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$EVWUDFW — Most database researchers have studied data warehouses (DW) in their role as buffers of materialized views,
mediating between update-intensive OLTP systems and query-intensive decision support. This neglects the organizational
role of data warehousing as a means of centralized information flow control. As a consequence, a large number of quality
aspects relevant for data warehousing cannot be expressed with the current DW meta models. This paper makes two
contributions towards solving these problems. Firstly, we enrich the meta data about DW architectures by explicit
enterprise models. Secondly, many very different mathematical techniques for measuring or optimizing certain aspects of
DW quality are being developed. We adapt the Goal-Question-Metric approach from software quality management to a
meta data management environment in order to link these special techniques to a generic conceptual framework of DW
quality. The approach has been implemented in full on top of the ConceptBase repository system and has undergone some
validation by applying it to the support of specific quality-oriented methods, tools, and application projects in data
warehousing.
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1. INTRODUCTION

Data warehouses provide large-scale caches of historic data. They sit between information sources gained

externally or through online transaction processing systems (OLTP), and decision support or data mining queries

following the vision of online analytic processing (OLAP). Three main arguments have been put forward in favor

of this caching approach:

1. 3HUIRUPDQFH�DQG�VDIHW\�FRQVLGHUDWLRQV: The concurrency control methods of most DBMSs do not react

well to a mix of short update transactions (as in OLTP) and OLAP queries that typically search a large

portion of the database. Moreover, the OLTP systems are often critical for the operation of the

organization and must not be under danger of corruption of other applications.

2. /RJLFDO�LQWHUSUHWDELOLW\�SUREOHPV: Inspired by the success of spreadsheet techniques, OLAP users tend to

think in terms of highly structured multi-dimensional data models, whereas information sources offer at

best relational, often just semi-structured data models.

3. 7HPSRUDO�DQG�JUDQXODULW\�PLVPDWFK: OLTP systems focus on current operational support in great detail,

whereas OLAP often considers historical developments at a somewhat less detailed granularity.

Thus, quality considerations have accompanied data warehouse research from the beginning. A large body of

literature has evolved over the past few years in addressing the problems introduced by the DW approach, such

as the trade-off between freshness of DW data and disturbance of OLTP work during data extraction; the

minimization of data transfer through incremental view maintenance; and a theory of computation with multi-

dimensional data models.

However, the heavy use of highly qualified consultants in data warehouse applications indicates that we are

far from a systematic understanding and usage of the interplay between quality factors and design options in data

warehousing. The goal of the European DWQ project [26] is to address these issues by developing, prototyping

and evaluating comprehensive Foundations for Data Warehouse Quality, delivered through HQULFKHG�PHWD�GDWD
PDQDJHPHQW�IDFLOLWLHV in which specific analysis and optimization techniques are embedded.

This paper develops the DWQ architecture and quality management framework, and describes its

implementation in a meta database. The main contributions include an extension of the standard DW architecture

used in the literature by enterprise modeling aspects, and a strategy for embedding special-purpose mathematical
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reasoning tools in a repository model of the architecture. Our goal is to enable a computationally tractable yet

very rich quality analysis, and a quality-driven design process.

Interaction with DW tool vendors, DW application developers and administrators has shown that the standard

framework used in the DW literature is insufficient to capture in particular the business role of data warehousing.

A DW is a major investment made to satisfy some business goal of the enterprise; quality model and DW design

should reflect this business goal as well as its subsequent evolution over time. In section 2, we discuss this

problem in detail. Our new architectural framework separates (and links) explicitly the concerns of conceptual

enterprise perspectives, logical data modeling (the main emphasis of DW research to date), and physical

information flow (the main concern of commercial DW products to date).

In section 3, we first build on the literature for data and software quality to come up with a suitable set of DW

quality goals, as perceived by different groups of stakeholders. We then adapt a variant of the so-called Goal-

Question-Metric approach used in software quality management, in order to link these conceptual goals to

specific techniques developed in DW research and practice, and to enable trade-off between heterogeneous

quality goals. Technically, this is accomplished through materialized quality views, i.e. using the DW approach

to describe its own quality. Some experiences with a prototypical implementation of the resulting meta database

using the ConceptBase repository manager have been gained in cooperation with industrial case studies. Section

4 relates our approach to other work in data warehousing, data and software quality, while section 5 provides a

summary and conclusions.
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Fig. 1: Traditional Data Warehouse Architecture

2.   AN EXTENDED DATA WAREHOUSE ARCHITECTURE

The traditional data warehouse architecture, advocated both in research and in the commercial trade press, is

shown in figure 1. Physically, a data warehouse system consists of databases (source databases, materialized

views in the data warehouse), data transport agents that ship data from one database to another, and a repository

which stores meta data about the system and its evolution. In this architecture, heterogeneous information sources

are first made accessible in a uniform way through extraction mechanisms called ZUDSSHUV, then PHGLDWRUV [47]

take on the task of information integration and conflict resolution. The resulting standardized and integrated data

are stored as materialized views in the data warehouse. The DW base views are usually just slightly aggregated;

to customize them better for different groups of analyst users, GDWD� PDUWV with more aggregated data about



specific domains of interest are frequently constructed as second-level caches which are then accessed by data

analysis tools ranging from query facilities through spreadsheet tools to full-fledge data mining systems based on

knowledge-based or neural network techniques.

The content of the repository determines to a large extent the way how the data warehouse system can be used

and evolved. The main goal of our approach is therefore to define a meta database schema which can capture and

link all relevant aspects of DW architecture and quality.

We shall tackle this very difficult undertaking in several steps. First, we discuss the shortcomings of the

traditional architecture and propose a conceptual enterprise perspective to solve some of these shortcomings.

Then, we elaborate the extended metamodel resulting from our approach, and show how it can be implemented in

a repository. Finally, the application of these repository concepts is illustrated with a more detailed description of

a specific submodel developed and validated in the DWQ project.

�����$GGLQJ�D�&RQFHSWXDO�3HUVSHFWLYH�WR�'DWD�:DUHKRXVLQJ

Almost all current research and practice understand a data warehouse architecture as a stepwise information

flow from information sources through materialized views towards analyst clients, as shown in figure 1. For

example, projects such as TSIMMIS [10], Squirrel [18], or WHIPS [16] all focus on the integration of

heterogeneous data via wrappers and mediators, using different logical formalisms and technical implementation

techniques. The Information Manifold project at AT&T Research [33] is the only one providing a conceptual

domain model as a basis for integration.

Our key observation is that the architecture in figure 1 covers only partially the tasks faced in data

warehousing and is therefore unable to even express, let alone support, a large number of important quality

problems and management strategies.
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Fig. 2: Data Warehousing in the Context of an Enterprise

The main argument we wish to make is the need for a FRQFHSWXDO�HQWHUSULVH�SHUVSHFWLYH. To explain, consider

figure 2. In this figure, the flow of information in figure 1 is stylized on the right-hand side, whereas the process

of creating and using the information is shown on the left. Suppose an analyst wants to know something about the
business − the question mark in the figure. She does not have the time to observe the business directly but must

rely on existing information gained by operational departments, and documented as a side effect of OLTP

systems. This way of gathering information implies already a bias which needs to be compensated when selecting

OLTP data for uploading and cleaning into a DW where it is then further pre-processed and aggregated in data

marts for certain analysis tasks. Considering the long path the data has taken, it is obvious that also the last step,

the formulation of conceptually adequate queries and the conceptually adequate interpretation of the answers

present a major problem to the analyst.



