
 1

Federation views as a basis for querying and updating
database federations

H. Balsters, E.O de Brock

University of Groningen
Faculty of Management and Organization

P.O. Box 800
9700 AV Groningen, The Netherlands

{h.balsters, e.o.de.brock}@bdk.rug.nl

Abstract. This paper addresses the problem of how to query and update so-called database
federations. A database federation provides for tight coupling of a collection of heterogeneous
component databases into a global integrated system. This problem of querying and updating a
database federation is tackled by describing a logical architecture and a general semantic
framework for precise specification of such database federations, with the aim to provide a basis
for implementing a federation by means of relational database views. Our approach to database
federations is based on the UML/OCL data model, and aims at the integration of the underlying
database schemas of the component legacy systems to a separate, newly defined integrated
database schema. One of the central notions in database modelling and in constraint
specifications is the notion of a database view, which closely corresponds to the notion of
derived class in UML. We will employ OCL (version 2.0) and the notion of derived class as a
means to treat (inter-)database constraints and database views in a federated context. Our
approach to coupling component databases into a global, integrated system is based on
mediation. The first objective of our paper is to demonstrate that our particular mediating system
integrates component schemas without loss of constraint information. The second objective is to
show that the concept of relational database view provides a sound basis for actual
implementation of database federations, both for querying and updating purposes.

1. Introduction

Modern information systems are often distributed in nature. Data and services are often
spread over different component systems wishing to cooperate in an integrated setting.
Cooperation of component systems in one integrated information system is becoming
more and more important since information is often spread over different databases in
an organization (or even spread over different organizations). Such information
systems involving integration of cooperating component systems are called federated
information systems; if the component systems are all databases then we speak of a
federated database system ([ShL90]). This tendency to build integrated, cooperating
systems is often encountered in applications found in EAI (Enterprise Application

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6909233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Integration), which typically involve several, usually autonomous, component systems
(data and service repositories), with the desire to query and update information on a
global, integrated level. In this paper we will address the situation where the
component systems are so-called legacy systems; i.e. systems that are given beforehand
and which are to interoperate in an integrated single framework in which the legacy
systems are to maintain as much as possible their respective autonomy.
A major obstacle in designing interoperability of legacy systems is the heterogeneous
nature of the legacy components involved. This heterogeneity is caused by the design
autonomy of their owners in developing such systems. To address the problem of
interoperability the term mediation has been defined [Wie95]. A database federation
can be seen as a special kind of mediation, where all of the data sources are (legacy)
databases, and the mediator offers a mapping to a (virtual) DBMS-like interface. In our
paper we will consider a tightly-coupled approach to database mediation, in which a
global integrated schema of the federation is maintained. We base our approach on the
“Closed World Assumption” (CWA, [Rei84]), where the integrated database is to hold
-in some manner- the “union” of the data in the underlying component databases,
without actually migrating any data from the component databases to the integrated
database. The user of the federated system will be offered the impression that he is
working with a monolithic homogeneous database system, while in fact this system
basically resembles an interface, mapping interactions on the federated level to actions
on the existing local database components. More precisely, the federated database will
consist of an integrated database view on top of the existing legacy database
components. For an overview of work on the virtual approach to database federation,
we refer to [Hull97].
We will first concentrate on problems concerning schema integration of component
legacy schemas on the level of the mediator. Once we have constructed a single, global
schema for the database federation, we will subsequently offer a solution to the
problem of defining an actual implementation of the integrated database; our solution is
based on the concept of relational database view.
Schema integration requires the definition of relationships between schema elements of
component systems. Detection and definition of such relationships can be heavily
complicated by so-called semantic heterogeneity [DKM93,Ver97,TS01]. Semantic
heterogeneity refers to differences in the meaning, interpretation, or intended use of
related data. In [Ver97] semantic heterogeneity was treated in the context of a special-
purpose modeling language for object-oriented databases ([BBZ93, BS98]). In this
paper we will focus on the UML/OCL data model to tackle the problem of integrating
semantic heterogeneity. UML/OCL offers a high-level specification language and is
equipped with a unique combination of high expressiveness with a large degree of
precision. Also, UML is the de facto standard language for analysis and design in
object-oriented frameworks, and is being employed more and more for analysis and
design of information systems, in particular information systems based on databases
and their applications. In this paper, we will assume that component databases (e.g.

 3

relational databases, cf. [BP98]) can somehow be modelled in the UML/OCL-
framework.
One of the central notions in database modelling is the notion of a database view,
which closely corresponds to the notion of derived class in UML. We will employ OCL
and the notion of derived class as a means to treat database constraints and database
views in a federated context. In [Bal02] it is demonstrated that in the context of
UML/OCL the notion of derived class can be given a formal basis, and that derived
classes in OCL have the expressive power of the relational algebra. Hence, OCL has
the explicit power to emulate basic features of the relational query language SQL. Our
paper demonstrates that our particular mediating system integrates component schemas
without loss of constraint information; i.e., no loss of constraint information available
at the component level may take place as result of integrating on the level of the virtual
federated database. We will treat integration conflicts in a tightly-coupled environment,
and show how to solve them by introducing a so-called integration isomorphism. This
isomorphism will support the CWA-principle for database federations by correctly
mapping a collection of legacy databases to a virtual integrated database. Key to
establishing this integration isomorphism is the construction of a so-called
homogenizing function; the homogenizing function (cf. [BB01, Bal03]) maps schemas
of component databases to the schema of the integrated database. We note that this
paper basically explains our approach in terms of (illustrative) examples; in [Bal03],
however, we offer a more abstract and general approach by providing a heuristics and a
methodology for constructing database federations from a more or less arbitrary
collection of component databases.
The last part of our paper is concerned with offering a framework for actual
implementation of the integrated database using the concept of relational database
view. This implementation is constructed through successive and systematic mapping
of the base tables in the component databases to the (virtual) tables in the integrated
database through relational database views. This mapping is based on the integration
isomorphism, described above. From the user perspective, the integrated database can
then be addressed as if it were a normal, monolithic relational database, which can be
queried and updated in the usual fashion. Querying boils down to querying the
constructed views in SQL, while updating is regulated by means of properly defined
checks on the involved views and by subsequently performing updates on the base
tables occurring in the component databases. We conclude our paper with a section on
architecture and the role of component autonomy.

