101 research outputs found

    A New Technique for the Design of Multi-Phase Voltage Controlled Oscillators

    Get PDF
    © 2017 World Scientific Publishing Company.In this work, a novel circuit structure for second-harmonic multi-phase voltage controlled oscillator (MVCO) is presented. The proposed MVCO is composed of (Formula presented.) ((Formula presented.) being an integer number and (Formula presented.)2) identical inductor–capacitor ((Formula presented.)) tank VCOs. In theory, this MVCO can provide 2(Formula presented.) different phase sinusoidal signals. A six-phase VCO based on the proposed structure is designed in a TSMC 0.18(Formula presented.)um CMOS process. Simulation results show that at the supply voltage of 0.8(Formula presented.)V, the total power consumption of the six-phase VCO circuit is about 1(Formula presented.)mW, the oscillation frequency is tunable from 2.3(Formula presented.)GHz to 2.5(Formula presented.)GHz when the control voltage varies from 0(Formula presented.)V to 0.8(Formula presented.)V, and the phase noise is lower than (Formula presented.)128(Formula presented.)dBc/Hz at 1(Formula presented.)MHz offset frequency. The proposed MVCO has lower phase noise, lower power consumption and more outputs than other related works in the literature.Peer reviewedFinal Accepted Versio

    Study Of Nanoscale Cmos Device And Circuit Reliability

    Get PDF
    The development of semiconductor technology has led to the significant scaling of the transistor dimensions -The transistor gate length drops down to tens of nanometers and the gate oxide thickness to 1 nm. In the future several years, the deep submicron devices will dominate the semiconductor industry for the high transistor density and the corresponding performance enhancement. For these devices, the reliability issues are the first concern for the commercialization. The major reliability issues caused by voltage and/or temperature stress are gate oxide breakdown (BD), hot carrier effects (HCs), and negative bias temperature instability (NBTI). They become even more important for the nanoscale CMOS devices, because of the high electrical field due to the small device size and high temperature due to the high transistor densities and high-speed performances. This dissertation focuses on the study of voltage and temperature stress-induced reliability issues in nanoscale CMOS devices and circuits. The physical mechanisms for BD, HCs, and NBTI have been presented. A practical and accurate equivalent circuit model for nanoscale devices was employed to simulate the RF performance degradation in circuit level. The parameter measurement and model extraction have been addressed. Furthermore, a methodology was developed to predict the HC, TDDB, and NBTI effects on the RF circuits with the nanoscale CMOS. It provides guidance for the reliability considerations of the RF circuit design. The BD, HC, and NBTI effects on digital gates and RF building blocks with the nanoscale devices low noise amplifier, oscillator, mixer, and power amplifier, have been investigated systematically. The contributions of this dissertation include: It provides a thorough study of the reliability issues caused by voltage and/or temperature stresses on nanoscale devices from device level to circuit level; The more real voltage stress case high frequency (900 MHz) dynamic stress, has been first explored and compared with the traditional DC stress; A simple and practical analytical method to predict RF performance degradation due to voltage stress in the nanoscale devices and RF circuits was given based on the normalized parameter degradations in device models. It provides a quick way for the designers to evaluate the performance degradations; Measurement and model extraction technologies, special for the nanoscale MOSFETs with ultra-thin, ultra-leaky gate oxide, were addressed and employed for the model establishments; Using the present existing computer-aided design tools (Cadence, Agilent ADS) with the developed models for performance degradation evaluation due to voltage or/and temperature stress by simulations provides a potential way that industry could use to save tens of millions of dollars annually in testing costs. The world now stands at the threshold of the age of nanotechnology, and scientists and engineers have been exploring here for years. The reliability is the first challenge for the commercialization of the nanoscale CMOS devices, which will be further downscaling into several tens or ten nanometers. The reliability is no longer the post-design evaluation, but the pre-design consideration. The successful and fruitful results of this dissertation, from device level to circuit level, provide not only an insight on how the voltage and/or temperature stress effects on the performances, but also methods and guidance for the designers to achieve more reliable circuits with nanoscale MOSFETs in the future

