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Opioid receptors comprise µ (MOP), δ (DOP), κ (KOP), and nociceptin/orphanin FQ

(NOP) receptors. Opioids are agonists of MOP, DOP, and KOP receptors, whereas

nociceptin/orphanin FQ (N/OFQ) is an agonist of NOP receptors. Activation of all four

opioid receptors in neurons can induce analgesia in animal models, but the most

clinically relevant are MOP receptor agonists (e.g., morphine, fentanyl). Opioids can also

affect the function of immune cells, and their actions in relation to immunosuppression

and infections have been widely discussed. Here, we analyze the expression and

the role of opioid receptors in peripheral immune cells and glia in the modulation of

pain. All four opioid receptors have been identified at the mRNA and protein levels in

immune cells (lymphocytes, granulocytes, monocytes, macrophages) in humans, rhesus

monkeys, rats or mice. Activation of leukocyte MOP, DOP, and KOP receptors was

recently reported to attenuate pain after nerve injury in mice. This involved intracellular

Ca2+-regulated release of opioid peptides from immune cells, which subsequently

activated MOP, DOP, and KOP receptors on peripheral neurons. There is no evidence

of pain modulation by leukocyte NOP receptors. More good quality studies are needed

to verify the presence of DOP, KOP, and NOP receptors in native glia. Although still

questioned, MOP receptors might be expressed in brain or spinal cord microglia and

astrocytes in humans, mice, and rats. Morphine acting at spinal cord microglia is often

reported to induce hyperalgesia in rodents. However, most studies used animals without

pathological pain and/or unconventional paradigms (e.g., high or ultra-low doses, pain

assessment after abrupt discontinuation of chronic morphine treatment). Therefore, the

opioid-induced hyperalgesia can be viewed in the context of dependence/withdrawal

rather than pain management, in line with clinical reports. There is convincing evidence

of analgesic effects mediated by immune cell-derived opioid peptides in animal models

and in humans. Together, MOP, DOP, and KOP receptors, and opioid peptides in immune

cells can ameliorate pathological pain. The relevance of NOP receptors and N/OFQ in

leukocytes, and of all opioid receptors, opioid peptides and N/OFQ in native glia for pain

control is yet to be clarified.

Keywords: analgesia, astrocytes, microglia, nociceptin/orphanin FQ, oligodendrocytes, opioid-induced

hyperalgesia, opioid peptides, opioid receptor signaling

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of the Freie Universität Berlin

https://core.ac.uk/display/322846626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.00300
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.00300&domain=pdf&date_stamp=2020-03-04
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:halina.machelska@charite.de
https://doi.org/10.3389/fimmu.2020.00300
https://www.frontiersin.org/articles/10.3389/fimmu.2020.00300/full
http://loop.frontiersin.org/people/522629/overview
http://loop.frontiersin.org/people/620563/overview


Machelska and Celik Opioid Receptors, Leukocytes, Glia, Pain

INTRODUCTION

Opioid receptors comprise four members, the classical µ

(MOP), δ (DOP), and κ (KOP) receptors, and the non-
classical nociceptin/orphanin FQ (NOP) receptor [reviewed
by (1)] (Table 1). They belong to the superfamily of seven
transmembrane domain, G protein-coupled receptors, are
encoded by the four respective genes [(2–5), reviewed by (6)],
and their structures have been cleared by crystal analysis (7–10).
The classical opioid receptors are sensitive to the antagonist
naloxone and their endogenous agonists are opioid peptides,
such as β-endorphin, enkephalins (Met-, Leu-enkephalin), and
dynorphins (dynorphin A, B, α-neoendorphin). β-endorphin
and enkephalins bind MOP and DOP receptors, whereas
dynorphin A 1-17 preferentially acts at KOP receptors.
Opioid peptides derive from the respective precursors,
proopiomelanocortin (POMC) (11, 12), proenkephalin (PENK)
(13, 14), and prodynorphin (PDYN) (15–17). Endomorphins
(endomorphin-1,−2) are additional, putative endogenous opioid
peptides with high selectivity at MOP receptors (18); their
precursor has not yet been identified [reviewed by (19)]. NOP
receptors are insensitive to antagonism by naloxone, have low
affinity for opioid peptides, and their selective endogenous
agonist is nociceptin/orphanin FQ (N/OFQ), which derives
from prepro-N/OFQ (ppN/OFQ) [(20, 21) reviewed by (6)]
(Table 1).

TABLE 1 | Characterization of the opioid system.