2. UML/OCL as a specification language for databases

Recently, researchers have investigated possibilities of UML as a modelling language
for (relational) databases. [BP98] describes in length how this process can take place,
concentrating on schema specification techniques. [DH99, DHL01] investigate further
possibilities by employing OCL ([WK99, OCL2.0]) for specifying constraints and

 4

business rules within the context of relational databases. The idea is that OCL provides
expressiveness in terms of relatively abstract set definitions that should prove to be
sufficient to capture the general notion of (relational) database view. In the more
specific context of relational databases and OCL, [DH99] offer a framework for
representing constraints within the relational data model. Current research, however,
has not yet shown an effective way to deal with an important aspect of (relational)
database modeling, namely modeling of so-called database views. A (database) view is
a virtual table (or derived relation, in SQL), meaning that a view does not exist as a
physical relation; rather a view is defined by an expression much like a query
[GUW02]. Views, in turn, can be queried as if they existed physically, and in some
cases, we can even modify view content. That is, a user is offered the impression that a
view is some base relation inside the database, but in fact it is a derived (or virtual)
relation defined in terms of the actual base relations constituting the database. View
definitions are an important asset in database applications, because users are usually
only interested in a part of the database, and not in the complete underlying corporate
database. Hence, it is important that users have access to that part of the database
considered relevant for their category of database applications. Our application area for
views is focused on Federated Databases, where legacy databases are to interoperate by
employing a so-called mediating system. This mediating system can be considered as
an integration of a set of certain database views defined on the component legacy
database systems.

3. Basic principles: Databases and views in UML/OCL

Let’s consider the case that we have a class called Emp1 with attributes nm1 and
sal1, indicating the name and salary of an employee object belonging to class Emp1

Now consider the case where we want to add a class, say Emp2, which is defined as a
class whose objects are completely derivable from objects coming from class Emp1.
The calculation is performed in the following manner. Assume that the attributes of
Emp2 are nm2 and sal2 respectively (indicating name and salary attributes for Emp2
objects), and assume that for each object e1:Emp1 we can obtain an object e2:Emp2
by stipulating that e2.nm2=e1.nm1 and e2.sal2=(2 * e1.sal1). By definition the total
set of instances of Emp2 is the set obtained from the total set of instances from Emp1
by applying the calculation rules as described above. Hence, class Emp2 is a view of
class Emp1, in accordance with the concept of a view as known from the relational

 Emp1

nm1: String
sal1: Integer

 5

database literature. In UML terminology [BP98], we can say that Emp2 is a derived
class, since it is completely derivable from other already existing class elements in the
model description containing model type Emp1.
We will now show how to faithfully describe Emp2 as a derived class in UML/OCL
(version 2.0) in such a way that it satisfies the requirements of a (relational) view. First
of all, we must satisfy the requirement that the set of instance of class Emp2 is the
result of a calculation applied to the set of instances of class Emp1. The basic idea is
that we introduce a class called DB that has an association to class Emp1, and that we
define within the context of the database DB an attribute called Emp2. A database
object will reflect the actual state of the database, and the system class DB will only
consist out of one object in any of its states. Hence the variable self in the context of
the class DB will always denote the actual state of the database that we are
considering. In the context of this database class we can then define the calculation
obtaining the set of instances of Emp2 by taking the set of instances of Emp1 as
input.

context DB
def: Emp2: Set(Tupletype{nm2:String, sal2: Integer}) =
 (self.emp1 -> collect(e:Emp1 |
 Tuple{nm2=e.nm1, sal2=(2*e.sal1)}))-> asSet

In this way, we explicitly specify Emp2 as the result of a calculation performed on the
base class Emp1. Graphically, we could represent Emp2 as follows

 (1)

where the slash-prefix of Emp2 indicates that Emp2 is a derived attribute. Since in
practice such a graphical representation could give rise to rather large box diagrams
(due to lengthy type definitions), we will use the following (slightly abused) graphical
notation (2) to indicate this derived class

 *
 (2)

 DB

 ….

 Emp1

nm1:String
sal1: Integer

 DB

/Emp2: Set(Tupletype{nm2:String, sal2: Integer})

 DB

 /Emp2

nm2:String
sal2:Integer

 6

The intention is that these two graphical representations are to be considered
equivalent; i.e., graphical representation (2) is offered as a diagrammatical convention
with the sole purpose that it be formally equivalent (translatable) to graphical
representation (1). Note that we have introduced a root class DB as an aid to represent
the derived class \Emp2. Since in OCL, we only have the possibility to define attributes
and operations within the context of a certain class, and class Emp1 is clearly not
sufficient to offer the right context for the definition of such a derived construct as
derived class Emp2, we had to move up one level in abstraction towards a class such as
DB. A derived class then becomes a derived attribute on the level of the class DB.

