
Vladimir Marik Jiri Lazansky
Roland R. Wagner (Eds.)

Database and Expert
Systems Applie%fä||ns

4th International Conference, DEXA '93
Prague, Czech Republic, September 6-8, 1993
Proceedings

(DEXJTW)

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona
Budapest

Table of Contents

Invited Talk

Information Handling - A Challenge for Databases and Expert Systems
BUSSER., MÜLLER Α, NEUHOLD EJ. 1

Topic 1: Data Models

Context Versions in an Object-Oriented Model
AL-JADIRL, FALQUETG., LEONARD M. 24

Towards Class-less Object Models for Engineering Design Applications
GROSS-HARDTM.t VOSSENG. 36

Semantic Relativism in Conceptual Modelling
POKORNYJ. 48

Animation Support for a Conceptual Modelling Language
HARTMANNT., JUNGCLAUSR.t SAAKEG. 56

A Unifying Model of Data, Metadata and Context
DUONG T.t HILLER J.t SRINIVASAN U 68

Topic 2: Distributed Databases

Information Brokers: Sharing Knowledge in a Heterogeneous
Distributed System
BARBARA D., CLIFTON CH 80

A Customized Multidatabase Transaction Management Strategy
CHEN J., BUKHRES OA.t SHARIF-ASKARY J. 92

Interoperability between a Distributed System and a Database System
DANESA., EXERTIER F, HAJHOUSSAINS 104

Reservation Commitment and Its Use in Multidatabase Systems
MULLEN J.G.t JINGJ., SHARIF-ASKARY J. 116

Predict Query Processing Cost in a Distributed Database System
MENG W.t UUCH, SUN W.t YUC. 122

χ

CoBase: A Cooperative Query Answering Facility for Database Systems
CHUW.W. 134

Duplicate Deletion in a Ring Connected, Shared-Nothing, Parallel
Database System
ABDELGUERFIM.t GRANTK., MURPHYE, PATTERSON W. 146

Topic 3: Advanced Database Aspects

On Temporal-fuzziness in Temporal Fuzzy Databases
KURUTACH W.t FRANKLINE 154

Object-based Schema Integration for Heterogeneous Databases:
A Logical Approach
SPRINGSTEEL FN. 166

Heterogeneous Multilevel Transaction Management with Multiple
Subtransactions
VEIJALAINENJ. 181

Inheritance Conflicts in Object-Oriented Systems
UNGTW.t TEOP.K. . 189

Managing Derived Data in Intelligent Database Systems:
An Implementation Study
ZHAOJ.L 201

An Integrated Calculation Model for Discovering Functional Relations
from Databases
ZHONGN.OHSUGAS 213

On the Maintenance of Implication Integrity Constraints
ISHAKBEYOGLUNS,ÖZSOYOGLUZ.M 221

R E F L E X Active Database Model: Application of Petri-Nets
NAQVI W.t IBRAHIM M.T 233

Road Accident Analysis Using a Functional Database Language
WUJ., HARBIRDL 241

Topic 4: Database Optimization and Performance Evaluation

Database Performance Evaluation: a Methodological Approach
REVELL N, YOUSSEFM. W. 253

XI

Design and Implementation of a DBMS Performance Assessment Tool
KERSTEN M.L., KWAKKEL F. 265

Modifying Database Queries and Error Constraints
DUK, OZSOYOGLUG 277

Performance Evalution System for Object Stores
RABITTIF, SFERRAZZA R.S., TORIM.G., ZEZULA P. 289

An Optimization Method of Data Communication and Control for Parallel
Execution of SQL Queries
HAMEURLAIN Α., MORVANK 301

Developing a Database System for Time-Critical Applications
SONS.H., GEORGE D.W., KIM Y.-K. 313

Object-Oriented Querrying of Existing Relational Databases
KEIMD.A., KRIEGEL H.-P., MIETHSAMA 325

Topic 5: Spatial and Geographical Databases

A Probabilistic Spatial Data Model
KORNATZKYY., SHIMONYS.E. 337

Query Processing of Geometric Objects with Free Form Boundaries in Spatial
Databases
KRIEGEL H.-P., HEEP S., FAHLDIEKA., MYSUWTTZN. 349

Brain Data Base (BDB)
ANOGIANAKIS G, KROTOPOULOUA., SPIRAHSP., TERPOUD.,
TSAKALIDISA 361

Integrating Classes and Relations to Model and Query Geographical Databases
GARDARING. 365

Towards Cooperativeness in Geographic Databases
HEMERLYA.S., FURTADO A.L., CASANOVA MA 373

Ge02: Object-Oriented Contribution for a Geographical DBMS ?
DAVID B., RAYNAL L , SCHORTER G. 377

XII

Topic 6: Expert Systems and Knowledge Engineering

GemCode: An Expert System Generating Mnemonic Codes for Data Elements
and Data Items
SONGI.-Y, GODSEYHM, NEWTON J., BARGMEYERB. 384

A L E X S Y S - A Prototype Knowledge Based Expert System for the Quality Assurance
of High Pressure Die Castings
WEBSTER CA.G., WELLERM., SFANTSIKOPOULOSM.M.,
TSOUKALASV.D. 396

Viewpoints - Facilitating Expert Systems for Multiple Users
FINCH I. 401

Improving Shafer-Logan's Algorithm for Handling Hierarchical Evidence
GUANJ. W., BELL DA 413

From Low-Level to High-Level Operations in Expert Systems
POPPER M. 424

Corpora as Expert Knowledge Domains: the Oxford Advanced
Learner's Dictionary
WILSON E. 428

Maintenance of Knowledge Bases
LEHNER F., HOFMANNH.F, SETZER R„ MAIER R 436

Using Candidate Space Structure to Propose the Next Measurement
in Model Based Diagnosis
ZDRÄHALZ. 448

Decomposition of Four Component Items
DEBENHAMJ. 457

Intelligent Inference for Debugging Concurrent Systems
BRAYSHAWM. 461

Sharing Temporal Knowledge by Multiple Agents
BOTT1V., BARBER F, CRESPO A, GALLARDO D., RIPOLL I.,
ONAINDiA E.t HERNANDEZ L 470