Opioid

receptor

Endogenous agonists Exogenous ligands* Effects on pain Side effects

Precursor Peptide Agonists Antagonists

MOP POMC

Not identified

END#

EM-1

EM-2

Morphine

Fentanyl

Oxycodone

Methadone

DAMGO

Naloxone

Naltrexone

CTAP

CTOP

β-FNA

Analgesia Respiratory depression, sedation,

constipation, nausea, vomiting,

reward/euphoria,

dependence/withdrawal

DOP PENK ENKs# DPDPE

DELTs

SNC80

Naloxone

Naltrexone

Naltrindole

ICI 174,864

Analgesia Convulsions, reward

KOP PDYN DYNs Bremazocine

U50,488

U69,593

Naloxone

Naltrexone

NorBNI

Analgesia Aversion/dysphoria, sedation,

diuresis, psychotomimesis (abnormal

perception of space, time and visual

experience, self-control loss,

depersonalization)

NOP ppN/OFQ N/OFQ Ro 64-6198

SCH 221510

J-113397

SB-612111

Analgesia

Hyperalgesia/anti-opioid

action (brain)

Sedation, constipation, diuresis,

hypotension, bradycardia, learning

and memory impairment, motor

disturbance

*Listed are selected ligands most often used in humans or tested in animals.
#END also binds DOP receptors; ENKs also bind MOP receptors.

β-FNA, β-funaltrexamine; CTAP, D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2; CTOP, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2; DAMGO, [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin;

DELTs, deltrophins (deltorphin I, II); DPDPE, D-Pen2, D-Pen5-enkpephalin; DYNs, dynorphins (dynorphin A, B, α-neoendorphin); EM, endomorphin; END, β-endorphin; ENKs, enkephalins

(Met-, Leu-enkephalin); ICI 174,864, N,N-diallyl-Tyr-Aib-Aib-Phe-Leu; J-113397, 1-[(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-

one; N/OFQ, nociceptin/orphanin FQ; NorBNI, norbinaltorphimine; PDYN, prodynorphin; PENK, proenkephalin; POMC, proopiomelanocortin; ppN/OFQ, prepro-nociceptin/orphanin FQ;

Ro 64-6198, (1S,3aS)-8-(2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4.5]decan-4-one; SB-612111, (2)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-

1-yl]methyl]-6,7,8,9-tetrahydro-5Hbenzocyclohepten-5-ol; SCH 221510, [3-endo-8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo [3.2.1]octan-3-ol]; SNC80, 4-(alpha-(4-

allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl)-N,N-diethylbenzamide; U50,488, trans-(±)3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide; U69,593,

(+)-(5α,7α,8β)-N-Methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide.

Neuronal opioid receptors are widely distributed throughout
the peripheral (trigeminal and dorsal root ganglia) and
central (spinal cord, brain) nervous system. All four opioid
receptors mediate analgesia in animal models. However, the
majority of clinically used opioids for pain treatment are
MOP receptor agonists (e.g., morphine, fentanyl, oxycodone).
Centrally acting KOP receptor agonists are of limited utility
due to dysphoric and psychotomimetic effects (22–24), whereas
DOP and NOP receptor agonists are not available for clinical
use. Mechanistically, following acute activation by an agonist
(endogenous or exogenous), opioid receptors couple to the
pertussis toxin-sensitive heterotrimeric Gi/o proteins, which
dissociate into Gαi/o and Gβγ subunits to interact with various
intracellular effectors (Figure 1A). Activation of all four MOP,
DOP, KOP, and NOP receptors can result in the Gαi/o-dependent
inhibition of adenylyl cyclases (AC) and cyclic adenosine
monophosphate (cAMP) formation [reviewed by (25, 26)].
However, the exact pathway in which these actions result in pain
inhibition has only been described forMOP receptors. Hence, the
decreased cAMP production leads to the inhibition of protein
kinase A (PKA) activity, which results in the suppression of
various ion channels involved in pain facilitation. These channels
include the heat sensor transient receptor potential cation
channel subfamily V member 1 (TRPV1), hyperpolarization-
activated cyclic nucleotide-gated (HCN) channels, acid-sensing
ion channels (ASIC), and voltage-gated Na+ (Nav) channels (27–
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31). Through the Gβγ, all four receptors close voltage-gated Ca2+

(Cav) channels (32–34) and open G protein-coupled inwardly-
rectifying K+ (GIRK or Kir3) channels (35–39), whereas MOP
andDOP receptors also activate adenosine triphosphate-sensitive
K+ (KATP) channels [(40), reviewed by (26, 41)]. Additionally,
MOP receptors inhibit heat-sensing transient receptor potential
cation channel subfamily M member 3 (TRPM3) (42). These
opioid receptor-mediated actions lead to the hyperpolarization
and decreased excitability of central and peripheral sensory
neurons, as well as to the diminished release of excitatory
mediators from these neurons, including substance P (43–
48), calcitonin gene-related peptide (45, 49–51), and glutamate
(52, 53). In addition, activation of MOP receptors in the
brain activates descending noradrenergic pathways, which leads
to increased release of noradrenaline in the spinal cord (54,
55). All above described effects underlay the opioid receptor-
induced analgesia [reviewed by (26, 41, 56–60)]. Additionally, the
activation of NOP receptors in the brain can lead to hyperalgesia
or anti-opioid actions in animal models (20, 21, 61). NOP
receptors also couple to pertussis toxin-insensitive Gαs, Gαz, or
Gα16 proteins (62, 63), but the role of these pathways in pain
modulation is unknown.

