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Title Professor

Supervisor NAME Xuemin (Sherman) Shen
Title University Professor

Co–Supervisor NAME Xiaodong Lin
Title Professor

Internal Member NAME Liang-Liang Xie
Title Professor

Internal Member NAME Sagar Naik
Title Professor

Internal–external Member NAME Jun Liu
Title Associate Professor

ii



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Abstract

Mobile CrowdSensing (MCS) is a compelling paradigm that enables a crowd of individuals
to cooperatively collect and share data to measure phenomena or record events of common
interest using their mobile devices. Pairing with inherent mobility and intelligence, mobile
users can collect, produce and upload large amounts of data to service providers based on
crowdsensing tasks released by customers, ranging from general information, such as tem-
perature, air quality and traffic condition, to more specialized data, such as recommended
places, health condition and voting intentions. Compared with traditional sensor network-
s, MCS can support large-scale sensing applications, improve sensing data trustworthiness
and reduce the cost on deploying expensive hardware or software to acquire high-quality
data.

Despite the appealing benefits, however, MCS is also confronted with a variety of se-
curity and privacy threats, which would impede its rapid development. Due to their own
incentives and vulnerabilities of service providers, data security and user privacy are being
put at risk. The corruption of sensing reports may directly affect crowdsensing result-
s, and thereby mislead customers to make irrational decisions. Moreover, the content
of crowdsensing tasks may expose the intention of customers, and the sensing reports
might inadvertently reveal sensitive information about mobile users. Data encryption and
anonymization techniques can provide straightforward solutions for data security and user
privacy, but there are several issues, which are of significantly importance to make MCS
practical. First of all, to enhance data trustworthiness, service providers need to recruit
mobile users based on their personal information, such as preferences, mobility pattern and
reputation, resulting in the privacy exposure to service providers. Secondly, it is inevitable
to have replicate data in crowdsensing reports, which may possess large communication
bandwidth, but traditional data encryption makes replicate data detection and deletion
challenging. Thirdly, crowdsensed data analysis is essential to generate crowdsensing re-
ports in MCS, but the correctness of crowdsensing results in the absence of malicious
mobile users and service providers become a huge concern for customers. Finally yet im-
portantly, even if user privacy is preserved during task allocation and data collection, it
may still be exposed during reward distribution. It further discourage mobile users from
task participation.

In this thesis, we explore the approaches to resolve these challenges in MCS. Based
on the architecture of MCS, we conduct our research with the focus on security and pri-
vacy protection without sacrificing data quality and users’ enthusiasm. Specifically, the
main contributions are, i) to enable privacy preservation and task allocation, we propose
SPOON, a strong privacy-preserving mobile crowdsensing scheme supporting accurate task
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allocation. In SPOON, the service provider recruits mobile users based on their locations,
and selects proper sensing reports according to their trust levels without invading user
privacy. By utilizing the blind signature, sensing tasks are protected and reports are
anonymized. In addition, a privacy-preserving credit management mechanism is intro-
duced to achieve decentralized trust management and secure credit proof for mobile users;
ii) to improve communication efficiency while guaranteeing data confidentiality, we propose
a fog-assisted secure data deduplication scheme, in which a BLS-oblivious pseudo-random
function is developed to enable fog nodes to detect and delete replicate data in sensing re-
ports without exposing the content of reports. Considering the privacy leakages of mobile
users who report the same data, the blind signature is utilized to hide users’ identities, and
chameleon hash function is leveraged to achieve contribution claim and reward retrieval
for anonymous greedy mobile users; iii) to achieve data statistics with privacy preserva-
tion, we propose a privacy-preserving data statistics scheme to achieve end-to-end security
and integrity protection, while enabling the aggregation of the collected data from mul-
tiple sources. The correctness verification is supported to prevent the corruption of the
aggregate results during data transmission based on the homomorphic authenticator and
the proxy re-signature. A privacy-preserving verifiable linear statistics mechanism is de-
veloped to realize the linear aggregation of multiple crowdsensed data from a same device
and the verification on the correctness of aggregate results; and iv) to encourage mobile
users to participating in sensing tasks, we propose a dual-anonymous reward distribution
scheme to offer the incentive for mobile users and privacy protection for both customers
and mobile users in MCS. Based on the dividable cash, a new reward sharing incentive
mechanism is developed to encourage mobile users to participating in sensing tasks, and
the randomization technique is leveraged to protect the identities of customers and mobile
users during reward claim, distribution and deposit.
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Chapter 1

Introduction

The integration of sensors and embedded computing devices triggers the emergence of
mobile crowdsensing services, which allow individuals to cooperatively collect and share
data and extract information to measure and map phenomena of common interest using
sensing and communication devices. With the rapid development and increasing popular-
ity of mobile devices, mobile crowdsensing becomes a broad range of sensing paradigms
nowadays. Carrying mobile devices, users enable to collect, produce and upload various
types of information to crowdsensing service providers via the Internet, ranging from gen-
eral information, e.g., location, temperature and pollution level, to more specialized data,
e.g., traffic awareness, driving behaviors, health condition and voting intentions. This new
service has the potential for enormous social and economic impacts.

Despite tremendously wide applications, mobile crowdsensing is confronted with a vari-
ety of serious security and privacy threats, such as denial-of-service attacks, impersonation
attacks and Sybil attacks. Moreover, sensitive information of mobile users may be obliv-
iously disclosed to untrusted parties. However, we are in a dilemma when dealing with
security and privacy issues in mobile crowdsensing. On one hand, if the security and pri-
vacy issues in mobile crowdsensing are not resolved in a satisfactory way, mobile users are
disappointed to mobile crowdsensing services and stop participating in crowdsensing activi-
ties. On the other hand, if the personal information of mobile users is solidly preserved, the
service provider is difficult to recruit appropriate mobile users to fulfill crowdsensing tasks
based on their personal profiles. In this thesis, we investigate the security and privacy chal-
lenges and propose advanced secure and privacy-preserving mechanisms in order to resolve
the challenges on security and privacy for mobile users, while ensuring key components of
MCS efficient and effective, including task allocation, data collection, data analysis and
reward feedback.
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1.1 Mobile Crowdsensing

Mobile CrowdSensing (MCS) [1] is a large-scale sensing paradigm relying on the power
of the crowds of mobile users. They cooperatively collect and share data and extract
information to measure and map phenomena of common interest using their mobile devices.
With the increasing number of mobile users sharing local knowledge (e.g., local events, noise
level, ambient content and traffic conditions) acquired by their sensor-enhanced devices,
the information is gathered in the cloud for large-scale sensing and community intelligence
discovery. The mobility of large-scale mobile users makes MCS more versatile and flexible,
such that data sensing infrastructure can be enriched. The formal definition of MCS is
as follows: a new sensing paradigm that empowers ordinary mobile users to contribute
data sensed and collected from their sensor-enhanced devices, and aggregates and fuses
the data in the cloud for crowd intelligence extraction and human-centric service delivery
[2]. From data sensing perspective, the success of MCS depends on a distributed data
collection model, which is based on a general phenomenon (mentioned in a book titled
The Wisdom of Crowds [3]) that the aggregation of data or information from a group
of people often results in better decisions than those made by a single person from the
group. The intelligence of a crowd is determined by four key qualities, namely, diversity
in opinion, independence of thinking, decentralization and opinion aggregation. Through
crowd-powered data collection, MCS can significantly improve the quality and credibility of
sensing results. A broad range of applications are thus enabled, including traffic planning,
mobile social recommendation, environment monitoring, and public safety. Therefore,
increasing interests have been raised by both industry and academia on various MCS
applications, aiming to increase the number of participating mobile users and improve the
quality of crowdsensing results.

