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Schema Vacuuming in Temporal Databases
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Abstract—Temporal databases facilitate the support of historical information by

providing functions for indicating the intervals during which a tuple was applicable

(along one or more temporal dimensions). Because data are never deleted, only

superceded, temporal databases are inherently append-only, resulting, over time,

in a large historical sequence of database states. Data vacuuming in temporal

databases allows for this sequence to be shortened by strategically, and

irrevocably, deleting obsolete data. Schema versioning allows users to maintain a

history of database schemata without compromising the semantics of the data or

the ability to view data through historical schemata. While the techniques required

for data vacuuming in temporal databases have been relatively well covered, the

associated area of vacuuming schemata has received less attention. This paper

discusses this issue and proposes a mechanism that fits well with existing

methods for data vacuuming and schema versioning.

Index Terms—Schema versioning, temporal databases, vacuuming.
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1 INTRODUCTION

THE development of temporal databases allows users a systematic
and sound mechanism for storing and retaining information with
due regard to both the history of an object and a system’s recording
of that history. In practice, complete histories are not required and
the removal of obsolete (as opposed to merely old) information
needs to occur. There may be strong pragmatic and business
reasons for both the retention of data and its subsequent deletion
after a period of time. For example, on one hand, statutory
requirements may require data to be held for a given number of
years, and on the other hand, exposure to Freedom of Information
(FOI) requests may encourage organizations to dispose of
unnecessary data.

The term vacuuming was first used in the Postgres database
system as a mechanism for moving old data to archival storage
[1]. It was later refined by Jensen and Mark in the context of
temporal databases to refer to the removal of obsolete information
[2] and subsequently developed into a comprehensive and
useable adjunct to temporal databases [3], [4], [5]. Data expiry
has also been investigated in the context of data warehouses by
Garcia-Molina et al. [6] and others [7].

Schema versioning facilitates the provision of multiple sche-
mata that together form the history of the structure of a database.
Historical schemata can be used not only to query data according
to the shape of the database at some point in the past but also to
eliminate (or at least reduce) the need to regenerate application
systems when minor (in theory bijective) schema changes are
made. They can also allow for prospective data entry, where the
structure of future data does not match the current schema.

The development of the TSQL2 language [8] discussed inter alia
both data vacuuming [9] and schema versioning [10]. In the latter
(and in other work [11]), it was noted that metadata also becomes
obsolete and, like data, needs a vacuuming process. While schema
expiration has not been explicitly discussed, the self-maintenance

of temporal views in data warehouses has been investigated by
Yang and Widom [12] who use the BCDM (which was also the
TSQL2) temporal data model [13] as a base.

This short paper discusses the removal of obsolete schema in

temporal databases providing a solution that is largely compatible

with existing frameworks.

2 RELATED RESEARCH

Over the past decade, substantial research has been undertaken to

extend conventional static DBMS to accommodate time [14], [15],

[16], [17], [18], [19]. As a result, temporal databases now provide

significant semantic and functional advantages. However, their

append-only nature results in the need to handle, in a systematic

manner, issues that have previously been either inapplicable or can

otherwise be trivially dealt with. Some of these issues include the

following:

. The management of obsolete data and the need to
faithfully manage out-of-date data, as well as queries over
that data.

. The management of changing schema (and subschema)
definitions, including the deletion of obsolete schema
definitions.

We outline below a short background to some associated

concepts. Given the space available, there is insufficient space to

provide full details, and the reader is directed to the cited work for

more information. The BCDM model is given to illustrate the ideas;

however, the ideas are more widely applicable to other temporal

models.

2.1 The BCDM Temporal Data Model

The bitemporal conceptual data model (BCDM) [13], [20] was

developed to bring together a variety of existing models by

presenting a single bitemporal conceptual model independent of the

data model on which the physical system might be built. Using the

idea of bitemporal chronons (as the smallest element in the two-

dimensional space defined by transaction time and valid time), a

relation R consists of a number of attributes, A1; A2; . . .An, plus

a timestamp attribute T . A tuple can therefore be given as

ða1; a2; . . . ; anjtÞ, where t is a collection of chronons.
The BCDM has been used widely, including in data ware-

houses, temporal OODBS, schema versioning, and XML support

[12], [21], [22], [23], [24], [25].

2.2 Data Vacuuming

Temporal databases are append only, which, as discussed earlier,

requires an additional procedure to remove obsolete data.