Neuronal opioid receptors also mediate numerous side
effects, such as respiratory depression, nausea, vomiting,
reward/euphoria, dependence/withdrawal (MOP), convulsions
(DOP), aversion/dysphoria, psychotomimesis (KOP), learning
and memory impairment, motor disturbance, hypotension,
bradycardia (NOP), sedation (MOP, KOP, NOP), constipation
(MOP, NOP), and diuresis (KOP, NOP) [reviewed by (56, 57,
64–67)]. The main efforts are currently directed toward the
development of novel ligands that exert analgesia with reduced
side effects [reviewed by (57, 68, 69)].

Opioids (endogenous and exogenous) can also affect the
function of immune cells, including proliferation, maturation,
chemotaxis, trafficking, phagocytosis, cytokine, and chemokine
receptor expression, cytokine synthesis and secretion. These
effects were predominately assessed in vitro and the results were
often contradictory, which depended on experimental conditions
(e.g., cultured cell types, lines or clones, duration of cultures,
media composition, doses and timing of opioid exposure)
[reviewed by (70, 71)]. The immunomodulatory actions of
opioids in the context of immunosuppression and infections have
been widely reviewed (72–77).

In this article, we analyze the expression of opioid receptors in
peripheral immune cells and glia, and discuss their contribution
to the modulation of pain. Specifically, we address peripheral
immune cells, such as lymphocytes, monocytes, macrophages
and granulocytes in the blood and peripheral tissue. Although
in pathological pain conditions some of these cells also infiltrate
central nervous system (78–81), they have not been examined
for the expression of opioid receptors. Glia represent immune
cells of the nervous system and they include microglia, astrocytes
and oligodendrocytes in the spinal cord and brain, satellite
glial cells in trigeminal and dorsal root ganglia, and Schwann
cells in peripheral nerves [reviewed by (82, 83)]. Of these cells,
microglia, astrocytes and oligodendrocytes were so far tested for
the presence of opioid receptors, and they are addressed in the

following sections. Additionally, we describe the relevance of
opioid peptides and N/OFQ derived from immune and glial cells
to pain control.

EXPRESSION OF OPIOID RECEPTORS IN
IMMUNE AND GLIAL CELLS

Expression and function of opioid receptors have been
extensively examined in vitro using cell lines or cultured primary
immune and glial cells. Since the results obtained in such
conditions often vary with experimental setups, including cell
origin and density (84–86), and do not reflect the in vivo
situation, we focus on ex vivo studies which examined tissue or
freshly isolated, not cultured primary immune and glial cells.

Immune Cells
Expression of opioid receptors in peripheral immune cells has
been postulated since the early 1980s [reviewed by (71, 76, 87)],
but some findings still remain controversial. For example, some
authors using various methods, such as radioligand binding,
flow cytometry, polymerase chain reaction (PCR) and real-time
quantitative PCR (qPCR) did not detect MOP, DOP, and KOP
receptors in peripheral blood mononuclear cells (PBMC) or all
blood cells from healthy human donors; only NOP receptor
mRNA was found by PCR and qPCR (88, 89). Similarly, MOP
and DOP mRNAs were not identified in healthy human blood
lymphocytes or monocytes (90, 91), and MOP and KOP mRNAs
were not found in mouse splenocytes and T lymphocytes (90)
(Table 2).

However, many other studies did detect MOP, DOP, and
KOP receptors in immune cells of various species (Table 3).
MOP receptor mRNA was identified by PCR in blood CD4+

T lymphocytes, monocytes/macrophages and granulocytes from
healthy human donors, in PBMC and granulocytes from rhesus
monkeys (96), and in rat peritoneal macrophages (98). Decreased
levels of MOP receptor mRNA were found in blood lymphocytes
of heroin addicts on methadone maintenance compared to
healthy controls (97). In the latter study, similar results were
obtained for DOP receptor mRNA (97). DOP receptor mRNA
was additionally found in mouse splenocytes and enriched T
lymphocyte fraction (90, 109), in lymph node dendritic cells
and CD4+ T lymphocytes of mice immunized with ovalbumin
(but not in non-immunized mice) (110), and in human blood
lymphocytes (assessed by Northern blot) (91). Also KOP receptor
mRNA was detected by PCR or Northern blot in blood
lymphocytes (90, 91), monocytes (111), PBMC and CD4+ T
lymphocytes from healthy human donors, and in PBMC from
rhesus monkeys (113). In rheumatoid arthritis patients, KOP
receptor mRNA was found in blood T and B lymphocytes,
monocytes/macrophages and natural killer cells. Analysis of the
whole blood cell samples revealed that the mRNA levels were
lower in patients with high pain scores compared to those
with less severe pain (112). For all three receptors, the mRNA
transcripts were cloned and sequenced, and found to be nearly
(98%) or completely (100%) homologous to the human, rat or
mouse brain receptors (90, 91, 96, 98, 109, 113). Additionally,
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FIGURE 1 | Opioid receptors and modulation of pain. (A) Neuronal opioid receptors. Acute activation of Gαi/o-coupled MOP, DOP, KOP, and NOP receptors in central

