22 research outputs found

    Quality-aware Tasking in Mobile Opportunistic Networks - Distributed Information Retrieval and Processing utilizing Opportunistic Heterogeneous Resources.

    Get PDF
    Advances in wireless technology have facilitated direct communication among mobile devices in recent years, enabling opportunistic networks. Opportunistic networking among mobile devices is often utilized to offload and save cellular network traffic and to maintain communication in case of impaired communication infrastructure, such as in emergency situations. With a plethora of built-in capabilities, such as built-in sensors and the ability to perform even intensive operations, mobile devices in such networks can be used to provide distributed applications for other devices upon opportunistic contact. However, ensuring quality requirements for such type of distributed applications is still challenging due to uncontrolled mobility and resource constraints of devices. Addressing this problem, in this thesis, we propose a tasking methodology, which allows for assigning tasks to capable mobile devices, considering quality requirements. To this end, we tackle two fundamental types of tasks required in a distributed application, i.e., information retrieval and distributed processing. Our first contribution is a decentralized tasking concept to obtain crowd collected data through built-in sensors of participating mobile devices. Based on the Named Data Networking paradigm, we propose a naming scheme to specify the quality requirements for crowd sensing tasks. With the proposed naming scheme, we design an adaptive self-organizing approach, in which the sensing tasks will be forwarded to the right devices, satisfying specified quality requirements for requested information. In our second contribution, we develop a tasking model for distributed processing in opportunistic networks. We design a task-oriented message template, which enhances the definition of a complex processing task, which requires multiple processing stages to accomplish a predefined goal. Our tasking concept enables distributed coordination and an autonomous decision of participating device to counter uncertainty caused by the mobility of devices in the network. Based on this proposed model, we develop computation handover strategies among mobile devices for achieving quality requirements of the distributed processing. Finally, as the third contribution and to enhance information retrieval, we integrate our proposed tasking concept for distributed processing into information retrieval. Thereby, the crowd-collected data can be processed by the devices during the forwarding process in the network. As a result, relevant information can be extracted from the crowd-collected data directly within the network without being offloaded to any remote computation entity. We show that the obtained information can be disseminated to the right information consumers, without over-utilizing the resource of participating devices in the network. Overall, we demonstrate that our contributions comprise a tasking methodology for leveraging resources of participating devices to ensure quality requirement of applications built upon an opportunistic network

    Improving privacy preserving in modern applications

    Full text link
    The thesis studies the privacy problems in various modern applications, such as recommendation system, Internet of Things, location-based service and crowdsourcing system. The corresponding solutions are proposed, and the proposed solutions not only protect the data privacy with guaranteed privacy level, but also enhancing the data utility

    Privacy-preserving Cooperative Services for Smart Traffic

    Get PDF
    Communication technology and the increasing intelligence of things enable new qualities of cooperation. However, it is often unclear how complex functionality can be realized in a reliable and abuse-resistant manner without harming users\u27 privacy in the face of strong adversaries. This thesis focuses on three functional building blocks that are especially challenging in this respect: cooperative planning, geographic addressing and the decentralized provision of pseudonymous identifiers