The traditional DW literature only covers two of the five steps in figure 2. Thus, it has no answers to typical

practitioner questions such as "how come my operational departments put so much money in their data quality,

and still the quality of my DW is terrible" (answer: the enterprise views of the operational departments are not

easily compatible with each other or with the analysts view), or "what is the effort required to analyze problem X

for which the DW currently offers no information" (could simply be a problem of wrong aggregation in the

materialized views, could require access to not-yet-integrated OLTP sources, or even involve setting up new

OLTP sensors in the organization).

An adequate answer to such questions requires an explicit model of the conceptual relationships between an

enterprise model, the information captured by OLTP departments, and the OLAP clients whose task is the

decision analysis. We have argued that a DW is a major investment undertaken for a particular business purpose.

We therefore do not just introduce the enterprise model as a minor part of the environment, but demand that DOO
RWKHU� PRGHOV� DUH� GHILQHG� DV� YLHZV� RQ� WKLV� HQWHUSULVH� PRGHO. Perhaps surprisingly, even information source
schemas define views on the enterprise model − not vice versa as suggested by figure 1!
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Fig. 3: The Proposed Data Warehouse Meta Data Framework

�����$�5HSRVLWRU\�0RGHO�IRU�WKH�([WHQGHG�'DWD�:DUHKRXVH�$UFKLWHFWXUH

By introducing an explicit business perspective as in figure 2, the wrapping and aggregation transformations

performed in the traditional data warehouse literature can thus all be checked for interpretability, consistency or
completeness with respect to the enterprise model − provided an adequately powerful representation and

reasoning mechanism is available.

At the same time, the logical transformations need to be implemented safely and efficiently by physical data
storage and transportation − the third perspective in our approach. It is clear that these physical quality aspects

require completely different modeling formalisms from the conceptual ones, typical techniques stemming from

queuing theory and combinatorial optimization.

As a consequence, the data warehouse meta framework we propose clearly separates three perspectives as

shown in figure 3: a conceptual enterprise perspective, a logical data modeling perspective, and a physical data

flow perspective.

There is no single decidable formalism that could cover the handling of all these aspects uniformly in a meta

database. We have therefore decided to capture the architectural framework in a deductive object data model in a

comprehensive but relatively shallow manner. Special-purpose reasoning mechanisms such as the ones

mentioned above can be linked to the architectural framework as discussed in section 3, below.



We use the meta database to store an abstract representation of data warehouse applications in terms of the

three-perspective scheme. The architecture and quality models are represented in Telos [35], an extensible meta

modeling language which has both a graphical syntax and a frame syntax, mapped to an underlying formal

semantics based on standard deductive databases. Using this formal semantics, the Telos implementation in the

ConceptBase system [22] provides query facilities, and definition of constraints and deductive rules. Telos is well

suited because it allows to formalize specialized modeling notations (including the adaptation of graphical

representations [27]) by means of meta classes. Since ConceptBase treats all concepts including meta classes as

first-class objects, it is well suited to manage abstract representations of the DW objects to be measured [28].

A condensed ConceptBase model of the architecture notation is given in figure 4, using the graph syntax of

Telos. Bold arrows denote specialization links. The top level object is 0HDVXUDEOH2EMHFW� It classifies objects at

any perspective (conceptual, logical, or physical) and at any level (source, data warehouse, or client). Within

each perspective, we distinguish between the modules it offers (e.g. client model) and the kinds of information

found within these modules (e.g. concepts and their subsumption relationships). The horizontal links KDV6FKHPD
and LV9LHZ2Q establish the way how the horizontal links in Figure 2 are interpreted: the types of a schema (i.e.,

relational or multidimensional structures) are defined as logical views on the concepts in the conceptual

perspectives. On the other hand, the components of the physical perspective get a schema from the logical

perspective.

Each object can have an associated set of materialized views called 4XDOLW\0HDVXUHPHQWV� These materialized
views (which can also be specialized to the different perspectives − not in the figure) constitute the bridge to the

quality model discussed in section 3.
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Fig. 4: Structure of the Repository Meta Model

The horizontal levels of the objects are coded by the three subclasses attached to 0RGHO, 6FKHPD, and

'DWD6WRUH. We have experimented with this notation and were able to represent physical data warehouse

architectures of commercial applications, such as the SourcePoint tool marketed by Software AG [41], the DW

architecture underlying a data mining project at Swiss Life [42], and a DW project in Telecom Italia (cf. section

2.6). The logical perspective currently supports relational schema definitions whereas the conceptual perspective

supports the family of extended entity-relationship and similar semantic data modeling languages. Note that all

objects in figure 4 are meta classes: actual conceptual models, logical schemas, and data warehouse components

are represented as instances of them in the meta database.

In the following subsections, we elaborate on the purpose of representing each of the three perspectives, then

demonstrate how the architecture above can be refined for particular purposes.



�����&RQFHSWXDO�3HUVSHFWLYH

The conceptual perspective offers a business model of the information systems of an enterprise. The central

role is played by the enterprise model, which gives an integrative overview of the conceptual objects of an

enterprise. The models of the client and source information systems are views on the enterprise model, i.e. their

contents are described in terms of the enterprise model. One goal of the conceptual perspective is to have a

model of the information independent from physical organization of the data, so that relationships between

concepts can be analyzed by intelligent tools, e.g. to simplify the integration of the information sources. On the

client side, the interests of user groups can also be described as views on the enterprise model.

In the implementation of the conceptual perspective in the meta database, the central class is 0RGHO. A model

is related to a source, a client or the relevant section of the enterprise, and it represents the concepts which are

available in the corresponding source, client or enterprise. The classes &OLHQW0RGHO, 6RXUFH0RGHO and

(QWHUSULVH0RGHO are needed, to distinguish the models of several sources, clients and the enterprise itself. A

model consists of &RQFHSWV, each representing a concept of the real world, i.e. the business world. If the user

provides some information about the relationship between concepts in a formal language like description logic, a

reasoner can check for subsumption of concepts [7].

The results of the reasoning process are stored in the model as attribute LV6XEVXPHG%\ of the corresponding

concepts. Essentially, the repository can serve as a cache for reasoning results. Any tool can ask the repository

for containment of concepts. If the result has already been computed, it can directly be answered by the

repository. Otherwise, a reasoner is invoked by the repository to compute the result.

�����/RJLFDO�3HUVSHFWLYH

The logical perspective conceives a data warehouse from the view point of the actual data models involved,

i.e. the data model of the logical schema is given by the corresponding physical component, which implements

the logical schema. The central point in the logical perspective is 6FKHPD� As a model consists of concepts a

schema consists of 7\SHV. We have implemented the relational model as an example for a logical data model;

other data models such as the multi-dimensional or the object-oriented data model are also being integrated in

this framework [14][45].

Like in the conceptual perspective, we distinguish in the logical perspective between &OLHQW6FKHPD,

':6FKHPD and 6RXUFH6FKHPD for the schemata of clients, the data warehouse and the sources. For each client or

source model, there is one corresponding schema. This restriction is guaranteed by a constraint in the architecture

model. The link to the conceptual model is implemented through the relationship between concepts and types:

each type is expressed as a view on concepts.

