

University of Westminster Eprints
http://eprints.wmin.ac.uk

MDDQL: an ontology driven, multi-lingual query language and
system for an integrated view of heterogeneous data sources.

Epaminondas Kapetanios
Panagiotis Chountas

Harrow School of Computer Science

This is an electronic version of a paper presented at the Semantic Technology
Conference 2005, 7th-10th March 2005, California, USA.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

MDDQL: An Ontology Driven, Multi‐lingual Query
Language and System for an Integrated View of

Heterogeneous Data Sources

E. Kapetanios and P. Chountas

School of Computer Science
University of Westminster

Watford Road, Northwick Park, Harrow HA1 3TP
London, United Kingdom

E.Kapetanios@wmin.ac.uk

ABSTRACT

Query languages and keywords based search engines are
conventionally specified and implemented with the
emphasis put on syntactic rules to which query typing and
answering must be bound. MDDQL is a query language
and system that operates on a semantic model in terms of a
graph based ontology. As a software technology, MDDQL
allows the meaning of/and associations between
information to be known and processed at execution time at
following levels: (a) driving the user to the construction of,
as meaningful as possible, queries with an advanced
concept-based search method, (b) resolving high level
queries into various data source specific query statements.
In addition, queries can be posed in more than one natural
sub-language. The major goal behind this approach has
been the simplification and scalability of both tasks: query
construction, even within multi-lingual user communities,
and addressing of a large number of possibly semantically
heterogeneous data sources in a distributed environment.

Keywords
Query Languages, Ontology, Concept-based Search,
Semantic Data Integration, Conceptual Mediation,
Semantic Technology

INTRODUCTION

During the last years, we are witnessing an increased
awareness of and expectations from the emergence of
semantic technologies as a promising field, where some
answers and solutions to problems in intelligent search and
data integration, natural language processing, knowledge
representation and management. These expectations have
also been stimulated by the vision of the Semantic Web [9,
10].

A concept based querying language and system, however,
has been one of the objectives and visions behind this
semantic wave as taking us one step beyond keyword based
information retrieval techniques [15].
Riding on this semantic wave, MDDQL has been
developed as a multilingual, concept based query language
and system and applied in medical applications during the
last 3-4 years. In addition, MDDQL has been extended
towards a querying system for collections of, eventually,
heterogeneous databases.
 Despite the fact that ontology driven querying and
intelligent data integration has been the focus of research
activities and commercially available solutions in the last
decades, the overwhelming amount of data available on the
Web or even within a well defined business or
organizational environment still poses some considerable
challenges to be met.
Two of these challenges, simplicity and scalability, have
been the major concern behind the MDDQL development,
since we were aiming at:

• Turning MDDQL into a concept based querying
system and paradigm. However, not only by using
a kind of taxonomies, but also allowing within
query expressions semantic relationships or
associations other than classification hierarchies,
operators, negation, etc., as already has been the
case for many years in theory for database query
languages.

• Cope with more than one natural language as a
means of expressing a query.

• Turning MDDQL into a data integration system
for ad-hoc integration of data sources, in
particular, databases, however, avoiding
customizing of interfaces [11, 12] between

middleware and data source, i.e., between
mediators and wrappers

In order to meet these challenges (a) in terms of simplifying
the query construction, resolution and result presentation
process, (b) in terms of scalable ad-hoc integration of
databases, despite the embedding of various semantic
descriptions such as quality parameters, semantic distance,
etc., a Semantic Engine with an Ontological model has
been considered as the major part of the system.
Organization of the paper: Semantic Engine and
Ontological model are described in the following section.
The model, however, is realized in terms of a multi-layered
graph, since different roles of terms (linguistics, ontology,
perspectives, etc.) need to be addressed within the same
ontology.
The following sections describe the impact of the
Ontological model and Semantic Engine

• on to the ontology driven query construction
mechanism as based on suggestions inferred by
the system to refine the query,

• on to the query resolution and distribution
mechanism at the mediation level in terms of
delegating high level query trees to the data
sources instead of rewriting queries as known by
other data integration approaches,

• on to query result synthesis and presentation as
performed in terms of M-Operators and in terms
of wrapping results with all relevant metadata at
the presentation level too.