Consider the relation outlined in Fig. 1, which shows the histories

of five staff, one of which had an incorrect salary recorded for

almost a year ðt2; t3Þ, one of whom was left in 2004 ðt6Þ, and a third

who received a salary increase on 1 April 2007 ðt7; t8; t9Þ. Fig. 2

shows the same relation vacuumed according to the specification:

v1 �ðEmplÞ : �TTend�NOW�1yrðEmplÞ
v2 �ðEmplÞ : �V Tend�NOW�3yrsðEmplÞ:

That is, all corrected errors are removed ð�Þ after one year, and

all other old data are deleted after three years. Note that the

deletion of data violates the principle of faithful history encoding [3]

or temporal succession [26]. In essence, these two similar concepts

stipulate that the history of an object of interest should be

preserved. The deletion of data clearly does not allow this.
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Skyt proposed a Persistent Views (P-Views) method to provide

data independence for queries in temporal databases with

vacuuming capability [4]. Her P-Views mechanism provides a

rigorous method whereby subschemas may be defined that is

resilient to vacuuming.

2.3 View Maintenance

View maintenance, both for databases [27] and for data ware-

houses [28], [29] deals with the maintenance of views as the

structure (and sources) of the underlying information changes.

Since views are decoupled from the schema definition, little of the

research deals with the deletion of views and none with the

consequences for any dependent data.

2.4 Schema Versioning

While historical schema do not take up a lot of space, they restrict

the possible evolution of a schema. Full schema versioning is

commonly not possible, and in previous work, partial schema

versioning was identified as a pragmatic compromise. Specifically,

partial schema versioning is supported when . . . a database system

allows the viewing of all data, both retrospectively and prospectively,

through user definable version interfaces. Data updates are allowable

through reference to one designated (normally the current) schema

definition only [11].
Schema vacuuming is important because even partial schema

versioning is only possible in those cases where the current

schema is able to show the effect of updates through historical

schemata.

3 VACUUMING SCHEMATA

In the work of Skyt et al. [3] two concepts are defined:

1. Faithful history encoding discussed earlier, which is
violated when all previously current states are not
retained. Data vacuuming violates this principle.

2. Faithful history querying that states that only queries able
to provide a faithful answer (i.e., an answer that would
produce identical results over both vacuumed and unva-
cuumed databases) are to be allowed.

Since these concepts have been regarded as sensible by a

number of researchers, we discuss this work as it relates to these

concepts. Note that the extensions proposed here do not restrict the

allowable data vacuuming specifications.

3.1 Faithful History Encoding

Unlike for data vacuuming, schema vacuuming does not necessa-

rily violate faithful history encoding. Given two schemata1 St1 and

St2 , where t1 < t2, if St1 � St2 (i.e., St2 dominates St1 through an

information capacity preserving mapping [q.v. 30]), then from the

perspective of faithful history encoding, we would not lose access

to any data if St1 was vacuumed, and St2 was backdated to t1.

However, a new issue now arises in that there are now attributes

defined at t2 that have no data defined for the interval ðt1; t2�.
Merely placing nulls in those attributes runs the risk of these nulls

being misinterpreted. Thus, a new null value, that of attribute

undefined, �, needs to be introduced.
Consider the relation from the example earlier in Fig. 1 in which

a schema change was performed to add an attribute on 1 January

2005. Since schema versioning is tied to transaction time, all tuples

entered before 1 January 2005 have no value for the new attribute,

and if viewed through the revised schema, it must show attribute

undefined, �, in the new PhD? attribute, as shown in Fig. 3. Those

tuples entered after the schema change can contain either a value
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Fig. 1. Example bitemporal relation before vacuuming.

Fig. 2. Example temporal relation after vacuuming (assuming NOW ¼ 1-Jun-2007).

1. We use the notation that schema Stn is the schema valid during the
interval ðtn; tnþ1� when schema Stnþ1

takes over as the current schema.

Fig. 3. Example temporal relation with new attribute defined on 1 January 2005.



or the null � value. Note that the � can persist—applying the data

vacuuming specification earlier will still have tuples (t1 and t7)

with an attribute undefined value.
Consider now the case where there are two schemata St1 and St2

such that St1 � St2 . For example, consider that the PhD? attribute
existed in St1 and was deleted in St2 . In that case, St1 could not be
vacuumed without violating faithful history encoding. However,
St2 could be vacuumed if all tuples added after January 1, 2005
had a value of � in PhD?