Querying and Exploring Large Knowledge Bases
HUNG H.-K, MARTIN P., GLASGOW J., WALMSLEY Ch., JENKINSM. 474

Managing Text Objectively
WATTS. 478

XIII

Topic 7: Legal Systems

Legal Expert System KONTERM - Automatic Representation of Document
Structure and Contents
SCHWEIGHORER E.t WINIWARTER W. 486

Matrim, Man Expert System on Marital Law
MUNOZJ.R, GAUNDOF. 498

Contradiction and Confirmation
POULIND., ST-VINCENT P., BRATLEYP. 502

Meta-Reasoning in Law: A Computational Model
TISCORNIAD. 514

The Application of Kripke-Type Structures to Regional Development Programs
BAAZM.t GALINDOF, QUIRCHMAYR G.t VÄZQEZM. 523

Topic 8: Other Database and AI Applications

Data Management Tools for Genomic Applications: A Progress Report
MARKOWITZ V.M., CHENI.-MA 529

Resolution of Constraint Inconsistency with the Aim to Provide Support in
Anaesthesia
ROTTERDAM Et VAN DENNEHEUVEL S.,HENNIS R.VAN EMDE BOAS P. ..541

An Object-Oriented Implementation for a Semantic System (CANDID)
TOURER, SCHNEIDERM. 553

Distributed Schema Management in a Cooperation Network of Autonomous Agents
ARSARMANESHH, TUIJNMANR, WIEDIJKM., HERTZBERGER LO. 565

A Distributed AI System for Job Shop Control
DILGER W., KASSEL S 577

Expert System for Production Planning of Perishable Goods
GOSPODAROWICZA, ΚΑΝΙΑ E.t KRAWCZYKSt RYMARCZYKM.,
Τ JO A A M. 583

An Expert System as a Manager in the Application of Production Planning
and Control Software in CIM Environments
MEKRASNDtMALAMAA.G.t PARNASSAS G.Rt TATSIOPOULOSLP. 593

Composition and Dependency Relationships in Production Information
System Design
DJERABA C , HSSAINAA.t DESCOTES-GENON Β 605

XIV

Vehicle Transactions
TAKIZAWA M , HAMADA S, DEENS.M. 611

An Approach to Image Retrieval for Image Databases
GEYERS Tt SMEULDERSA.W.M. 615

Facilitatory Process for Contrast Detection
CANDELA St GARCIA C , MUNOZJ.. ALAYONF. 627

Topic 9: Software Engineering

Object-Oriented Database Management Systems for Construction of CASE
Environments
EMMERICH W.t KROHA R> SCHÄFER W. 631

Summary Data Representations in Application Developments
HWANG T.-L 643

Reusable Process Chunks
ROLLAND C , PRAKASHN 655

From Analysis to Design in a Deductive and Object-Oriented Environment
LOPEZ O.R, RAMOSCANOSJ.H 667

A Case Study for an Open CASE System: The TR OLL light Development
Environment
VLACHANTONIS Ν 673

Meta Data Model for Database Design
WELZER T.,EDER J. 677

Extending PCTE with Object-Oriented Capabilities
WUX.,NEUHAUSJ. 681

Topic 10: Hypertext/Hypermedia and User Interfaces

A New Hypermedia Data Model
MAURERH, SCHERRAKOVN, SRINIVASANP. 685

Linearisation Schemata for Hypertext
BENCH-CAPON ΤJM.t DÜNNERES, STAMFORD G. 697

HyperPATH/02: Integrating Hypermedia Systems with Object-Oriented
Database Systems
AMANNB., CHRISTOPHIDES V., SCHOLL M. 709

XV

Integrating Knowledge-based Hypertext and Database for Task-oriented
^Vccess to ι î ocn^nê ts
NANARDJ., NANARDM., MASSOTTEA.-M., DJEMAA Α., JOUBERTA.,
BETAILLEH., CHAUCHEJ. 721

Reengineering of User Interfaces for the Migration of Database Applications
KARAGIANNISD., ORTWEIN E., GAG J. 733

User Interface of Knowledge Based-DSS Development Environment
KLEINM.R., TRA UNMÜLLER R 746

A Highly-Customisable Schema Meta-Visualisation System
for Object-Oriented (O-O) Database Schemas - Overview
QUTAISHATMA., GRAY WA., FIDDIANN.J. 756

Walkthrough Using Animation Database System M O V E
KUROKIS., KIKKAWA K., KANEKO K., MAKIN0UCH1A 760

Author Index 766

Object-Oriented Querying
of Existing Relational Databases

Daniel A. Keim, Hans-Peter Kriegel, Andreas Miethsam

Institute for Computer Science, University of Munich
Leopoldstr. 11B, D-8000 Munich 40

Abstract: In this paper, we present algorithms which allow an object-oriented
querying of existing relational databases. Our goal is to provide an improved que
ry interface for relational systems with better query facilities than S Q L . This
seems to be very important since, in real world applications, relational systems
are most commonly used and their dominance will remain in the near future. To
overcome the drawbacks of relational systems, especially the poor query facilities
of S Q L , we propose a schema transformation and a query translation algorithm.
The schema transformation algorithm uses additional semantic information to en
hance the relational schema and transform it into a corresponding object-oriented
schema. If the additional semantic information can be deducted from an underly
ing entity-relationship design schema, the schema transformation may be done
fully automatically. To query the created object-oriented schema, we use the
Structured Object Query Language (S O Q L) which provides declarative query fa
cilities on objects. S O Q L queries using the created object-oriented schema are
much shorter, easier to write and understand and more intuitive than correspond
ing S Q L queries leading to an enhanced usability and an improved querying of
the database. The query translation algorithm automatically translates S O Q L que
ries into equivalent S Q L queries for the original relational schema.