4. Component frames

We can also consider a complete collection of databases by looking at so-called
component frames, where each (labelled) component is an autonomous database
system (typically encountered in legacy environments). As an example consider a
component frame consisting of two separate component database systems: the CRM-
database (DB1) and the Sales-database (DB2)

 * *

 �acc-manager *
 * *

Most of the features of DB1 speak for themselves. We offer a short explanation of
some of the less self-explanatory aspects: Pers is the class of employees responsible
for management of client resource; part indicates that employees are allowed to work
part time; hnr indicates house number; telint indicates internal telephone number;
acc-manager indicates the employee (account manager) that is responsible for some
client’s account. We furthermore assume that database DB1 has the following
constraints

context Pers inv:
Pers.allInstances --> isUnique (p: Pers | p.prsno)
sal <= 1500
telint >= 1000 and telint <= 9999

 Pers

prsno: Integer
name: String
sal: Integer -- in $
part:enum{1,2,3,4,5}
street: String
hnr: String
city: String
telint: Integer

 DB1

 C1ient

clno: Integer
clname: String
addr: String

 7

context C1ient inv:
C1ient.allInstances --> isUnique (c: C1ient | c.clno)

The second database is the so-called Sales-database DB2

 * *

 ����-manager * *

Most of the features of DB2 also speak for themselves. We offer a short explanation of
some of the less self-explanatory aspects: Emp is the class of employees responsible for
management of client order; func indicates that an employee has a certain function
within the organization; ord-manager indicates the employee (account manager) that
is responsible for some client’s order.
We assume that this second database has the following constraints:

context Emp inv:
Emp.allInstances --> isUnique (p: Emp | p.eno)
sal >= 1000
tel.size <= 16

context Order inv:
Order.allInstances --> isUnique (c: Order | c.ordno)
Order.allInstances --> forall(c: Order | c.ord-manager.func =
`Sales’)

We can now place the two databases DB1 and DB2 without confusion into one
component frame EX-CF as seen in the following diagram

 CRM Sales

 * * * *
 * *

 DB2
 Emp

eno: Integer
name: String
sal: Integer -- in �
func: String
addr: String
city: String
tel: String

 Order

ordno: Integer
clno: Integer
clnm: String

 EX-CF

 DB1 DB2

 Pers C1ient Emp Order
acc-manager ord-manager

 8

The two databases DB1 and DB2 are –in the case of this example- related, in the sense
that an order-object residing in class Order in DB2 is associated to a certain client-
object in the class C1ient in DB1. On the component frame level, we can define a
auxiliary (partial) function mapping an order object in class Order to a client object
class C1ient. We do this by assuming an operation in the class Order, called
linkToC1ient.

context Order::linkToC1ient(): Client
post: self.linkToClient.clno = self.clno

Since the attribute clno (in Client) has a unique value, the link from Order to C1ient is
properly defined. (We have assumed that there always exists a corresponding clno-
value in the class Client for each clno-value in the class Order. This is an example of a
so-called inter-database constraint; we refer to Section 9 for more details on this
category of constraints.)

5. Semantic heterogeneity: the integrated database DBINT

The problems we are facing when trying to integrate the data found in legacy
component frames are well-known and are extensively documented (cf. [ShL90]). We
will focus on one of the large categories of integration problems coined as semantic
heterogeneity (cf. [Ver97]). Semantic heterogeneity deals with differences in intended
meaning of the various database components. Integration of the source database
schemas into one encompassing schema can be a tricky business due to: renaming
(homonyms and synonyms); data conversion (different data types for related
attributes); default values (adding default values for new attributes); missing attributes
(adding new attributes in order to discriminate between certain class objects);
subclassing (creation of a common superclass and subsequent accompanying
subclasses).
 By homonyms we mean that certain names may be the same, but actually have a
different meaning (different semantics). Conflicts due to homonyms are resolved by
mapping two same name occurrences to different names in the integrated model. In the
sequel, we will refer to this solutuion method as hom. Synonyms, on the contrary, refer
to certain names that are different, but have the same semantics. Synonyms are treated
analogously, by mapping two different names to one common name; this solution
method is referred to by syn.
In the integration process, one often encounters the situation where two attributes have
the same meaning, but that their domain values are differently represented. For
example, the two attributes sal in the Pers and the Emp class of databases DB1 and

 9

DB2, respectively, both indicate the salary of an employee, but in the first case the
salary is represented in the currency dollars ($), while in the latter case the currency is
given in euros (�����	
�����
��������������������	�����������������
���������
���
(e.g. $, invoking a function convertTo$). Applying a conversion function to map to
some common value in the integration process, is indicated by conv.
Sometimes an attribute in one class is not mentioned in another class, but it could be
added there by offering some suitable default value for all objects inside the second
class. As an example, consider the attribute part in the class Pers (in DB1): it could
also be added to the class Emp (in DB2) by stipulating that the default value for all
objects in Emp will be 5 (indicating full-time employment). Applying this principle of
adding a default value in the integration process, is indicated by def.
The integration of two classes often calls for the introduction of some additional
attribute, necessary for discriminating between objects originally coming from these
two classes. This will sometimes be necessary to be able to resolve seemingly
conflicting constraints. As an example, consider the classes Pers (in DB1) and Emp (in
DB2). Class Pers has as a constraint that salaries are less than 1500 (in $), while class
Emp has as a constraint that salaries are at least 1000 (in ���� �	�� ���� ������
ints
seemingly conflict with each other, obstructing integration of the Pers and the Emp
class to a common class, say PERS. However, by adding a discriminating attribute
dep indicating whether the object comes from the CRM or from the SLS department,
one can differentiate between two kinds of employees and state the constraint on the
integrated level in a suitable way. .Applying the principle of adding a discriminating
attribute to differentiate between two kinds of objects inside a common class in the
integration process, will be indicated by diff. The situation of a missing attribute
mostly goes hand in hand with the introduction of appropriate subclasses. For example,
introduction of the discriminating attribute dep (as described above), entails
introduction of two subclasses, say CRM and SLS of the common superclass PERS, by
listing the attributes, operations and constraints that are specific to CRM- or SLS-
objects inside these two newly introduced subclasses. Applying the principle of adding
new subclasses in the integration process, is indicated by sub.

6. The integrated database DBINT

We now offer our construction of a virtual database EX-DBINT, represented in terms
of a derived class in UML/OCL. The database we describe below, intends to capture
the integrated meaning of the features found in the component frame described earlier.

