944,588 research outputs found

    P2X receptor trafficking in neurons is subunit specific

    Get PDF
    P2X receptors within the CNS mediate excitatory synaptic transmission and also act presynaptically to modulate neurotransmitter release. We have studied the targeting and trafficking of P2X4 and P2X2 receptors heterologously expressed in cultured olfactory bulb neurons. Homomeric P2X4 receptors had a punctate distribution, and many of the puncta colocalized with early endosomes. In contrast, P2X2 receptors were primarily localized at the plasma membrane. By antibody-labeling of surface receptors in living neurons, we showed that P2X4 receptors undergo rapid constitutive internalization and subsequent reinsertion into the plasma membrane, whereas P2X2 receptors were not regulated in such a way. The internalization of P2X4 receptors was dynamin-dependent, and the binding of ATP enhanced the basal rate of retrieval in a Ca2+-independent manner. The presence of the P2X4 subunit in a P2X4/6 heteromer governed the trafficking properties of the receptor. P2X receptors acted presynaptically to enhance the release of glutamate, suggesting that the regulated cycling of P2X4-containing receptors might provide a mechanism for modulation of synaptic transmission

    Somatic and dendritic GABAB receptors regulate neuronal excitability via different mechanisms

    Get PDF
    GABAB receptors play a key role in regulating neuronal excitability in the brain. Whereas the impact of somatic GABAB receptors on neuronal excitability has been studied in some detail, much less is known about the role of dendritic GABAB receptors. Here, we investigate the impact of GABAB receptor activation on the somato-dendritic excitability of layer 5 pyramidal neurons in the rat barrel cortex. Activation of GABAB receptors led to hyperpolarization and a decrease in membrane resistance that was greatest at somatic and proximal dendritic locations. These effects were occluded by low concentrations of barium (100 μM), suggesting that they are mediated by potassium channels. In contrast, activation of dendritic GABAB receptors decreased the width of backpropagating action potential (APs) and abolished dendritic calcium electrogenesis, indicating that dendritic GABAB receptors regulate excitability, primarily via inhibition of voltage-dependent calcium channels. These distinct actions of somatic and dendritic GABAB receptors regulated neuronal output in different ways. Activation of somatic GABAB receptors led to a reduction in neuronal output, primarily by increasing the AP rheobase, whereas activation of dendritic GABAB receptors blocked burst firing, decreasing AP output in the absence of a significant change in somatic membrane properties. Taken together, our results show that GABAB receptors regulate somatic and dendritic excitability of cortical pyramidal neurons via different cellular mechanisms. Somatic GABAB receptors activate potassium channels, leading primarily to a subtractive or shunting form of inhibition, whereas dendritic GABAB receptors inhibit dendritic calcium electrogenesis, leading to a reduction in bursting firing.NHMR

    mGlu1 Receptors Monopolize the Synaptic Control of Cerebellar Purkinje Cells by Epigenetically Down-Regulating mGlu5 Receptors

    Get PDF
    In cerebellar Purkinje cells (PCs) type-1 metabotropic glutamate (mGlu1) receptors play a key role in motor learning and drive the refinement of synaptic innervation during postnatal development. The cognate mGlu5 receptor is absent in mature PCs and shows low expression levels in the adult cerebellar cortex. Here we found that mGlu5 receptors were heavily expressed by PCs in the early postnatal life, when mGlu1α receptors were barely detectable. The developmental decline of mGlu5 receptors coincided with the appearance of mGlu1α receptors in PCs, and both processes were associated with specular changes in CpG methylation in the corresponding gene promoters. It was the mGlu1 receptor that drove the elimination of mGlu5 receptors from PCs, as shown by data obtained with conditional mGlu1α receptor knockout mice and with targeted pharmacological treatments during critical developmental time windows. The suppressing activity of mGlu1 receptors on mGlu5 receptor was maintained in mature PCs, suggesting that expression of mGlu1α and mGlu5 receptors is mutually exclusive in PCs. These findings add complexity to the the finely tuned mechanisms that regulate PC biology during development and in the adult life and lay the groundwork for an in-depth analysis of the role played by mGlu5 receptors in PC maturation

    A Concise Review of the Conflicting Roles of Dopamine-1 versus Dopamine-2 Receptors in Wound Healing.