SEMANTIC ENGINE AND SYSTEM ACHITECTURE

MDDQL qualifies as a semantic model driven query
language and system, since its architecture incorporates a
Semantic Engine (SE) as fueled by an Ontology [13, 14].
The purpose, however, of the SE is twofold: (a) it drives
the human-computer interaction logic (IL) for the concept
based construction of queries, (b) provides the mechanism
for resolving the high level queries into various database
specific queries and, subsequently, for the synthesis of
partially received query results.
Despite the fact that this architecture, as depicted by Error!
Reference source not found., reflects a classical 3-tier
architecture, with the SE simply replacing the term
Middleware or Mediation within other architectural
approaches, there are also some considerable differences to
be taken into account. They mostly refer to the Semantic
Interfaces (SI) and the underlying Ontological model.

Figure 1: MDDQL Semantic Engine in a 3-tier System
Architecture

The SI between SE and IL refers to those objects or
abstract data types, which carry on

• those portions of the ontology to be transferred to
or queried from a smart client machine or device,

• the submitted high level MDDQL query for
resolution and distribution

• the synthesized final query result to be presented
to the user.

The SI between SE and DB refers to the objects or abstract
data types, which carry on

• those parts from the MDDQL high level query tree
in form of a high level sub-query tree, which
clearly refers to a particular database or,
generalizing, to a particular data source

• the returned query results annotated through
additional semantic descriptions such as origin,
data quality, etc.

In the following, we will refer to the Ontological Model,
which underlies the functionality of the Semantic Engine in
terms of inferences as drawn for the needs of driving

• the user to the construction of concept based
queries

• the query resolution and query result synthesis
The principles of the inferences and their added value to the
whole system with respect to these two aspects are
described in the following two sections. However, prior to
embarking on describing the interaction and query
resolution / query result synthesis logic, we give a general
description of the Ontological Model, since

• this is strongly related with the kind of inferences
we draw (graph traversing and navigation
algorithms)

• it provides the vocabulary for the query language.
Ontological Model and Vocabulary: The basics The
vocabulary of MDDQL is described by an ontology

IL

SE

DB

SI

SI

language, which is close to the Ontology Web Language
[13] as proposed by the Web Ontology Working Group of
the Wide Web Consortium (W3C) for the Semantic Web.
However, given that we put the emphasis on simplicity and
scalability of maintenance and reasoning, the ontology
model of the semantic engine relies on conceptual graph
based formalism, which addresses the nodes and links as
being objects themselves. This, in turn, makes persistent
storage and maintenance straight forward given that it is
closer to object-oriented paradigms of data models and
management systems. Figure 2 depicts an example of such
a graph based description.
This is similar to a surface syntax as based on frames.
Frames group together information about each class or
instance and, therefore, make an ontology easier to read
and understand, particularly for those who are not familiar -
or do not want to become familiar with Description Logics
based formalisms [16]. The frames paradigm has been used
in a number of well known knowledge representation
systems such as OKBC [14].

Figure 2: An Annotated Graph Based Ontology
Representation

Roughly speaking, in frames based languages, each class or
instance is described by a frame. The frame includes the
name of the class, identifies the more general class or
classes that it specializes, and lists a set of ''slots''. A slot, in
turn, may consist of a property-value pair or a constraint on
the values (individuals or data values) that act as a slot
''filler''. In addition, frames can be used in order to describe
properties as having range and domain constraints,
specifying more general properties or having inverse
property relationships.
Ontological Model and Vocabulary: The differences
However, given that we use separate frames in order to
represent terms for relationships, e.g., received by, admitted
to, etc., properties, e.g., age, and domain values, e.g., [20-
120], in order to describe concepts and instances, we
reserve links for the descriptions of constraints and
relationships. This holds not only among concepts and