 10

 * *

 * *
 *

 *
 *

 ord-man

This database has the following constraints:

context PERS inv:
PERS.allInstances ->
forall(p1, p2: PERS | (p1.dep=p2.dep and p1.pno=p2.pno) implies
p1=p2)
PERS.allInstances ->
forall(p:PERS |
(p.oclIsTypeOf(SLS) implies (p.sal >= 1000.convertTo$ and
part=5)) and (p.oclIsTypeOf(CRM) implies p.sal <= 1500))
tel.size <= 16

context CLNT inv:
Clnt.allInstances --> isUnique (c: CLNT | c.clno)

context ORD inv:
Order.allInstances --> isUnique (o: ORD | o.ordno)
ord-manager.func = `Sales’

We shall now carefully analyze the specification of this (integrated) database EX-
DBINT, and see if it captures the intended meaning of integrating the classes in the
component frame EX-CF and resolves potential integration conflicts.

 /EX-DBINT

 /PERS

pno: Integer
pname: String
sal: Integer - - in $
part: enum{1,2,3,4,5}
addr: String
city: String
tel: String
dep:{“CRM”, “Sales”}

 /CLNT

clno: Integer
clname: String
addr: String
city: String
cntrcd: String

 /SLS

func: String

 /ORD

ordno: Integer

/CRM
acc-man

 11

Conflict 1: Classes Emp and Pers in EX-CF have partially overlapping attributes,
but Emp has no attribute part yet, and one still needs to discriminate between the
two kinds of class objects (due to specific constraints pertaining to the classes Emp
and Pers). Our solution in DBINT is based on applying syn + def + diff + sub (map to
common class name (PERS); add a default value (to the attribute part); add an extra
discriminating attribute (dep); introduce suitable subclasses (CRM and SLS)).
Conflict 2: Attributes prsno and eno intend to have the same meaning (a key
constraint, entailing uniquely identifying values for employees, for Emp- and Pers-
objects). Our solution in DBINT is therefore based on applying syn + diff (map to
common attribute name (pno); introduce extra discriminating attribute (dep)) and
enforce uniqueness of the value combination of the attributes pno and dep.
Conflict 3: Attributes sal (in Pers) and sal (in Emp) partially have the same
meaning (salaries), but the currency values are different. Our solution is based on
applying conv (convert to a common value).
Conflict 4: The attribute combination of street and hnr (in Pers) partially has the
same meaning as addr in Emp (both indicating address values), but the domain values
are differently formatted. Our solution is therefore based on applying syn + conv (map
to common attribute name and convert to common value).
Conflict 5: Attributes telint (internal telephone number) and tel (general telephone
number) partially have the same meaning, but the domain values are differently
formatted. Our solution is therefore based on applying syn + conv (map to common
attribute name and convert to common value).

7. Integrating by mediation

Our strategy to integrate a collection of legacy databases –given in some component
frame CF- into an integrated database DBINT is based on two principles, being:
tightly-coupled approach to database integration, followed by conformance to the
Closed World Assumption of Database Integration (CWA-INT).
The principle of CWA-INT can informally be described as follows: an integrated
database is intended to hold exactly the “union” of the data in the source databases in
the component frame CF. Requirement CWA-INT is a direct extension of the
traditional Closed World Assumption (CWA) found in the database literature. This
assumption (CWA) reads as follows: the only possible instances of a relation are those
implied by the database ([Rei84]). In this sense, a database is considered to be
complete. Extending CWA to the context of database integration, is first discussed in
[Hull97], leading to the assumption that we have coined as CWA-INT. This (informal)
requirement has to be further investigated for consequences when applied to querying
and to updating an integrated database. In more mathematical terms, we will demand
that the universe of discourse of component frame CF and the universe of discourse of
the integrated database DBINT are, in a mathematical sense, isomorphic; only in this

 12

way will we not lose any information when transforming the legacy components to the
integrated database. We will demonstrate, in terms of constraints described in OCL,
that the universe of discourse of our example component frame EX-CF and the universe
of discourse of the example integrated database EX-DBINT are indeed isomorphic.
We shall coin this isomorphism as the so-called integration isomorphism.
We will describe a UML model containing a class, called the mediator, explicitly
relating the component frame EX-CF and the virtual integrated database EX-DBINT. We
will do so, by systematically exploiting various conversion functions, linking objects in
the component frame EX-CF to objects in the integrated database EX-DBINT.
Constructing these links is done in a very deliberate fashion, with the aim to establish
an integration isomorphism between EX-CF and EX-DBINT.
In our setting, mediation is performed by introducing an explicit class Mediator,
connecting EX-CF and EX-DBINT

 CF DBINT

The mediator has the task to correctly link the component frame EX-CF to the (virtual)
database EX-DBINT. This is not a trivial task and involves a precise mapping of
component elements to the virtual database. The mapping also has to take into account
various constraint conditions which rule inside EX-CF. We do this by introducing
suitable conversion operations inside the classes.

8. Mapping the component frame to the virtual integrated database

In this section we will describe how to add a method, called Hom, to the top-level class
EX-CF resulting in an element (database state) of the integrated database EX-DBINT.
We assume that we have the following type abbreviations at our disposal:

PERSTYPE = TupleType(pno: Integer, pname: String, sal: Integer,
part: enum{1,2,3,4,5}, addr: String, city: String, tel: String,
dep: enum{`CRM’, `Sales’})

SLSTYPE = TupleType(pno: Integer, pname: String, sal: Integer,
part: enum{1,2,3,4,5}, addr: String, city: String, tel: String,
dep: enum{`CRM’, `Sales’}, bonus: Integer, func: String)

CLNTTYPE = TupleType(clno: Integer, clname: String, addr: String,
acc-man: PERSTYPE)

ORDTYPE = TupleType(ordno: Integer, ord-man: SLSTYPE)

 Mediator EX-CF /EX-DBINT

 13

Furthermore, we assume the existence of a conversion function convertToCLNT
within the class Client (of DB1) with the following definition

context Client
def: convertToCLNT(): CLNTTYPE = Tuple{clno=self.clno,
clname=self.clname, addr=self.addr,
acc-man=self.acc-manager.convertToCRM}