    Get PDF
    Catecholamines play an important regulatory role in cutaneous wound healing. The exact role of dopamine in human epidermis has yet to be fully elucidated. Current published evidence describes its differential effects on two separate families of G protein coupled receptors: D1-like and D2-like dopamine receptors. Dopamine may enhance angiogenesis and wound healing through its action on dopamine D1 receptors, while impairing wound healing when activating D2 receptors. This review summarizes the evidence for the role of dopamine in wound healing and describes potential mechanisms behind its action on D1 versus D2-like receptors in the skin

    Obtaining Boiler Fuel Gas to Reduce Air Pollution: The Policy of the Federal Power Commission

    Get PDF
    Receptors interacting with the constant domain of immunoglobulins (Igs) have a number of important functions in vertebrates. They facilitate phagocytosis by opsonization, are key components in antibody-dependent cellular cytotoxicity as well as activating cells to release granules. In mammals, four major types of classical Fc receptors (FcRs) for IgG have been identified, one high-affinity receptor for IgE, one for both IgM and IgA, one for IgM and one for IgA. All of these receptors are related in structure and all of them, except the IgA receptor, are found in primates on chromosome 1, indicating that they originate from a common ancestor by successive gene duplications. The number of Ig isotypes has increased gradually during vertebrate evolution and this increase has likely been accompanied by a similar increase in isotype-specific receptors. To test this hypothesis we have performed a detailed bioinformatics analysis of a panel of vertebrate genomes. The first components to appear are the poly-Ig receptors (PIGRs), receptors similar to the classic FcRs in mammals, so called FcRL receptors, and the FcR gamma chain. These molecules are not found in cartilagous fish and may first appear within bony fishes, indicating a major step in Fc receptor evolution at the appearance of bony fish. In contrast, the receptor for IgA is only found in placental mammals, indicating a relatively late appearance. The IgM and IgA/M receptors are first observed in the monotremes, exemplified by the platypus, indicating an appearance during early mammalian evolution. Clearly identifiable classical receptors for IgG and IgE are found only in marsupials and placental mammals, but closely related receptors are found in the platypus, indicating a second major step in Fc receptor evolution during early mammalian evolution, involving the appearance of classical IgG and IgE receptors from FcRL molecules and IgM and IgA/M receptors from PIGR

    Designer lipid-like peptides

    Get PDF
    A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins

    Opioid Receptors in Immune and Glial Cells-Implications for Pain Control

    Get PDF
    Opioid receptors comprise μ (MOP), δ (DOP), κ (KOP), and nociceptin/orphanin FQ (NOP) receptors. Opioids are agonists of MOP, DOP, and KOP receptors, whereas nociceptin/orphanin FQ (N/OFQ) is an agonist of NOP receptors. Activation of all four opioid receptors in neurons can induce analgesia in animal models, but the most clinically relevant are MOP receptor agonists (e.g., morphine, fentanyl). Opioids can also affect the function of immune cells, and their actions in relation to immunosuppression and infections have been widely discussed. Here, we analyze the expression and the role of opioid receptors in peripheral immune cells and glia in the modulation of pain. All four opioid receptors have been identified at the mRNA and protein levels in immune cells (lymphocytes, granulocytes, monocytes, macrophages) in humans, rhesus monkeys, rats or mice. Activation of leukocyte MOP, DOP, and KOP receptors was recently reported to attenuate pain after nerve injury in mice. This involved intracellular Ca2+-regulated release of opioid peptides from immune cells, which subsequently activated MOP, DOP, and KOP receptors on peripheral neurons. There is no evidence of pain modulation by leukocyte NOP receptors. More good quality studies are needed to verify the presence of DOP, KOP, and NOP receptors in native glia. Although still questioned, MOP receptors might be expressed in brain or spinal cord microglia and astrocytes in humans, mice, and rats. Morphine acting at spinal cord microglia is often reported to induce hyperalgesia in rodents. However, most studies used animals without pathological pain and/or unconventional paradigms (e.g., high or ultra-low doses, pain assessment after abrupt discontinuation of chronic morphine treatment). Therefore, the opioid-induced hyperalgesia can be viewed in the context of dependence/withdrawal rather than pain management, in line with clinical reports. There is convincing evidence of analgesic effects mediated by immune cell-derived opioid peptides in animal models and in humans. Together, MOP, DOP, and KOP receptors, and opioid peptides in immune cells can ameliorate pathological pain. The relevance of NOP receptors and N/OFQ in leukocytes, and of all opioid receptors, opioid peptides and N/OFQ in native glia for pain control is yet to be clarified