1.1.1 MCS Architecture

MCS architecture consists of three entities: service providers, customers, and mobile users.

Service Providers - Service providers usually develop cloud services by themselves or rent
the cloud resources offered by cloud vendors. The service providers have sufficient storage
and computing resources to offer MCS services. The service providers keep necessary
information about customers and mobile users, such as identities, registration information
and reputations. They receive crowdsensing tasks from customers and allocate them to
mobile users. They also collect sensing reports from mobile users and generate crowdsensing
results for customers. Besides, they are responsible for distributing rewards to the mobile
users who make contributions on crowdsensing tasks.
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Customers - The customers can be individuals, corporations or organizations. They
need to accomplish data collection tasks, e.g., to study traffic congestion in a city, pollution
level of a creek and satisfactory on public transportation, but they do not have sufficient
capabilities to perform tasks by themselves, and thereby they turn to service providers
for help. Specifically, customers send their crowdsensing tasks to the service providers and
offer rewards to the participating mobile users. After the tasks are fulfilled, they can obtain
the crowdsensing results from service providers.

Mobile Users - Every mobile user has several mobile devices, e.g., mobilephones, tablet-
s, vehicles and items embedded with sensors, such as GPS, camera, proximity and micro-
phone. These mobile devices, with rich computation, communication and storage resources,
are carried by their owners wherever they go and whatever they do. The mobile users make
sure the battery on mobile devices has sufficient power to support their normal function-
alities. The mobile users can participate in crowdsensing tasks and utilize their portable
devices to collect data from the environment based on the requirements of crowdsensing
tasks, and report sensing data to the service providers. In addition, the mobile users would
acquire some rewards from the service providers as benefits.

MCS consists of four phases, namely, task allocation, data collection, data analysis and
reward feedback, as illustrated in Fig. 1.1.

B Task Allocation. A customer crowdsources a crowdsensing task to the service provider,
along with the claimed rewards for attracting mobile users and other information used
to evaluate the task fulfillment. The service provider accepts the task and allocates
it to the mobile users according to the task requirements and the profiles of mobile
users.

B Data Collection. Upon receiving the task, mobile users firstly determine whether
accept the task or not. If yes, they start to perform the task by collecting data
from their surrounding areas using the on-board sensors and pre-processing them to
produce crowdsensing reports based on the task demands. Finally, they deliver the
reports to the service provider.

B Data Analysis. When the service provider receives sufficient sensing reports from
mobile users, it analyzes the sensing reports by performing several operations, e.g.,
truth discovery, data statistics and machine learning, and produce a crowdsensing
result for the customer. The customer reads the crowdsensing result to obtain the
knowledge and accomplish the task.

3



Figure 1.1: Mobile Crowdsensing Architecture

B Reward Feedback. The customer gives a feedback about the quality of the sensing
reports, and the service provider distributes the rewards to the mobile users according
to the feedback from the customer.

1.1.2 MCS Characteristics

MCS is a special case of wireless sensor networks, where mobile users carrying sensor-
enhanced devices to collect data about common phenomena for some specific tasks volun-
tarily or for benefits. Therefore, MCS has unique characteristics that differentiate it from
traditional sensor networks.

1. Rich Resources. In traditional sensor networks, limited computation capability
and low battery storage issues of sensors are the major obstacles for the deployment of
large-scale data collection. On the contrary, current mobile devices, such as mobilephones,
tablets and in-vehicle sensing devices, have powerful computation and communication ca-
pabilities to reach the requirements of data collection and reporting, and sufficient energy
level under the control of mobile users to make sure their normal functionalities, thereby
enable various applications that require resources and sensing modalities [1].
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2. Cost Saving. Millions of mobile devices have been deployed in the field. People
carry these devices wherever they go and whatever they do. By utilizing these devices,
it is possible for service providers to build large-scale sensing applications efficiently. For
example, instead of installing roadside cameras and loop detectors, mobilephones carried
by drivers can be used to collect traffic data and detect congestion levels.

3. High Scalability. MCS applications build on the data collected by a large volume of
mobile users, the scalability is a basic feature of underlying communication systems. The
communication protocols and network infrastructure are high distributed and decentral-
ized, such that the participating mobile users have their freedom and convenience to join
crowdsensing activities. The population of mobile users performing crowdsensing tasks can
arbitrary fluctuate, even reaching an inconceivable number. Moreover, with the inherent
mobility of users, the spatio-temporal coverage of crowdsensing applications is unprecedent-
ed compared with static sensor networks. The sensing area can be dramatically expanded
according to the requirements of large-scale applications.

4. Human Involvement. Humans are usually involved in MCS applications, because
the devices are owned and carried by individual users. They can arbitrarily participate
in or stop MCS activities based on their preferences. The intelligence and mobility of
users can be leveraged to collect high-quality and semantically complex data that might
otherwise require sophisticated software and hardware in traditional sensor networks [4].
For instance, individuals can easily identify accessible street parking spots and report
photos or messages for providing parking navigation services, whereas an ultrasound-based
scanning system should be developed, which not only needs special hardware, e.g., camera,
but also processing algorithms to identify vacant parking places.

1.1.3 MCS Applications

MCS applications can be classified into three major categories based on the type of phe-
nomena being measured or mapped, namely, environmental, infrastructure and social [1].

1.1.3.1 Environmental Applications

In environmental MCS applications, the phenomena are those of national environment.
These applications include measuring air pollution level in a city, noise level in a residential
area, water level in creeks, and monitoring wildlife habitats and vegetation protection. In
general, individuals usually participate in tasks of mapping various phenomena of large-
scale environment voluntarily for the purpose of environmental protection.

5



Nature Preservation. During the past few years, mobile users utilized their devices to
contribute data for scientific studies. For example, Great Backyard Bird Count project
counts the wild birds in the United State with the help of volunteers; MIT Owl project
studies owl population by leveraging the network of sensor-powered smartphones. Besides,
to study the impacts of climate change, scientists employ citizens to collect some specific
data related to their research topics, such as the link between increasing temperatures
and the timing of plants events (e.g., emergence of first leaf, flowering and fruiting) [5].
Researchers can release some tasks to recruit mobile users to collect data about soil erosion,
deforestation, melting glaciers, etc. The prospect of large-scale information collection for
nature preservation with the involvement of mobile users is becoming a reality.

Pollution Measurement. Environmental pollution has become a worldwide problem,
including water pollution, noise pollution, air pollution and light pollution. Pollution
sources discovery and pollutants control need the extensive participation of citizens. For
instance, European Commission mandates the creation of noise contour maps to gather
information about exposure. However, government efforts are limited since in most cases
it is impossible to deploy sensing nodes to cover all areas of a city for data collection. This
issue can be remedied through the efforts of all mobile users, who can use the microphones in
smartphones to measure the ambient noise level. These data aggregated from the volunteers
in the city can be used to generate a fine-grained noise map. UAir [6] gathers fine-grained
air pollution by utilizing heterogeneous crowdsensed data, measured from sensing stations,
traffic information, points of interest, etc.