�����3K\VLFDO�3HUVSHFWLYH

Data warehouse industry has mostly explored the physical perspective, so that many aspects in the physical

perspective are taken from the analysis of commercial data warehouse solutions such as Software AG’s

SourcePoint tool [41], the data warehouse system of RedBrick, Informix’s MetaCube [19], Essbase of Arbor

Software [2] or the product suite of MicroStrategy [38].We have observed that the basic physical components in

a data warehouse architecture are DJHQWV and GDWD�VWRUHV. $JHQWV are programs that control other components or

transport data from one physical location to another. 'DWD� VWRUHV are databases which store the data that is

delivered by other components.

The basic class in the physical perspective is ':B&RPSRQHQW. A data warehouse component may be

composed out of other components. This fact is expressed by the attribute KDV3DUW. Furthermore, a component

GHOLYHUV7R another component a 7\SH��which is part of the logical perspective. Another link to the logical model

is the attribute KDV6FKHPD of ':B&RPSRQHQW. Note that a component may have a schema, i.e. a set of several

types, but it can only deliver a type to another component. This is due to the observation that agents usually

transport only ”one tuple at a time” of a source relation rather than a complex object.



There are two types of DJHQWV: &RQWURO$JHQW which controls other components and agents, e.g. it QRWLILHV
another agent to start the update process, and 7UDQVSRUWDWLRQ$JHQW�which transports data from one component to

another component. An $JHQW may also notify other agents about errors or termination of its process.

A 'DWD6WRUH physically stores the data which is described by models and schemata in the conceptual and

logical perspective. As in the other perspectives, we distinguish between &OLHQW'DWD6WRUH, ':B'DWD6WRUH and

6RXUFH'DWD6WRUH�for data stores of clients, the data warehouse and the sources.

����$SSO\LQJ�WKH�$UFKLWHFWXUH�0RGHO��7KH�([DPSOH�RI�6RXUFH�DQG�'DWD�,QWHJUDWLRQ

The metadata framework shown in figure 4 defines the basic metamodel of the products in the repository, and

their interrelationships. As shown in figure 5, this framework can be instantiated by information models

(conceptual, logical, and physical schemas) of particular data warehousing strategies which can then be used to

design and administer the instances of these data warehouses – the main role of the administration system and

meta database in figure 1.

However, quality cannot just be assessed on the network of nine perspectives, but is largely determined by the

processes how these are constructed [24]. The process meta model defines a way how such processes can be

defined, the process models define plans how data warehouse construction and administration is to be done, and

the traces of such processes are captured at the lowest level; this process hierarchy accompanying the DW

product model is shown on the right of figure 5.
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Fig. 5 : Repository Structure for Capturing Product and Process of Data Warehousing

In DWQ, we are still experimenting with suitable process modeling formalisms, based on our earlier work on

software process modeling and management [24]. For the purposes of this paper, we can safely assume that the

impact of such process models on the repository is some kind of query plan, a partially ordered set of queries

defined over the meta database (and stored in the meta database). This is, for example, also the strategy followed

in the new version of the Microsoft Repository [3].

Figure 4 only gives a rough overview of the actual model structure in the DWQ repository meta model. In

reality, each perspective offers a much richer meta model structure reflecting the approach taken in addressing

the tasks in this perspective.

In this subsection, we describe one of the specific DWQ methodologies, the one for source and data

integration [8], in order to illustrate this refinement of models as well as the interplay between the different



perspectives in our approach. While VRXUFH� LQWHJUDWLRQ means designing the relationships between information

sources and the views in the data warehouse, data integration means the construction of acquisition plans by

which these views are actually materialized.

In the context of figure 4, the example is concerned with the enterprise and source models at the conceptual

perspective and with the source schemas (and possibly DW schemas) in the logical perspective.

&RQFHSWXDO�3HUVSHFWLYH: According to the DWQ approach, one conceptual model is constructed for each

source and one for the enterprise. These models rely on an extended entity-relationship model in which both the

entities and the relationships can be interpreted as concepts formalized in a description logic, and additional

logical assertions can be formulated to express generic domain knowledge ('RPDLQ$VVHUWLRQV), properties and

limitations of a source (,QWUD0RGHO$VVHUWLRQV), and relationships between the sources, such as containment,

consistency, etc. (,QWHU0RGHO$VVHUWLRQV).
In the ConceptBase repository, this leads to an elaboration of the &RQFHSW node from figure 4, as shown in

figure 6. On the one hand, this refinement structurally describes the basic structure of the extended ER model, i.e.

&RQFHSWV, 5HODWLRQVKLSV, and complex objects constructed from them. On the other hand, it describes the linkage

of the different kinds of assertions to the objects. Despite its expressiveness, this data model allows decidable

subsumption reasoning [7] between concepts. Thus, through inheritance from the central &RQFHSW5HODWLRQVKLS

Fig. 7: Client level of the conceptual perspective (ConceptBase screendump)

 Fig. 6: Refining the Conceptual Perspective for Source Integration (ConceptBase screendump)



object, both the assertions and the subsumption relationships computed by an external description logic reasoner

on this structure can be applied to all subtypes of the meta schema.

The conceptual model is not restricted for the use in source integration. We can specialize the meta model to

handle also the client side of a data warehouse, i.e. multidimensional data models. In the conceptual client model,

it is important how aggregations are defined and which attributes are aggregated of a concept [13]. Figure 7

shows the client level of the meta model for the conceptual perspective.

$JJUHJDWLRQV�aggregate concepts with respect to a specific dimension level, which is defined by a dimension

attribute, and a level. For example, if customers are aggregated by cities, the dimension attribute is ’address’ and

the level is ’city’. Furthermore, we need to know, which attributes are aggregated and which aggregation function

is used for the aggregation.

/RJLFDO�3HUVSHFWLYH: As stated earlier, the present implementation of the logical perspective is limited to

relational databases. In line with our basic philosophy concerning the central role of the enterprise model, the

DWQ approach considers the (relational) schema of an information source to be integrated as a view on the

conceptual enterprise model. As the DW schema itself consists of (possibly cleaned and merged) views over the

sources, it naturally becomes also an (indirect) view over the enterprise model.

These views are, as usual, defined by conjunctive 4XHULHV over the enterprise model. In the merging of

sources, also disjunctive queries are possible. These queries are defined at the time of source (schema)

integration. For the actual data integration, i.e. to load the data warehouse schema from the sources, an

$FTXLVWLRQ3ODQ is constructed from these queries (possibly taking into account the physical perspective).

              Fig. 8: Refining the Logical Perspective for (Relational) Source and Data Integration (ConceptBase screendump)



However, to capture the semantics correctly, the assertions of the conceptual model must be taken into account;

this is accomplished by adding them as adorrnments to the view definition queries. From the acquisition plan and

the $GRUQHG4XHULHV, a query rewriting can then be performed automatically which defines the extraction queries

from the sources as well as the 0HUJLQJ&ODXVHV that need to be executed when data from more than one source

need to be merged into a data warehouse relation.

Figure 8 shows how this approach is captured quite naturally in the ConceptBase repository, refining the 7\SH
object in figure 4. This structure also provides a suitable memory for the integration process, thus allowing reuse

of specific integration techniques as well as re-loading of the DW. Of course, the latter is usually done

incrementally by view maintenance techniques but their description goes beyond the scope of this paper.

The DWQ source and data integration approach is described in more detail in [8]. A validation case study

involving the integration of four complex Telecom databases, reported in [9], demonstrates that this information

structure is suitable for the incremental modeling of data warehouse architectures; “incremental” is meant here

both in the sense of gradually refining the models of a specific information source or the enterprise as a whole

and in the sense of adding a new information source, possibly overlapping in concepts with the existing

enterprise model.