or peripheral sensory neurons leads to the opening of GIRK channels and closing of Cav channels via the Gβγ (path 1). Through the Gβγ, MOP and DOP receptors

also open KATP channels (path 2), and MOP receptors close TRPM3 channels (path 3). Through the Gαi/o, MOP receptors inhibit AC, cAMP formation and PKA

activity, which leads to closing of TRPV1, HCN, ASIC, and Nav channels (path 4). All these effects decrease neuronal excitability, which results in analgesia. NOP

receptors also couple to Gαs, Gαz or Gα16, but their role in pain modulation is unknown (indicated by a question mark). (B) Immune cell opioid receptors. Acute

activation of Gαi/o-coupled MOP, DOP, and KOP receptors in immune cells accumulating in peripheral injured tissue leads to the Gβγ-mediated activation of PLC and

production of IP3 which activates IP3R in endoplasmic reticulum (ER). This results in the intracellular Ca2+-dependent release of opioid peptides, β-endorphin (END),

Met-enkephalin (ENK), and dynorphin A 1-17 (DYN). The secreted opioid peptides activate opioid receptors (MOP, DOP, KOP) in peripheral nerves and diminish pain.

NOP receptors are also expressed in immune cells, but their function has not been identified (indicated by a question mark). (C) Microglial opioid receptors. Repetitive

activation of MOP receptors in spinal cord microglia upregulates purinergic P2X4 receptors (P2X4R), which triggers the release of BDNF from microglia. The secreted

BDNF activates the tropomyosin receptor kinase B (TrkB) to downregulate the K+-Cl− co-transporter KCC2 in GABAergic spinal neurons, which leads to their

disinhibition (path 1). Microglial MOP receptor activation can also elevate AA levels to facilitate the opening of BK channels. This triggers the Ca2+ influx via

store-operated Ca2+ entry (SOCE) and consequent upregulation of P2X4R and BDNF synthesis in microglia (path 2). Both signaling pathways are suggested to

potentiate the neurotransmission in the spinal cord and account for OIH. However, these effects may be a consequence of opioid withdrawal rather than direct

hyperalgesic opioid actions. Expression and function of DOP, KOP, and NOP receptors in glia are yet to be clarified.

qPCR revealed mRNAs of MOP, DOP, and KOP receptors in
blood leukocytes, and at higher levels in leukocytes (comprising
macrophages, neutrophils and T lymphocytes) isolated from

injured sciatic nerves in a mouse model of neuropathic pain.
Activation of each receptor by selective agonists led to the
secretion of opioid peptides from immune cells isolated from
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TABLE 2 | Studies that did not detect opioid receptors in native, not cultured

immune and glial cells.

Opioid

receptor

mRNA,

protein

Cell types References

MOP mRNA Human blood lymphocytes,

PBMC or whole blood cells

Mouse splenocytes, T

lymphocytes

Rat, mouse spinal cord microglia

Rat spinal cord or nucleus

accumbens astrocytes

(88, 89, 91)

(90)

(92, 93)

(93, 94)

Protein Human PBMC

Mouse spinal cord microglia

Mouse spinal cord astrocytes

(88)

(92, 95)

(95)

DOP mRNA Human blood lymphocytes,

monocytes

Human PBMC, whole blood cells

Rat nucleus accumbens

microglia

Rat nucleus accumbens

astrocytes

(90)

(88, 89)

(94)

(94)

KOP mRNA Human PBMC, whole blood cells

Mouse splenocytes,

T lymphocytes

(88, 89)

(90)

NOP Protein Human PBMC (88)

wild-type mice, but not from the MOP, DOP or KOP receptor
knockout mice [(99); see also below]. This suggests that leukocyte
MOP, DOP, and KOP receptors were functional and encoded
by the same genes as neuronal receptors (99). NOP receptor
mRNA was identified by PCR or qPCR in blood lymphocytes,
monocytes and granulocytes from healthy human donors (88,
115, 116). The qPCR showed decreased NOP receptor mRNA
levels in blood granulocytes from patients with sepsis (117),
and comparable levels in blood eosinophils in patients with
asthma and healthy volunteers (118). The sequencing of PCR
products revealed that NOP receptor transcripts from immune
cells and brain were identical (115, 116). Some studies detected
the NOP receptor mRNA transcripts in leukocytes at levels
comparable to those in human cerebral cortex (115), whereas
others found them at very low amounts (88, 121). Together,
opioid receptor mRNAs appear to be expressed at relatively
low levels in immune cells as compared to neuronal tissue or
opioid receptor-expressing immune cell lines (88–91, 109, 110,
121, 122). Additionally, opioid receptor mRNA levels in immune
cells can be modified (elevated or diminished) by pathological
conditions or pharmacological treatments in vivo (97, 99, 110,
112, 117). These issues need to be considered in order to obtain
sufficient amount of tissue (leukocyte numbers) for the analysis.