1.1.3.2 Infrastructure Applications

Infrastructure MCS applications involve the measurements of large-scale phenomena re-
lated to public infrastructure, including measuring parking availability [7], queuing time
in hospitals, traffic congestion, real-time transit tracking, road conditions and outages of
public facilities (e.g., malfunctioning fire hydrant, confusing road sign and broken traffic
lights) [8].

Traffic Condition Monitoring. Traffic jams have negative social and economic effect
on society, bringing time-consuming and frustrating experiences to drivers and leading to
critical social problems, e.g., fuel waste, air pollution and accidents [9]. By using data
from GPS-equipped vehicles and mobilephones, a vehicle can avoid itself being congested
on road and find a proper route to reach its desirable destination with low traffic delay and
fuel cost. For instance, Google Map employs real-time data contributed by hundreds of
millions of mobilephones around the world for traffic and road condition analysis. Google
can analyze the total number of cars and their speed on a road at any given time using
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anonymous bits of data reported by all mobilephones with Google Maps applications.
Furthermore, a combination of traffic data from cars, taxies and smart card records from
buses can be used to study human traffic at a hotspot, which can also provide important
clew for public transportation design.

Parking Navigation. With the increasing number of vehicles in metropolises, parking
in a congested area, such as downtown and shopping mall, particularly in peak hours, has
been a conflicting and confusing problem for a large number of drivers [10]. It is common
for drivers to circulate on roads in a congested region, looking for accessible parking s-
paces. These vehicles may cause an average 30% of the traffic on roads. These extra traffic
also leads to serious social problems, such as fuel waste, traffic congestions, air pollution
and vehicle accidents. Real-time parking information can assist drivers to find available
parking spaces quickly. Nevertheless, it is pretty different to collect and publish the park-
ing information, particularly for the roadside parking information. The video camera on
vehicles can record the driving scene, from which the cloud can acquire the information
about vacant parking spaces on the streets and in the parking lots. Therefore, the moving
vehicles can upload the driving video or photos to the fog nodes and a vehicle who looks for
a parking space can send a parking query to the cloud, including its destination, arriving
time, expected price, etc. [11]. The cloud can retrieve and analyze the video and photos
from the fog node covering the destination to find a vacant parking space for the querying
vehicle.

Road Surface Monitoring. The detection of road surface abnormities (e.g., potholes,
bumps, ice, railway crossing) and their locations contribute to the improvement of road
condition and drivers’ safety [12]. Road quality assessment has been identified as an impor-
tant issue related to the possibility of making the drivers and passengers more comfortable,
safe and efficient. Nericell [13] could detect and report road conditions using the built-in
sensors in mobile devices. These data are further integrated with the traffic maps to share
with the public. The transportation agencies or municipalities can automatically recog-
nize the road surface abnormities in the region of their jurisdiction for prioritizing road
repairing.

1.1.3.3 Social Applications

In social MCS applications, individuals share sensing data (e.g., traveling experiences) or
facilities (vehicles, bicycles and umbrella) with others [14]. As an example, individuals
share their experiences and recommend them to the rest of the community, and thereby
improving the experiences of others. We give two social MCS applications as examples,
namely, social recommendation and ride sharing.
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Social Recommendation. Social recommendation applications enable customers to find
their interested services based on the wealth of data reported by mobile users. These
applications provide personalized recommendation by exploring mobile crowdsensing da-
ta, and allow customers to set their own planning to fulfill tasks. Place recommendation
is one of important applications in MCS, e.g., restaurant recommendation, park recom-
mendation and hotel recommendation. It leverages the historical location trajectories
recorded by mobile devices for recommendation. GeoLife [15] measures the similarity of
customers according to the location history to offer personalized place recommendation
services. Itinerary planning can recommend travel routes to tourists based on individual
constraints, such as time schedule, expenditure budget and user preference.

Ride Sharing. Ride sharing services [16] provide partner discovery to drivers and riders
with similar rides for initializing sharing travel experiences. A driver sends a ride offer or
a rider sends a ride request to a ride-sharing server, and the server helps the driver to find
rider-share partners with similar itineraries. Ride-sharing services allow drivers to share
vacant seats in their vehicles on the road, bringing various benefits to individual users, e.g.,
improved vehicle occupancy, shared travel costs and extended social circles, and the society,
e.g., reduced traffic congestion, fuel consumption and carbon dioxide emissions. Many
service providers have emerged to offer ride-share partner discovery services, e.g. Flinc,
Lyft Line, UberPool, Waze Carpool and Blablacar. Ride-sharing has become increasing
popular in metropolis to reduce crowded traffic and expensive transportation costs.

1.2 Security and Privacy in MCS

The sensing reports collected by on-board sensors carried in mobile devices, are concep-
tually tied to specific mobile users and thereby infer personal information and activities
about the users. Once the data are uploaded to the cloud, the mobile users lose physical
control over their collected data. The MCS service providers have their own incentives
and the servers are vulnerable to be compromised or attacked. The corruption of sensing
reports may directly impact the trustworthiness of crowdsensing results, and further mis-
lead the customers to make irrational decisions. Therefore, data protection and privacy
preservation are significantly important for both customers and mobile users.

1.2.1 Security and Privacy Threats

The service provider may not be fully trusted, it has numerous motivations to share the
detailed crowdsensed data with their cooperators for monetary reasons. For example, to
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promote the new platform, Uber Movement, Uber has released staggering 2 billion pieces
of trip data collected from people in more than 450 cities. Further, data exposure accidents
frequently happen on the data centers of corporations, such as Facebook, Yahoo and Apple,
dramatically reduce users’ trust in application providers. In addition to insider threats from
service providers, MCS may face with a variety of outsider attacks, such as eavesdropping
attack, forgery attack, impersonation attack, spam attack, Sybil attack, collusion attack
and man-in-the-middle attack.

B Eavesdropping: Malicious attackers listen on communication channels to capture
transmitting crowdsensed reports and read the captured data.

B Forgery: Malicious attackers may not only forge their identities and profiles, but also
generate fake crowdsensed data to mislead customers.

B Impersonation: A malicious attacker pretends a legitimate user to enjoy the MCS ser-
vices, or impersonates a legitimate mobile user to provide data to mislead customers.

B Spam: Spam data refer to the unwanted content, such as redundant information,
false collected data from users, which are generated and spread by attackers.

B Sybil: Sybil attackers either manipulate fake identities or abuse pseudonyms in order
to compromise or control the effectiveness of mobile crowdsensing. For example, they
could generate incorrect crowdsensing reports, such that the crowdsensing results may
not be trustworthy.

B Collusion: Two or more mobile users collude together to deceive, mislead, or defraud
service providers and customers.

B Man-in-the-Middle: A malicious attacker stands in the middle of two parties to secretly
relay or modify the exchanging data between these parties, however, these two parties
believe that they are directly communicating with each other.

Further, both customers and mobile users have the incentives to behave greedily on
rewards. Specifically, customers may refuse to pay the rewards e.g., money, coupons,
and services, they claimed before, and mobile users strive to obtain more benefits from
task participation, but are unwilling to pay equal efforts on task fulfillment. They may
launch double-reporting attack and double-claiming attack, in which they report the same
crowdsensed data or claim a reward more than once, respectively.
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Privacy is a critical issue as the users’ sensitive data are involved in the collection,
transmission, processing and sharing in MCS. Data owners are unwilling to expose their
privacy to others, but the leakage of privacy is oblivious in task allocation and data col-
lection. A user’s privacy may include three aspects, that is, identity privacy, data privacy,
and location privacy.