In the case where St1 and St2 are disjoint, neither can be
vacuumed; however, a completed schema (first discussed in [31]
following on from the completed relation concept of Clifford and
Warren [32]) could be used that would contain the minimal union
of all attributes that have been defined during the interval in
question.

Formally, given a set of schema S ¼ fSt1 ; . . . ; Stig, consisting of

combinations of relations R1ðA11
. . .A1m Þ . . .RiðAi1 . . .Ain Þ, a com-

pleted schema CðR01 . . .R0iÞ over S is defined such that 8Stk 2 S,

8Rj 2 Stk , 9R0j 2 C : 8Stk8Aji 2 Rj : Aji 2 R0j.
Note that two caveats are imposed:

. It is assumed that where a version of a schema is created
through the merging of two relations (or the splitting of a
relation into two), the resulting relation(s) are considered
new with the old relation(s) deleted.

. It is assumed that when the primary keys of a relation are
amended, a new relation is created.

In all cases, a completed schema can be created but the user will be
required to facilitate historical data viewing. For example, consider
the merging of two employee relations containing, say, the details
of employees of organizations being combined. Consider now a
new employee’s data—to which original relation is this data to be
attributed?

In the general case, if CðR01 . . .R0iÞ is a completed schema
defined over a sequence of schemata St1 . . .Stn , then St1 . . .Stn can
be vacuumed subject to C being used as a replacement and
undefined values being populated with a value of �. In the simple
case of two temporally adjacent schema such that Sth � Sthþ1

, Sth
can be removed as long as Sthþ1

is applied over the complete
interval and undefined attributes are populated with �.

In terms of update, since data updates are allowable through

reference to one designated schema, there are no issues with �.

3.2 Faithful History Querying

In respect of schema vacuuming, faithful history querying can be

violated in two ways:

1. When a query implicitly or explicitly specified a schema
that has been vacuumed.

2. When a query is unsafe.2 For schema vacuuming, this
means it would either

a. provide in the result, or
b. evaluate over

an attribute value of attribute undefined, �. For example,

�ðEmplId;SalaryÞ�ðDept¼0Sales0ÞðEmplÞ
�ðEmplId;PhD?Þ�ðDept¼0IT 0ÞðEmplÞ

are safe, whereas

�ðEmplId;SalaryÞ�ðPhD?¼0Y es0ÞðEmplÞ
�ðEmplId;PhD?Þ�ðDept¼0Mgmt0ÞðEmplÞ

are not.

There are two strategies that can be adopted. First, we can

adopt the same approach as that of Skyt et al. [3] in that the query

is rejected. This is the only option for Cases 1 and 2b above and can

also be applied in Case 2a. Secondly, for Case 2a, we can also,

optionally, provide a result as long as the attribute undefined, �,

values are clearly distinguished and understood.

3.3 Other Issues

3.3.1 Single versus Multi-Pool Extensional Data

De Castro et al. [33] discuss multi-pool data storage. In this

architecture, each version has its own part of the extensional data

store corresponding to the schema active at that point in history.

That is, a query about data stored at tn references the data pool for

the schema active at tn.
The multipool solution has little need for the ideas outlined in

this paper until multi-schema queries are issued. At that point,

because hybrid schema are then required, the strategies outlined

here can be usefully employed.

3.3.2 Consistency with Previous Proposals

In the TSQL2 proposals [10] two suggestions are made regarding

schema vacuuming:

1. Automatic vacuuming. All schema definitions that predate all
data (both in format and in transaction-time values) are to be
considered obsolete and should be deleted.

In practice, since it is unlikely that data vacuuming

statements that use TTStart as a clause will have been

specified, we will need to inspect the database following

any data vacuuming to ascertain if any schema are now

obsolete. That is, are there any schema Stn valid between tn
and tnþ1 such that 8t : tn � t < tnþ1, CðStn ; Stnþ1

Þ ¼ Stn?
2. Selective vacuuming. Old schema definitions are considered

valuable independent of whether data exists and may only be
deleted through an explicit request to vacuum.

In this case, the inverse criterion to that above would be

used to warn users of a potential loss of data.

4 CONCLUSIONS

Schema vacuuming is an important consideration, but it must be

done with a view to maintaining, as far as possible, concepts such

as faithful history querying. This short paper has outlined a

mechanism centred on the use of completed schema and a new

attribute undefined, � value, which is compatible to preexisting

research such as that proposed for TSQL2 and in work such as that

discussed by Skyt et al. [3].
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