Detection of MOP, DOP, and KOP receptor proteins is more
challenging due to the low expression levels mentioned above
and poor specificity of antibodies (123–125). Nevertheless, a
few studies described stereospecific and high-affinity opioid
binding sites in leukocytes (Table 3). The binding of radiolabeled
naloxone displaceable by naltrexone was found in healthy human
blood lymphocytes (97), although the receptor type is unclear,
since these ligands do not distinguish MOP, DOP, and KOP

TABLE 3 | Expression of opioid receptors in native, not cultured immune and glial

cells.

Opioid

receptor

mRNA,

protein

Cell types References

MOP mRNA Human blood lymphocytes,

monocytes/macrophages or

granulocytes

Rhesus monkey blood PBMC,

granulocytes

Rat peritoneal macrophages

Mouse blood and injured nerve

immune cells*

Rat nucleus accumbens, human

brain, rat, mouse brain or spinal

cord microglia

(96, 97)

(96)

(98)

(99)

(94, 100)

Protein Human blood lymphocytes,

monocytes or granulocytes

Rat splenocytes

Rat, mouse brain or spinal cord

microglia

Mouse brain or spinal cord

astrocytes

Mouse brain oligodendrocytes

(101, 102)

(103)

[(100, 104)#,

(105)#, (106)#]

[(106)#,

(107, 108)#]

(108)#

DOP mRNA Human blood lymphocytes

Mouse splenocytes, T

lymphocytes

Mouse lymph node dendritic

cells, CD4+ T lymphocytes

Mouse blood and injured nerve

immune cells*

(91, 97)

(90, 109)

(110)

(99)

Protein Human blood lymphocytes,

monocytes or granulocytes

Rat splenocytes

Mouse brain astrocytes

(101, 102)

(103)

(108)#

Mouse brain oligodendrocytes (108)#

KOP mRNA Human blood lymphocytes,

monocytes or natural killer cells

Rhesus monkey blood PBMC

Mouse blood and injured nerve

immune cells*

Rat nucleus accumbens

microglia

Rat nucleus accumbens

astrocytes

(90, 91, 111–

113)

(113)

(99)

(94)

(94)

Protein Mouse peritoneal macrophages

Mouse brain astrocytes

Mouse brain oligodendrocytes

(114)

(108)#

(108)#

NOP mRNA Human blood lymphocytes,

monocytes, granulocytes or

eosinophils

Rat brain microglia

Fetal human brain, adult and

postnatal rat brain astrocytes

(88, 115–118)

(119)

(119, 120)

Protein Human blood granulocytes

Fetal human brain, postnatal rat

brain astrocytes

(116, 121)

(120)#

*Include monocytes/macrophages, neutrophils, and T lymphocytes.
# Indicates that the antibody staining specificity was not convincingly verified or not tested

at all.

receptors (Table 1). In contrast, binding of radiolabeled MOP
receptor agonist (dihydromorphine) or of radiolabeled DOP
receptor agonist (deltorphin I) suggested the presence of MOP
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receptors in monocytes and granulocytes, and of DOP receptors
in granulocytes from blood of healthy human donors (101,
102). In rat splenocytes, MOP receptors were detected using
radiolabeled agonist DAMGO whose binding was displaced
by the antagonist CTAP, both MOP receptor selective ligands.
Similarly, DOP receptors were identified using its selective
ligands, the radiolabeled antagonist naltrindole whose binding
was displaced by the agonist SNC80 (103). KOP receptor protein
was found in mouse peritoneal macrophages by flow cytometry
and fluorescently labeled KOP receptor agonist, and the labeling
intensity was diminished by the selective antagonist norBNI
(114) (see also Table 1 for ligands). NOP receptor protein
detection appears variable, with high affinity radiolabeled N/OFQ
binding in granulocytes (116), but lack of such binding in PBMC
(88) from human blood. The latter research group recently
detected NOP receptor binding (reversible by selective NOP
receptor antagonist SB-612111) in human blood granulocytes
using a novel fluorescent probe for the receptor (a red
fluorophore-ATTO594 conjugated to the N/OFQ) (121).

In summary, all four MOP, DOP, KOP, and NOP receptors
have been identified ex vivo at the mRNA and protein levels in
various types of immune cells in humans, rhesus monkeys, rats
and mice (Table 3).

Glia
Compared to peripheral immune cells, the expression of opioid
receptors in glia has been less examined, most studies focused
on MOP receptors, and the findings are contradictory. MOP
receptor mRNA was not detected in microglia and astrocytes
in the spinal cord of rats chronically treated with vehicle or
morphine, using in situ hybridization for MOP receptor mRNA
combined with immunofluorescent staining of microglia and
astrocyte markers (93). MOP receptor mRNA was also not
found using qPCR in astrocytes isolated from nucleus accumbens
of rats after acute injection with vehicle or morphine (94). It
was also undetected by transcriptomic profiling of microglia
from the spinal cord of naïve or morphine-treated mice (92).
Additionally, double-immunofluorescence did not detect MOP
receptor protein in spinal cordmicroglia and astrocytes following
single application of vehicle or morphine in mice (95). Similarly,
MOP receptor mRNA or protein were not found in spinal cord
microglia of naïve transgenic mice with fluorescently labeled
microglia (CX3CR1-eGFP) or with fluorescently tagged MOP
receptors (MOP-mCherry) (92) (Table 2).