B Identity Privacy. The identity of a user includes the name, address, telephone number,
visa number, license number and public-key certificate that any information can be
linked to a specific user.

B Data Privacy Crowdsensed data are reported to the service provider, who is not
honest, ends up with the privacy leakage for mobile users. Further, the crowdsensed
tasks are exposed to both the service provider and mobile users, which may result in
the privacy corruption of customers, since the motivation of releasing the tasks can
be predicated based on the task contents.

B Location Privacy. Massive MCS applications require the mobile users to collect data
at specific areas, such that the service provider should allocate these tasks to the
mobile users near or in the areas. The location feature in MCS is important for task
allocation and task fulfillment, so as to expose the locations or trajectories of both
customers and mobile users.

1.2.2 Security and Privacy Requirements

To secure the MCS applications against the aforementioned threats, security and privacy
requirements should be reached to promote the healthy development.

1.2.2.1 Security

Confidentiality, authentication and integrity should be achieved to ensure the security of
MCS applications.

Confidentiality: MCS applications entail serious security threats. Firstly, data collect-
ed by mobile users encapsulates various aspects of physical environment, including social
events, pollution levels, traffic conditions and personal activities. Some data may be con-
sidered sensitive, e.g., personal activities, health status and personal information about
individuals, while others are not, e.g., pollution levels and social events. Therefore, it is
critical for mobile users to distinguish sensitive information from large volumes of data
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before uploading. Whether the data are sensitive or not is totally determined by the user,
and each has his/her personal preference and choice. If the sensing data with sensitive in-
formation are not well preserved, the curious entities, such as service providers and mobile
users, are able to extract various sensitive information from the sensing reports. Therefore,
protecting the confidentiality of sensing data is the primary objective.

Authentication: Authentication is a critical aspect related to the functionality of sensing
reports, which contribute to fulfill the tasks for customers. If these reports are delivered
by untrusted or malicious mobile users, the customers may be confused by the results and
make false decisions, so that it is worthwhile to assure that the sources of sensing reports
are fully-trusted and behave honestly. In addition, the lack of authentication on customers
brings troubles on task releasing. For example, the attackers may crowdsource invalid tasks
to the service provider spitefully and capture the crowdsensing results released by honest
customers to enjoy free crowdsensing services. Therefore, it is necessary to guarantee that
only the honest customers and mobile users can participate in MCS activities.

Integrity: It is of critical importance to preserve the integrity of crowdsensing reports
when they are maintained on cloud. Due to the limited storage space, the cloud may
maliciously discard the unexpired sensing reports to mislead customers. For example, an
attacker may compromise the cloud and corrupt the video of a traffic accident to escape the
punishment. Not only can attackers modify or forge the sensing reports, but also corrupt
data processing to generate biased results to impact the customers’ decision. Therefore,
how to ensure the trustworthiness of crowdsensing results become essential. The results
should be unbiased and uncontrolled by malicious attackers. The correctness verification
of results is significantly essential from the perspective of customers.

1.2.2.2 Privacy

Both mobile users and customers may concern their privacy leakage in MCS.

Privacy of Mobile Users: The sensors on mobile devices collect the data from environ-
ment. These data are necessarily people-centric and related to some aspects of mobile
users and their social setting: where mobile users are and where they are going; what
places they are frequently visited and what they are seeing; how their health status is and
which activity they prefer to do. For example, a mobile user Alice may want to report a
traffic jam in downtown, without the service provider knowing that Alice is congested in
downtown at the time she reports the event. Therefore, protecting the location of mobile
users when they are reporting data is critical in MCS applications. Although anonymity
becomes significantly important for MCS applications, once the sensing reports are kept
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anonymous, no one can identify the contributors of reports, such that it is difficult for the
service provider to distribute the benefits to the corresponding mobile users according to
their distinct contributions on tasks.

Privacy of Customers: Customers are willing to release their crowdsensing tasks without
exposing their identities, since these tasks may also contain some sensitive information,
from which the curious service provider can predict the reasons why customers issue these
tasks. How to enable the service provider to recruit mobile users for sensitive tasks is
essential. One trade-off is to expose the contents of tasks, but protecting the identities
from being known instead. This scarification might be acceptable for customers since the
service provider cannot link the identities of customers with the content of tasks effectively.
Nonetheless, anonymous customers may escape the payments of rewards to mobile users.
Therefore, it is necessary to design reward claiming and distribution schemes to achieve
anonymous payments for customers and mobile users undeniably and efficiently.

1.2.2.3 Fairness

Although MCS applications are designed as best-effort services, in which mobile users
voluntarily participate in data sensing and reporting, these operations would cost storage,
bandwidth and battery of mobile devices and sacrifice partial privacy for mobile users.
These issues may degrade the enthusiasm of mobile users for task participation. One
major challenge is to encourage mobile users to report real-time information, especially
if a threat to their privacy. The best approach is to provide sustainable incentive. With
direct and indirect benefits for mobile users, they are easy to make contributions on data
collection. However, the fairness is emerging as a new challenge to balance, which includes
two aspects: customers’ fairness and drivers’ fairness.

Fairness of Customers: The crowdsensing results acquired by customers should deserve
the costs they paid. The participating mobile users may be greedy on benefits and lazy
for sensing. On one hand, mobile users make their best effect to offer better crowdsensing
reports for earning benefits. On the other hand, mobile users have an incentive to cheat,
to obtain more rewards than they fairly deserve. For example, drivers may use multiple
identities in disguise to report false traffic information. The misbehavior of mobile users
can lead to the unfairness for customers, because their acquirements do not match the cost
they paid due to the untrustworthy crowdsensing results. As a result, customers may be
disappointed in MCS services, directly impacting its fully flourish.

Fairness of Mobile Users: Fairness of mobile users means that the mobile users should
be rewarded their deserved benefits according to their contributions on data collection.
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In reward distribution, the customers determine the number of benefits that a mobile
user should be rewarded, and the service provider is responsible for assigning the benefits
to mobile users. During these processes, how many benefits the mobile users obtain is
absolutely controlled by the customers and the service providers. Thus, the mobile users
may be rewarded less benefits than they fairly deserve, because of the renege of customers
and the embezzlement of service providers. Specifically, the customers may refuse to pay
the benefits or just fulfill partial benefits they promised in task releasing, and the service
provider embezzles part of benefits and only assigns the rest to the participating mobile
users. This misbehavior seriously damages the enthusiasm of mobile users.

1.3 Research Challenges and Objectives

The objective of this thesis is to develop a set of efficient, secure and privacy-preserving
schemes to countermeasure and mitigate the aforementioned security and privacy threats.
More importantly, the schemes should reach the security, privacy and fairness requirements
for every step of MCS, from task allocation, data collection to data analysis and reward
feedback. To reach these demands, we aim to address the following challenges:

• Privacy-preserving Task Allocation: To enhance data quality, the service provider is
required to recruit mobile users based on their personal information, e.g., trajectory
and reputation, which could end up with the privacy leakage of mobile users, un-
fortunately. On the other hand, the protection of users’ information results in the
difficulty on task allocation and data quality guarantees. Therefore, how to enable
accurate task allocation, while preserving the privacy of mobile users is the first
challenge in MCS.