In the Pers-class we postulate the existence of a conversion function convertToCRM

context Pers
def: convertToCRM(): PERSTYPE = Tuple{pno=self.prsn,
pname=self.name, sal=self.sal, part=self.part,
addr= self.street ->concat((` ’) ->concat(self.hnr)),
city=self.city, tel= `+31-50-363’->concat(self.telint),
dep=`CRM’}

Notice that the function convertToCRM is injective! (We have assumed that the
attribute hnr does not contain two consecutive spaces.) We also define two functions
converting the objects in the Emp-class to corresponding objects in the SLS- and
PERS-class of DBINT, by the conversion functions convertToSLS and
convertToPERS within the class Emp with the following (rather trivial) definition

context Emp
def: convertToSLS(): SLSTYPE = Tuple{pno=self.eno,
pname =self.name, sal=self.sal.convertTo$, part=self.part,
addr=self.addr, city=self.city, tel=self.tel, dep=`SLS’,
bonus=self.bonus, func=self.func}

def: convertToPERS(): PERSTYPE = Tuple{pno=self.eno,
pname= self.name, sal=self.sal.convertTo$, part=self.part,
addr= self.addr, city=self.city, tel=self.tel, dep=self.dep}

A bit more difficult is the definition of a function converting the objects in the Order-
class to corresponding objects in the ORD-class of DBINT. We do this by employing a
conversion function convertToORD within the class Order with the following
definition

context Order
def: convertToORD():ORD = Tuple{ordno=self.ordno,
ord-man=(self.ord-manager).convertToSLS,
clnt= (self.linkToC1ient).convertToClnt}

where the previously defined operation linkToC1ient provides the link to the
unique Client-object associated to a given Order-object.
We are now in the position to relate the component frame CF to the integrated
database, coined EX-DBINT. We shall proceed by first defining a basic type

 14

DBINTTYPE, and showing how we can define a homogenizing function Hom inside the
class EX-CF, mapping elements of the component frame to the integrated database.

DBINTTYPE = TupleType(CRM: Set(PERSTYPE), SLS: Set(SLSTYPE),
CLNT: Set(CLNTTYPE), ORD: Set(ORDTYPE), PERS: Set(PERSTYPE)}

We now introduce the definition of the homogenizing function within the context of the
component frame class EX-CF:

context EX-CF
def: Hom():DBINTTYPE = Tuple{CRM=(self.CRM.Pers.allInstances ->
collect(p| p.convertToCRM))-> asSet,
 SLS=(self.Sales.Emp.allInstances ->
collect(e| e.convertToSLS))-> asSet,
 CLNT=(self.CRM.C1ient.allInstances ->
collect(c| c.convertToCLNT))-> asSet,
 ORD= (self.Sales.Order.allInstances ->
collect(o| o.convertToORD)) -> asSet,
 PERS= (((self.CRM.Pers.allInstances ->
collect(p| p.convertToCRM))-> union(self.Sales.Emp.allInstances))
 -> collect(e | e.convertToPERS)) -> asSet}

With this homogenizing function we can define the missing link providing the
definition of the virtual database DBINT. We do this by adding the appropriate
definition to the mediator class.

context Mediator
def: EX-DBINT: DBINTTYPE = Tuple{CRM= (self.CF.Hom).CRM,
SLS= (self.CF.Hom).SLS, CLNT= (self.CF.Hom).CLNT,
ORD= (self.CF.Hom).ORD, PERS= (self.CF.Hom).PERS}

The homogenizing function Hom has the following effect:��t maps a CF-state to a
DBINT-state, as depicted below

(DB1(Pers-table, Client-table), DB2(Emp-table, Order-table))

 Hom

 (PERS-table, CRM-table, SLS-table, CLNT-table, ORD-table)

�
It is now easily verified that the combination of the definition of the homogenizing
function together with the definition of EX-DBINT offered in the Mediator class,
indeed results in an integration isomorphism linking the component frame EX-CF to the
integrated database EX-DBINT. Our definition of EX-DBINT also captures the desired
constraints specified in Section 6. More details on the integration isomorphism can be
found in [Bal03].

 15

There is still one category of constraints that we have to deal with in order to get the
picture complete, the so-called inter-database consraints, described in the next section.

9. Inter-database constraints�

Additional information analysis might reveal the following two wishes regarding data
in the component frame CF:

(1) Nobody should be registered as working for both the CRM and Sales department;
i.e., these departments should have no employees in common
(2) Client numbers in the Sales database should also be present in the CRM database

On the level of DBINT, these constraints are specified as follows (taking into effect
the mapping properties of the mapping Hom):�

context DBINT inv:
let X= (self.CRM.allInstances -> collect(c:CRM| c.pno))-> asSet
let Y= (self.SLS.allInstances -> collect(s:SLS| s.pno))-> asSet
let V= (self.CLNT.allInstances ->
 collect(c:CLNT| c.clno))-> asSet
let W= (self.ORD.allInstances ->
 collect(o: ORD| o.clno))-> asSet
in
(X-> Intersect(Y)) -> isEmpty and
(W-> forall(w:W| V-> exists(v:V| w=v)))

In this way, we can easily specify constraints that are actually inter-database constraints
on the componet frame level (namely between the databases DB1 and DB2) as table
constraints on the level of DBINT.
Now that we have constructed our integration isomorphism, and we also have
described how to deal with inter-database constraints, the road is open to offer an actual
implementation of DBINT, as described in the following section.

10. How do we implement the integrated database DBINT?

Our aim in implementing DBINT –from the user perspective- is to be able to treat
DBINT as a normal, monolithic database and, hence, query and update DBINT in the
usual fashion. We will demonstrate that we can reach our aim through succesive and
systematic mapping of the base tables in CF to the (virtual) tables in DBINT by
exploiting the concept of relational database view. Our mapping is based on the
integration isomorphism, which offers us a way to traverse in a unique manner from the
integrated database to the component databases, and vice versa.