In contrast, several other studied have identified MOP
receptors in human and rodent microglia (Table 3). Using qPCR,
very low MOP receptor mRNA levels were found in microglia
isolated from nucleus accumbens of rats acutely treated with
vehicle or morphine (94). Transcriptomic analysis revealed MOP
receptor mRNA in microglia in cerebral cortex of humans with
no pain history, and in various brain areas and spinal cord of
naïve mice or rats. Using immunofluorescence in transgenic mice
expressing MOP receptors in microglia (CX3CR1-eGFP–MOP-
mCherry), the percentage of MOP receptor-positive microglial
cells ranged between 35 and 52% in brain, and between 37 and
42% in the spinal cord. The presence of MOP receptor protein in
Golgi apparatus suggested that the receptorsmight be synthetized
by microglia (100). Utilizing MOP-mCherry mice and double

labeling in wild-type mice using astrocyte marker and MOP
receptor antibodies (whose staining specificity was confirmed
in MOP receptor knockout mice), MOP receptor protein was
detected in astrocytes in various brain regions (107). Additional
studies detected MOP receptor protein in naïve rat and mouse
microglia or astrocytes in the spinal cord, or in mouse brain
astrocytes and oligodendrocytes using antibody-based double
labeling of the glial cell markers and MOP receptors, but the
staining specificity of antibodies was not convincingly verified or
not tested at all (104–106, 108).

Only a few studies assessed DOP, KOP, and NOP receptors in
glia. No DOP receptor mRNA and low levels of KOP receptor
mRNA were detected by qPCR in microglia and astrocytes
isolated from nucleus accumbens of rats acutely injected with
vehicle or morphine (94). NOP receptor mRNA was found in
microglia and astrocytes in adult rat brain (119) or in astrocytes
in rat brain until the third postnatal week, and in fetal human
brain (120) by in situ hybridization for NOP receptor mRNA
combined with immunofluorescent staining of microglia and
astrocyte markers. Proteins of DOP, KOP, and NOP receptors
were detected in astrocytes or oligodendrocytes in mouse or
rat brain, but the staining specificity of antibodies was not
unequivocally proven or not tested (108, 120).

Together, although there is still a controversy (Table 2), MOP
receptors might be expressed in microglia and astrocytes, but
more well-controlled studies are needed to verify the presence of
DOP, KOP, and NOP receptors in native glia (Table 3).

MODULATION OF PAIN BY OPIOID
RECEPTORS IN IMMUNE AND GLIAL
CELLS

Immune Cells
A recent study expands the classical model of neuronal opioid
receptor-mediated analgesia by showing the contribution
of MOP, DOP, and KOP receptors in immune cells to the
amelioration of pain (99). The activation of leukocyte opioid
receptors led to the secretion of opioid peptides (β-endorphin,
Met-enkephalin and dynorphin A 1-17), which subsequently
acted at peripheral neuronal opioid receptors in injured tissue,
and relieved pain (Figure 1B). Specifically, in a mouse model
of the sciatic nerve injury, exogenous agonists selective at MOP
(DAMGO), DOP (DPDPE), and KOP receptors (U50,488;
Table 1) inhibited mechanical hypersensitivity following
injection at the damaged nerve infiltrated by immune cells
(neutrophils, macrophages, T lymphocytes). The analgesia was
attenuated by opioid peptide antibodies injected at the injured
nerve or by leukocyte depletion in wild-type mice. This effect was
also diminished in mice lacking opioid peptides (β-endorphin-,
PENK-, PDYN-knockout) compared to wild-type mice. This
decrease in analgesia was restored by the transfer of wild-type,
but not opioid receptor-lacking leukocytes (from MOP, DOP,
or KOP receptor knockout mice). Ex vivo, exogenous opioids
triggered the release of opioid peptides from immune cells
isolated from damaged nerves of wild-type mice, measured by
immunoassays. The release was dependent on Gαi/o and Gβγ

proteins, phospholipase C (PLC), inositol 1,4,5-trisphosphate
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(IP3) receptors and intracellular Ca2+. This exogenous opioid-
induced secretion of opioid peptides did not occur in immune
cells isolated from nerves of mice lacking opioid peptides or
receptors, which confirmed the specificity of opioid peptide
antibodies used in immunoassays. Importantly, the opioid
receptor-coupled intracellular Ca2+ pathway in immune cells
mediated analgesia in vivo (99). Together, in addition to opioid
receptors on peripheral sensory neurons [e.g., (99, 126–130)],
analgesia can be mediated by MOP, DOP, and KOP receptors
in immune cells (99). In contrast to the conventional action
of neuronal opioid receptors (i.e., the inhibition of the release
of pain-inducing mediators; analyzed in the introduction),
analgesia mediated by leukocyte opioid receptors involves the
secretion of pain-inhibiting opioid peptides (99). These effects
may explain the enhanced analgesia of intra-articular morphine
in patients with synovial tissue infiltrated by immune cells,
following knee surgery (131). There are currently no data on the
modulation of pain by leukocyte NOP receptors.