3.   MANAGING DATA WAREHOUSE QUALITY

In this section, we discuss how to extend the DW architecture model to support explicit quality models. There

are two basic issues to be resolved. On the one hand, quality is a subjective phenomenon so we must organize

quality goals according to the stakeholder groups that pursue these goals. On the other hand, quality goals are

highly diverse in nature. They can be neither assessed nor achieved directly but require complex measurement,

prediction, and design techniques, often in the form of an interactive process. The overall problem of introducing

quality models in meta data is therefore to achieve breadth of coverage without giving up the detailed knowledge

available for certain criteria. Only this combination enables systematic quality management.

In the following subsections, we first categorize the relevant data warehouse quality dimensions according to

the stakeholders that are typically interested in them. We also present some tables mapping these quality criteria

to the DW perspectives introduced in the previous section, by giving examples of types of measurements which

could help to establish the quality of a particular DW component with respect to a particular quality dimension.

Then, we show how this basic structure can be formally captured in an extension to the Goal-Question-Metric

approach from software engineering, and how this extension can be implemented and used in the DW meta

database.

�����6WDNHKROGHUV�DQG�'DWD�:DUHKRXVH�4XDOLW\�'LPHQVLRQV

There exist different roles of users in a data warehouse environment. The 'HFLVLRQ�0DNHU usually employs an

OLAP query tool to get answers interesting to him. A decision maker is usually concerned with the TXDOLW\�RI�WKH
VWRUHG� GDWD, their WLPHOLQHVV and the HDVH� RI� TXHU\LQJ them through the OLAP tools. The 'DWD� :DUHKRXVH
$GPLQLVWUDWRU needs facilities like HUURU�UHSRUWLQJ� PHWD�GDWD�DFFHVVLELOLW\ and knowledge of the WLPHOLQHVV of the

data, in order to detect changes and reasons for them, or problems in the stored information. The 'DWD
:DUHKRXVH�'HVLJQHU needs to measure the TXDOLW\� RI� WKH� VFKHPDWD of the data warehouse environment (both

existing or newly produced) and the TXDOLW\�RI�WKH�PHWD�GDWD as well. Furthermore, he needs VRIWZDUH�HYDOXDWLRQ
VWDQGDUGV to test the software packages he considers for purchasing. The 3URJUDPPHUV� RI� 'DWD� :DUHKRXVH
&RPSRQHQWV can make good use of VRIWZDUH�LPSOHPHQWDWLRQ�VWDQGDUGV in order to evaluate their work. 0HWD�GDWD
UHSRUWLQJ can also facilitate their job since they can avoid mistakes related to schema information.

Based on this analysis, we can safely argue that different roles imply a different collection of quality

dimensions, which a quality model should be able to address in a consistent and meaningful way. In the

following, we summarize the quality dimensions of three stakeholders, the data warehouse administrator, the

programmer, and the decision maker. A more detailed presentation of quality dimensions for different

stakeholder types is included in [11].
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Fig. 9: Design and administration quality dimensions

'HVLJQ�DQG�$GPLQLVWUDWLRQ�4XDOLW\��The design and administration quality can be analyzed into more detailed

dimensions, as depicted in figure 9. The VFKHPD�DQG�GDWD�TXDOLW\ refers to the ability of a schema or model to

represent adequately and efficiently the information; the same criteria also apply at the data instance level. The

FRUUHFWQHVV dimension is concerned with the proper comprehension of the entities of the real world, the schemata

of the sources (models) and the user needs. The FRPSOHWHQHVV dimension is concerned with the preservation of all

the crucial knowledge in the data warehouse schema (model). The PLQLPDOLW\ dimension describes the degree up

to which undesired redundancy is avoided during the source integration process. The WUDFHDELOLW\ dimension is

concerned with the fact that all kinds of requirements of users, designers, administrators and managers should be

traceable to the data warehouse schema. The LQWHUSUHWDELOLW\ dimension ensures that all components of the data

warehouse are well described, so as to be administered easily. The PHWD�GDWD�HYROXWLRQ dimension is concerned

with the way the schema evolves during the data warehouse operation. Table 1 relates the quality dimensions to

data warehouse objects and shows how the quality of these objects can be measured.

&RQFHSWXDO�3HUVSHFWLYH /RJLFDO�3HUVSHFWLYH'HVLJQ�DQG
$GPLQLVWUDWLRQ
4XDOLW\

0RGHO &RQFHSW 6FKHPD 7\SH

&RUUHFWQHVV Number of conflicts to
other models/real world

Correctness of the
description wrt. real
world entity

Correctness of mapping
of the conceptual model
to logical schema

Correctness of the
mapping of the concept
to a type

&RPSOHWHQHVV Level of covering,
number of represented
business rules

Number of missing
attributes; Are the
assertions related to the
concept complete?

Number of missing
entities wrt. conceptual
model

Number of missing
attributes wrt.
conceptual model

0LQLPDOLW\ Number of redundant
entities/relationships in
a model

Equivalence of the
description with that of
other concepts in the
same model

Number of redundant
relations

Number of redundant
attributes

7UDFHDELOLW\ Are the designer’s
requirements and
changes recorded?

Are the designer’s
requirements and
changes recorded?

Are the designer’s
requirements and
changes recorded?

Are the designer’s
requirements and
changes recorded?

,QWHUSUHWDELOLW\ Quality of
documentation

Quality of
documentation

Quality of
documentation

Quality of
documentation

0HWDGDWD
(YROXWLRQ

Is the evolution of the
model documented?

Is the evolution of the
concept documented?

Is the evolution of the
schema documented?

Is the evolution of the
type documented?

Table 1: Examples for measurement types for design and administration quality dimensions

6RIWZDUH�,PSOHPHQWDWLRQ�4XDOLW\��Software implementation and/or evaluation is not a task with specific data

warehouse characteristics. We are not actually going to propose a new model for this task, but adopt the ISO

9126 standard [20]. The quality dimensions of ISO 9126 are )XQFWLRQDOLW\� (Suitability, Accuracy,



Interoperability, Compliance, Security), 5HOLDELOLW\ (Maturity, Fault tolerance, Recoverability), 8VDELOLW\
(Understandability, Learnability, Operability), 6RIWZDUH� (IILFLHQF\ (Time behavior, Resource Behavior),

0DLQWDLQDELOLW\ (Analyzability, Changeability, Stability, Testability), 3RUWDELOLW\ (Adaptability, Installability,

Conformance, Replaceability).

These quality dimensions apply only to the physical perspective of the architectural, where the software

(agents and data stores) are represented. Table 2 gives some examples how these quality dimensions can be

measured for specific components.

3K\VLFDO�3HUVSHFWLYH6RIWZDUH
,PSOHPHQWDWLRQ
4XDOLW\

':�&RPSRQHQW

)XQFWLRQDOLW\ Number of functions not appropriate for specified tasks, number of modules unable to interact with
specified systems

5HOLDELOLW\ Frequency of failures, Fault tolerance

8VDELOLW\ Acceptance of the users

6RIWZDUH�(IILFLHQF\ Performance, response time, processing time

0DLQWDLQDELOLW\ Man-hours needed for maintaining and testing this software

3RUWDELOLW\ Number of cases where the software failed to adopt to new environments; man-hours needed to
install software in new environments

Table 2: Examples for measurement types for software implementation quality dimensions

'DWD�8VDJH�4XDOLW\��Since databases and − in our case − data warehouses are built in order to be queried, the

most basic process of the warehouse is the usage and querying of its data. In figure 10 the hierarchy of quality

dimensions related to data usage is depicted.