instances, but also among their descriptive elements such as
relationships, properties and domain values.
To this extent, further semantic relationships or roles can be
expressed upon all constituting elements of the ontology
such as those known by natural languages, e.g., subject,
object in the roles of agents. Links, on the other side, can
be characterized as attributive or hierarchical links (see
also Figure 2) by assigning them specific slots, since they
are also represented as objects with their own properties.
Generally speaking, this modeling and representation
technique enables the addition of various semantic
description layers for all elements of the graph or ontology,
respectively. One such layer is the constraints layer which
might add validity issues for holding or expressed
connections among graph or ontology elements.
All these semantic layers refer to a particular perspective
point of view such as roles within a natural language, roles
within the ontology description, constraints, naming, etc.,
from which nodes within the conceptual graph should be
observed.
This separation between naming of nodes and their roles
within the graph or, respectively, ontology, alleviates the
task of taking into consideration multi-lingual perspective
points of view. It is, for instance, quite easy to change or
add labels for naming of nodes in another natural language,
while preserving all other semantic relationships and
descriptions and with no need to adapt either the software
for interaction logic or the software for the query resolution
and transformation.
This is due to the fact that the conceptual graph is being
mainly traversed according to the connectivity layer, where
links among the nodes are established on the basis of Term
Unique Identifiers (TUI’s) as depicted by Figure 2.

ONTOLOGY DRIVEN QUERY CONSTRUCTION

The first impact of the MDDQL Semantic Engine refers to
the interaction logic underlying the query construction
technique. It strongly relies on making suggestions of how
to complete or construct a query through suggestions of
conceptual relationships such as classification hierarchies,
properties, value restrictions, operators, etc.
The set of suggested terms, however, depends on

• the semantic relationships as circumscribed by the
Ontological Model (see also previous section)

• the partly constructed query as a whole,
• the role of the query term, from which a

refinement has been triggered,
• the user community.

To this extent, the interaction logic resembles the moves
among potential states as specified by a language
automaton. It is this ontology driven automaton, which

qualifies MDDQL as a concept based query language to be
applied to domains with an advanced and hardly
understood terminology such as scientific or technical ones,
as well as a concept based search mechanism.
This concept based querying paradigm enables a better
exploitation of the query vocabulary and results and,
therefore, enables experimentation with ad-hoc queries
within advanced application domains such as technical and
scientific ones.
This is strengthened by the fact that, in contrast with
keywords [15] or syntax only based querying paradigms,
the user does not need to know the spelling of words (query
terms) or their intentional meaning in order to construct a
proper query.
Furthermore, given that queries are constructed by
describing semantic relationships rather than simply typing
keywords, the received query results are closer to the
intentional meaning of the query.
Each constructed query at the client or smart device,
however, is reflected and represented by a high level,
conceptual tree, which is specified by constraints such as

• the root of the query tree is always a Class or an
Instance term node,

• an Object Property term node, i.e., a relationship
between two agents, must have children, which
are Classes or Instance term nodes

• an Object Property term node, i.e., relationship
between two agents, might also have as children
Property term nodes,

• etc.
All query tree nodes, however, are reflections of the graph
nodes as provided by the Ontological Model and, therefore,
still carry on all those semantic layers, which refer to the
various roles of these nodes (Figure 3). To this extent, it is
easy to identify each query tree node either as a concept or
class, property, instance, etc. Moreover, addressing the
semantic layer of mappings to the data sources, as
represented by the MID (Mediation Identifier) slot (Figure
3), it is easy to map each node to the corresponding data
source elements.
Given also that naming or labeling of the nodes is devoted
a separate semantic layer, submission of a query with query
terms expressed in a different natural language would lead
to the same query tree construction. Since transformation of
the MDDQL query tree takes place by considering other
semantic layers than the naming semantic layer, the same
query results can be generated independently the preferred
natural language, which underlies the expression of the
terms.