1 Introduction
Relational database systems are widely used in research and industry. For traditional

application areas like accounting, reservation systems, etc., the relational data model
seems to be adequate providing suitable modeling mid performance characteristics. The
main reasons for using the relational data model are: It is well known, easy to use and has
a firm theoretical basis. The SQL query language, however, with its linear syntax was de
veloped two decades ago and has not changed substantially since then. SQL has rather
poor query facilities compared to the query facilities of today's object-oriented database
systems. In spite of major advances in research, little has been done to improve the func
tionality and expressiveness of SQL. By defining the SQL2 standard [11] some of the de
ficiencies and inconsistencies of SQL have been removed but no major improvement of
the query language has been achieved. A major problem is still the lack of an intuitive way
to specify complex queries. Practical experiments with novice and experienced users
show that essential and powerful concepts of SQL, such as nested queries or set operators
are rarely used in a correct way [10] degrading SQL to a query language which is only use
ful for simple ad hoc queries. Additionally, the sometimes quite unnatural normalization
of the relational data model and the missing semantic modeling capabilities make query
ing of relational databases even more difficult. The standardization of SQL3 [17] which
shall be completed in 1996, the earliest, is aimed to improve the modelling capabilities
and the query language by introducing object-oriented features. However, it is not clear
how the additional features of SQL3 can be used in conjunction with existing databases.

From a practical point of view, it is very important to design query languages that al
low novice and unexperienced users to query databases with little background other than

326

some basic understanding of the schema and data. The design of graphical database in
terfaces is one approach to provide this kind of easy-to-use query interfaces [15]. While
graphical user interfaces can greatly enhance the specification process, they can not over
come the limited capabilities of the relational model to express semantic aspects, i.e. re
lationships, structured entities mid procedural aspects. A lot of research has been going
on over the last decade to improve data models and query languages. As a result, major
advances in database technology have been made, e.g. the object-oriented and extended
relational database systems with their extended semantic modeling capabilities (e.g. [23],
[13], [21], [16], [3]), advanced query languages (e.g. [8], [3]) and graphical user interfaces
(e.g. [20], [1]) . A problem, however, is the poor propagation of these systems in real world
applications. Although commercial object-oriented database systems are available for
some time they are rarely used in production environments. The main reason is the pro
liferation of relational systems. The effort and costs for migrating into a new system are
very high since the application programs which have been implemented over the years
and the training of users present high investments.

Our approach is a more pragmatic one and directed towards practical applications.
Our starting point is the fact that, in the near future, we wi l l be using relational systems
for practical reasons; however, we need to improve the query specification process. It is
possible to narrow the gap between the user's way of expressing queries and database ma
nipulation languages like SQL without changing the system itself. Considering many ex
amples, we found that using an object-oriented schema mid query specification greatly
enhances the readability and utiderstandability of queries making it similar to the user's
'natural' view of the problem. Our idea is to automatically create an object-oriented sche
ma from the relational one and to provide an object-oriented database query language
which can be translated automatically into SQL. To query the created schema, we provide
the Structured Object Query Language (SOQL), a declarative language for querying ob
ject-oriented databases. In SOQL, the user has full SQL-like access to the underlying re
lational database. Many object-oriented database query languages have been proposed in
the literature [14], [7], [2], [22], [9], [3]. By introducing SOQL, we do not want to propose
just another object-oriented query language. The main point in introducing SOQL is to
define an object-oriented query language which is easy-to-use and allows to specify short
mid intuitively understandable queries but cmi be automatically translated into SQL.

At this point, we want to stress that the object-oriented schema we create is only a
virtual one without having instances. The data itself completely remains in the relational
system. Neither the schema transformation nor the query translation algorithm require
any change to the data or the relational system. This is important since it wi l l greatly en
hance the practical applicability making our system useful for most areas where relational
systems me used today.

The rest of the paper is organized as follows: Section 2 introduces the overall archi
tecture of the system. Section 3 elaborates on the automatic transformation of relational
Schemas into object-oriented ones using meta information deducted from the underlying
entity-relationship schema. In section 4, we introduce our Structured Object Query Lan
guage (SOQL) which provides declarative query facilities for the created object-oriented
schema. In section 5, we wi l l briefly describe the automatic query translation of SOQL
into equivalent SQL queries. Section 6 summarizes our approach mid points out some
problems.

2 System Architecture
In this section, we want to introduce the overall architecture of our system. We de

signed our architecture to be used in real world environments mid therefore, we had to

327

^j i Π ι users

r I -ΊΓ

appu'catiou
programs

vStructured Object Ouerv Language

Query Translation
Module

4 _ J Kno wledgeL-^
B a s e ^ J

Schema Transformation
Module

S Q L / embedded S Q L

Data
Dictionary

I

Object-Oriented
Query System

Additional
Data &

Methods

E R Design
Schema

Relational
Database System

Relational
Database Fig. 1. Architecture of the Object-Oriented Query System

build it on top of existing relational systems like Oracle, Ingres, Sybase or others. It is im
portant to note that, in general, such systems are used on-line with many application pro
grams running permanently on a daily basis. In real world environments, it is important
that changes of the architecture or the system do not have any impact on existing applica
tion programs because it is not feasible to rewrite them in the short- or mid-term range.
Therefore, in our system we propose an additional layer which is built on top of the exist
ing relational systems with their query language SQL (see figure 1). Our goal is to pro
vide mi advanced query interface for relational databases allowing an object-oriented
querying of the database without migrating mid transforming data or changing existing
application progrmns. As shown in figure 1, in our system, pre-existing access structures
remain unchanged while, at the same time, additional on-line and application program
access to the database is provided by the object-oriented query system.

The main components of our system me the schema transformation module, the que
ry translation module and the knowledge base. The schema transformation module is
necessary to create an object-oriented schema from the relational schema. In general, it
is not feasible to automatically create more structured mid semantically richer object-ori
ented Schemas from flat relational ones. Therefore, additional semantic information is
needed, e.g. on tables implementing n-ary relationships (m:n, 1 :n or 1:1), on connecting
attributes implementing relationships between tables, on subtypes and so on. This addi
tional semantic information is not modeled explicitly in the relational model but may be
deducted from an underlying entity-relationship design schema. Consequently, in our
schema transformation algorithm we use both, the relational schema mid the entity-rela
tionship (ER) design schema, to create the object-oriented schema. Meta information on
the relational schema is usually stored in some kind of data dictionary, information about
the ER schema is mostly available in the database design tool (see figure 1). Since format
and access to both types of information may vary from one system to another, specific ac
cess procedures have to be implemented for the specific relational system mid its design
tool.