• Secure Data Collection: The success of MCS largely depends on the participating
mobile users. The broader participation, the more sensing data are collected; nev-
ertheless, the more replicate data may be generated, thereby bringing unnecessary
heavy communication overhead. Hence it is critical to eliminate duplicate data to
improve communication efficiency, a.k.a., data deduplication. Unfortunately, sensing
data are usually protected, making their deduplication challenging than ever. There-
fore, how to enable data confidentiality and data deduplication in data reporting is
the second challenge in MCS.

• Privacy-preserving Data Analysis: Crowdsensed data analysis is a key component of
MCS, in which the service provider is enabled to produce crowdsensing results from
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the collected data. To keep data confidentiality, how to support the crowdsensed
data analysis without exposing the detailed data contents is of significant importance.
Moreover, since the service provider and the intermediates during transmission are
not fully trusted, the trustworthiness of the results becomes a serious concern for the
customer. The corruption on the crowdsensed data and the crowdsensing results are
difficult to be detected and prevented in MCS.

• Fair and Secure Reward Feedback: To encourage the participation of mobile users,
rewards should be distributed to anonymous mobile users in reward feedback with
privacy preservation. However, it is hard to ensure all mobile users honestly retrieve
the rewards that they deserve to obtain, and fairly receive the coins that the cus-
tomers claim to give. The cheaters, i.e., customers, mobile users and the service
provider, have sufficient motivations to undermine the reward distribution for their
own benefits.

1.4 Research Contributions

To achieve the above objectives, we develop a suite of schemes based on advanced security
and privacy enhancing technologies in MCS. Specifically, the main contributions lie in the
following aspects:

• Strong Privacy-preserving Task Allocation: A strong privacy-preserving mobile crowd-
sensing scheme (SPOON) is introduced to support accurate task allocation according
to spatialtemporal information and credit levels of mobile users. In SPOON, the ser-
vice provider enables to recruit mobile users based on their locations, and select
proper sensing reports according to their trust levels without invading user privacy.
By utilizing proxy re-encryption and BBS+ signature, sensing tasks are protected and
reports are anonymized to prevent privacy leakage. In addition, a privacy-preserving
credit management mechanism is introduced to achieve decentralized trust manage-
ment and secure credit proof for mobile users. Finally, we show the security properties
of SPOON and demonstrate its efficiency on computation and communication.

• Secure Data Deduplication: We propose a fog-assisted secure data deduplication
scheme (Fo-SDD) to improve communication efficiency while guaranteeing data confi-
dentiality. Specifically, a BLS-oblivious pseudo-random function is designed to enable
fog nodes to detect and remove replicate data in sensing reports without exposing the
contents of reports. To protect the privacy of mobile users, we further extend Fo-SDD
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to hide users’ identities during data collection. In doing so, Chameleon hash function
is leveraged to achieve contribution claim and reward retrieval for anonymous mo-
bile users. Finally, we demonstrate that both schemes achieve secure, efficient data
deduplication.

• Privacy-preserving Data Statistics : We investigate privacy-preserving data statistics
on crowdsensed meter readings from smart meters in smart grid. We define a new
security model to formalize the misbehavior of collectors, in which the misbehaving
collectors may launch pollution attacks to corrupt crowdsensed consumption data
during transmission. Under this model, we propose a novel privacy-preserving data
statistics scheme on the crowdsensed data collected by multiple smart meters to pre-
vent pollution attacks, and a privacy-preserving verifiable linear statistics mechanism
to realize the linear aggregation of multiple crowdsensed data and the verification on
the correctness of aggregate results.

• Dual-anonymous Reward Feedback : We propose a dual-anonymous reward distribu-
tion scheme (DARD) to achieve the incentive for mobile users and privacy protection
for both customers and mobile users in mobile crowdsensing. Specifically, we design
a reward sharing incentive mechanism to encourage mobile users to participate in
tasks and employ the randomizable technique to protect the identities of customers
and mobile users during reward claim, distribution and deposit. Our analysis further
shows that DARD achieves reward balance and cheater detection with low compu-
tational and communication overhead.

1.5 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 reviews the preliminaries
exploited to design schemes and introduces a comprehensive overview of related literatures
in security and privacy of MCS. Chapter 3 develops a strong privacy-preserving task al-
location scheme to achieve accurate allocation and privacy preservation of mobile users
and customers. Chapter 4 investigates to achieve data confidentiality and data deduplica-
tion in MCS by proposing a fog-assisted secure data deduplication scheme for crowdsensed
data protection and communication efficiency improvement. Chapter 5 proposes a privacy-
preserving data statistics scheme on crowdsensed data from smart meters to ensure the
end-to-end security and the correctness of the statistical results. Chapter 6 designs an
efficient dual-anonymous reward distribution scheme to achieve reward-sharing incentive
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and prevent privacy leakage for customers and mobile users. Finally, Chapter 7 concludes
the thesis, and introduces our future research directions.
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Chapter 2

Background

This chapter introduces the background of security and privacy for MCS. We first review
the underlying techniques leveraged to design the proposed schemes. Then, we give a
comprehensive survey on the literature of security and privacy in MCS.

2.1 Basic Techniques

We review the preliminaries, including the bilinear map, number-theoretic problems, BBS+
signature, PS signature, proxy re-encryption, zero-knowledge proof, and blockchain.

2.1.1 Bilinear Map

Bilinear Map. (G1,G2,GT ) is a set of cyclic groups of the same prime order p. ê : G1×G2 →
GT is the bilinear map, if the following properties are satisfied:

B Bilinear: for all g ∈ G1, ĝ ∈ G2, and a, b ∈R Zp, ê(ga, ĝb) = ê(g, ĝ)ab;

B Non-degenerate: If g 6= 1G1 , ĝ 6= 1G2 , then ê(g, ĝ) 6= 1GT ;

B Computable: for all g ∈ G1, ĝ ∈ G2, the map ê(g, ĝ) is efficiently computable.

The bilinear map above is type 3 pairing [17], in which G1 6= G2 and there is no efficiently
computable homomorphism between G1 and G2 in either direction. Type 1 pairing is that
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G1 = G2; and type 2 pairing is that G1 6= G2 and there exists an efficiently computable
homomorphism π : G2 → G1, but there is no efficient homomorphism in the other direction,
according to the definition due to Galbraith et al. [18].

2.1.2 Negligible Function

If S is a non-empty set, s ∈R S denotes s is randomly chosen from S. We say that a
function g(λ) is a negligible function, if for every positive polynomial f(x), there exists an
integer N > 0 such that for all x > N , g(x) < 1

f(x)
.

2.1.3 Number-Theoretic Problems

The security of many cryptosystems relies on the intractability of solving some hard prob-
lems. We present the following problems that are relevant to this thesis. The respective
assumptions state that no probabilistic, polynomial time algorithm has non-negligible ad-
vantage in solving the corresponding problems.

Computational Diffie-Hellman (CDH) assumption [19]. If there is no algorithm can solve the
CDH problem, that is, given (g, ga, gb) ∈ G3

1, to compute gab, in probabilistic polynomial
time with non-negligible probability, then we say that the CDH assumption in G1 holds.