Figure 3: An Example of a Multi-Layered MDDQL
Query Tree

In the following, we will describe how the query tree
transformation takes place soon after its transmission as a
query object to the semantic engine at the middle tier is
completed.

SEMANTIC ENGINE AND QUERY RESOLUTION

The contribution of the MDDQL semantic engine to
Intelligent Data Integration can be best described having
first understood the major current approaches and
philosophies behind querying of collections of databases or
data sources.
Formally speaking, a data integration system I is defined by
the triple <G, S, M> where G is the global schema
expressed in a language Lg with an alphabet Ag , S is the
source schema expressed in a language Ls with an alphabet
As. In our case, G is given by the Ontological Model,
where S is described by an RDF-like syntax in XML.
Global-As-View: Integration information from pre-
selected sources according to a set of predefined
information needs. A procedural approach is known
(TSIMMIS, Squirrel, WHIPS) to integrate information
from sources through ad-hoc procedures. When

Class

MID

PropertyInstance

MIDMID

information needs or sources change, a new mediator
should be generated.
The TSIMMIS [1] query language is a SQL like language
adapted to deal with OEM objects. Adding new
information to TSIMMIS requires building of a wrapper for
the source and the change of all the mediators that will use
the new source. It further has to be stressed that global
integration is never performed in the context of TSIMMIS.
 As a result a certain concept may be treated in different
and possibly inconsistent ways, by different mediators. The
TSIMMIS query converter supports queries that
syntactically match a template and queries that produce the
same results as a directly supported query. The notion of
logical equivalence is used to detect queries that fall in this
class. Queries that can be executed in two steps: first a
directly supported query is executed, and then a filter is
applied to the results of the first step.
Squirrel [2], WHIPS [3] share the goal of providing a
query-based approach to data amalgamation. However
maintenance of views against updates to the sources is the
main aspect in this context. The focus here is on the
timeliness and availability of data.
Local-As-View: Integration information from arbitrary
sources according to a set of predefined information needs.
A declarative approach is known (Information Manifold,
Carnot, SIMS,). Mediators contain mechanisms to rewrite
queries according to source descriptions. A rewritten query
should be contained in the original query.
In the Information Manifold [4] a reasoning phase is
delivered for realizing which sources have the data of
interest, unlike TSIMMIS where view expansion is used for
finding what data each source must contribute. To resolve
queries, a mapping between the relations in the mediated
schema and the source relations is defined. A method to
define these mappings is to describe each source relation as
the result of a conjunctive query, over the relations in the
mediated schema. The collection of available data sources
may not contain all the information needed to answer a
query.
In SIMS [5] sources are described using a domain model of
the application domain that it is formalized in terms of a
class based representation language (LOOM). Query
processing involves a non-fixed mapping from query to
sources that are dynamically selected and integrated when
the query is submitted.
In Carnot [6] system individual schemata are mapped onto
a large ontology, which is provided by the CYC knowledge
base. Such ontology is expressed in an extended first order
representation language called Global Context Language
(GCL). Source schemata and global views are represented
in a knowledge base, and an inference engine based on
rules is used to extract information from the sources.
Given that M is the mapping between G and S in some
kind of description language Lm, this is either based on
definition of views or on other partially defined Ontologies.

In any case, query resolution and delegation to data sources
becomes a matter of query rewriting, which increases
complexity. In addition, this mapping description approach
decreases scalability when it comes to ad-hoc integration of
data sources.
In summary the problem of query answering in Mediators
can be formally described as follows: given a set of views
v1 … vk and a query Q over a fixed schema, can Q be
reformulated using the views so that it does not use any of
the base relations? The problem is in principle NP-
complete with respect to set semantics.
View suitability is parameterized by languages in which
views and queries are expressed and by the semantics under
which they are evaluated. The focus is on two special cases
known as the equivalence problem (do two queries Q1, Q2
return the same set of answers?) and the containment
problem (is the set of answers to Q1 always a subset of
those to Q2 ?).