The knowledge base component is used to store all the additional semantic informa
tion deducted from the ER schema together with mapping information relating ER mid
relational model on one side with the object-oriented schema on the other side. The
knowledge base is built during the semantic schema enrichment, the first step of the sche
ma transformation algorithm, and provides the basis for an adequate schema transforma-

328

tion as well as for an automatic querying of the database based on the transformed sche
ma. Furthermore, the knowledge base can be extended by the user to also allow schema
extensions or changes and to define additional methods. User defined methods may be
used in the same way as system defined methods allowing SOQL to be uniform and con
sistent even i f extended by new classes and methods.

The query translation module uses the information stored in the knowledge base to
translate SOQL queries based on the created object-oriented schema into equivalent SQL
queries based on the original relational schema. As already indicated, SOQL allows to
express any 'semantically meaningful' SQL query and the translation algorithm guaran
tees a fully automatic translation of such queries into SQL. Only i f user-defined methods
or additional classes are used, an SOQL query can not be translated directly into an SQL
query. As will be described in section 5, the data needed to execute user-defined methods
has to be selected iteratively from the relational database before such methods can be ex
ecuted by our object-oriented query system.

3 Schema Enrichment and Transformation
hi this section, we investigate how a relational database schema can be transformed

into object-oriented class definitions. Usually a good object-oriented schema contains
more semantics than a relational schema for the same application domain. I f an automatic
transformation process is aimed to produce adequate, well-structured object-oriented
class definitions, more input than the pure relational schema is needed.

For illustrating the schema enrichment mid transformation process and as a basis for
the query examples in section 4, we wil l use the following example. Consider a relational
database FlightDB containing information on passengers, departures, airlines, planes,
planetypes and their relationships.

Passenger (pid: Integer; name: String; address: String)
Departure (did: Integer; start: Date; flight: Integer; airline-id: String; plane-id: Integer)
Pass__De.pt (did: Integer; pid: Integer; booking: Date)
Airline (airline-id: String; name: String)
Plane (serial-nr: Integer; yr-built: Date; manufacturer: String; model: Integer)
Planetype (model: Integer; manufacturer: String; capacity: Integer; range: Integer)

To transform this database schema, we need additional semantic information, e.g.
that PassJDept establishes an m:n-relationship between Passenger and Departure. Gen
erally, we need additional semantic knowledge such as tables representing relationships
(connecting tables), the type of the relationship (1:1,1 :n, n:m), attributes or groups of at
tributes representing foreign keys (connecting attributes), etc.

This additional semantic information is crucial for the schema transformation pro
cess to be able to replace connecting attributes and connecting tables by direct object ref
erences. Very often the domain of interest is formalized using an entity-relationship (ER)
model [4]. The ER model contains the semantic information needed for our schema en
richment. I f there is a formalized and standardized semantic design model together with
an also standardized mapping which entity and which relationship lead to which table, a
fully automatic schema enrichment is possible. I f no standard ER model and no standard
ized mapping is available, support by the designer or administrator of the database wil l
be necessary. In any case, part of the additional semantic infonnation can be automatical
ly deducted [6], [19], [18] and the user may be guided in the process of relating the ER
design schema to the relational schema.

In the following, we assume that we are able to extract an ER model from the given
relational schema with the following properties: Each entity Ε in the ER model corre-

http://Pass__De.pt

329

sponds to a table Ε in the relational schema, for each functional relationship R: Ε —> F ta
ble Ε contains the (foreign) key of F, all other relationships R correspond to a table R con
necting the respective 'entity' tables. This corresponds to the normal transformation
when creating a relational schema from an ER design schema. In the following, we for
mally describe the transformation of the ER schema into an object-oriented schema:

1. for each entity Ε with attributes Aj of domain I) , , i=l ,.,.,η and key K (E)
=> Class Ε with attributes A ^ D f , A n : D t t ; key is (A j , A m) ; end; is created.

2. for each functional relationship R: Ε - » F
=> class Ε is extended by a method R: —> F , which applied to an object e of class Ε
yields the corresponding object /o f class F : e.R= f.
=> class F is extended by a method R: —» Set(E), which applied to an objec t /o f class
F yields the corresponding set of objects {e?j, e?n) of class E : f . R = {e^ ea).

3. for all other relationships R between entities E j , E p , with possible relationship at
tributes A k of domain I) k , k=l ,...,q
=> class E-, is extended by the following q+1 methods:

• R: —» Set(E(x — x Ej.j x E i + 1 x — x E n) , which applied to an object e?-, of class E 5 yields
the corresponding object tuples, e?j_is in R-relationship with: erR = {(e>j) I R-relation
ship holds for (e?j, e? n)}, where e-x denotes the tuple (e{i e]A, e» i + 1 , en).

• A k : E] x - x E j . j x E i + 1 x - · x E u —> I) k , which applied to an object e>x of class E 5 and
object tuple ex as parameter yields the k-th attribute tfkel)k of this
relationship: e?-,.Ak(e?i) = ak.

Example: Let ρ be an object of class Passenger and dx, dn be its departures, where ρ
booked departure d2 at January 1st, 1993. Then ρ .departures = {d^ dn] and, ρ .book
i n g ^) = '01/01/93* (see also class definitions below).

Together with the creation of the object oriented schema, mapping information is
stored in the knowledge base, relating classes and tables which originate at the same en
tity. Furthermore, each method reflecting a relationship of the ER schema is related to the
corresponding connecting attributes and, i f existing, connecting tables of the relational
schema. We establish the mapping at class creation time by automatically linking each
new class definition to its corresponding relational table. Having the mapping informa
tion, we can determine which table corresponds to which class and whether a given class
attribute has to be translated to a join on the relational side. This mapping is needed for
the automatic translation of queries on the object-oriented schema.

Let us now consider the schema transformation of our example database. There we
have functional relationships between Plane and Planetype and between Plane and De
parture and a connecting table Pass_Dept connecting Passenger and Departure, which
has an attribute specifying the date of booking. The schema transformation algorithm de
scribed above wül produce the class definitions given in figure 2 which represent the se-
mantically enriched object-oriented schema.