The DFFHVVLELOLW\ dimension is related to the possibility of accessing the data for querying. The VHFXULW\
dimension describes the authorization policy and the privileges each user has for the querying of the data. 6\VWHP
DYDLODELOLW\ describes the percentage of time the source or data warehouse system is available (i.e. the system is

up and no backups take place, etc.). The WUDQVDFWLRQDO�DYDLODELOLW\ dimension, as already mentioned, describes

the percentage of time the information in the warehouse or the source is available due to the absence of update

processes which write-lock the data.

�FXUUHQF\ �YRODWLOLW\

�UHVSRQVLYHQHVV

DFFHVVLELOLW\

�LQWHUSUHWDELOLW\

6\VWHP
DYDLODELOLW\

7UDQVDFWLRQDO
DYDLODELOLW\ �VHFXULW\

�WLPHOLQHVV

'DWD�XVDJH
�TXDOLW\

�XVHIXOQHVV

Fig. 10: Data usage quality dimensions

The XVHIXOQHVV dimension describes the temporal characteristics (WLPHOLQHVV) of the data as well as the

UHVSRQVLYHQHVV�of the system. The UHVSRQVLYHQHVV is concerned with the interaction of a process with the user

(e.g. a query tool which is self reporting on the time a query might take to be answered). The FXUUHQF\ dimension

describes when the information was entered in the sources or/and the data warehouse. The YRODWLOLW\ dimension

describes the time period for which the information is valid in the real world. The�LQWHUSUHWDELOLW\ dimension, as

already mentioned, describes the extent to which the data warehouse is modeled efficiently in the information

repository. The better the explanation is, the easier the queries can be posed. In table 3, some examples are

shown how data usage quality can be measured.



/RJLFDO�3HUVSHFWLYH 3K\VLFDO�3HUVSHFWLYH'DWD�8VDJH
4XDOLW\ 6FKHPD 7\SH $JHQW 'DWD�6WRUH
$FFHVVLELOLW\ Is the schema definition

accessible by the users?
Is the type visible and
accessible for users?

Is the network sufficient
for delivered data?

Is the data store
accessible?

$YDLODELOLW\ Frequency of updates Frequency of updates Response time Uptime of data store,
response time

6HFXULW\ Level of security (access
rights)

Level of security (access
rights)

Are there physical access
restrictions?

Is the store able to
prevent unauthorized
access?

8VHIXOQHVV Is the schema used by
any users?

Is the type used by any
users?

Is the data delivered by the
agent really used in the
destination store?

Is the data in this
store queried by a
user?

,QWHUSUHWDELOLW\ Is the schema
understandable?

Is the type
understandable?

Is the data delivered
understandable?

Is the data stored
understandable?

Table 3: Examples for measurement types for data usage quality dimensions

'DWD�4XDOLW\� The quality of the data which are stored in the warehouse, is obviously not a process by itself; yet

it is influenced by all the processes which take place in the warehouse environment. We define data quality as a

small subset of the dimensions proposed in other models. For example, in [48] our notion of data quality, in its

greater part, is treated as a second level dimension, namely EHOLHYDELOLW\. The basic quality dimensions we

introduce are shown in figure 11.

�FRQVLVWHQF\�FRPSOHWHQHVV ��FUHGLELOLW\ DFFXUDF\

�'DWD�TXDOLW\

GDWD
LQWHUSUHWDELOLW\

Fig.11: Data Quality Dimensions

The data quality dimension does not cover a data warehouse process: it refers directly to properties of the

stored data (i.e. not of the schemata or the models). Consequently, it is related to the physical perspective of the

the architecture representing�data stores and agents at all levels.

The FRPSOHWHQHVV dimension describes the percentage of the real-world information entered in the sources

and/or the warehouse. For example, completeness could rate the extent to which a string describing an address

did actually fit in the size of the attribute which represents the address. The FUHGLELOLW\ dimension describes the

credibility of the source that provided the information. The DFFXUDF\ dimension describes the accuracy of the

data entry process which happened at the sources. The FRQVLVWHQF\ dimension describes the logical coherence of

the information. The GDWD� LQWHUSUHWDELOLW\ dimension is concerned with data description (i.e. data layout for

legacy systems and external data, table description for relational databases, primary and foreign keys, aliases,

defaults, domains, explanation of coded values, etc.). Some metrics for data quality are given in table 4.

3K\VLFDO�3HUVSHFWLYH'DWD�4XDOLW\
$JHQW 'DWD�6WRUH

&RPSOHWHQHVV Number of tuples delivered wrt. expected number Number of stored null values where there are not
expected

&UHGLELOLW\ Believability in the process that delivers the values Number of tuples with default values

$FFXUDF\ Number of delivered accurate tuples Level of preciseness; Number of accurate tuples

&RQVLVWHQF\ Is the delivered data consistent with other data Number of tuples violating constraints,
number of coding differences

'DWD
,QWHUSUHWDELOLW\

Number of tuples with interpretable data,
documentation for key values, is the format
understandable?

Number of tuples with interpretable data,
documentation for key values, is the format
understandable?

Table 4: Examples for measurement types for data quality dimensions



�����7KH�3UREOHP�RI�+HWHURJHQHRXV�0XOWL�&ULWHULD�4XDOLW\�$VVHVVPHQW

We now turn to the formal handling and repository-based management of DW quality goals such as the ones

described in the previous section.

A first formalization could be based on a qualitative analysis of relationships between the quality factors

themselves, e.g. positive or negative goal-subgoal relationships or goal-means relationships. The stakeholders

could then enter their subjective evaluation of individual goals as well as possible weightings of goals and be

supported in identifying good trade-offs. The entered as well as computed evaluations are used as quality

measurements in the architecture model of figure 3, thus enabling a very simple integration of architecture and

quality model.

Such an approach is widely used in industrial engineering under the label of 4XDOLW\�)XQFWLRQ�'HSOR\PHQW,
using a special kind of matrix representation called the House of Quality [1]. Formal reasoning in such a structure

has been investigated in works about the handling of non-functional requirements in software engineering, e.g.

[36]. Visual tools have shown a potential for negotiation support under multiple quality criteria [14].

However, while this simple approach certainly has a useful role in cross-criteria decision making, using it

alone would throw away the richness of work created by research in measuring, predicting, or optimizing

individual data warehouse quality factors. In the DWQ project, such methods are systematically adopted or newly

developed for all quality factors found important in the literature or our own empirical work. To give an
impression of the richness of techniques to be considered, we use a single quality factor − responsiveness in the

sense of good query performance − for which the DWQ project has studied three different approaches, one each

from the conceptual, logical, and physical perspective.

We start with the logical perspective [43]. Here, the quality measurement associated with responsiveness is

taken to be a weighted average of query and update "costs" for a given query mix and given information sources.

A combinatorial optimization technique is then proposed that selects a collection of materialized views as to

minimize the total costs. This can be considered a very simple case of the Quality Function Deployment

approach, but with the advantage of automated design of a solution.