    A survey of spatial crowdsourcing

    Get PDF

    Distributed Data Management in Vehicular Networks Using Mobile Agents

    Get PDF
    En los últimos años, las tecnologías de la información y las comunicaciones se han incorporado al mundo de la automoción gracias a sus avances, y han permitido la creación de dispositivos cada vez más pequeños y potentes. De esta forma, los vehículos pueden ahora incorporar por un precio asequible equipos informáticos y de comunicaciones.En este escenario, los vehículos que circulan por una determinada zona (como una ciudad o una autopista) pueden comunicarse entre ellos usando dispositivos inalámbricos que les permiten intercambiar información con otros vehículos cercanos, formando así una red vehicular ad hoc, o VANET (Vehicular Ad hoc Network). En este tipo de redes, las comunicaciones se establecen con conexiones punto a punto por medio de dispositivos tipo Wi-Fi, que permiten la comunicación con otros del mismo tipo dentro de su alcance, sin que sea necesaria la existencia previa de una infraestructura de comunicaciones como ocurre con las tecnologías de telefonía móvil (como 3G/4G), que además requieren de una suscripción y el pago de una tarifa para poder usarlas.Cada vehículo puede enviar información y recibirla de diversos orígenes, como el propio vehículo (por medio de los sensores que lleva incorporados), otros vehículos que se encuentran cerca, así como de la infraestructura de tráfico presente en las carreteras (como semáforos, señales, paneles electrónicos de información, cámaras de vigilancia, etc.). Todos estas fuentes pueden transmitir datos de diversa índole, como información de interés para los conductores (por ejemplo, atascos de tráfico o accidentes en la vía), o de cualquier otro tipo, mientras sea posible digitalizarla y enviarla a través de una red.Todos esos datos pueden ser almacenados localmente en los ordenadores que llevan los vehículos a medida que son recibidos, y sería muy interesante poder sacarles partido por medio de alguna aplicación que los explotara. Por ejemplo, podrían utilizarse los vehículos como plataformas móviles de sensores que obtengan datos de los lugares por los que viajan. Otro ejemplo de aplicación sería la de ayudar a encontrar plazas de aparcamiento libres en una zona de una ciudad, usando la información que suministrarían los vehículos que dejan una plaza libre.Con este fin, en esta tesis se ha desarrollado una propuesta de la gestión de datos basada en el uso de agentes móviles para poder hacer uso de la información presente en una VANET de forma eficiente y flexible. Esta no es una tarea trivial, ya que los datos se encuentran dispersos entre los vehículos que forman la red, y dichos vehículos están constantemente moviéndose y cambiando de posición. Esto hace que las conexiones de red establecidas entre ellos sean inestables y de corta duración, ya que están constantemente creándose y destruyéndose a medida que los vehículos entran y salen del alcance de sus comunicaciones debido a sus movimientos.En un escenario tan complicado, la aproximación que proponemos permite que los datos sean localizados, y que se puedan hacer consultas sobre ellos y transmitirlos de un sitio cualquiera de la VANET a otro, usando estrategias multi-salto que se adaptan a las siempre cambiantes posiciones de los vehículos. Esto es posible gracias a la utilización de agentes móviles para el procesamiento de datos, ya que cuentan con una serie de propiedades (como su movilidad, autonomía, adaptabilidad, o inteligencia), que hace que sean una elección muy apropiada para este tipo de entorno móvil y con un elevado grado de incertidumbre.La solución propuesta ha sido extensamente evaluada y probada por medio de simulaciones, que demuestran su buen rendimiento y fiabilidad en redes vehiculares con diferentes condiciones y en diversos escenarios.<br /

    Multi-modal Spatial Crowdsourcing for Enriching Spatial Datasets

    Get PDF

    Towards intelligent transport systems: geospatial ontological framework and agent simulation

    Get PDF
    In an Intelligent Transport System (ITS) environment, the communication component is of high significance as it supports interactions between vehicles and the roadside infrastructure. Existing studies focus on the physical capability and capacity of the communication technologies, but the equally important development of suitable and efficient semantic content for transmission has received notably less attention. Using an ontology is one promising approach for context modelling in ubiquitous computing environments. In the transport domain, an ontology can be used both for context modelling and semantic contents for vehicular communications. This research explores the development of an ontological framework implementing a geosemantic messaging model to support vehicle-to-vehicle communications. To develop an ontology model, two scenarios (an ambulance situation and a breakdown on the motorway) are constructed to describe specific situations using short-range communication in an ITS environment. In the scenarios, spatiotemporal relations and semantic relations among vehicles and road facilities are extracted and defined as classes, objects, and properties/relations in the ontology model. For the ontology model, some functions and query templates are also developed to update vehicles’ movements and to provide some logical procedures that vehicles need to follow in emergency situations. To measure the effects of the vehicular communication based on the ontology model, an agent-based approach is adopted to dynamically simulate the moving vehicles and their communications following the scenarios. The simulation results demonstrate that the ontology model can support vehicular communications to update each vehicle’s context model and assist its decision-making process to resolve the emergency situations. The results also show the effect of vehicular communications on the efficiency trends of traffic in emergency situations, where some vehicles have a communication device, and others do not. The efficiency trends, based on the percentage of vehicles having a communication device, can be useful to set a transition period plan for implanting communication devices onto vehicles and the infrastructure. The geospatial ontological framework and agent simulation may contribute to increase the intelligence of ITS by supporting data-level and application-level implementation of autonomous vehicle agents to share knowledge in local contexts. This work can be easily extended to support more complex interactions amongst vehicles and the infrastructure

    A Communications-Oriented Perspective on Traffic Management Systems for Smart Cities: Challenges and Innovative Approaches