At this point, it should be mentioned that our schema transformation may not pro
vide a perfect object-oriented schema. There are additional possibilities e.g. identifying
subtype relationships within the relational schema [18], using the aggregation paradigm
of the object-oriented system more extensively[5] and so on [12]. But as it wi l l be shown
in section 4 and section 5, the schema created by our schema transformation allows to
state SOQL queries which are often significantiy shorter and more intuitive than corre
sponding SQL queries using the original tables. At this point, let us emphasize that we
only generate class definitions in the object-oriented database system, whereas the in
stances remain in the relational database. Thus, access operations to instances of object-
oriented classes have to be translated into accesses to the corresponding relational tuples
which wi l l be described in section 5.

330

Class Passenger with
attributes pid: Integer;

name; String;
address: String; key is (pid);

methods departures: —» Set (Departure.);
booking: Departure —> Date; end;

Cfoss Departure with
attributes did: Integer;

start: Date;
flight: Integer; key is (did);

methods airline: —» A irline;
plane.: —> Plane;
passengers: Set (Passenger);
booking: Passenger —» Date; end;

Fig. 2. Object-!

Class Planetype with
attributes model: Integer;

manufacturer: Strings-
capacity: Integer;
range: Integer; key is (model);

methods planes: —> Set (Plane); end;

Cfoss Plane with
attributes serial-nr: Integer;

yr-built: Date; key is (serial-nr);
methods departures: —» Set (Departure);

planetype: —» Planetype; end;

Class Airline with
attributes airline-id: String;

name: String; key is (airline-id);
methods departures: —> Set (Departure); end;

oriented Schema

4 Structured Object Query Language
In this section, we will give a short overview of our query language SOQL. SOQL is

a declarative query language for querying the created object-oriented schema. It is simi
lar to other declarative query languages for object-oriented database systems such as
0 2 S Q L [3], OSQL [7] and Object SQL [9]. In addition to features available in these ob
ject-oriented database query languages, SOQL provides concepts which greatly enhance
the query specification process making it more intuitive. The main point, however, in in
troducing SOQL is to present an object-oriented database query language which can be
trimslated automatically into SQL (c.f. section 5).

4.1 The Query Language
As already indicated by the name, SOQL is similar to SQL. SOQL provides declar

ative query facilities for objects as SQL does for relations. The basic query format can be
indicated by the following description

select {<range_var>{.<method>} {^.struct. _expr} 0 / 1) +

for each {<classname>{ .<niethod>} <range_var>} +

{ where <condition> .
In the 'select' clause, the user has to specify the desired output of the query. Accord

ing to the expression in the 'select' clause, automatically anew (temporary) object class
is created. As a result of the query, all tuples fulfilling the condition are available as vir
tual instances of this class. The result is also available as a (nested) set and, therefore, can
be directly used in subqueries. To allow an easier specification of queries with structured
results, we introduce the notion of 'structured expressions'. Structured expressions ex
tend the select-clause by providing the possibility to define the structure of the desired re
sult which is indicated by square brackets. As we wil l show later in the examples, struc
tured expressions do not only help to structure the result but may also help to avoid joins.
Since structured expressions are a unique feature of SOQL, we give the exact syntax def
inition in the following

struct_expr : := [{<struct_expr>} +] | [{<method>} {.<rnethod>} * {.struct_expr } 0 / I] |
[<range_var>{ .<rnethod>}* {.struct_expr} 0 / 1]

The 'for each' clause is similar to the ' from' clause in SQL. It is necessary to define
and type the class variables used in a query. The 'for each' indicates that the condition is

331

checked for each instance of the corresponding class and in the case, an instance fulfills
the condition, the desired output is created. In the 'where' clause, a condition may be
specified. The condition is an expression with result type 'Boolean' . A l l methods, includ
ing the created access methods to attributes, may be used in the condition as long as the
result of the whole expression is of type Boolean. As already mentioned, the result of a
subquery may also be considered as a set. Therefore, set operations can be used to specify
nested SOQL queries.

As most object-oriented systems, our system provides a set of basic object classes
(Boolean, String, Numbers, Integer, Real and the generic classes Set and List) together
with a set of basic methods. Special methods are defined for Set(Numbers) including the
aggregate operations sum, avg, min, max (Set(Numbers) - • Numbers). As already men
tioned, the user may extend the system provided set of methods by additional ones. Such
user-defined methods may be used in the same way as system defined methods allowing
SOQL to be uniform and consistent even if it is extended by new classes and methods. In
the case of user-defined methods, however, there is no automatic translation to a single
SQL query based on the underlying relational database (c.f. section 5).

As indicated in the query format definition, methods are applied to class or range
variables using dot-notation. For convenience, the standard infix notation is allowed for
the predefined methods of the basic classes. Chains of methods may be connected in dot-
notation, which allows to directly access one object class from another one without ex
plicitly joining them. It is some kind of schema navigation in the created object-oriented
schema. An advantage of the dot-notation compared to database query languages like
OSQL or 0 2 SQL is that our queries are structured in the way the user is thinking and,
therefore, they are easier to write and understand. A problem of our approach, however,
is that complex methods may have many arguments which may result in queries that are
hard to read. In the case of creating the object-oriented from the relational schema, most
access functions do not have any argument except their class and, therefore, the problem
only occurs in the rare cases of methods deducted from relationship attributes or user-de
fined methods.

To further illustrate the possibilities of our query language, in the following we wil l
give some examples for SOQL queries. We wil l show the advantages of SOQL over SQL
by comparing SOQL queries based on the created object-oriented schema with equiva
lent SQL queries using the original schema. For the example queries, we use the trans
formed example database as presented in section 3. A simple query selecting all flight
numbers with a list of the corresponding passenger names for the airline "Lufthansa" on
the 02/18/93 would be expressed as

Example 1: select D.flight D.passengers.name for each Departure!)
where D.start = "02/18/93" and D.airline.name = "Lufthansa"

Note, that the result of the query is of the complex type Set([Integer, Set(String)]).
To store the result, a temporary class with two attributes of type Integer and Set(String)
is created. The nested structure of the result is a consequence of using the generalization
of the dot-notation to sets. Since 'D.passengers' provides a 'Set(Passenger)' for each de
parture, the method 'name' is not applicable since it is only defined for objects of class
'Passenger'. The generalization of the dot-notation to sets, however, allows methods
which are defined for a class Ο to be also used with Set(O). As a consequence, the method
name in our example can also be used with 'Set(Passenger)' providing a set of passenger
names for each departure. 'D.passengers.name' is equivalent to {x.name I χ e D.passen-
gers}. The generalization of the dot-notation to sets wi l l be described formally in the next
subsection. In the relational system, even for the simple query example 1, four tables need

332

to be joined in order to execute the query. An equivalent SQL query is given as the result
of the query translation algorithm in section 5.

