1,147 research outputs found

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    Object-oriented querying of existing relational databases

    Get PDF
    In this paper, we present algorithms which allow an object-oriented querying of existing relational databases. Our goal is to provide an improved query interface for relational systems with better query facilities than SQL. This seems to be very important since, in real world applications, relational systems are most commonly used and their dominance will remain in the near future. To overcome the drawbacks of relational systems, especially the poor query facilities of SQL, we propose a schema transformation and a query translation algorithm. The schema transformation algorithm uses additional semantic information to enhance the relational schema and transform it into a corresponding object-oriented schema. If the additional semantic information can be deducted from an underlying entity-relationship design schema, the schema transformation may be done fully automatically. To query the created object-oriented schema, we use the Structured Object Query Language (SOQL) which provides declarative query facilities on objects. SOQL queries using the created object-oriented schema are much shorter, easier to write and understand and more intuitive than corresponding S Q L queries leading to an enhanced usability and an improved querying of the database. The query translation algorithm automatically translates SOQL queries into equivalent SQL queries for the original relational schema

    Federation views as a basis for querying and updating database federations

    Get PDF
    This paper addresses the problem of how to query and update so-called database federations. A database federation provides for tight coupling of a collection of heterogeneous component databases into a global integrated system. This problem of querying and updating a database federation is tackled by describing a logical architecture and a general semantic framework for precise specification of such database federations, with the aim to provide a basis for implementing a federation by means of relational database views. Our approach to database federations is based on the UML/OCL data model, and aims at the integration of the underlying database schemas of the component legacy systems to a separate, newly defined integrated database schema. One of the central notions in database modelling and in constraint specifications is the notion of a database view, which closely corresponds to the notion of derived class in UML. We will employ OCL (version 2.0) and the notion of derived class as a means to treat (inter-)database constraints and database views in a federated context. Our approach to coupling component databases into a global, integrated system is based on mediation. The first objective of our paper is to demonstrate that our particular mediating system integrates component schemas without loss of constraint information. The second objective is to show that the concept of relational database view provides a sound basis for actual implementation of database federations, both for querying and updating purposes.

    Towards Semantic e-Science for Traditional Chinese Medicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent advances in Web and information technologies with the increasing decentralization of organizational structures have resulted in massive amounts of information resources and domain-specific services in Traditional Chinese Medicine. The massive volume and diversity of information and services available have made it difficult to achieve seamless and interoperable e-Science for knowledge-intensive disciplines like TCM. Therefore, information integration and service coordination are two major challenges in e-Science for TCM. We still lack sophisticated approaches to integrate scientific data and services for TCM e-Science.</p> <p>Results</p> <p>We present a comprehensive approach to build dynamic and extendable e-Science applications for knowledge-intensive disciplines like TCM based on semantic and knowledge-based techniques. The semantic e-Science infrastructure for TCM supports large-scale database integration and service coordination in a virtual organization. We use domain ontologies to integrate TCM database resources and services in a semantic cyberspace and deliver a semantically superior experience including browsing, searching, querying and knowledge discovering to users. We have developed a collection of semantic-based toolkits to facilitate TCM scientists and researchers in information sharing and collaborative research.</p> <p>Conclusion</p> <p>Semantic and knowledge-based techniques are suitable to knowledge-intensive disciplines like TCM. It's possible to build on-demand e-Science system for TCM based on existing semantic and knowledge-based techniques. The presented approach in the paper integrates heterogeneous distributed TCM databases and services, and provides scientists with semantically superior experience to support collaborative research in TCM discipline.</p

    Schema Vacuuming in Temporal Databases

    Get PDF
    Temporal databases facilitate the support of historical information by providing functions for indicating the intervals during which a tuple was applicable (along one or more temporal dimensions). Because data are never deleted, only superceded, temporal databases are inherently append-only resulting, over time, in a large historical sequence of database states. Data vacuuming in temporal databases allows for this sequence to be shortened by strategically, and irrevocably, deleting obsolete data. Schema versioning allows users to maintain a history of database schemata without compromising the semantics of the data or the ability to view data through historical schemata. While the techniques required for data vacuuming in temporal databases have been relatively well covered, the associated area of vacuuming schemata has received less attention. This paper discusses this issue and proposes a mechanism that fits well with existing methods for data vacuuming and schema versioning

    Query Modification in Object-oriented Database Federation

    Get PDF
    We discuss the modification of queries against an integrated view in a federation of object-oriented databases. We present a generalisation of existing algorithms for simple global query processing that works for arbitrarily defined integration classes. We then extend this algorithm to deal with object-oriented features such as queries involving path expressions and nesting. We show how properties of the OO-style of modelling relationships through object references can be exploited to reduce the number of subqueries necessary to evaluate such querie

    EXODuS: Exploratory OLAP over Document Stores

    Get PDF
    OLAP has been extensively used for a couple of decades as a data analysis approach to support decision making on enterprise structured data. Now, with the wide diffusion of NoSQL databases holding semi-structured data, there is a growing need for enabling OLAP on document stores as well, to allow non-expert users to get new insights and make better decisions. Unfortunately, due to their schemaless nature, document stores are hardly accessible via direct OLAP querying. In this paper we propose EXODuS, an interactive, schema-on-read approach to enable OLAP querying of document stores in the context of self-service BI and exploratory OLAP. To discover multidimensional hierarchies in document stores we adopt a data-driven approach based on the mining of approximate functional dependencies; to ensure good performances, we incrementally build local portions of hierarchies for the levels involved in the current user query. Users execute an analysis session by expressing well-formed multidimensional queries related by OLAP operations; these queries are then translated into the native query language of MongoDB, one of the most popular document-based DBMS. An experimental evaluation on real-world datasets shows the efficiency of our approach and its compatibility with a real-time setting

    MDDQL: an ontology driven, multi-lingual query language and system for an integrated view of heterogeneous data sources

    Get PDF
    Query languages and keywords based search engines are conventionally specified and implemented with the emphasis put on syntactic rules to which query typing and answering must be bound. MDDQL is a query language and system that operates on a semantic model in terms of a graph based ontology. As a software technology, MDDQL allows the meaning of/and associations between information to be known and processed at execution time at following levels: (a) driving the user to the construction of, as meaningful as possible, queries with an advanced concept-based search method, (b) resolving high level queries into various data source specific query statements. In addition, queries can be posed in more than one natural sub-language. The major goal behind this approach has been the simplification and scalability of both tasks: query construction, even within multi-lingual user communities, and addressing of a large number of possibly semantically heterogeneous data sources in a distributed environment
    corecore