our previous com pany). T he net result was a feeling
th a t the only new challenge would be the architecture
of the Post Office. W e w e re w ro n g !

The SIC AFSM m ethodology soon proved to be
both a performance bottleneck and consum ed unrea
sonable am ounts of silicon real esta te . T he result
was the burst-m ode, localized tim ing assum ption, and
complex gate approach which has proven to be a sig
nificant im provem ent. T he next problem was th a t
too much of our lim ited m anpow er b u d g e t1 was being
spent in the inherently error prone m anual synthesis
of AFSMs. M EAT sta rted as a quick and dirty hack
which would correctly synthesize the AFSM s. Since
we were not experienced CAD people, we grossly un
derestim ated the need to pay atten tion to algorithm ic
complexity. On its first production test, M EAT was
given an AFSM to synthesize th a t had already been
im plem ented manually and the tes t chip was already
operational. It was a small design with 18 sta tes, 10
input variables, and 6 ou tpu ts. A fter a weekend and
10’s of thousands of garbage collections, we stopped it
to find th a t a few percent of the job was done. After
sleepless weeks, we finally had som ething acceptable.

1 Four people did all of the hardware design and implemen
tation for tl\e entire Mayfly system.

414

We then found th a t our SIC based logic minim iza
tion m ethods were not valid for burst-m ode opera
tion. We then corrected this oversight2. The MEAT
capability gave us the perform ance leverage th a t we
felt we needed. By using locally verifiable tim ing
assum ptions to increase the perform ance w ithin well
contained modules bu t by requiring m odules to inter
act w ith each other in a speed-independent fashion, a
reasonable design balance exists between performance
and m odularity. T he use of bundled d a tap a th proto
cols between modules reduces the wiring area budget
bu t precludes DI behavior.

AFSM module speeds and area costs are excellent.
In order to illustrate the savings we compare a sta te
machine called M P-Forward-Pkt in our design style
w ith an equivalent im plem entation th a t compiles the
specification to library modules. In order to factor out
the additional benefits of the complex gate approach
we compare the im plem entation of these two variants
of the circuit using a straightforw ard A N D /O R imple
m entation. T he M EAT specification is:

in (Ack-Out Ack-PB Req)
out (Alloc-Outbound RTS Alloc-PB Ack)
in i t -o u t (Alioc-Outbound)
s ta te 0 (Ack-Out)

1 (Alloc-Outbound* * RTS)
s ta te 1 (Req * Ack-Out")

2 (Alloc-PB * RTS")
s ta te 2 (Ack-PB)

3 (Ack * Alloc-PB")
s ta te 3 (Ack-PB" * Req")

0 (Ack" * Alloc-Outbound)

T he im plem entation in logic gates is generated by
MEAT as: ___

A ck-O ut + Y l x Req
Ack-PB + YO x Req

Y l
YO

Alloc-Out
RTS

Alloc-PB
Ack

Y l x Ack-PB x Req
Y l
YO x A ck-Out x Req
YO

T he circuit verifies under our burst-m ode and fun
dam ental mode tim ing assum ptions bu t will fail the
test for SI behavior. Compiling the AFSM to a speed-
independent circuit containing C-elem ents, Merge el
em ents, and Toggle elem ents (indicated by triangular
elem ents) produces the circuit in Figure 3.

The M EA T version requires 6 gates and 5 inverters
while the SI version requires 63 gates and 20 inverters.

Req
Ack-Out
Ack-PB

© -

< 3 r

M

RTS

Alloc-PB

Ack

Alloc-Out

2Thanks to Steve Nowick for liis assistance in this discovery
and its eventual solution.

Figure 3: Speed-independent M P-Forw ard-Pkt Imple
m entation

The worst case sta te response tim e of the M EAT cir
cuit is 2 gate delays plus an inverter delay as opposed
to the SI version which is 6 gate delays plus 3 inverter
delays. This 3:1 speed im provem ent ratio changed to
2.33:1 for the average case. T he difference typically in
creases w ith AFSM complexity and is substan tia l for
a complex subsystem such as the Post Office.

The Post Office d a tap a th com ponents are all con
trolled by AFSMs. Most of these com ponents (sub
tractors, counters, com parators, RAM, latches, etc.)
are equivalent to synchronous designs. These circuits
are typically sm aller and faster th an asynchronous
da tap a th modules since they do not include circuitry
for generating completion signals. T he d a tap a th m od
ules are controlled by pulses generated as ou tpu ts by
their AFSM controllers. A lthough these signals are
not local to an AFSM, their ex ten t is bounded by
the AFSM and d a tap a th com ponent pair. A t times,
worst-case d a tap a th delays were synthesized to hand
shake with the AFSM. C ertain da tap a th com ponents
where there can be a wide variance in delays are de
signed to sense completion and generate acknowledg
ments (such as the RAM cells). T he ex tra logic to
generate completion signals from each slave operation
usually will result in more logic b u t if carefully de
signed should not reduce performance.