If we include the physical perspective, the definition of query and update "costs" becomes an issue in itself:
what do we mean by costs − response time, throughput, or a combination of both (e.g. minimize query response

time and maximize update throughput)? what actually produces these costs − is database access or the network

traffic the bottleneck? A comprehensive queuing model [39] enables the prediction of such detailed metrics from

which the designer can choose the right ones for quality measurements for his design process. In addition,

completely new design options come into play: instead of materializing more views to improve query response

time (at the cost of disturbing the OLTP systems longer at update time), the designer could buy a faster client PC

or DBMS, or provide an ISDN link rather than using slow modems.

Yet other options come into play, when a rich logic is available for handling the conceptual perspective. For

example, the description logic developed in the DWQ project for source integration [8] allows to state that

information about all instances of one concept in the enterprise model is maintained in a particular information

source. In other words, the source is complete with respect to the domain. This enables the DW designer to drop

the materialization of all views on other sources, thus reducing the update effort semantically without any loss in

completeness of the answers.

�����+LHUDUFKLFDO�4XDOLW\�$VVHVVPHQW��$Q�$GDSWHG�*40�$SSURDFK

It is clear (and has in fact been proven in [7]) that there can be no decidable formal framework that even

comes close to covering all of these aspects in a uniform language. When designing the meta database extensions

for quality management, we therefore had to look for another solution that still maintains the overall picture

offered by shallow quality management techniques such as QFD but is at the same time open for the embedding

of specialized assessment and design techniques.

Our solution to this problem builds on the widely used Goal-Question-Metric (GQM) approach in software

quality management [40]. The idea of GQM is that quality JRDOV can usually not be assessed directly. Instead,

their meaning is circumscribed by TXHVWLRQV that need to be answered when evaluating the quality. Quality



questions again can usually not be answered directly but rely on PHWULFV applied to either the product or process

in question; techniques such as statistical process control charts are then applied to derive the answer of a

question from the measurements.

In the above example, the JRDO�of responsiveness can be refined into TXHVWLRQV about the trade-off between

query and update performance (logical perspective), about the present bottlenecks at the physical level, and about

the completeness or even redundancy of the utilized data sources (conceptual perspective). These questions can

then be answered using the above-mentioned PHWULFV�DQG�DOJRULWKPV.
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Fig. 12: Quality management via the data warehouse repository

Our repository solution uses a similar approach to bridge the gap between quality goal hierarchies on the one

hand, and very detailed metrics and reasoning techniques on the other. The bridge is defined through the idea of

quality queries as materialized views over the data warehouse; the views are defined through generic queries over

the quality measurements. Figure 12 motivates this approach by zooming in on the repository. The stakeholder

assesses the data warehouse quality by asking quality queries to the repository. The repository answers the

queries by accessing quality data obtained from measurement agents (the black triangles in figure 12). The agents

communicate with the components of the real data warehouse to extract measurements.

The stakeholder may re-define her quality goals at any time. This shall lead to an update of the quality model

in the repository and possibly to the configuration of new measurement agents responsible to deliver the base

quality data. Analogously, a stakeholder with appropriate authorization can re-define the architecture of the data

warehouse via the repository. Such an evolutionary update, e.g. the specification of a new data source, leads to a

re-configuration of the real data warehouse. Ultimately, the quality measurements will reflect such effect of the

change and give evidence whether the evolution has led to an improvement of some quality goals.

The use of the repository for data warehouse quality management has significant advantages:

• data warehouse systems already incorporate repositories to manage meta data about the data

warehouse; extending this component for quality management is a natural step

• existing meta data about the data warehouse, e.g. source schemas, can be directly used for

formulating quality goals and measurement plans

• the quality model can be held consistent with the architecture model, i.e. the repository can prevent

the stakeholders to formulate quality goals that cannot be validated with the given architectural data

• the stakeholder accesses the repository as a GDWD�VRXUFH to deliver quality reports to the stakeholders

who formulate quality goals; in fact, producing such reports is the same kind of activity that is used

to deliver aggregated data to the client tools of a data warehouse

The last argument is not just a technical remark. Quality data, i.e. values of quality measurements, are derived

from DW components. The values are materialized views of properties of these components. These values do



have quality properties like timeliness and accuracy themselves. It makes a difference whether value of a quality

measurement is updated each hour or once a month. While we do not go into detail with this “second-level”

quality, we note that the same methods that are used to maintain quality of the DW can also be used to maintain

the quality of the DW repository (hosting the quality model).

�����7KH�4XDOLW\�0HWD�0RGHO

Quality data is derived data and is maintained by the data warehouse system. This implementation strategy

provides more technical support than GQM implementations for general software systems. Such system lack the

built-in repository. The expressive query language offered by the ConceptBase repository system makes a large

portion of quality management tasks a matter of query formulation. In the sequel, we elaborate how a version of

GQM can be modeled by Telos meta classes in ConceptBase and then be used for quality goal formulation and

quality analysis.

Telos provides a logical representation for class membership �[� LQ�FODVV�� specialization between classes �F
LV$�G�� and attributes �[�ODEHO�\�� This logical representation can be mapped to a graphical layout as shown for the

quality model below, as well as to a frame syntax which we sometimes use for the formulation of queries. Since

all items (objects, classes, meta classes, and attributes) are uniformly treated in the logical representation, the
Telos language is used – extending the approach shown in figure 5 − for formulating

1. a meta model by a collection of meta classes (here for defining the architecture and quality models),

2. a collection of classes (here the use of the architecture and quality meta models to express quality goals,

queries, and measurement types on DW components), and

3. instances of the classes (here for representing results of measurements as class instances).

Data warehouse systems are unique in the sense that they rely on a run-time meta database (or repository) that

stores information about the data and processes in the system. This opens the opportunity to implement the GQM

approach such that it directly refers to the concepts in the meta database of the data warehouse.
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Figure 13 shows the Telos meta classes for managing data warehouse quality. Quality goals, e.g. ‘improve the

timeliness of data set sales-per-month’, are assigned to stakeholders. The SXUSRVH attribute for quality goals is

used to specify the intended direction of quality improvement (e.g., to increase the quality or to achieve a certain

quality level at a certain time). The quality goal is imposed on measurable data warehouse objects as classified by

the architecture model of figure 4. 4XDOLW\�JRDOV are mapped to a collection of TXDOLW\�TXHULHV which are used to

decide whether a goal is achieved or not. In our version of the GQM, these queries are queries to the DW

repository. A quality goal is linked to one or more TXDOLW\� GLPHQVLRQV according to the preferences of the

stakeholder who formulates the goal (see figures 9-11).

The next key concept is the quality query. While this is just a text in the original GQM approach, we encode a

quality query as an executable query on the data warehouse repository using the expressive deductive query

language of ConceptBase. The answer to a quality query is regarded as evidence for the fulfillment of a quality

goal. The most simple kind of quality query would just evaluate whether the current TXDOLW\�PHDVXUHPHQW for a

data warehouse object is within the expected interval. A quality measurement uses a metric unit, e.g. the average

number of null values per tuple of a relation.

�����,PSOHPHQWDWLRQ�6XSSRUW�IRU�WKH�4XDOLW\�0HWD�0RGHO

The abstraction levels of the concepts in the quality model require a closer consideration [28]. In standard

software metrics, a TXDOLW\� PHDVXUHPHQW is a function that maps a real world entity to a value of a domain,

usually a number. In our case, we maintain abstract representations of all “interesting” real world entities in the

DW repository itself. Thus, quality measurements can be recorded as explicit relationships between the abstract

representations, i.e. measurable objects, and the quality values. By nature, such a quality measurement relates

objects of different abstraction levels. For example, a quality value of 0.8 could be measured for the percentage

of null values of the (PSOR\HH relation of some data source. (PSOR\HH is a relation (the type of instances of the

(PSOR\HH data structure) whereas 0.8 is just a number. For this reason, we require a framework like Telos which

is able to relate objects at different abstraction levels.