 16

Our approach is basically as follows

• construct SQL-views of each of the tables described in DBINT�
• assume that we –somehow- have relational representations of the base tables in the
component frame CF (e.g. via gateways, cf. [HP97])
• querying DBINT now boils down to querying the constructed SQL-views
• initially, the views will respect the constraints present in DBINT, and in the case that
we want to update DBINT, we will use a suitable updating action to first perform a
check on the involved views and subsequently perform updates on the base tables in
CF
• we can now update through the constructed views, since the homogenizing function
constitutes an isomorphism, and each tuple in a view corresponds to exactly one
combination of tuples in the base tables

In the following sections we will show how we realize these SQL-views, in this paper
called federation views, and also how to properly define a database trigger in the case
that we want to perform updates on the federation.

Constructing federation views

We will now show how to construct SQL-views of the tables in DBINT. First we will
construct a view of the PERS-table

CREATE VIEW PERS(pno, pname, sal, part, addr, zip, city, tel,
cntrcd, dep) AS
(SELECT t.prsno, t.name, t.sal, t.part, t.street&`’&t.hnr,
Num2Chr(t.zip.num)&`’&t.zip.letcom, t.city, `+31-50-363’ &
Num2Chr(t.telint), `NL’, `CRM’
FROM CF@CRM.Pers t)
UNION
(SELECT t.eno, t.name, convertTo$(t.sal), 5, t.addr, t.zip,
t.city, t.tel, t.cntrcd, `SLS’
FROM CF@Sales.Emp t);

Note that we have left open how to describe, in terms of SQL, the actual
implementation of the function convertTo$. In any case, we have to achieve that
this function turns out to be injective. (Should this not be possible in a direct manner,
then we could resort to adding an extra attribute, e.g. using a separate currency attribute
indicating which currency symbol is actually used.)

SQL-views of the tables SLS, CRM, CLNT, and ORD are more or less
straightforward:

 17

CREATE VIEW SLS(pno, bonus, func) AS
SELECT t.eno, t.bonus, t.func
FROM CF@Sales.Emp t;

�
CREATE VIEW CRM(pno) AS
SELECT t.pno
FROM PERS t
WHERE t.dep=`CRM’;

CREATE VIEW CLNT(clno, clname, addr, zipcity, cntrcd, acc-man-no)
AS
SELECT t.clno, t.clname, t.addr, t.zipcity, t.cntrcd, t.acc-
manager
FROM CF@CRM.Client t;

CREATE VIEW ORD(ordno, ord-man-no, clno) AS
SELECT t.ordno, t.ord-manager, t.clno
FROM CF@Sales.Client t;

�

Note that we have used standard relational representations for OO-concepts (cf.
[BP98]) in traversing from UML-representations of the virtual table to the associated
tables in SQL. Note also that these view definitions directly reflect the definition of the
integration isomorphism described above.
Each of the views described above is an example of what we shall call a federation
view; i.e., we wish to conceive of the database federation as a collection of database
views, where each database view reflects a virtual table defined in the integrated
database DBINT. Manpulating the federation (i.e., querying and updating), now means
manipulating the collection of federation views.
Querying can now be done directly on these federation views defined, but updating is,
however, a different matter altogether! The reason is that updating has to take into
account the various conditions described in the constraints on the level of DBINT.
The next section deals with representation of constraints, and how to suitably define
actions to deal with updates.

11. Updating federation views �

Before we can perform an update on one of the federation views, we first have to see if
certain constraints are satisfied. These constraints can be split into two categories: those
that are essentially local to the databases in the component frame CF, and those that are
essentially global and pertain to the federation. Since we do not want to get involved
into unnecessary ACID-violations due to a non-commiting update on one of the local
databases, we must also take local database integrity into account before we decide to
actually try to perform an update on the base tables. We will deal with matters

 18

pertaining to concurrency control in a later section. First we treat the representation of
constraints within the collection of federation views.

The constraints

Consider the constraint on the view PERS, pertaining to the non-overlap between views
SLS and CRM

CREATE VIEW NOCOMMONCRMSLS AS
(SELECT pno FROM SLS) INTERSECT (SELECT pno FROM CRM);

C1(PERS): (SELECT COUNT(*) FROM NOCOMMONCRMSLS) = 0

�
Alternatively, this constraint can be specified by

(SELECT COUNT(*) FROM PERS)=
(SELECT COUNT (DISTINCT pno) FROM PERS)

On view ORD we have the following constraint pertaining to referential integrity
between the ORD- and the CLNT class

C2(ORD): (SELECT COUNT(*)
 FROM ORD t
 WHERE NOT (t.clno IN (SELECT clno FROM CLNT)) = 0

�
How to update

Eventually, we will offer a means to specify an action that performs an update on the
views PERS, CRM, SLS, CLNT, and ORD. We shall first, however, set out the
boundaries within which we will conduct our investigations. In this paper we will
concentrate on a simplified situation concerning transactions on DBINT, by adopting
the following assumption

The global user is the only user of the federation (including the databases in the
component frame) during execution of the global transaction

In this case, we abstract from problems due to concurrency control and concentrate on
the situation that we only have one user performing an update on the database DBINT.
Showing how to correctly perform an update on DBINT in this simplified case, is a
first step that has to be solved before dealing with the more complex case with
problems due to concurrency control. In this paper we will refrain from treating the
more general case including multi-user updates, as this is a matter of ongoing research.

 19

We shall start by considering an insert of a tuple t in view PERS. In order to perform
this update, we commence with a series of checks:

�
1. Check if t satisfies the gobal constraints of DBINT: C1(PERS union {t}).