Glia
The actions of opioids on glial cells are typically discussed
in relation to analgesic tolerance and paradoxical hyperalgesia
termed opioid-induced hyperalgesia (OIH). Analgesic tolerance
represents a progressive decrease of analgesia with prolonged
agonist use or the need to increase the agonist dose to maintain
analgesia. The OIH is usually described as hypersensitivity
to painful stimuli upon chronic opioid use [reviewed by
(132, 133)]. Nevertheless, since the abrupt discontinuation of
prolonged opioid use can result in a withdrawal syndrome,
including enhanced pain, the OIH may in fact represent the
opioid withdrawal-induced hyperalgesia [reviewed by (134)].
The majority of studies have focused on the effects of morphine
and on MOP receptors, but only a few directly addressed
the microglia following chronic morphine treatment, and
showed that tolerance and/or OIH were reduced by microglia
depletion (105, 135) (Figure 1C). The former study proposed
that morphine activated MOP receptors on spinal cord microglia
to increase the expression of purinergic P2X4 receptors, which
triggered the (MOP receptor-independent) release of brain-
derived neurotrophic factor (BDNF) from microglia. The
secreted BDNF induced downregulation of the K+-Cl− co-
transporter KCC2 in GABAergic neurons, which resulted in their
disinhibition. These actions were implied to mediate OIH, but
not tolerance (105). Hayashi et al. (135) suggested that both
tolerance and OIH involved microglia MOP receptor-induced
secretion of arachidonic acid (AA) and subsequent activation of
microglial large conductance Ca2+-activated K+ (BK) channels
in the spinal cord. Several other studies showed the correlation
between tolerance or OIH and the involvement of spinal cord
microglia and/or astrocytes in morphine-treated animals. These
observations were based on the increased glia numbers or
elevated expression of nuclear factors and protein kinases in these
glial cells (95, 136–138). Similar indirect effects were reported for
other opioids acting at MOP receptors, including remifentanil,
fentanyl and buprenorphine (139–141). Agonists of DOP and
KOP receptors have not been tested. One study found elevated

expression of astrocytes, but not microglia, in the spinal cord
following N/OFQ treatment (142).

Nevertheless, it is unclear how opioids or N/OFQ would affect
the glia, since the expression of opioid receptors in native glia is
still debatable (see above), most of those studies did not directly
examine the involvement of glial MOP or NOP receptors, OIH
was observed in triple MOP, DOP, and KOP receptor knockout
mice (143, 144), and the effects of morphine on toll-like receptor
4 in glia remain controversial [reviewed by (133)]. Furthermore,
except for Chang et al. (141) who used postoperative pain
model, all other studies exclusively tested naïve mice or rats.
Additionally, opioids were used at unconventional ultra-low
doses or high doses which exceeded the analgesic doses used
in pathological pain models, they were sometimes injected
repetitively every few minutes, and hyperalgesia was measured
12 h, 24 h or 4 days following the last dose, which indicates opioid
withdrawal-induced hyperalgesia (95, 105, 135–142). Therefore,
these effects can be viewed in the context of dependence rather
than pain management, which is in line with clinical findings
[reviewed by (134, 145)]. It is thus essential to examine actions
of opioids on glia in models of pathological pain using analgesia-
relevant paradigms. Accordingly, clinical studies suggested that
OIH may not be a significant concern if opioids are used at
regular doses in pathological pain conditions, and when their use
is discontinued gradually (146, 147).

OPIOID PEPTIDES AND N/OFQ IN IMMUNE
AND GLIAL CELLS

Immune Cells
Immune cells also contain endogenous ligands of opioid
receptors. The opioid peptide-containing leukocytes have been
extensively investigated over the last decades [reviewed by (58,
148, 149)] and will only be briefly addressed here. Transcripts of
POMC, PENK and PDYN, as well as enzymes required for POMC
and PENK processing are expressed in T and B lymphocytes,
macrophages or granulocytes in peripheral inflamed tissue in rats
and mice (150–154). Consequently, the corresponding opioid
peptides β-endorphin, enkephalins and dynorphin A 1-17 were
detected in various immune cells from blood, lymph nodes or
peripheral injured tissue in rats, mice and humans (99, 155–
158). Opioid peptide-containing immune cells extravasate using
adhesion molecules (P- and E-selectins, integrins α4 and β2,
intercellular adhesion molecule-1) and chemokines (CXCL1,
CXCL2/3) to accumulate in damaged tissue. Subsequently,
the leukocytes secrete opioid peptides spontaneously or in
response to stressful stimuli (experimental stress, surgery) and
releasing agents, such as corticotropin-releasing factor, IL-1β,
chemokines CXCL1, andCXCL2/3, noradrenaline, mycobacteria,
and exogenous opioids. The released opioid peptides activate
opioid receptors on peripheral sensory neurons and locally
inhibit pain. Such analgesic actions have been demonstrated in
rodentmodels of somatic and visceral inflammatory, neuropathic
and bone cancer pain (99, 156, 159–170), as well as in patients
with arthritis undergoing knee surgery (171–173). Notably,
due to the continuous presence of immune cell-derived opioid
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peptides and enhanced MOP receptor recycling, the analgesic
tolerance at peripheral MOP receptors in inflamed tissue is
greatly reduced, in animals and humans (131, 174).