Figure 4: Overview of Query Resolution in MDDQL

MDDQL approach: In order to simplify query resolution
and answering over integrated databases, we rely on
simplicity and, therefore, scalability of ad-hoc data source
integration. This is enabled by taking into consideration:

• The semantic descriptions of the nodes on the
MDDQL query tree (Figure 3), in particular, their
Ontological roles such as Concepts, Properties,
Relationships, Instances, etc.

• The descriptions of mappings from Ontology-to-
Data source elements, where data source elements
are described in terms of containment paths
(SMS).

 An SMS or containment path is defined by the constraint
that all SMS constituents underlie a sequence order like
<data source>:<table>:<attribute>:<value>
as for databases, a notation which indicates inclusion, i.e.,
an <attribute> is included by a <table>, a <table> is
included by a <data source>. Note that
<table>,<attribute>,<value> might also refer to recursive
structures such as nested tables, complex attributes, and
multi-values.
Similarly, in cases of documents, the SMS structure follows
a sequence order like
<data source>:<document>:<paragraph>:<text>
An example of these mapping descriptions in terms of
resolving MID’s, as expressed by additional layers of the
nodes on the MDDQL query tree (Figure 3) into SMS’s and
for the database world is given in the following:
<mddql:mediator>
 <mddql:mid mid="m100">
 <mddql:sms distance="1.0">
 AMIS:PATIENTADMIT
 </mddql:sms>
 <mddql:sms distance="1.0">
 CCT2003:ANGIO_PATIENTS
 </mddql:sms>
 <mddql:sms distance="1.0">
 CCT2003:REVA_PATIENTS
 </mddql:sms>
 </mddql:mid>
 <mddql:mid mid="m501">
 <mddql:sms distance="1.0">
 AMIS:PATIENTADMIT:SEX
 </mddql:sms>
 <mddql:sms distance="1.0">
 CCT2003:ANGIO_PATIENTS:GENDER
 </mddql:sms>
 <mddql:sms distance="1.0">
 CCT2003:REVA_PATIENTS:GENDER
 </mddql:sms>
 </mddql:mid>

</mddql:mediator>

This way of structuring mappings also enables the
consideration of additional elements such as semantic
distance. The major goal behind this structure, however, is
easiness of ad-hoc extensions through new data sources,
since new data source elements in terms of containment
paths should be simply added as an XML element into the
relevant parent XML element as it refers to the Ontology
concept through the MID attribute.
This mapping notation is also exploited by the query
resolution and distribution algorithm, since the source or
origin of data is a-priori known. To this extent, the
MDDQL query tree can be split up into sub-query trees,
however, each sub-query tree includes only those nodes,
which refer to containment paths of the same origin.

Consequently, each sub-query tree can be delegated for
transformation and execution to a particular database or
data source.

Figure 5: Example of MDDQL Query Tree Resolution

An example of an MDDQL query tree is depicted by Figure
5. The query tree refers to the query “Age and gender of
patients with angiography”. Accordingly, there are more
than three (3) databases affected, as indicated by the
resolved containment paths, namely, AMIS, CCT_ANGIO
and CCT_REVA.