This constraint is coined here as Global(t)

2a. If t is a CRM-tuple, check and see if t satisfies the tuple- and table constraints of
CRM (e.g. , check to see if attribute pno remains to be a key) :

t.sal<=1500 and t.tel>=1000 and t.tel<=9999 and
t.pno NOT IN (SELECT u.pno FROM CRM u)

This constraint is coined here as Local-CRM(t)�

2b. If t is a SLS-tuple, check and see if t satisfies the tuple- and table constraints of
SLS :

t.sal>=convertTo$(1000) and t.bonus>0 and
t.pno NOT IN (SELECT u.pno FROM SLS u)

This constraint is coined here as Local-SLS(t)�

3. If t satisfies the constraints mentioned in 1-2a (2b) then we can insert CF-
Format(t) into either CF@CRM.Pers or CF@Sales.Emp

Here, CF-Format(t) denotes the inverse construction of tuple t offering a format
for t suitable for insertion in either CF@CRM.Pers or CF@Sales.Emp.
CF-Format is defined by considering the following four mappings from the underlying
tuple types in the component frame to a corresponding tuple in DBINT

- Pers is mapped to CRM via the (injective!) function convertToCRM
- CRM@Client is mapped to CLNT via the (injective) function convertToCLNT
- Emp is mapped to SLS via the (injective) function convertToSLS
- Sales@Client is mapped to ORD via the (injective) function convertToORD

Since all these four function have inverses, it is clear that an expression CF-
Format(t) is always uniquely defined for any tuple t in PERS!

A suitable action in the case of an insert in the CRM-view could now look like this:

 20

WHEN Global(t) and Local-CRM(t)
INSERT INTO CF@CRM.Pers(CF-Format(t))

�
We note that a conditon is first checked (in the WHEN-clause) and in the case that the
condition yields to true, the action

INSERT INTO CF@CRM.Pers(CF-Format(t))

is performed. Should the condition evaluate to false, then no action is performed at
all.
A similar action could also be specified in the case that tuple t is to be inserted in the
SLS-view.
In our treatment of updates, we have assumed that we can express all relevant
constraint checks pertaining to tuple t on the level of the federation! This assumption is
realistic, since all local constraints (i.e. expressed in component frame CF) have all
been taken into account in the initial construction of DBINT. This makes dealing with
checks on federation updates easier to handle, since constraint checking can then be
completely delegated from the level of the component frame CF to the level of
DBINT.

12. Architecture of federated databases based on mediation

In this section we will have a closer look at our particular choice of architecture for
federated databases. In particular, we are interested in answering the following two
questions:

• How does this architecture compare to classic (i.e., monolithic) database architecture?
• What impact does this architecture have on the issue of site autonomy?

Traditionally, a monolithic database system is based on what is called the three-
schema architecture (also known as the ANSI/SPARC architecture), which was
proposed to separate user applications, the conceptual schema of the database, and the
physical database (cf. [EN00]). In this architecture, schemas can be defined at three
levels:

1. The internal level has an internal schema, which describes the physical

storage structure of the database
2. The conceptual level has a conceptual schema, which describes the complete

database for the whole community of users. This schema abstracts from
physical storage structures, and concentrates on entities, types, relationships,
constraints, and operations

3. The external or view level includes a number of external schemas or user
views. Each external schema describes that part of the conceptual schema of

 21

the database that is relevant to a particular group of users, and hides other
parts that are not relevant to that particular group

 . . .

The processes of transforming requests and results between the levels are called
mappings.
This architecture has the advantage to support the so-called data-independence
property, meaning that one can change the conceptual schema without having to
change the external schema (logical data independence), and also that one can change
the internal schema without having to change the conceptual schema (physical data
independence).
In our setting, we deal with a collection of component databases inside some
component frame, with the aim to integrate these component databases, with a
federated database as result. As described in Section 7, integration is based on the
principle of the tightly-coupled approach in combination with the principle of the
Closed World Assumption of Database Integration (CWA-INT). In this section we will
demonstrate how to achieve an architecture for a federated database, based on these
two principles.
We will assume that each of these component databases internally abide to the three-
schema architecture as described above. We are now faced with the problem of what
the architecture of the federated database looks like. Actually, the solution is quite
straightforward. The idea is that the integrated database DBINT contains the

 External
 View

 External
 View

 Conceptual schema

 Internal schema

 Stored database

 22

conceptual schema of the federation, consisting of a collection of federation views, and
that user groups of the federation define their own user views (with their own separate
external schemas) on top of DBINT. We can depict this architecture as follows

 . . .

where n component databases (each abiding internally to their own 3-level architecture)
are integrated (via CF and the Mediator), resulting in the database schema of DBINT
(representing the conceptual schema of the database federation), containing m tables
T1, …, Tm (all of which are defined as federation views), and where subsequently a
number of k external views are defined on top of the (conceptual) schema of DBINT.
If we succeed in offering a mapping constituting an integration isomorphism from the
component frame CF to the integrated database DBINT, then we shall also have
succeeded in realizing a database federation abiding to the Closed World Assumption
CWA-INT, as explained earlier on. This will be our eventual goal of integration.
In this perspective, the architecture of a federated database is basically still much along
the lines of a traditional three-level architecture (user views on top of a conceptual
schema of a federation, and the eventual internal schema realized via the mediator as a
combination of internal schemas of component databases inside a component frame).
We therefore call this architecture a “three-level federation architecture”, which can
be concisely depicted as follows

 External
 view-1

 External
 view-k

 Mediator

Component frame
 CF

 Component
 DB-1

 Component
 DB-n

T1 T2 …Conceptual schema
 DBINT

Tm

. . .

 23

 -- (traditional mapping)

 --- (mapping via Mediator)

Analogous to the original three-level architecture, this three-level federation
architecture also supports the principles of both logical- and physical data
independence. The only difference is that the mapping between the conceptual level
and internal level is defined within the context of the database federation, which now is
defined via the mediator and the component frame.