The decision to use synchronous clocked d a tap a th
logic has not been particularly difficult nor error prone
in this large circuit. However, clocked dynamic cir
cuits potentially introduce additional failure modes.
One design flaw in an original version was discovered
only after it had been in tegrated into the completed
circuit. A dynamic counter was supposed to be reset
in the idle sta te . W hen this module was fabricated
and tested individually the circuit was not left idle for
large periods of tim e so the flaw was no t detected. In
the full Post Office the charge on the in ternal nodes

415

of these counters dissipated during extended periods
where the Post Office was not needed by the rest of
the system. T he result was lost s ta te in the counter
and a functional failure.

W hile bundled d a ta protocols save area, they can
not be routed random ly betw een com ponents. The
worst case delay m ust be analyzed to assure th a t the
d a ta has arrived before it is utilized. In certain cells,
like the Post Office RAMs, arrival of th e d a ta can be
sensed by the discharge of a precharged line on the
slowest line. However, bundled d a ta being driven di
rectly from one source to the next, such as betw een the
Post Office chips, rely on delay pa th analysis. If hard
wired delays are used, and they are not sufficiently
long, there is no way to repair the circuit w ithout
another fabrication cycle. T here’s no such thing as
tu rn ing down the clock in asynchronous systems.

Bundled d a ta can efficiently be used for slave d a ta
com ponents. T he routing logic in the Post Office is a
successful exam ple of pipelined control with bundled
data . B undled d a ta transfers which are latched (such
as betw een Post Office chips and in ternal buffers) are
also reasonable applications. However, a bundled pro
tocol should N E V E R be used for encoding address
selection and control signals on a bus. U nfortunately
we had to learn this the hard way. Buses are prone to
be highly capacitive and as such are slow, inefficient,
and noisy. A glitch on a bused control line can easily
cause an AFSM to respond incorrectly. Setup tim e for
the bundled control signals before the enabling signal
arrives becomes very critical.

W hile we continually tried to focus on performance,
we found th a t perform ance is an elusive target. Simply
counting transis to r delays is a false metric. A larger
design w ith m any more devices can result in a faster
circuit if the gains and capacitances a t each stage are
balanced[20]. As device size shrinks and doping in
creases, inter-node capacitance and wire lengths be
come increasingly critical. Fast circuits can only be
achieved when the ou tp u t to input load ratio is small
and the device gain is high. Point-to-point comm uni
cation is the best way to achieve speed. Asynchronous
m ethods lend them selves well to concurrent, pipelined
architectures if designed properly. However, the en
tire design philosophy needs to avoid inefficient shared,
capacitive struc tu res. For high perform ance systems
buses should probably be avoided altogether. This
implies a shift in arch itectural design styles. Driving
large buses causes the vast m ajority of the delay in
the Post Office circuitry.

T he complex gates generated in MEAT have re
sulted in com pact, fast circuits. However, care m ust

be taken to insure th a t the size of these gates is small
to reduce the inter-node capacitance and increase the
gain. T he design of such gates can in troduce para-
sitics betw een the power rails and the o u tp u t which
can result in a large body effect. As devices continue
to shrink, this can nullify or even result in slower de
signs using large complex gates th an a series of sm aller
NAND gates. One complex gate advantage is the use
of an inverter on the ou tpu t, which provides low out
pu t loading and increased gain from th e complex gate
and inverter pair.

Reducing interm odule capacitance and introducing
buffers betw een or w ithin A FSM s will bo th increase
reliability and perform ance. Slowly rising signals are
subject to device threshold variances, which can cause
failures when isochronous forks are used. E lim inat
ing these slow signals will reduce instantaneous power
consum ption, resulting in reduced noise, and neu tra l
ize the problem of isochronous forks.

Many of our perform ance and reliability problem s
in the Post Office design were due to our blind faith
a ttitu d e th a t the intrinsic asynchronous m odularity
capability would cure m any ills. W hile it is true
th a t we have removed the global clocks, global plan
ning is still im portan t. Simply cobbling circuits to
gether in a bo ttom -up fashion leads to trouble, and
only works well for adjacent, com m unicating control
circuits. T his is difficult when the layout is done
manually. M anual layout m ay always be necessary
for certain modules th a t are either heavily replicated
or are on the critical perform ance p a th . However it
should not be the general practice. M anual layout of
a 300,000 transisto r circuit is certainly insane and was
a prime contributor to our capacitive woes. In any
large chip floor planning is critical to the perform ance
of the design. T he problem is th a t the floor plan is al
ways done first, and the plan can seldom be kept in tact
as the modules get im plem ented and do not quite con
form to the plan. T he problem is exacerbated due to
w hat we will call implementation m om entum . Namely
if you ju s t spen t a hundred hours m anually laying out
a complex com ponent th a t ju s t misses the floor plan,
there is an undeniable tendency to compromise the
floor plan in order to avoid ano ther hundred hours of
layout. In designs like the P ost Office containing hun
dreds of modules there is am ple opportun ity to make
many such compromises. T he negative im pact th a t
these compromises make on the final design perfor
mance is significant, and in the Post Office case the
resu ltan t floor plan is poor and costs us a t least a fac
tor of 2 in to ta l perform ance.