    Low Power Cmos Circuit Design And Reliability Analysis For Wireless Me

    Get PDF
    A sensor node \u27AccuMicroMotion\u27 is proposed that has the ability to detect motion in 6 degrees of freedom for the application of physiological activity monitoring. It is expected to be light weight, low power, small and cheap. The sensor node may collect and transmit 3 axes of acceleration and 3 axes of angular rotation signals from MEMS transducers wirelessly to a nearby base station while attached to or implanted in human body. This dissertation proposes a wireless electronic system-on-a-single-chip to implement the sensor in a traditional CMOS process. The system is low power and may operate 50 hours from a single coin cell battery. A CMOS readout circuit, an analog to digital converter and a wireless transmitter is designed to implement the proposed system. In the architecture of the \u27AccuMicroMotion\u27 system, the readout circuit uses chopper stabilization technique and can resolve DC to 1 KHz and 200 nV signals from MEMS transducers. The base band signal is digitized using a 10-bit successive approximation register analog to digital converter. Digitized outputs from up to nine transducers can be combined in a parallel to serial converter for transmission by a 900 MHz RF transmitter that operates in amplitude shift keying modulation technique. The transmitter delivers a 2.2 mW power to a 50 Ù antenna. The system consumes an average current of 4.8 mA from a 3V supply when 6 sensors are in operation and provides an overall 60 dB dynamic range. Furthermore, in this dissertation, a methodology is developed that applies accelerated electrical stress on MOS devices to extract BSIM3 models and RF parameters through measurements to perform comprehensive study, analysis and modeling of several analog and RF circuits under hot carrier and breakdown degradation

    Preliminary candidate advanced avionics system for general aviation

    Get PDF
    An integrated avionics system design was carried out to the level which indicates subsystem function, and the methods of overall system integration. Sufficient detail was included to allow identification of possible system component technologies, and to perform reliability, modularity, maintainability, cost, and risk analysis upon the system design. Retrofit to older aircraft, availability of this system to the single engine two place aircraft, was considered

    Above-IC RF MEMS devices for communication applications

    Get PDF
    Wireless communications are showing an explosive growth in emerging consumer and military applications of radiofrequency (RF), microwave, and millimeter-wave circuits and systems. Applications include wireless personal connectivity (Bluetooth), wireless local area networks (WLAN), mobile communication systems (GSM, GPRS, UMTS, CDMA), satellite communications and automotive electronics. Future cell phones and ground communication systems as well as communication satellites will require more and more sophisticated technologies. The increasing demand for size and weight reduction, cost savings, low power consumption, increased frequency and higher functionality and reconfigurability as part of multiband and multistandard operation is necessitating the use of highly integrated RF front-end circuits. Chip scaling has made a major contribution to this goal, but today a situation has been reached where the presence of numerous off-chip passive RF components imposes a critical bottleneck to further integration and miniaturization of wireless transceivers. Microelectromechanical systems (MEMS) technology is a rapidly emerging enabling technology that is intended to replace the discrete passives by their integrated counterparts. In this thesis, an original metal surface micromachining process, which is compatible with CMOS post-processing, for above-IC integration of RF MEMS tunable capacitors and suspended inductors is presented. A detailed study on SF6 inductively coupled plasma (ICP) releasing has been performed in order to ascertain the optimal process parameters. This study has emphasized the fact that temperature plays an important role in this process by limiting silicon dioxide etching. Moreover, the optimized recipe has been found to be independent of the sacrificial layer used (amorphous or polycrystalline silicon) and its thickness. Using this recipe, 15.6 µm/min Si underetch rate with high Si: SiO2 selectivity (> 20000: 1) has been obtained. Single-air-gap and double-air-gap parallel-plate MEMS tunable capacitors have been designed, fabricated and characterized in the pF range, from 1 MHz to 13.5 GHz. It has been shown that an optimized design of the suspended membrane and direct symmetrical current feed at both ports can significantly improve the quality factor and increase the self-resonant frequency, pushing it to 12 GHz and beyond. The maximum capacitance tuning range obtained for a single-air-gap capacitor is 29% for a bias voltage of 20 V. The maximum capacitance tuning range obtained for a double-air-gap capacitor is 207% for a bias voltage of 70 V. The post-processing of X-FAB BiCMOS wafers has been successfully demonstrated to fabricate monolithically integrated VCOs with above-IC MEMS LC tank. Comparing a suspended inductor and the X-FAB inductor with the same design, it has been shown that increasing the thickness of the spiral from 2.3 to 4 µm and having the spiral suspended 3 µm above the passivation layers lead to an improvement factor of 2 for the peak quality factor and a shift of the self-resonant frequency beyond 15 GHz. No significant variation on bipolar and MOS transistors characteristics due to the post-processing has been observed and we conclude that the variation due to post-processing is in the same range as the wafer-to-wafer variation. Based on our metal surface micromachining process, coplanar waveguide (CPW) MEMS shunt capacitive switches and variable true-time delay lines (V-TTDLs) have been designed, fabricated and characterized in the 1 - 20 GHz range. A novel MEMS device architecture: the SG-MOSFET, which combines a solid-state MOS transistor and a metal suspended gate has been proposed as DC current switch. The corresponding fabrication process using polysilicon as a sacrificial layer has been developed to release metal gate suspended over gate oxide by SF6 plasma. Very abrupt current switches have been demonstrated with subthreshold slope better than 10 mV/decade (better than the theoretical solid-state bulk or SOI MOSFET limit of 60 mV/decade) and ultra-low gate leakage (less than 0.001 pA/µm2) due to the air-gap