Figure 6: An Example of a Generated Data Source
Specific Query Tree

Following the example of Figure 5, Figure 6 depicts one of
the three (3) query sub-trees as generated for the data
source CCT_REVA.
Since each high level query sub-tree is clearly assigned to a
particular data source, it is sent for transformation and
execution to that particular source (Figure 4). However, in
order to accomplish its transformation towards a data
source or database specific query language, e.g., SQL
statements, three aspects need to be taken into
consideration as input by the transformation algorithm:

• the nature of the high level query sub-tree in terms
of pairs of nodes and their roles within the
Ontology as the query tree is being traversed in a
depth-first strategy

• the nature of the containment paths on each node

TUID=o1;
name = ʹpatientsʹ ;
symbol = “m1ʺ;

TUID=o2;
name = ʹAngiography patientsʹ ;
symbol = ʺm10ʺ;

TUID=o1;
name = ‘Ageʹ ;
symbol = ʺm15ʺ;

TUID=o1;
name = ‘Genderʹ ;
symbol = ʺm18ʺ;

AMIS:PATIENTADMIT
CCT_ANGIO:ANGIO_PATIENTS
CCT_REVA:REVA_PATIENTS

CCT_ANGIO:ANGIO_PATIENTS

CCT_ANGIO:ANGIO_PATIENTS:ALTER
CCT_REVA:REVA_PATIENTS:AGE

AMIS:PATIENTADMIT:SEX

TUID=o1;
name = ʹpatientsʹ ;
symbol = “m1ʺ;

TUID=o2;
name = ʹAngiography patientsʹ ;
symbol = ʺm10ʺ;

TUID=o1;
name = ‘Ageʹ ;
symbol = ʺm15ʺ;

TUID=o1;
name = ‘Genderʹ ;
symbol = ʺm18ʺ;

AMIS:PATIENTADMIT
CCT_ANGIO:ANGIO_PATIENTS
CCT_REVA:REVA_PATIENTS

CCT_ANGIO:ANGIO_PATIENTS

CCT_ANGIO:ANGIO_PATIENTS:ALTER
CCT_REVA:REVA_PATIENTS:AGE

AMIS:PATIENTADMIT:SEX

TUID=o1;
name = ʹpatientsʹ ;
symbol = “CCT_REVA:REVA_PATIENTSʺ;

TUID=o2;
name = ‘Revascularisation patientsʹ ;
symbol = “CCT_REVA:REVA_PATIENTSʺ;

TUID=o1;
name = ‘Ageʹ ;
symbol = ʺ CCT_REVA:REVA_PATIENTS:AGE ʺ;

Target DB: CCT_REVATUID=o1;
name = ʹpatientsʹ ;
symbol = “CCT_REVA:REVA_PATIENTSʺ;

TUID=o2;
name = ‘Revascularisation patientsʹ ;
symbol = “CCT_REVA:REVA_PATIENTSʺ;

TUID=o1;
name = ‘Ageʹ ;
symbol = ʺ CCT_REVA:REVA_PATIENTS:AGE ʺ;

Target DB: CCT_REVA

• the metadata description of the data source as
provided by wrappers in an RDF-like syntax

These metadata as provided by the wrapper refers to, e.g.,
database schema description in terms of tables, attributes,
primary/foreign keys, data types, measurement units, etc.,
as well as to quality parameters, e.g., completeness and
soundness.

SYNTHESIS OF THE QUERY RESULT AND ITS
PRESENTATION

Given that the partial query is executed at a dedicated
source, all relevant metadata are propagated with the
generated query result back to the mediator. The partial
query results as returned from each source are merged at
the mediation level through the application of the mediation
operators M-Join, M-Union and M-Difference.
This merging addresses issues like putting attributes
together or shifting values in cases of overlapping of
attributes from different data sources. A major assumption
is that all partially created query results are returned with
their ID’s, which are implicitly added to each sub-query
result, if not explicitly requested by the query. Given that
ID’s are also subject to mapping descriptions, these M-
operations are applied after having transformed ID’s back
to their Ontological mappings.
The integrated query result is presented to the user as a
wrapped result in terms of

• references to the partially generated query results
and the generated data source specific queries

• references to data source specific metadata such as
quality at various granularity levels (source, table,
attribute)

• references to the Ontological counterparts for
explanations of attributes, tables, etc.