Decisional Diffie-Hellman (DDH) assumption in G2 [19]. If there is no algorithm can solve the
DDH problem, that is, given (ĝ, ĝa, ĝb, ĝc) ∈ G4

2, to determine c = ab or not, in probabilistic
polynomial time with non-negligible probability, then we say that the DDH assumption in
G2 holds.

Decisional Diffie-Hellman (DDH) Assumption in GT [20]. The DDH problem in GT is defined
as follows: Given a tuple (D,Da, Db, Dc) ∈ G4

T , output yes if c = ab and no otherwise.
We say that the DDH assumption in GT holds if there is no algorithm can solve the DDH
problem in GT with non-negligible advantage in probabilistic polynomial time.

Conference-Key Sharing (DHI) Assumption [21]. The DHI problem is defined as follows:

Given g, gs ∈ G1, where s ∈ Zp, to compute g
1
s ∈ G1. We say that the DHI assumption

holds if there is no algorithm can solve the DHI problem with non-negligible advantage in
probabilistic polynomial time.

Decisional Diffie-Hellman (CONF) Assumption [20]. The CONF problem is defined as follows:
Given g, gs, gsv ∈ G1, ĝ ∈ G2 where s, v ∈ Zp, to compute ê(g, ĝ)v ∈ GT . We say that
the CONF assumption holds if there is no algorithm can solve the CONF problem with
non-negligible advantage in probabilistic polynomial time.
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Bilinear Inverse Diffie-Hellman (BIDH) Assumption [22]. The BIDH problem is defined as
follows: Given a tuple (g, ga, gb) ∈ G1, ĝ ∈ G2, to compute ê(g, ĝ)c/a. We say that the
BIDH assumption holds if there is no algorithm can solve the BIDH problem with non-
negligible advantage in probabilistic polynomial time.

q-Strong Diffie-Hellman (q-SDH) Assumption [20]. The q-SDH problem in G is defined as
follows: Given a (q+2) tuple (g, g0, g

x
0 , g

x2

0 , · · · , gx
q

0 ) ∈ Gq+2, output a pair (A, c) such that
A(x+c) = g0 where c ∈ Z∗p . We say that the q-SDH assumption in G holds if there is no
algorithm can solve the q-SDH problem in G with non-negligible advantage in probabilistic
polynomial time.

q-Decisional Bilinear Diffie-Hellman Inversion (q-DBDHI) Assumption [22]. The q-DBDHI
problem is defined as follows: For random g ∈ G1, ĝ ∈ G2 x ∈ Zq, Q ∈ GT , given
(g, gx, gx2 , · · · , gxq , Q), to decide if Q = ê(g, ĝ)1/x or not. We say that the q-DBDHI as-
sumption holds if there is no algorithm can solve the q-DBDHI problem with non-negligible
advantage in probabilistic polynomial time.

Modified LRSW assumption 1 [17]. If there is no algorithm can solve the modified LRSW
problem 1, that is, given gb, ĝa, ĝb, where g is a generator of G1, ĝ is a generator of
G2 and a, b ∈R Zp, and an oracle O, which on input m ∈R Zp that chooses a random

h ∈R G1\1G1 and answers the pair P = (h, ha+bm), to compute a new pair P ′ = (h′, h′a+bm′)
for h′ ∈R G1 \ 1G1 and a new m′ that is not one of the ms queried in O, in probabilistic
polynomial time with non-negligible probability, then we say that the modified LRSW
assumption 1 holds.

Modified LRSW assumption 2 [17]. If there is no algorithm can solve the modified LRSW
problem 2, that is, given ĝa, ĝb, where ĝ is a generator of G2 and a, b ∈R Zp, and an oracle
O, which on input m ∈R Zp that chooses a random h ∈R G1 \ 1G1 and answers the pair

P = (h, ha+bm), to compute a new pair P ′ = (h′, h′a+bm′) for h′ ∈R G1 \ 1G1 and a new m′

that is not one of the ms queried in O, in probabilistic polynomial time with non-negligible
probability, then we say that the modified LRSW assumption 2 holds.

The modified LRSW assumption 1 and the modified LRSW assumption 2 can be proved
to hold in the generic group model.

2.1.4 BBS+ and PS Signatures

BBS+ Signature [23]. Here we briefly review the BBS+ signature due to [23], which can
be utilized to sign `-message vector (m1, · · · ,m`).
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Let g, g1, · · · , g`+1 be generators of G. Randomly choose x from Zp as the secret key of
the signature scheme, and compute the corresponding public key as y = gx.

A signature on messages (m1, · · · ,m`) is (A, e, s), where A = (ggm1
1 · · · g

m`
` gs`+1)

1
x+e and

(e, s) are random values chosen from Zp.

This signature can be checked as: ê(ggm1
1 · · · g

m`
` gs`+1, g)

?
= ê(A, yge).

The security of BBS+ signature can be reduced to the q-SDH assumption and it can be
utilized to construct a zero-knowledge proof-of-knowledge protocol that allows the signer
to prove the possession of the message-signature pair.

PS Signature [17]. The PS signature is a public-key signature scheme proposed by Pointcheval
and Sanders [17] and its existential unforgeability is proven against chosen message attacks
without random oracles under the modified LRSW assumption 2 [17].

Let ĝ be a generator of G2. (y, x1, · · · , xr) ∈R Zr+1
p is the secret key of the signer and

(Ŷ , X̂1, · · · , X̂r) ← (ĝy, ĝx1 , · · · , ĝxr) is the public key. A digital signature on multi-block
messages (m1, · · · ,mr) ∈ Zrp is φ = (φ1, φ2) = (h, hy+

∑r
j=1 xjmj), where h is a random value

chosen from G1 \ 1G1 . The signature φ can be publicly verified as φ1 6= G1 \ 1G1 and

ê(φ1, Ŷ
∏r

j=1 X̂
mj
j ) = ê(φ2, ĝ).

2.1.5 Proxy Re-encryption

Proxy Re-Encryption [22]. Proxy Re-encryption is a special public key encryption with a
desirable property that a semi-trusted proxy enables to convert a ciphertext for Alice into
a ciphertext for Bob without seeing the underlying plaintext, given a proxy re-encryption
key. Thanks to this promising property, it has been widely employed in data sharing
scenarios. The proxy re-encryption scheme is proposed by Ateniese et al. [22], the details
of which are as follows:

B KeyGen(·). Alice picks a random value a ∈ Zp as the secret key ska and compute
the public key pka = ga.

B RKeyGen(ska, pkb). Alice delegates to Bob by sending the re-encryption key rkA→B =
gb/a to a proxy by using Bob’s public key.

B Encrypt(m, pka). To encrypt a message m ∈ GT under pka, Alice chooses a random
value k ∈ Zp to compute ca = (gak,mê(g, g)k).
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B Re-Enc(ca, rkA→B). The proxy can change the ciphertext ca into a ciphertext cb for
Bob with rkA→B. From ca, the proxy calculates ê(gak, gb/a) = ê(g, g)bk and releases
cb = (ê(g, g)bk,mê(g, g)k).

B Decrypt (cb, skb). Bob enables to decrypt cb to obtainm asm = mê(g, g)k/(ê(g, g)bk)1/b.