    Get PDF
    The growing size of cities and increasing population mobility have determined a rapid increase in the number of vehicles on the roads, which has resulted in many challenges for road traffic management authorities in relation to traffic congestion, accidents, and air pollution. Over the recent years, researchers from both industry and academia have been focusing their efforts on exploiting the advances in sensing, communication, and dynamic adaptive technologies to make the existing road traffic management systems (TMSs) more efficient to cope with the aforementioned issues in future smart cities. However, these efforts are still insufficient to build a reliable and secure TMS that can handle the foreseeable rise of population and vehicles in smart cities. In this survey, we present an up-to-date review of the different technologies used in the different phases involved in a TMS and discuss the potential use of smart cars and social media to enable fast and more accurate traffic congestion detection and mitigation. We also provide a thorough study of the security threats that may jeopardize the efficiency of the TMS and endanger drivers' lives. Furthermore, the most significant and recent European and worldwide projects dealing with traffic congestion issues are briefly discussed to highlight their contribution to the advancement of smart transportation. Finally, we discuss some open challenges and present our own vision to develop robust TMSs for future smart cities

    Security and Privacy Preservation in Mobile Crowdsensing

    Get PDF
    Mobile crowdsensing (MCS) is a compelling paradigm that enables a crowd of individuals to cooperatively collect and share data to measure phenomena or record events of common interest using their mobile devices. Pairing with inherent mobility and intelligence, mobile users can collect, produce and upload large amounts of data to service providers based on crowdsensing tasks released by customers, ranging from general information, such as temperature, air quality and traffic condition, to more specialized data, such as recommended places, health condition and voting intentions. Compared with traditional sensor networks, MCS can support large-scale sensing applications, improve sensing data trustworthiness and reduce the cost on deploying expensive hardware or software to acquire high-quality data. Despite the appealing benefits, however, MCS is also confronted with a variety of security and privacy threats, which would impede its rapid development. Due to their own incentives and vulnerabilities of service providers, data security and user privacy are being put at risk. The corruption of sensing reports may directly affect crowdsensing results, and thereby mislead customers to make irrational decisions. Moreover, the content of crowdsensing tasks may expose the intention of customers, and the sensing reports might inadvertently reveal sensitive information about mobile users. Data encryption and anonymization techniques can provide straightforward solutions for data security and user privacy, but there are several issues, which are of significantly importance to make MCS practical. First of all, to enhance data trustworthiness, service providers need to recruit mobile users based on their personal information, such as preferences, mobility pattern and reputation, resulting in the privacy exposure to service providers. Secondly, it is inevitable to have replicate data in crowdsensing reports, which may possess large communication bandwidth, but traditional data encryption makes replicate data detection and deletion challenging. Thirdly, crowdsensed data analysis is essential to generate crowdsensing reports in MCS, but the correctness of crowdsensing results in the absence of malicious mobile users and service providers become a huge concern for customers. Finally yet importantly, even if user privacy is preserved during task allocation and data collection, it may still be exposed during reward distribution. It further discourage mobile users from task participation. In this thesis, we explore the approaches to resolve these challenges in MCS. Based on the architecture of MCS, we conduct our research with the focus on security and privacy protection without sacrificing data quality and users' enthusiasm. Specifically, the main contributions are, i) to enable privacy preservation and task allocation, we propose SPOON, a strong privacy-preserving mobile crowdsensing scheme supporting accurate task allocation. In SPOON, the service provider recruits mobile users based on their locations, and selects proper sensing reports according to their trust levels without invading user privacy. By utilizing the blind signature, sensing tasks are protected and reports are anonymized. In addition, a privacy-preserving credit management mechanism is introduced to achieve decentralized trust management and secure credit proof for mobile users; ii) to improve communication efficiency while guaranteeing data confidentiality, we propose a fog-assisted secure data deduplication scheme, in which a BLS-oblivious pseudo-random function is developed to enable fog nodes to detect and delete replicate data in sensing reports without exposing the content of reports. Considering the privacy leakages of mobile users who report the same data, the blind signature is utilized to hide users' identities, and chameleon hash function is leveraged to achieve contribution claim and reward retrieval for anonymous greedy mobile users; iii) to achieve data statistics with privacy preservation, we propose a privacy-preserving data statistics scheme to achieve end-to-end security and integrity protection, while enabling the aggregation of the collected data from multiple sources. The correctness verification is supported to prevent the corruption of the aggregate results during data transmission based on the homomorphic authenticator and the proxy re-signature. A privacy-preserving verifiable linear statistics mechanism is developed to realize the linear aggregation of multiple crowdsensed data from a same device and the verification on the correctness of aggregate results; and iv) to encourage mobile users to participating in sensing tasks, we propose a dual-anonymous reward distribution scheme to offer the incentive for mobile users and privacy protection for both customers and mobile users in MCS. Based on the dividable cash, a new reward sharing incentive mechanism is developed to encourage mobile users to participating in sensing tasks, and the randomization technique is leveraged to protect the identities of customers and mobile users during reward claim, distribution and deposit

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges
    corecore