CONCLUSION

MDDQL has been conceived as a multi-lingual, concept-
based querying language and system. It aims at going
beyond keywords based Information Retrieval. However, as
a Concept-based Querying language does not rely only on
the usage of Taxonomies but also relationships, operators,
operations, etc.
Given that its functionality and current application is driven
by multi-lingual user communities and different Ontology
perspectives and views as well as by integration of various
collections of heterogeneous data sources, the emphasis has
been put on simplicity and scalability to cope with the
inherited complexity.
This refers to both the Ontological model as represented by
a multi-layered conceptual graph and the way of describing

Ontology-to-Data source mappings in terms of containment
paths. The latter decreases complexity when ad-hoc data
sources are being integrated.
MDDQL has been implemented in Java with its successful
application for querying a series of databases as they refer
to collections of patients’ records as provided by a case
study for the proof of technology.
Currently the system is extended towards querying and
integration of unstructured data, e.g., Web documents in
conjunction with the elaboration of the Ontological Model
to accommodate different perspectives and views and other
relativity issues within an Ontology.
Some questions still to be answered: Is there any
contribution to the Semantic Web community or could this
become an intelligent, concept-based querying Search
Engine? Does it make sense to turn the query interface to a
purely natural language based one?

ACKNOWLEDGEMENTS

We would like to express our thanks to Paul Groenewoud,
David Baer, Markus Zingg, Elly Zarakani at Semantic
Technologies GmbH, who co-implemented the system.

REFERENCES

1. J. Ullman, “Information Integration using local views”,

ICDT, pp. 19-40, LNCS 1186, Springer, 1997
2. G. Zhou, R. Hull, R. King “Generating data integration

mediators that use materialization”, Journal of
Intelligent Information Systems, 6(2), pp. 199-221,
1996

3. J. Hammer, H. Garcia-Molina, J. Widom, W Labio, Y.
Zhuge “The Stanford data warehousing project”, IEEE
Data Eng. Bulletin, Spec. Issue on Materialized Views
and Data Warehousing, 18(2), pp. 41-48, 1995

4. A. Levy, A. Rajaraman, J. Ordille “Query answering
algorithms for information agents” In Proc. of 13th
National Conference of Artificial Intelligence AAAI, pp.
40-47, AAAI/MIT Press, 1996

5. Y., Arens, C. Knoblock, W., Chen “Query
reformulation for dynamic information integration”,
Journal of Intelligent Information Systems, 6(2), pp. 99-
130, 1996

6. M. Huhns, N. Jacobs, T. Ksiezyk, W. Shen, M. Singh,
P. Cannata “Integrating enterprise information models
in Carnot”, CoopIS, pp. 32-42, IEEE Computet Society
1993

7. P. Mitra,“An Algorithm for Answering Queries
Efficiently Using Views”, in Proc. of ADC, pp. 99-106,
IEEE Computet Society, 2001

8. R. Pottinger A. Levy, “A scalable algorithm for
answering queries using views” pp 484-495, VLDB,
2000

9. T. Berners Lee, Weaving the Web, London, Orion
Business, 1999

10. D. Fensel, J, Hendler, H. Liebermann (editors),
Spinning the Semantic Web, MIT Press, 2003

11. G. Wiederhold, Mediators in the Architecture of Future
Information Systems, IEEE Computer, 25(3), pp. 38-49,
1992

12. Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, J.D.
Ullman, A Query Translation Scheme for Rapid

Implementation of Wrappers, Proc. 4th Annual Conf. on
Deductive and Object-Oriented Databases (DOOD), pp.
161-186, Singapore, 1995, Springer

13. http://www.w3.org/2001/sw/WebOnt
14. http://ontolingua.stanford.edu/okbc
15. http://www.google.com
16. F. Baader, D. Calvanese, D. McGuiness, D. Nardi, P.-

P. Schneider, The Descriptions Logic Handbook:
Theory, Implementation and Applications, Cambridge
Press, 2003