The mRNA of the N/OFQ precursor, ppN/OFQ, was detected
in porcine splenocytes, blood granulocytes and eosinophils from
healthy volunteers and patients with sepsis or asthma (117, 118,
175). Additionally, the ppN/OFQ mRNA was found in blood
neutrophils, monocytes and lymphocytes from healthy donors,
and neutrophils secreted the N/OFQ upon degranulation ex vivo
(176). However, the functional relevance of immune cell-derived
N/OFQ in vivo has not been elucidated.

Glia
There are numerous studies reporting expression of opioid
peptides or their precursors in cultured glia [reviewed by (177)],
but very few examined native tissue. The laboratory of Wang
suggested analgesic effects of spinal cord microglia-derived β-
endorphin and dynorphin A in rat models of inflammatory,
neuropathic and bone cancer pain. However, they examined
opioids in cultured microglia or in the spinal cord homogenates
(178–180). Only in one study, β-endorphin was shown in spinal
cord microglia ex vivo, but the staining specificity of the antibody
was not tested (179). Therefore, the conclusive data on the
expression of opioid peptides in native glia and their contribution
to pain inhibition are still needed. The mRNA and protein of
PENKwere detected in cerebellum astrocytes in young rats (181),
whereas N/OFQ was found in astrocytes of postnatal rat and fetal
human brains (120), suggesting their role in brain development.
The PDYN mRNA and protein were shown in astrocytes in
human cerebral cortex, but their biological significance was not
addressed (182).

Collectively, there is convincing evidence of analgesic actions
mediated by immune cell-derived opioid peptides in animal
models and in humans. The role of immune cell-derived N/OFQ
and glia-derived opioids and N/OFQ in the context of pain is yet
to be elucidated.

CONCLUSIONS

The classical opioid receptors MOP, DOP, and KOP, and their
endogenous ligands opioid peptides are expressed in immune
cells accumulating in peripheral inflamed tissue. Activation
of all three leukocyte opioid receptors by exogenous opioids
has been shown to release opioid peptides, which acted at
peripheral neuronal receptors to diminish pain. This has wide
clinical implications, since most painful conditions are associated
with immune response, including inflammatory neuropathies,
arthritis, cancer and postoperative pain. Therefore, the broad-
spectrum inhibition of immune responses should be avoided,
as this may exacerbate pain and diminish exogenous opioid
analgesia. Furthermore, as these actions occur in peripheral

tissue, the detrimental side effects resulting from the activation
of MOP, DOP, and KOP receptors in the brain are precluded.
It will be interesting to find out whether this can also
apply to NOP receptors and N/OFQ. First, however, the
involvement of immune cell NOP receptors and N/OFQ in
pain modulation needs to be shown. The widely discussed
OIH is often linked to the actions of opioids (mostly
morphine) via glia (primarily microglia, but also astrocytes).
Nevertheless, even if these effects are mediated (indirectly or
directly) via glial MOP receptors, they seem to be related to
dependence/withdrawal rather than pain treatment, in line with
clinical findings. More well-controlled studies are needed to
verify the presence of DOP, KOP, and NOP receptors, opioid
peptides and N/OFQ in native glia, and to elucidate their
role in vivo. Considering that there is strong evidence of
discrepancies between in vivo and in vitro conditions, which
is particularly relevant to the immune system, examination of
native cells and tissue, without culturing, is preferable whenever
possible. Factors that can influence the expression of the opioid
system in immune and glial cells, and that may contribute to
the inconsistencies among the studies include the examined
cell population (e.g., lymphocytes, granulocytes, monocytes,
macrophages, microglia or astrocytes), their subpopulations (e.g.,
T or B lymphocytes, T helper 1 or T helper 2 lymphocytes, M1 or
M2 macrophages or microglia), the tissue they originate from,
the in vivo physiological vs. pathological conditions, type and
duration of the pathological state, and in vivo pharmacological
treatments. Furthermore, methodological procedures need to
be carefully designed, including protocols to obtain sufficient
number of cells, verification of cell viability, the isolation
techniques that enable high RNA and protein yields without
contaminants (e.g., DNA contamination, remaining sample
preparation reagents, excessive protein amounts), optimal design
of PCR primers and probes for efficient qPCR, and the use
of stringent controls to avoid false positive or negative results
(e.g., no-RT controls for qPCR, antibody staining specificity
controls for immunostaining) [(183); Celik and Machelska,
submitted].
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