    Modulation of neurosteroid potentiation by protein kinases at synaptic- and extrasynaptic-type GABAA receptors.

    Get PDF
    GABAA receptors are important for inhibition in the CNS where neurosteroids and protein kinases are potent endogenous modulators. Acting individually, these can either enhance or depress receptor function, dependent upon the type of neurosteroid or kinase and the receptor subunit combination. However, in vivo, these modulators probably act in concert to fine-tune GABAA receptor activity and thus inhibition, although how this is achieved remains unclear. Therefore, we investigated the relationship between these modulators at synaptic-type α1β3γ2L and extrasynaptic-type α4β3δ GABAA receptors using electrophysiology. For α1β3γ2L, potentiation of GABA responses by tetrahydro-deoxycorticosterone was reduced after inhibiting protein kinase C, and enhanced following its activation, suggesting this kinase regulates neurosteroid modulation. In comparison, neurosteroid potentiation was reduced at α1β3(S408A,S409A)γ2L receptors, and unaltered by PKC inhibitors or activators, indicating that phosphorylation of β3 subunits is important for regulating neurosteroid activity. To determine whether extrasynaptic-type GABAA receptors were similarly modulated, α4β3δ and α4β3(S408A,S409A)δ receptors were investigated. Neurosteroid potentiation was reduced at both receptors by the kinase inhibitor staurosporine. By contrast, neurosteroid-mediated potentiation at α4(S443A)β3(S408A,S409A)δ receptors was unaffected by protein kinase inhibition, strongly suggesting that phosphorylation of α4 and β3 subunits is required for regulating neurosteroid activity at extrasynaptic receptors. Western blot analyses revealed that neurosteroids increased phosphorylation of β3(S408,S409) implying that a reciprocal pathway exists for neurosteroids to modulate phosphorylation of GABAA receptors. Overall, these findings provide important insight into the regulation of GABAA receptors in vivo, and into the mechanisms by which GABAergic inhibitory transmission may be simultaneously tuned by two endogenous neuromodulators

    Arachidonic Acid as a Possible Negative Feedback Inhibitor of Nicotinic Acetylcholine Receptors on Neurons

    Get PDF
    Neuronal acetylcholine receptors, being highly permeable to calcium, are likely to regulate calcium-dependent events in neurons. Arachidonic acid is a membrane-permeant second messenger that can be released from membrane phospholipids by phospholipases in a calcium-dependent manner. We show here that activation of neuronal acetylcholine receptors triggers release of 3H-arachidonic acid in a calcium-dependent manner from neurons preloaded with the fatty acid. Moreover, low concentrations of arachidonic acid reversibly inhibit the receptors and act most efficiently on receptors likely to have the highest permeability to calcium, namely receptors containing α7 subunits. Low concentrations of arachidonic acid also reversibly inhibit α7- containing receptors expressed in Xenopus oocytes following injection of α7 cRNA. The oocyte results indicate following injection of α7 cRNA. The oocyte results indicate that the inhibition is a feature of the receptors rather than a consequence of neuron-specific machinery. The inhibition is not mediated by specific metabolites of arachidonic acid because the effects can be mimicked by other fatty acids; their effectiveness correlates with their content of double bonds. In contrast to arachidonic effects on calcium currents, inhibition of neuronal nicotinic receptors by the fatty acid cannot be prevented by blocking production of free radicals or by inhibiting protein kinase C. An alternative mechanism is that arachidonic acid binds directly to the receptors or perturbs the local environment in such a manner as to constrain receptor function
    corecore