Another simple query would be to find all passengers who have at least one flight to
gether with a passenger named "Andy Meier". In SOQL, we can write

Example 2: select Ρ for each Passenger Ρ
where "Andy Meier" in P.departures.passengers.name

In this query, again we use the generalization of the dot-notation to sets. The result
of P.departures. passengers.name is a set of sets of strings. The method 'in' with param
eter "Andy Meier", however, requires a set of strings since it is only defined for Ο χ
Set(O) -+ Boolean and not for Ο χ Set(Set(0)) Boolean. According to the generaliza
tion of the dot-notation, we shift the method ' in ' into the inner brackets until it is applica
ble for the first time. In the example, instead o f ' "Andy Meier" in P.departures.passen
gers.name \ we execute { "Andy Meier" in {x.name I χ e d.passengers} Id e
P.departures} resulting in a set of booleans. Like in IRIS [7], sets of booleans in condi
tions are implicitly 'or'-connected providing true i f at least one element is true.

While the SOQL query is still intuitive and easy to understand, corresponding SQL
queries are quite difficult to read and to write. A corresponding SQL queries requires a
join of at least four tables with the need to know the connecting tables and attributes

select distinct P.name, P.address from Passenger P, Pass_Dept P I)
where P.pid = PD.pid and PD.did in

select PI) 1.did from Passenger PI Pass_[)ept PD1
where PI.pid = PI) 1.pid and Pl.name= "Andy Meier"

The next query is an example of a nested query. I f we want to select name and ad
dress of all passengers which have flown with all types of planes, we may use the query

Example 3: select P.tiame P.address for each Passenger Ρ
where P.departures.plane.planetype contains (select P T for each Planetype PT)

This query may be expressed in SQL as follows
select distinct P.name, P.address
from Passenger Ρ
where not exists

(select * from Planetype PT
where not exists

(select * from Pass_I)ept PI) , Departure D, Plane P L
where P.pid = PD.pid and PD.did = D.did and
D.plane-id = PL.serial-nr and PL.model = PT.model))

Another interesting query is to determine the seat utilization of all "Lufthansa"
flights. The following SOQL query provides the desired result

Example 4: select (D.plane.planetype.capacity - D.passengers.count) for each Departure D
where D.airline.name = "Lufthansa"

A corresponding SQL query is far more complicated. One possibility is
select D.dno, (PT.capacity - count(PD.pid))
from Departure!), Pass_Dept PD, Plane P L , Planetype P T , Airline A
where A.name = "Lufthansa" and A.aid = D.airline-id and D.did = PD.did

and D.plane-id = PL.serial-nr and PL.model = PT.model
group by D.dno, PT.capacity

Note, that in the SQL query we have to select more information than actually re
quired. We need the additional information to do the grouping which is only implicit in
the SOQL query. In general, i f the result for a query is a nested set with more than one
nesting level, there is no one-to-one translation to an SQL query. Nested results may oc-

333

cur as answer for queries with structured expressions or queries where the generalization
of the dot-notation is used more than once in a row.

Our last example is such an SOQL query with a nested structured expression. To se
lect the names of all passengers who have Andy as part of their name together with all
their flights as well as name and address of all co-passengers we can write in SOQL

Example 5: select P.[name, departures.[flight, date, passengers.[name, address]]]
for each Passenger Ρ
where P.name.substring("Andy")

Since, in this case, the result has more than one nesting level, there is no possibility
to express the query in SQL. As we wi l l show in section 5, in such cases we translate the
SOQL query into an SQL query which provides a superset of the data necessary to an
swer the query.

To summarize the advantages of SOQL over SQL: SOQL queries are much shorter,
easier to write and understand and more intuitive than corresponding SQL queries. Since
the created class definitions are more structured, in most cases, joins do not have to be
specified explicidy and complex queries are avoided. Additionally, the results of SOQL
queries can be arbitrarily structured and user-defined methods may be used like system-
provided ones. In general, we believe that the created object-oriented schema together
with the SOQL query language are closer to the users view of the application domain
which leads to an enhanced usability and an improved querying of the database.

4.2 Semantic Issues
Before presenting the automatic query translation algorithm (c.f. section 5), in this

subsection we first need to formally describe the semantics of special features of SOQL,
particularly of the generalization of the dot-notation and of structured expressions.

The semantics of the 'select' clause is straightforward as long as only the system cre
ated access methods for attributes are used. For all other methods, we have to apply the
method to all instances fulfilling the condition. More exactiy, a query

select a j . o p j , a n . o p n for each ... with opiG Object-Class(ai) for i=l . .n
results in a set of objects (a 1.op],..., ν ° Ρ η) · E v e n i n c a s e of having chains of methods
connected in dot-notation, there is no problem as long as the methods are defined for the
class to which they are applied. We found, however, that this condition is quite restrictive
for practical purposes and leads to queries which are more complex than necessary. Of
ten, it seems to be intuitive to apply methods of a class Ο to sets of that class (Set(O)) or
even to SetW). Therefore, we relax the condition by generalizing the dot-notation to
sets. If, for example, a method is applied to objects of class Set n(0), but is not defined
within this class, we try to apply the method to each member of the outmost set. If the
method is not defined for Se t n l (0) , we try to apply the method to each member of this
set mid so on until the method is defined for one level. Formally the generalization of the
dot-notation is defined recursively

m(Sef(0)) := (m(obj) I obj e Se^fO)}.
This step is repeated as long as the method m is not applicable to Set'CO). Using this re
cursive definition the nesting structure of the whole expression is preserved.