2.1.6 Zero-Knowledge Proof

In a proof-of-knowledge protocol [24], a prover convinces a verifier that he knows a wit-
ness w satisfying some kind of relation R with respect to a known string x. That is, the
prover can convince the verifier that he knows some w satisfies the relation (w, x) ∈ R. If
the prover can convince the verifier in a way that the latter cannot learn anything except
the validity of the relation, this protocol is called a zero-knowledge proof-of-knowledge
(ZKPoK) protocol [25]. Currently, a plethora of ZKPoK protocols have been proposed, in
which Σ-protocols are a special type of three-move ZKPoK protocol. They can be trans-
formed into non-interactive Signature Proof-of-Knowledge (SPK) protocols or signature
schemes that can be proven secure in random oracle model. Σ-protocols are able to be
converted into 4-move perfect zero-knowledge proof-of-knowledge protocols [26].

For instance, PK{(x) : y = gx} denotes a Σ-protocol that proves the knowledge of
discrete logarithm. That is, a prover convinces a verifier that he possesses the knowledge
of x ∈ Zp such that y = gx with respect to some y ∈ G without exposing the actual value of
x. The values on the left of the colon denote the knowledge that the prover aims to prove,
and the values on the right of the colon denote the publicly known values. The signature
of knowledge for message m ∈ {0, 1}∗ that is transformed from the above Σ-protocol is
denoted as SPK{(x) : y = gx}(m), which is secure under the random oracle model due to
Fiat-Shamir heuristic.

2.1.7 Blockchain

A blockchain [27] is a linear collection of data elements, where each data element is called
block. All blocks are linked to form a chain and secured using a cryptographic hash
function. Each block typically contains a hash pointer as a link to a previous block, a
timestamp, and transaction data. Only if a transaction’s validity is verified, it can be
recorded into the block. Generally, the blockchain technique can be classified into two
types: private blockchain and public blockchain [28]. For a private blockchain (including
the consortium blockchain), the verification is performed by authorized participants, who
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may be employed by the blockchain managers or the managers themselves. For a public
blockchain, the verification can be performed by any participant in the network: a transac-
tion can be recorded into a block, only if it has been verified and accepted by a considerable
majority [29].

The most prominent manifestation of public blockchain is blockchain-based currencies
(i.e., on-chain currencies), such as Bitcoin and Ethereum. In these currencies, the public
blockchain is used to serve as an open and distributed ledger that efficiently records trans-
actions between two participants. Furthermore, such ledger is verifiable and inherently
resistant to modification of chained blocks. The participants who perform the transaction
verifications and maintain the blockchain are called miners. Since the Ethereum is more
expressive than other on-chain currencies, the ledger of Ethereum can be thought as a state
transition system, where there is a “state” consisting of the ownership status of all exist-
ing Ethers (which are the value token of the Ethereum blockchain) and a“state transition
function” that takes a state and a transaction as input, and outputs a new state as the
result. When a new block is added into the chain, all transactions recorded in the block
should be verified, and then miners compute a valid nonce such that the hash value of the
block is less than or equal to a value provided by the Ethereum system [30]. The first
miner who finds the nonce broadcasts the block of transactions together with this nonce.
Other participants can verify that the nonce is a valid solution, and hence add the new
block to their blockchain. Once the block is added to the chain, all the corresponding state
information has been updated.

2.2 Related Work

We comprehensively review the literature about security and privacy in MCS, which are
divided into five categories based on their different functions in MCS.

2.2.1 Privacy Protection for Mobile Users and Customers

In MCS, communications between mobile devices and the service provider depend on typ-
ical wireless and wired connections, e.g., cellular, WiFi, cable television, Internet access,
and fiber-optic communication, and there are classical secret communication protocols and
standards to support secure data transmission, such as secure communications interoper-
ability protocol, secure shell, textsecure protocol, SSL/TLS, secure electronic transaction
and Virtual Private Network (VPN). It is still challenging to provide security assurance
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and privacy preservation on crowdsensing tasks and reports, since the architecture of MCS
is complicated and all entities in MCS may be curious or malicious. Security and privacy
issues in MCS have attracted extensive attentions from both academia and industry since
the concept is proposed by Ganti et al. [1] in 2011. Yang et al. [31] defined security and pri-
vacy issues in MCS by identifying the sensing modalities and assessing the threats to user’s
privacy, and suggested to utilize several cryptographical methodologies to achieve privacy
preservation. To offer solid security and privacy guarantees for mobile users, Cornelius et
al. [32] proposed AnonySense, a basic architecture for privacy-aware task releasing and
data sensing. The participating mobile devices collaboratively produce data and submit
them through Mix networks. To achieve user privacy and data trustworthiness, Huang et
al. [33] demonstrated that mobile users are vulnerable to linking attack if they naively
reveal their reputations to the service provider and presented an anonymization scheme
from pseudonyms and a reputation management mechanism by employing a trusted server
to minimize the risk of such attack. Korshunov et al. [34] proposed a subjective evalua-
tion mechanism using crowdsourcing to analyze the tradeoff between privacy preservation
of mobile users and intelligibility of activities under video surveillance. Apart from the
privacy of mobile users, Dimitriou et al. [35] raised the problem of customer’s privacy
leakage and proposed a privacy-preserving access control mechanism (PEPPeR) in sensing
applications, which focuses on the privacy preservation for customers. Specifically, PEP-
PeR allows customers to obtain tokens from the service provider in order to have access to
the data provided by the participating mobile users. Christin et al. [36] presented Incog-
niSense, an anonymous reputation framework, to preserve the identity privacy of mobile
users. The pseudonyms are generated from blind signatures, such that their identities can-
not be linked in multiple time periods. IncogniSense relies on a secure reputation transfer
mechanism between pseudonyms, in which the reputations can be transferred for mobile
users associated with adjacent time periods. Kazemi and Shahabi [37] defined privacy and
trust in crowdsensing systems and proposed a trustworthy and privacy-preserving frame-
work to increase the validity of collected data by recruiting multiple participants at each
sensing location redundantly.

However, none of above frameworks enables to preserve privacy for both mobile users
and customers. Therefore, Cristofaro and Soriente [38] explored a minimal set of formal
requirements aiming at protecting privacy of both mobile users and consumers. They
proposed a privacy-enhanced participatory sensing infrastructure (PEPSI) from a blind
extraction technique in identity-based encryption to achieve the anonymity for both mobile
users and customers, and utilized a blind matching method to find the sensing reports for
a specific task. Nevertheless, Günther et al. [39] showed that PEPSI is vulnerable to
collusion attacks across mobile users and customers. As a result, PEPSI cannot protect

23



the privacy for mobile users. To fix this drawback, they extended the privacy and security
model and proposed a generic construction from identity-based encryption. They also
presented concrete instantiations from anonymous identity-based encryption schemes.

To protect the location privacy, Christin et al. [40] investigated the location privacy of
mobile users and presented a decentralized and collaborative mechanism to protect the path
of mobile users, in which the mobile users exchange the sensing data when they physically
meet. Zhang et al. [41] raised a concern on location privacy and demonstrated that
sensitive contexts are vulnerable to adversaries exploiting spatio-temporal correlations in
the behavior of mobile users. Thus, they modeled the potential correlations in a conditional
random field, and preserved the location privacy for mobile users by filtering a user’s sensing
data. Sun et al. [42] introduced SecureFind, a crowdsourced object-finding system offering
strong object security to the object owner and strong location privacy to mobile users.
SecureFind allows mobile users to generate an indistinguishable dummy tag for the service
provider and other mobile detectors. In SecureFind, only the object owner can learn the
location of mobile users under a dynamic pseudonym, even the service provider cannot
identify the tag or learn any knowledge about the location.