Component autonomy

We now proceed with a discussion on so-called component autonomy in database
federations. In federated database literature it is often claimed that the component
databases should maintain their respective autonomy as much as possible. In practice
this makes sense, because a database federation, as we have seen, is actually no more
than a database view on a component frame; i.e. the component databases remain
intact, and the federated database is no more than a calculation resulting in a virtual
integrated database on the global level. Updating the federated database then boils
down to updating associated federation views (cf. the previous section). Using
federation views, we have taken into account that by allowing a database to become a
member of the federation (i.e. the database becomes a component database in a
component frame), such an update might also become subject to certain inter-database
constraints. This means that an autonomous update on a local component database
might violate an inter-database constraint, thus eventually rendering it as an incorrect
update. Hence, local updates –in a federated setting- are in principle also updates on the
complete federation!
The situation described above can depicted in the following diagram

 External
 view-1

 External
 view-k

 Conceptual
Federated schema
 (DBINT)

Internal schema
 (CF)

 24

In this diagram, App1 is an old application running on database C1. We would ideally
like App1 to keep on running on C1, as if it had no knowledge of the fact that from
some moment in time, C1 has become a member of the federation. We could realize
this by taking the following measure. We construct a new application App1’ equal to
application App1, except that we first perform a check to see if the global constraints of
the federation are satisfied. That is, App1’ is defined by

App1’= (Global-constraints → App1)

stating that App1 is performed only in the case that the global constraints of the
federation are satisfied. This has as an effect, that App1 will not run in the case of a
violation of an inter-database constraint. Should the inter-databae constraints be
satisfied then App1 can run on component database C1 as it normally does. (It could
still possibly not run due to violation of a local constraint belonging to C1, but that
would also have been the case if C1 had not become a member of the federation.)
We note that it will often be necessary to have knowledge of the external effect of
App1 in order to determine the exact specification of the condition Global-
constraints (e.g., in the case of updates resulting from invocation of App1).

13. Future research

Our paper offers a first step to actual implementation of a database federation. We have
demonstrated that a suitable integration isomorphism can provide for the sound
definition of a database federation as a collection of so-called federation views. There
is, however, still much work to be done. Much of this work pertains to the database

 CF

C1 C2

 Mediator DBINT

App1

 25

functionality of the integrated database DBINT. We have, for example, abstracted
from problems dealing with concurrency control in the case of updates on DBINT.
More complex manipulation of data on the level of DBINT (e.g. selections and joins)
have also not yet been treated. Another matter is that we have assumed that we can,
somehow, provide for relational representations (for example via suitable interfaces or
gateway constructions) of the component databases. We are addressing these issues as
part of our ongoing research on sound implementations of database federations.

References

[AB01] Akehurst, D.H., Bordbar, B.; On Querying UML data models with OCL;

«UML» 2001 4th Int. Conf., LNCS 2185, Springer, 2001
[Bal02] Balsters, H. ; Derived classes as a basis for views in UML/OCL

data models; SOM Report 02A47, University of Groningen, 2002
[BB01] Balsters, H., de Brock, E.O.; Towards a general semantic framework for

design of federated database systems ; SOM Report 01A26, University
of Groningen, 2001

[Bal03] Balsters, H.; Object-oriented modeling and design of database
federations; SOM Report 03A18, University of Groningen, 2003

[BBZ93] Balsters, H., de By, R.A., Zicari, R.; Sets and constraints in an object-
oriented data model; Proc. 7th ECOOP, LNCS 707, Springer 1993.

[BP98] Blaha, M., Premerlani, W.; Object-oriented modeling and design for
database applications; Prentice Hall, 1998

[BS98] Balsters, H., Spelt, D.; ``Automatic verification of transactions on an
object-oriented database'', 6th Int. Workshop on Database
Programming Languages, LNCS 1369, Springer, 1998.

[DH99] Demuth, B., Hussmann, H.; Using UML/OCL constraints for relational
database design; «UML»'99: 2nd Int. Conf., LNCS 1723, Springer, 1999

[DHL01] Demuth, B., Hussmann, H., Loecher, S.; OCL as a specification
language for business rules in database applications; «UML» 2001, 4th
Int. Conf., LNCS 2185, Springer, 2001

[DKM93] Drew, P., King, P.R., McLeod, D., Rusinkievicz, M., Silberschatz, A.;
Workshop on semantic heterogeneity and interoperation in multidatabase
systems; SIGMOD RECORD 22, 1993

[EN00] Elmasri, R., Navathe, S.B.; Fundamentals of database systems; Addison
 Wesley, 2000
[GR97] Gogolla, M., Richters, M.; On constraints and queries in UML;

Proceedings UML’97 Workshop “The Unified Modeling Language –
Techniques and Applications”, 1997

[GUW02] Garcia-Molina, H., Ullman, J.D., Widom, J.; Database systems
 PrenticeHall, 2002
[HP97] Hewlett Packard (White paper); Database gateway use in heterogeneous

 26

environments; 1997
[Hull97] Hull, R.; Managing Semantic Heterogeneity in Databases; ACM

PODS’97, ACM Press 1997.
[MC99] Mandel, L., Cengarle, M.V.; On the expressive power of OCL; Formal
 Methods ’99 – LNCS 1708, Springer, 1999
[OCL2.0] Response to the UML 2.0 OCL RfP, Revised Submission, Version 1.6,
 January 6, 2003
[Rei 84] Reiter, R.; Towards a logical reconstruction of relational database
 theory. In: Brodie, M.L., Mylopoulos, J., Schmidt, J.W.; On conceptual
 modeling; Springer Verlag, 1984
[ShL90] Sheth, A.P., Larson, J.A.; Federated database systems for managing

 distributed and heterogeneous and autonomous databases;
 ACM Computing Surveys 22, 1990

[TS01] Türker, C., Saake, G.; Global extensional assertions and local integrity
 constraints in federated schemata; Information Systems, Vol. 25, No.8, 2001
[Ver97] M. Vermeer; Semantic interoperability for legacy databases. Ph.D.-thesis,
 University of Twente, 1997.
[Wie95] Wiederhold, G.; Value-added mediation in large-scale information systems
 IFIP Data Semantics (DS-6), 1995
[WK99] Warmer, J.B., Kleppe, A.G.; The object constraint language; Addison
 Wesley, 1999