The semantics of structured expressions is that all attributes on the same nesting lev
el are related to each other i f possible. As we have shown in the previous subsection,
structured expressions do not only help to intuitively specify structured results, but also
to avoid complicated join conditions. More formally, the semantics of a structured ex
pression can be described as follows: Let O./mj,mn] be a structured expression. I f
there is no m f which is applicable to Ο and Ο is an object of set type, we generate the set
{obj.[m]fmnJ I obj This step is repeated as long as obj itself is a set and no m, is

334

applicable. I f an m f is applicable at the level described in the above structured expression,
the final result is {(obj.mj,obj.m^ I obj e 0}. According to this definition, the result
type for the query in example 5 can be described as {(String, { (Integer, Date, {(String,
S t r ing)})})} . The above definition for resolving structured expressions and method ap
plications may be used for arbitrary structured expressions.

5 Translation of SOQL Queries
This section describes the translation of SOQL queries into SQL queries and the

restructuring of the result according to the complex answer type given by the SOQL se
lect clause. It is obvious that all queries expressed in SQL over the relational schema
can also be expressed by an SOQL query over the created object oriented schema, since
information is added during the schema enrichment and transformation process and
SOQL has more expressive power than SQL. By providing a translation t, we show con
structively how an SOQL query Q is translated into an SQL query S = t (Q). The result
of S may be formatted by a function / i n t o the desired answer format specified by Q,
where/basically consists of sorting and projection operations.

The main task of t is to resolve chains of method applications by adequate joins and
subqueries on the relational side and to correcüy replace the SOQL condition part by
equivalent SQL constructs. In the following, we describe the translation t of a given
SOQL-statement Q into an SQL-statement S and illustrate this process using Example 1
from section 4.1. We assume that all class variables occurring in the 'for each' clause of
the query and its subqueries have pairwise distinct names; otherwise, they wi l l be con
sistently renamed. New variables introduced during the transformation are denoted by
Vi-
1. First, the SOQL-statement Q is transformed into a nested set expression by evaluat

ing the chains of method applications and structured expressions as described in
section 4.2. The result is an equivalent (same result) specification of the query Q,
with resolved dot generalizations and resolved structured expressions.

{(D.flight, D.passengers.uame) I D e Departure Λ D.start = "02/18/93" Λ D.airline.name
= "Lufthansa"} = {(D.flight, {Vj .name I V j e D.passengers}) 11) e Departure Λ

D.start = "02/18/93" Λ 3 V 2 : V 2 = D.airline Λ V 2 . name = "Lufthansa"}

2. The remaining object references are resolved in the following way: V] op X.m =>
Vj G Type(X.m) A join(X, V]), where op stands for 'e * or '= ' depending on whether

X.m is set or single valued. In this step, join predicates join(X, Vj) are introduced with
the intended meaning: join(X, Vj) = True, i f there is an object reference from the cur
rent instance of X to Vj.

{(D.flight, {Vj .name I V j e Passenger Λ join(I), V j) }) I 3 V 2 : D e Departure Λ
D.start = "02/18/93" Λ V 2 G Airline Λ join(D, V 2) Λ V 2 . n a m e = "Lufthansa"}

3. Then, the nesting of result tuples is resolved by shifting set conditions onto the outer
level and adding object identity / key information until the result tuple is flat. The
structure of the result wi l l be flattened by this transformation but can be easily recon
structed using the additional key attributes.

{(D.flight, D.key, V^name) I 3 V 2 : V j e Passenger Λ jo in(D, V j) Λ D G Departure Λ
D.start = "02/18/93" Λ V 2 e Airline Λ join(I), V 2) Λ V 2 . n a m e = "Lufthansa"}

4. In the next step, we transform the above tuple-calculus-like expression into mi SQL
statement. The attributes to be specified in the 'select' clause can be direcüy taken
from die result part of the expression. Al l parts 'X e Class' of the condition are trans
formed into the 'from' clause. I f one of these variables is existentially quantified, the
'select' clause is extended by 'X.key' for all variables occurring in the 'select' clause

335

and the key word 'distinct' is added to remove duplicates which are not intended. The
remaining condition part has to be transformed into a permissible SQL condition. The
methods on set types such as 'el in set', 'isempty(set)', 'setl contains set2' are re
placed by computing these sets in a subquery and applying the SQL constructs 'el =
some (select...)', 'exists(select...)', 'not exists(select... where not exists (select...))'.
select distinct D.flight, D.key, V^name, Vpkey
from Departure D, Passenger V j , Airline V 2

where join(I), V 2) and join(D, V t) and D.start = "02/18/93" and V 2 .name = "Lufthansa"

5. The join predicates join(R, S) and key expressions S.key are replaced according to
the mapping information.
select distinct D.flight, D.did, Vj.uame, V^pid
from Departure D, Passenger V l f Airline V 2 , Pass_Dept V 3
where D.airline-id = V 2 .airl ine-id and D.did = V3.did and V3.pid = Vj .p id and

D.start = "02/18/93" and V 2 .name = "Lufthansa"

This is the final SQL statement to be executed on the relational database. The format
ting function/has to sort the result by D.did and then eliminate D.did and Vj .p id .

Since SOQL has more expressive power than SQL, there are some cases where
SOQL queries do not have corresponding SQL queries. Problems in the process of que
ry translation may occur e.g. i f set operations are used in conjunction with structured
tuples or nested sets in the 'where' clause, i f variables in the 'for each' clause range over
nested sets mid, as already mentioned, i f user extensions (e.g. additional attributes or
user-defined methods) are used in a query. In general, for such SOQL queries there is
no translation to a single SQL query. Note, that the problems are only caused in cases
where, in general, there is no corresponding SQL query. The details of the query trans
lation algorithm are beyond the scope of this paper and wil l be presented in a future
paper.

6 Summary and Conclusions
Relational database systems are widely used in research and industry. A major prob

lem of relational systems are the poor query facilities of SQL. In this paper, we described
a system which enhances the functionality mid usability of existing relational databases
mid allows to query them like object-oriented databases. Using additional information
deduced from the underlying ER schema, we automatically create a semantically en
riched object-oriented schema together with the necessary mapping information relating
object-oriented mid relational schema. Our query language SOQL provides a uniform
and convenient query interface to the database which, in addition, is easily extensible.
The presented query translation algorithm is performing the automatic translation of
SOQL queries into equivalent SQL queries for the original relational schema. We believe
that our approach is simple, elegant mid of high practical importance. We do not require
any change to the relational system, the data or existing applications mid therefore, sys
tems like ours may be used in practice within a short period of time.