    Advanced Microwave Circuits and Systems

    Get PDF

    Design and implementation of intravascular hifu catheter ablation system

    Get PDF
    High-intensity focused ultrasound is an energy-based thermal therapy for noninvasive or minimally invasive treatment of wide range of medical disorders including solid cancer tumors, brain surgery, atrial fibrillation (AF) and other cardiac arrhythmias. Conventional HIFU is extracorporeally administered but in applications where a small lesion or more precise energy localization in shorter time is required, catheter-based HIFU devices which are positioned directly within or adjacent to the target may be the best solution. Available HIFU catheters use array of piezoelectric transducers with complex external high-voltage (HV) and high-frequency amplifiers, a cooling system and several coaxial cables within the catheter. In this study, a HV transmitter IC has been designed, manufactured and integrated with an 8-element capacitive micromachined ultrasound transducer (CMUT) on a prototype HIFU probe appropriate for a 6-Fr catheter. The transmitter IC fabricated in 0.35 μm HV CMOS process and comprises eight continuouswave HV buffers (10.9 ns and 9.4 ns rise and fall times at 20 Vpp output into a 15 pF), an eight-channel transmit beamformer (8-12 MHz output frequency with 11.25 º phase accuracy) and a phase locked loop with an integrated VCO as a tunable clock source (128–192 MHz). The chip occupies 1.85×1.8 mm2 area including input and output (I/O) pads. Electrical measurements, IR thermography and Ex-vivo experiment results reveal that the presented HIFU system can elevate the temperature of the target region of tissue around 19 ºC by delivering 600 CEM43 equivalent thermal dose while surface temperature of the probe rises less than 5 º

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    RF Power Transfer, Energy Harvesting, and Power Management Strategies

    Get PDF
    Energy harvesting is the way to capture green energy. This can be thought of as a recycling process where energy is converted from one form (here, non-electrical) to another (here, electrical). This is done on the large energy scale as well as low energy scale. The former can enable sustainable operation of facilities, while the latter can have a significant impact on the problems of energy constrained portable applications. Different energy sources can be complementary to one another and combining multiple-source is of great importance. In particular, RF energy harvesting is a natural choice for the portable applications. There are many advantages, such as cordless operation and light-weight. Moreover, the needed infra-structure can possibly be incorporated with wearable and portable devices. RF energy harvesting is an enabling key player for Internet of Things technology. The RF energy harvesting systems consist of external antennas, LC matching networks, RF rectifiers for ac to dc conversion, and sometimes power management. Moreover, combining different energy harvesting sources is essential for robustness and sustainability. Wireless power transfer has recently been applied for battery charging of portable devices. This charging process impacts the daily experience of every human who uses electronic applications. Instead of having many types of cumbersome cords and many different standards while the users are responsible to connect periodically to ac outlets, the new approach is to have the transmitters ready in the near region and can transfer power wirelessly to the devices whenever needed. Wireless power transfer consists of a dc to ac conversion transmitter, coupled inductors between transmitter and receiver, and an ac to dc conversion receiver. Alternative far field operation is still tested for health issues. So, the focus in this study is on near field. The goals of this study are to investigate the possibilities of RF energy harvesting from various sources in the far field, dc energy combining, wireless power transfer in the near field, the underlying power management strategies, and the integration on silicon. This integration is the ultimate goal for cheap solutions to enable the technology for broader use. All systems were designed, implemented and tested to demonstrate proof-of concept prototypes

    Journal of Telecommunications and Information Technology, 2005, nr 1

    Get PDF
    corecore