A second remark has to be made on the use of the quality model by instantiation. Typical instances of the

0HDVXUDEOH2EMHFW are items like 5HODWLRQ (logical perspective) or entity type (conceptual perspective). These

items are independent of the DW application domain. They are used to describe a DW architecture but they are

not components of a concrete DW architecture1. A concrete architecture consists of items like data source for

(PSOR\HH, concrete wrapper agents etc. Therefore, when we instantiate the quality model we describe types of

quality goals, types of queries, and types of measurements. For example, we can describe a completeness goal for

relational data sources (instances of the 5HODWLRQ concept in figure 4) which is measured by counting the

percentage of null values in the relation. Such types (or patterns) can be reused for any concrete DW architecture.

For example, the measurement for a relational source for (PSOR\HH would be instantiated from the measurement

type by instantiating the expected and achieved quality values. The quality factors listed in the tables 1 to 4 are

such measurement types and they need to be instantiated by concrete measurements. This two-step instantiation is

essential in our approach since it allows to pre-load the repository with quality goal, query and measurement

types independent of the application domain. In other words, the repository has knowledge about quality

management methods.
Quality goals − whose dimensions are organized in hierarchies such as shown in figures 9 to 11 − are made

operational as types of queries defined over quality measurements. These queries will support the evaluation of a

specific quality goal when parameterized with a given (part of a) DW meta database. Such a query usually

compares the analysis goal to a certain expected interval in order to assess the level of quality achieved.

As a consequence, the quality measurement must contain information about both expected and actual values.

Both could be entered into the meta database manually, or computed inductively by a given metric through a

specific reasoning mechanism. For example, for a given physical design and some basic measurements of

                                                          
1 Formally, this is expressed by means of class instantiation in Telos. The concept 5HODWLRQ is represented by a tuple

�5HODWLRQ�LQ�0HDVXUDEOH2EMHFW�. The concept (PSOR\HH is introduced in Telos by a tuple �(PSOR\HH�LQ�5HODWLRQ�. Thus,
0HDVXUDEOH2EMHFW is a meta class of (PSOR\HH.



component and network speeds, the queuing model in [39] computes the quality measurement response time and

throughput, and it could indicate if network or database access is the bottleneck in the given setting. This could

then be combined with conceptual or logical quality measurements at the level of optimizing the underlying

quality goal.

A number of quality queries have been developed, focusing on some that turned out to be relevant when

validating the architecture against three case studies: creating a model of Software AG’s SourcePoint DW loading

environment, modeling the data quality problems hindering the application of data mining techniques in Swiss

Life, and conceptually re-constructing some design decisions underlying the administrative data warehouses of

the City of Cologne, Germany. Details about these case studies can be found in [11][41].

Generally speaking, quality queries access information recorded by quality measurements. A quality

measurement stores the following information about data warehouse components:

1.  an interval of expected values

2.  the achieved quality measurement

3.  the metric used to compute a measurement

4.  causal dependencies to other quality measurements

The dependencies between quality measurements can be used to trace quality problems, i.e. measurements

that are outside the expected interval, to their causes. The following two ConceptBase queries exemplify how

quality measurements classify data warehouse components and how the backtracing of quality problems can be

done by queries to the meta database:

QualityQuery BadQuality isA QualityMeasurement
 with constraint

c: $ not (this.expected contains this.current) $
end

QualityQuery CauseOfBadQuality isA DW_Object
 with parameter
  badObject : DW_Object
 constraint
  c: $ exists q1,q2/QualityMeasurement
    (badObject classifiedBy q1) and
    (q1 in BadQuality) and
    (q1 dependsOn q2) and
      (q2 in BadQuality) and
      ((this classifiedBy q2) or
      (exists o/DW_Object (o classifiedBy q2) and
      (this in CauseOfBadQuality[o/badObject]))) $
end

�����8QGHUVWDQGLQJ��&RQWUROOLQJ�DQG�,PSURYLQJ�4XDOLW\�ZLWK�WKH�5HSRVLWRU\

Summarizing the discussion above, figure 14 gives an impression how the traditional architecture of figure 1

is extended by our repository centred meta data management approach. The quality model forms the basis of the

implementation in ConceptBase. Quality data (i.e., values of measurements) are entered into the ConceptBase

system by external measurement agents which are specialized analysis and optimization tools. In the DWQ

project, four such tools are developed. Besides the subsumption reasoning tools already mentioned in section 2.6,

they include a data freshness toolkit covering the physical modeling of source integration, and tools for reasoning

about multi-dimensional aggregates and query optimization on the client side. ConceptBase can trigger these

agents based on the timestamp associated to them in the repository (see figure 14).

The result of the analysis of the quality data can be displayed graphically, as shown in figure 15. Quality

measurements are the long ovals in the middle. The black oval indicates that the timeliness of the staff

department data store (an item of the physical perspective) is not in its expected range (12 instead of 0 to 10).

The white color of the other measurements indicate measurements that are in expected range. The color code of

the graphical view is computed by the repository based on the %DG4XDOLW\ query shown above.
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Fig. 14: Mapping the Extending Architecture and Quality Model to the Traditional DW Architecture

The graphical display is intended for controlling the quality of the data warehouse. The ‘black’ nodes indicate

locations where some ad hoc FRQWURO is required, or where stakeholders have to be aware of unexpected low

quality. Each stakeholder has her own quality goals and hence has individualized views on the quality. The

repository can also be used to maintain the knowledge about causes of quality measurements. The ‘dependsOn’

link in figure 13 is exactly intended to build such a symptom-to-cause model over the quality measures. Such a

mathematical model shall be used to XQGHUVWDQG the effects of certain measures to other (dependent) measures.

As soon as the mathematical models are coded into the repository, the can be used to forecast derived quality

measures. If derived and measured values coincide for the same parameter, then the model is validated. This

issue is still under research in the data warehouse area, however.

Fig. 15: ConceptBase screenshot of the graphical view on the quality data



The last and most advanced aspect of quality management is the LPSURYHPHQW. Our current model does not

contain constructive knowledge about how to improve the quality of a data warehouse. The first step is to

incorporate the mathematical model mentioned above. Then, a data warehouse designer can make incremental

changes to the data warehouse architecture, measure the local effect on quality, and then measure the effect on

derived quality measures.

4.   RELATED WORK

Our approach extends and merges results from data warehouse research and from data/software quality

research. We mention here only some of the most relevant approaches; a comprehensive survey of research and

practice in data warehousing appears in [23].

Starting with the GDWD�ZDUHKRXVH�OLWHUDWXUH, the well-known projects have focused almost exclusively on what

we call the logical and physical perspectives of DW architecture. While the majority of early projects have

focused on source integration aspects, the recent effort has shifted towards the efficient computation and re-

computation of multi-dimensional views. The business perspective is considered at best indirectly in these

projects. The ,QIRUPDWLRQ�0DQLIROG (IM) developed at AT&T is the only one that employs a rich domain model

for information gathering from disparate sources such as databases, SGML documents, or unstructured files

[29][32][33] in a manner similar to our approach (but with less powerful reasoning mechanisms for analysis).