In addition, power and ground signals re ta in their

416

global na tu re in asynchronous circuits. W hile m etal
m igration is not as big a problem in asynchronous cir
cuits due to inherent duty cycle variance, care m ust
be taken to allow sufficient current carrying capacity
to prevent noise. We unfortunately learned the hard
way th a t as VLSI circuits are scaled down, the global
power and ground lines should increase in w idth rel
ative to the feature size. T his change wreaks havoc
yet again w ith the floor plan. Even w ith the serious
floor plan flaws, and the poor judgm ent m ade using
buses for interface com m unication, the Post Office can
sustain transfer ra tes up to 200 M Bytes per second.

Our design style virtually elim inates intra-m odule
C-elem ents. C-elem ents can be viewed as a simple
AFSM and in our design style their behavior is con
volved into the controller designs in a direct way. The
perform ance benefits o f C-element removal are clearly
substan tial. However the Post Office does contain 54
C-elem ents. It is interesting to note th a t N O N E of
them are used alone as a protocol preserving signal
rendezvous. They are A L L used in pairs. T he s tan
dard arb iter circuit is a common example of this us
age. T here are two sides only one of which is active
and through which the shared resource acknowledge
m ust be passed in a protocol preserving fashion while
the other side rem ains inactive. Only recently have we
realized th a t in this role even these C-elem ents could
be replaced by sm aller and faster circuitry.

6 C onclusions

Building a large, fully self-timed circuit has resulted
in many insights, the m ost im portan t of which we
have a ttem p ted to pass on. Different design styles and
varying design targets will undoubtedly provide some
new insights b u t m any will be similar. T he need for
in tegrated synthesis and analysis tools th a t compare
in quality and scope with those available to the syn
chronous design com m unity is o f prim ary im portance.
T his is also a moving target. Some synchronous tools
will work ju s t fine, others will need only minor mod
ifications, while still o thers will have to be created
specifically to handle asynchronous designs. MEAT
is a step in the right direction, b u t many more steps
are necessary. Some form of autom atic layout is nec
essary unless we abandon the complex gate approach
in order take advantage of standard cell approaches.
A utom atic layout is a difficult task, b u t some perfor
mance will be lost in the standard cell approach. We
are investigating both options.

T here are a num ber of perform ance factors tha t
should be included in the tool set. As a circuit is

passed down through the different stages of the tool,
some inform ation is lost. T he com plexity of the al
gorithm s and simplicity of the circuits could be en
hanced by preserving some of this inform ation. S tate
graphs lack the formalisms required to analyze compo
sitions of these circuits for safety, liveness, deadlock,
and o ther properties. We are currently investigating a
process calculus as a m eans of specifying and generat
ing M EAT sta te graphs as well as proving correct op
eration and construction composed of m ultiple AFSM
modules.

A pproxim ately a fifth of the P ost Office control
p a th design was done manually, and the rest was done
using MEAT. T he au tom ated p a rt o f the design took
one-fourth the am ount of design tim e and was v irtu
ally error free. O ur design style has proven to be a very
n a tu ra l transition for existing hardw are designers, pri
marily since it is based on trad itional finite s ta te m a
chine control. Our synthesis techniques have gen
erated com pact high-perform ance circuits th a t work,
and the complexity of the synthesis algorithm s has
proven to be viable for large designs.

The inherent m odularity of asynchronous designs
and their com posability into larger m odules makes
self-timed design of large system s very attrac tive . The
fact th a t they can then be increm entally improved for
performance makes them even more so. A num ber of
open challenges rem ain. W hile we have found th a t
testing large asynchronous designs is relatively sim
ple a t the board level, it is difficult when the design
is a single chip. Since our controllers do not contain
latches, it is difficult to use scan p a th s to improve
testability . E lectron-beam testers do not help much
because it is difficult to image hand-shake signals. We
view these problem s as opportunities for fu ture re
search. We also hope th a t our experience and even
our tool efforts will be of fu ture benefit to others em
barking on the design of large asynchronous system
components.

