167 research outputs found

    Fault-Tolerant Real-Time Streaming with FEC thanks to Capillary Multi-Path Routing

    Get PDF
    Erasure resilient FEC codes in off-line packetized streaming rely on time diversity. This requires unrestricted buffering time at the receiver. In real-time streaming the playback buffering time must be very short. Path diversity is an orthogonal strategy. However, the large number of long paths increases the number of underlying links and consecutively the overall link failure rate. This may increase the overall requirement in redundant FEC packets for combating the link failures. We introduce the Redundancy Overall Requirement (ROR) metric, a routing coefficient specifying the total number of FEC packets required for compensation of all underlying link failures. We present a capillary routing algorithm for constructing layer by layer steadily diversifying multi-path routing patterns. By measuring the ROR coefficients of a dozen of routing layers on hundreds of network samples, we show that the number of required FEC packets decreases substantially when the path diversity is increased by the capillary routing construction algorithm

    Quality aspects of Internet telephony

    Get PDF
    Internet telephony has had a tremendous impact on how people communicate. Many now maintain contact using some form of Internet telephony. Therefore the motivation for this work has been to address the quality aspects of real-world Internet telephony for both fixed and wireless telecommunication. The focus has been on the quality aspects of voice communication, since poor quality leads often to user dissatisfaction. The scope of the work has been broad in order to address the main factors within IP-based voice communication. The first four chapters of this dissertation constitute the background material. The first chapter outlines where Internet telephony is deployed today. It also motivates the topics and techniques used in this research. The second chapter provides the background on Internet telephony including signalling, speech coding and voice Internetworking. The third chapter focuses solely on quality measures for packetised voice systems and finally the fourth chapter is devoted to the history of voice research. The appendix of this dissertation constitutes the research contributions. It includes an examination of the access network, focusing on how calls are multiplexed in wired and wireless systems. Subsequently in the wireless case, we consider how to handover calls from 802.11 networks to the cellular infrastructure. We then consider the Internet backbone where most of our work is devoted to measurements specifically for Internet telephony. The applications of these measurements have been estimating telephony arrival processes, measuring call quality, and quantifying the trend in Internet telephony quality over several years. We also consider the end systems, since they are responsible for reconstructing a voice stream given loss and delay constraints. Finally we estimate voice quality using the ITU proposal PESQ and the packet loss process. The main contribution of this work is a systematic examination of Internet telephony. We describe several methods to enable adaptable solutions for maintaining consistent voice quality. We have also found that relatively small technical changes can lead to substantial user quality improvements. A second contribution of this work is a suite of software tools designed to ascertain voice quality in IP networks. Some of these tools are in use within commercial systems today

    Delay aspects in Internet telephony

    Get PDF
    In this work, we address the transport of high quality voice over the Internet with a particular concern for delays. Transport of interactive audio over IP networks often suffers from packet loss and variations in the network delay (jitter). Forward Error Correction (FEC) mitigates the impact of packet loss at the expense of an increase of the end-to-end delay and the bit rate requirement of an audio source. Furthermore, adaptive playout buffer algorithms at the receiver compensate for jitter, but again this may come at the expense of additional delay. As a consequence, existing error control and playout adjustment schemes often have end-to-end delays exceeding 150 ms, which significantly impairs the perceived quality, while it would be more important to keep delay low and accept some small loss. We develop a joint playout buffer and FEC adjustment scheme for Internet Telephony that incorporates the impact of end-to-end delay on perceived audio quality. To this end, we take a utility function approach. We represent the perceived audio quality as a function of both the end-to-end delay and the distortion of the voice signal. We develop a joint rate/error/playout delay control algorithm which optimizes this measure of quality and is TCP-Friendly. It uses a channel model for both loss and delay. We validate our approach by simulation and show that (1) our scheme allows a source to increase its utility by avoiding increasing the playout delay when it is not really necessary and (2) it provides better quality than the adjustment schemes for playout and FEC that were previously published. We use this scheme in the framework of non-elevated services which allow applications to select a service class with reduced end-to-end delay at the expense of a higher loss rate. The tradeoff between delay and loss is not straightforward since audio sources may be forced to compensate the additional losses by more FEC and hence more delay. We show that the use of non-elevated services can lead to quality improvements, but that the choice of service depends on network conditions and on the importance that users attach to delay. Based on this observation, we propose an adaptive service choosing algorithm that allows audio sources to choose in real-time the service providing the highest audio quality. In addition, when used over the standard IP best effort service, an audio source should also control its rate in order to react to network congestion and to share the bandwidth in a fair way. Current congestion control mechanisms are based on packets (i.e., they aim to reduce or increase the number of packets sent per time interval to adjust to the current level of congestion in the network). However, voice is an inelastic traffic where packets are generated at regular intervals but packet size varies with the codec that is used. Therefore, standard congestion control is not directly applicable to this type of traffic. We present three alternative modifications to equation based congestion control protocols and evaluate them through mathematical analysis and network simulation

    Evaluating the Utility of Media–Dependent FEC in VoIP Flows

    Full text link

    Profiling Skype video calls: Rate control and video quality

    Full text link
    Video telephony has recently gained its momentum and is widely adopted by end-consumers. But there have been very few studies on the network impacts of video calls and the user Quality-of-Experience (QoE) under different network conditions. In this paper, we study the rate control and video quality of Skype video calls. We first measure the behaviors of Skype video calls on a controlled network testbed. By varying packet loss rate, propagation delay and bandwidth, we observe how Skype adjusts its rates, FEC redundancy and video quality. We find that Skype is robust against mild packet losses and propagation delays, and can efficiently utilize the available network bandwidth. We also find that Skype employs an overly aggressive FEC protection strategy. Based on the measurement results, we develop rate control model, FEC model, and video quality model for Skype. Extrapolating from the models, we conduct numerical analysis to study the network impacts of Skype. We demonstrate that user back-offs upon quality degradation serve as an effective user-level rate control scheme. We also show that Skype video calls are indeed TCP-friendly and respond to congestion quickly when the network is overloaded.Engineering, Electrical & ElectronicTelecommunicationsEICPCI-S(ISTP)

    Are Multiple Descriptions Better Than One?

    Full text link
    • …
    corecore