TSIMMIS (7KH� 6WDQIRUG�,%0� 0DQDJHU� RI� 0XOWLSOH� ,QIRUPDWLRQ� 6RXUFHV) is a project with the goal of

providing tools for the integrated access to multiple and diverse information sources and repositories [10][44].

Each information source is equipped with a ZUDSSHU that encapsulates the source, converting the underlying data

objects to a common data model - called 2EMHFW�([FKDQJH�0RGHO (OEM). On top of wrappers, PHGLDWRUV [47]

can be conceptually seen as views of data found in one or more sources which are suitably integrated and

processed.

Similarly, but with slightly different implementation strategies, the 6TXLUUHO Project [18][50] provides a

framework for data integration based on the notion of LQWHJUDWLRQ� PHGLDWRU. Integration mediators are active

modules that support incrementally maintained integrated views over multiple databases. Moreover, data quality

is considered by defining formal properties of FRQVLVWHQF\ and IUHVKQHVV for integrated views.

The WHIPS (:DUH+RXVH� ,QIRUPDWLRQ� 3URWRW\SH� DW� 6WDQIRUG) system [16][46] has the goal of developing

algorithms for the collection, integration and maintenance of information from heterogeneous and autonomous

sources. The WHIPS architecture consists of a set of independent modules implemented as CORBA objects. The

central component of the system is the LQWHJUDWRU, to which all other modules report.

On the client side of data warehousing, numerous tools for multi-dimensional data modeling and querying

exist. In terms of our architecture model, most of them have addressed a logical perspectives, e.g. relational

algebras [45], SQL extensions by data cubes [15] or visualization techniques generalizing the spreadsheet

approach [14]. However, there is also some work on logical foundations of a conceptual level, as a basis for DW

design [31] as well as DW operation [6]. In the DWQ project, a unified approach capturing the essence of these

extensions is under construction, as an extension to the repository meta model similar to the one described in

section 2.6.

Interestingly, metadata support for multi-dimensional extensions as well as for the representation of what we

call acquisition plans is offered by the new version of the Microsoft Repository [3]. However, as the MS

Repository is based on binary-standard object-oriented program interfaces on top of relational storage

technologies, it does not offer deductive querying mechanisms or subsumption analysis techniques that support

quality management in our approach. Still, this recent commercial effort accentuates the importance allocated by

vendors to the question of repository support for data warehousing.

Turning to GDWD�TXDOLW\�UHVHDUFK, Wang et al. [49] present a framework of data quality analysis, based on the

ISO 9000 standard. This framework reviews a significant part of the literature on data quality, yet only the

research and development aspects of data quality seem to be relevant to the cause of data warehouse quality

design. In [48], an attribute-based model is presented that can be used to incorporate quality aspects of data

products. As in our approach, the basis is the assumption that the quality design of an information system should



be incorporated in the overall design of the system. The model proposes the extension of the relational model as

well as the annotation of the results of a query with the appropriate quality measurements. Further work on data

quality can be found, among others, in [5][21][30][34].

Variants of the Goal-Question-Metric (GQM) approach are widely used in software quality management

[37][12]. A structured overview of the issues and strategies for information systems quality, embedded in a

repository framework, can be found in [24]. Several hierarchies of quality dimensions have been proposed. For

example, the GE Model [37] suggests 11 criteria of software quality, while B. Boehm’s [4] suggests 19 quality

factors. ISO 9126 [20] suggests six basic quality factors which are further analyzed to an overall of 21 quality

factors. In [17] a comparative presentation of these three models is done and the SATC software quality model is

presented, along with the metrics for the software quality dimensions.

5.   DISCUSSION AND CONCLUSIONS

The goal of our work is to enrich meta data management in data warehouses such that it can serve as a

meaningful basis for systematic quality analysis and quality-driven design. To reach this goal, we had to

overcome two limitations of current data warehouse research.

Firstly, the basic architecture in which data warehouses are typically described turned out to be too weak to

allow a meaningful quality assessment. As quality is usually detected only by its absence, quality-oriented meta

data management requires that we address the full sequence of steps from the capture of enterprise reality in

operational departments to the interpretation of DW information by the client analyst. This in turn implied the

introduction of an explicit enterprise perspective as a central feature in the architecture. To forestall possible

criticism that full enterprise modeling has proven a risky and expensive effort, we recall from section 2.6 that our

approach to enterprise model formation is fully incremental such that it is perfectly feasible to construct the

enterprise model step by step, e.g. as a side effect of source integration or of other business process analysis

efforts.

The second major problem is the enormous richness in quality factors, each associated with its own wealth of

measurement and design techniques. Our quest for an open quality management environment that can

accommodate existing or new such techniques led us to an adaptation and repository integration of the GQM

approach where parameterized queries and materialized quality views serve as the missing link between

specialized techniques and the general quality framework.

The power of the repository modeling language determines the boundary between precise but narrow metrics

and comprehensive but shallow global repository. The deductive object base formalism of the Telos language

provides a fairly sophisticated level of global quality analysis in our prototype implementation but is still fully

adaptable and general. Once the quality framework has sufficiently stabilized, a procedurally object-oriented

approach could do even more, by encoding some metrics directly as methods, of course at the expense of

flexibility. Conversely, a simple relational meta database could take up some of the present models with less

semantics than offered in the ConceptBase system, but with the same flexibility.

As shown throughout the paper, the approach has been fully implemented and some validation has taken

place to fine-tune the models. In part, this validation was by testing earlier versions of the model in real-world

DW projects, such as [42], or by reconstructing features of existing systems, such as [41]; another important

strain of validation efforts is through the definition and validation of specific methodologies within our

framework, such as the source integration methodology discussed in section 2.6 [8].

Obviously, much remains to be done. One direction of current work therefore continues the validation against

several major case studies, in order to set priorities among the quality criteria to be explicated in specific metrics

and analysis techniques. A second overlapping strain concerns the development of these techniques themselves,

and their linkage into the overall framework through suitable quality measurements and extensions to global

design and optimization techniques. Especially when progressing from the definition of metrics and prediction

techniques to actual design methods, it is expected that these will not be representable as closed algorithms but

must take the form of interactive work processes defined over the DW architecture.



As an example, feedback from at least two case studies suggests that, in practice, the widely studied strategy

of incremental view maintenance in the logical sense is far less often problematic than the time management at

the physical and conceptual level, associated with the question when to refresh DW views such that data are

sufficiently fresh for analysis, but neither analysts nor OLTP applications are unduly disturbed in their work due

to locks on their data. Our research therefore now focuses on extending the conceptual level by suitable (simple)

temporal representation and reasoning mechanisms for representing freshness requirements, complemented by an

array of design and implementation methods to accomplish these requirements and the definition of processes at

the global level to use these methods in a goal-oriented manner to fulfill the requirements.
As another example, one of our industrial cooperation partners – a small data warehouse application vendor −

has recognized that data quality for data analysis is not enough, because data analysis is only meaningful if it also

results in operational action. Jointly with this company, we are therefore devising a process and repository

implementation which allows to propagate the application of the data quality techniques in the data warehouse

“backwards” into the information sources [25].

While such extensions will certainly refine the approach reported here, the experiences gained so far indicate

that it is a promising way towards more systematic and computer-supported quality management in data

warehouse design and operation.
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