417

[1] H. B. Bakoglu. Circuits, Interconnections, and
Packaging for VLSI. Addison-Wesley, 1990.

[2] Erik B runvand and R obert Sproull. T ranslating
C oncurrent Program s in to Delay-Insensitive Cir
cuits. In IEEE International Conference on Com
puter Aided Design: Digest of Technical Papers,
pages 262-265. IE E E C om puter Society Press,
1989.

[3] Steven M. Burns and Alain J . M artin. The Fu
sion of Hardware Design and Verification, chap
ter Synthesis of Self-Timed C ircuits by Program
T ransform ation, pages 99-116. Elsevier Science
Publishers, 1988.

[4] Tam -A nh Chu. On the models for designing VLSI
asynchronous digital systems. Technical R eport
M IT-LCS-TR-393, M IT, 1987.

[5] Henry Y. H. C huang and Santanu Das. Synthesis
of m ultiple-input change asynchronous machines
using controlled excitation and flip-flops. IEEE
Transactions on Computers, C-22(12):1103—1109,
December 1973.

[6] W illiam S. Coates. “T he Design of an Instruc
tion S tream Memory Subsystem ” . M aster’s the
sis, U niversity of Calgary, December 1985.

[7] A. L. Davis. T he A rchitecture of DDM1: A Re
cursively S tructured D ata-D riven Machine. Tech
nical R eport UUCS-77-113, University of U tah,
Com puter Science Dept, 1977.

[8] A. L. Davis. Mayfly: A G eneral-Purpose, Scal
able, Parallel Processing A rchitecture. Lisp and
Symbolic Computation, 5 (l/2):7 -4 7 , May 1992.

[9] David Dill. Trace Theory for Automatic Hierar
chical Verification of Speed-Independent Circuits.
An AC M Distinguished Dissertation. M IT Press,
1989.

[10] A. B. Hayes. Stored S ta te Asynchronous Sequen
tial Circuits. IEEE Transactions on Computers,
C-30(8), A ugust 1981.

[11] Lee A. Hollaar. D irect im plem entation of asyn
chronous control units. IEEE Transactions on
Computers, C -31 (12): 1133—1141, December 1982.

[12] Alain M artin . Compiling Com m unicating Pro
cesses in to Delay-Insensitive VLSI Circuits. Dis
tributed Computing, 1(1) :226—234, 1986.

R e f e r e n c e s [13] Alain M artin. T he Lim itations to Delay-
Insensitivity in A synchronous C ircuits. In
W illiam J . Dally, editor, Sixth M IT Conference
on Advanced Research in VLSI, pages 263-278.
M IT Press, 1990.

[14] C. Mead and L. Conway. Introduction to VLSI
Systems. McGraw-Hill, 1979. C hapter 7.

[15] Teresa Meng. Synchronization Design for Digital
Systems. Kluwer A cademic, 1990.

[16] Charles E. Molnar, T ing-Pien Fang, and Fred
erick U. Rosenberger. Synthesis of Delay-
Insensitive Modules. In Henry Fuchs, editor,
Chapel Hill Conference on Very Large Scale In
tegration, pages 67-86. C om puter Science Press,
1985.

[17] Steven M. Nowick and David L. Dill. A uto
m atic synthesis of locally-clocked asynchronous
s ta te machines. In 1991 IEEE International Con
ference on Computer-Aided Design. IE E E Com
puter Society, 1991.

[18] L. Lavagno; K. K eutzer; A. Sangiovanni-
Vincentelli. Synthesis of Verifiably H azard-Free
A synchronous C ontrol C ircuits. Technical R eport
U C B /E R L M 90/99, Univ. of California a t Berke
ley, November 1990.

[19] I. E. Sutherland, R. F. Sproull, C. E. M olnar, and
E. H. Frank. A synchronous System s, Volume I.
Technical report, Sutherland Sproull and Asso
ciates, Palo Alto, CA, January 1985.

[20] Ivan E. Sutherland and R obert F. Sproull. Logi
cal effort: Designing for speed on the back of an
envelope. In Carlo H. Sequin, editor, Proceedings
of the 13th Conference on Advanced Research in
VLSI, pages 1-16. UC S an ta Cruz, M arch 1991.

[21] J. H. Tracey. In ternal s ta te assignm ents for asyn
chronous sequential m achines. IEEE Transac
tions on Electronic Computers, EC-15:551-560,
A ugust 1966.

[22] S.H. Unger. Asynchronous sequential switching
circuits. W iley-Interscience, 1969.

[23] C. H. (Kees) van Berkel. Handshake circuits: an
intermediary between communicating processes
and VLSI. PhD thesis, Technical U niversity of
Eindhoven, May 1992.

418