In our current implementation, we use the object-oriented database system 0 2 as the
basis for the additional layer. In 0 2 , we store the necessary semantic information as well
as additional classes, methods and data. The created object-oriented schema is also avail
able as 02-schema. The implementation of the schema transformation mid operation
translation algorithms with complete support of user-defined methods mid additional
classes is currently on the way, but not yet finished. One open problem is the optimiza
tion of queries which involve user extensions to the schema or arbitrarily structured re
sults. In such SOQL queries which have no one-to-one correspondence to mi SQL query,

336

the query optimization cannot be done on the relational side. Therefore, we have to opti
mize the query execution plan to reduce the amount of data which needs to be transferred
between our and the relational system. Performance issues wi l l be of high importance for
such a system to be used in real world applications.

In our future work, we plan to extend the schema enrichment and query translation al
gorithms to cover the automatic detection and creation of subtype hierarchies or complex
methods. We wil l further work on the optimization issue trying to provide an acceptable
performance even in complicated cases. Finally, we intend to use our system as a basis for
an advanced integration of relational systems into a heterogeneous multidatabase system
and we plan to integrate the system itself into a network of interoperating databases.

References
[1] Agrawal R. et al.: 'OdeVicw: The Graphical Interface to Ode\ Proc. A C M - S I G M O D Int. Conf. on

Management of Data, Atlantic City, 1990.
[21 Alashqur A.M., Su S . Y , Lam H.: OQL: A Query Language for Manipulating Object-oriented

Databases', Proc. 5th Int. Conf. on Very Large Data Bases, Amsterdam, 1989, pp. 433-442.
[31 Bancilhon F., Delobel C, Kanellakis P. (editors): 'Building an Object-Oriented Database System -

The Story of O2 \ Morgan Kaufmann, San Mateo, CA, 1992.
[4] Chen P.P.-S.: The Entity-Relationship Model - Toward a Unified View of Data', Proc. A C M Trans, on

Database Systems, Vol. Ι , Ν ο . 1, 1976.
[51 Castellanos M., Saltor F.: 'Semantic Enrichment of Database Schemas: An Object Oriented

Approach', Proc. 1st Int. Workshop on Interoperability in Multidatabase Systems, Kyoto, 1991,
pp. 71-78.

[6] Davis, Arora: 'Converting a Relational Database Model into an Entity-Relationship Model', Proc.
6th ER Conf., New York, 1987.

[71 Fishman D.H. et al: 'Overview of the Iris DBMS', chapter 10 in: Object-Oriented Concepts,
Databases and Applications by Kim W. and Lochovsky F.H. (editors), A C M Press Frontier Series,
Addison Wesley, Reading, MA, 1989, pp. 219-250.

[8] Haas L.M., Freytag J.C. , Lohman G.M., Pirahesh H.: 'Extensible Query Processing in Starburst\
Proc. ACM-SIGMOD Int. Conf. on Management of Data, 1989, pp. 377-388.

[91 Harris C , Duhl J . : 'Object SQL', chapter 11 in: Object-Oriented Databases with Applications to
CASE, Networks, and VLSI Design by Gupta H. and Horowitz E . , Prentice Hall, 1991, pp. 199-215.

[10J Hansen G.W., Hansen J.V.: 'Human Performance in Relational Algebra, Tuple Calculus and Domain
Calculus', Int. Journal of Man-Machine Studies, Vol. 29,1988, pp. 503-516.

111] ISO/IEC: 'Database Language SQL', ISO/IEC 9075:1992 (German Standardization: DIN 66315).
[121 Kaul M., Drosten K., Neuhold E.J . : 'ViewSystem: Integrating Heterogeneous Information Bases by

Object-Oriented Views', Proc. I E E E Int. Conf. on Data Engineering, 1990.
[131 Kim W„ Ballou N., Chou H.-T., Garza J.F., Woelk !).: 'Features of the ORION Object-Oriented

Database System', chapter 11 in: Object-Oriented Concepts, Databases and Applications by Kim W.
and Lochovsky F.H. (editors), A C M Press Frontier Series, Addison Wesley, MA, 1989, pp. 251-282

[14] Kim W.: Ά Model of Queries for Object-Oriented Databases', Proc. 5th Int. Conf. on Very Large
Data Bases, Amsterdam, 1989, pp. 423-432.

[15] Keim D.A., Lum V : 'Visual Query Specification in a Multimedia Database System', Proc. Conf.
Visualization, CS Press, Los Alamitos, CA. , 1992.

[16J Lohman G.M., Lindsay B., Pirahesh H., Schiefer K.B.: 'Extensions to Starburst: Objects, Types,
Functions and Rules', Comm. of the A C M , Vol. 34, No. 10, 1991, pp. 94-109.

[171 Melton J . (editor): 'Database Language SQL (SQL3)', ISO/ANSI working draft, X3H2-92-055 D B L
CNB-003,July 1992.

[18] Markowitz V , Makowsky J.: 'Identifying Extended Entity-Relationship Object Structures in
Relational Schemas', I E E E Tran, on Software Engineering, Vol. 16, No. 8, 1990.

[19] Navathe S., Awong: 'Abstracting Relational and Hierarchical Data with a Semantic Data Model',
Proc. 6th ER Conf., New York, 1987.

[201 Rogers T.R. , Cattell R.G.G.: ' Entity-Relationship Database User Interfaces', in: Readings in
Database Systems, ed. M. Stonebraker, 1988.

[211 Rowe L.A. , Stonebraker M.R.: 'The POSTGRES Data Model', in: Readings in Object-Oriented
Database Systems by Zdonik S.B. and Maier D., Morgan Kaufmann, CA. , 1990, pp. 461 -473.

(22] Servio Logic Development Corporation: 'Gemstone V2.0: Programming in OPAL', 1990.
[23] Shipman D.W.: 'The Functional Data Model and the Data Language I)APLEX\ A C M Trans, on

Database Systems, Vol. 6,1981, pp. 140-173.