Subsequently, more cryptographic techniques are utilized in MCS for privacy preserva-
tion. Wang et al. [43] proposed ARTSense, a framework to achieve trust without identity
in MCS, consisting of a privacy-preserving provenance model, an anonymous reputation
management scheme and a data trust assessment scheme. This solution does not require
trusted third party and enforces both positive and negative reputation updates. Li et al.
[44] proposed a blacklist-based anonymous authentication scheme to achieve the anony-
mous access control for MCS scenarios. Similar to [44], Zhou et al. [45] introduced a
generalized efficient batch cryptosystem to achieve both batch encryption and batch de-
cryption from any public key encryption. This cryptosystem is also extended to support
fine-grained multi-receiver multi-file sharing, file authority transfer and multiple file own-
ers’ settings for addressing secure multi-file sharing in cloud-assisted MCS [46]. Qiu et al.
[47] presented a k-anonymous privacy-preserving scheme for mobile sensing that achieves
strong privacy preservation for mobile users and high data quality, by integrating a data
coding technique and a message transfer strategy.

Liu et al. [48] proposed a large-scale concurrent data anonymous batch verification
scheme for mobile healthcare crowdsensing based on an improved certificateless aggregate
signature. The proposed scheme can authenticate all sensing bioinformation at once in a
privacy-preserving way. The individual data generated by different users can be verified
in batch, while the actual identities of participants are hidden. Li et al. [49] studied
how to protect bid privacy in a temporally and spatially dynamic MCS system. Following
the classical VickreyClarkeGroves auction, a scalable grouping-based privacy-preserving
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participant selection scheme is designed where participants are grouped into multiple par-
ticipant groups and then auctions are organized within groups via secure group bidding. By
leveraging Lagrange polynomial interpolation to perturb participants’ bids within groups,
participants’ bid privacy is preserved. Zhang et al. [50] designed two general dataset pur-
chasing frameworks, named CROWDBUY and CROWDBUY++, based on crowdsourcing,
with which a buyer can efficiently buy desired data from available mobile users with quality
guarantee in a way respecting users’ data ownership and privacy. Wu et al. [51] proposed
a dynamic trust relationships aware data privacy protection (DTRPP) mechanism for mo-
bile crowdsensing. In this mechanism, combining key distribution with trust management,
the trust value of a public key is evaluated according to both the number of supporters
and the trust degree of the public key. The trust value is estimated from the accura-
cy of the public key provided by the encountering nodes. DTRPP achieves the dynamic
management of nodes and estimates the trust degree of the public key. Liu et al. [52] de-
signed an enhanced secure certificateless privacy-preserving verifiable data authentication
scheme for MCS. The proposed scheme provides unconditional anonymous data authen-
tication service for MCS, by deploying an improved certificateless ring signature as the
cryptogram essential, in which the big sensing data should be signed by one of legitimate
members in a specific group and could be verified without exposing the actual identity
of the participant. Rahaman et al. [53] designed the first provably secure verifier-local
revocation-based group signature scheme that supports sublinear revocation, named sub-
linear revocation with backward unlinkability and exculpability (SRBE). To achieve this
performance gain, SRBE introduces time bound pseudonyms for the signer. By introduc-
ing low-cost short-lived pseudonyms with sublinear revocation checking, SRBE drastically
improves the efficiency of the group signature primitive.

2.2.2 Privacy-enhanced Task Allocation

To find proper mobile users to perform crowdsensing tasks, many task allocation mecha-
nisms have been proposed to allow the service provider to recruit mobile users effectively.
The reputation-based approaches [33, 43, 54] are widely used to evaluate the trustworthi-
ness of mobile users. Ren et al. [54] proposed a social aware-crowdsourcing and reputation
management scheme to select proper mobile users for task participation, and a report
assessment and rewarding scheme to measure the quality of sensing reports and allocate
rewards based on the assessed report quality. To achieve better accuracy, Kazemi et al.
[55] defined reputation scores to represent the probability that a mobile user can perform
a task correctly, and a confidence level to state that a task is acceptable if its confidence is
higher than a given threshold. Kazemi and Shahabi [37] focused on spatial task assignment
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for spatial crowdsourcing, in which the service provider allocates tasks using greedy, least
location entropy priority or nearest neighbor priority algorithms based on the locations of
mobile users. However, the locations of mobile users are disclosed to the service provider.
To hide their locations, To et al. [56] introduced a framework to protect the locations of mo-
bile users based on differential privacy and geocasting. This framework provides heuristics
and optimizations to determine effective geocast regions for reaching high task assignment
ratio with low overhead. To keep location privacy in spatial crowdsourcing, Shen et al. [57]
proposed a secure task assignment protocol by utilizing additive homomorphic encryption.
It focuses on the location privacy of mobile users in a semi-honest adversary model. To
et al. [58] introduced a special type of spatial crowdsourcing, in which the mobile users
report their locations to the service provider and thereafter the latter assigns each task in
proximity to mobile users with the aim of maximizing the overall number of assigned tasks,
and exploited the spatial properties of the space to address the maximum task assignment
problem in spatial crowdsourcing.

Xiong et al. [59, 60] investigated on the energy-efficient task allocation. Specifically,
Xiong et al. [59] proposed an energy-efficient mobile crowdsensing framework to ensure
the required number of mobile users returning the reports and the minimized number of
redundant tasks allocated. Subsequently, Xiong et al. [60] defined a spatial-temporal cov-
erage metric for MCS and proposed a generic task allocation framework in energy-efficient
Piggyback crowdsensing task model, in which the task allocation is optimized with various
incentives. In addition, data quality is critical to be guaranteed in MCS. Wang et al. [61]
proposed a novel compressive crowdsensing framework by combining compressive sensing,
Bayesian inference and active learning techniques for ensuring the quality of data. Liu et
al. [62] introduced a concept of quality-of-information (QoI) to evaluate data granularity
and presented a QoI-aware energy-efficient scheme to optimize QoI in crowdsensing tasks.
Zhang et al. [63] presented a quality-aware sensing framework to achieve considerable
sensing coverage in budget-constrained MCS appications. Social-based task allocation is
introduced by Amor et al. [64], and a collaborative crowdsourcing approach called So-
cialCrowd is proposed by leveraging the relationships in social networks. SocialCrowd
organizes a crowd of mobile users into teams while preventing data leakage between com-
peting teams. A clustering algorithm is proposed to discover all possible groups of mobile
users, and a ranking mechanism is presented based on the semiring approach in the area of
soft constraints programming. To preserve the privacy of mobile users and achieve accurate
task allocation simultaneously, Kandappu [65] proposed a privacy-preserving crowdsourc-
ing platform and a novel use selection algorithm, which selects the best subset of users for
a given survey to meet the balance among cost, accuracy and privacy. Pournajaf et al.
[66] identified different task management approaches in MCS, and assessed the threats to
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Table 2.1: Comparison on Related Works in Task Allocation
Profiles Reputation Quality Spatial Energy Location User

/Temporal Privacy Privacy
[37, 71] × ×

√
× × ×

[54, 55]
√ √

× × × ×
[56, 57, 58] × ×

√
×

√
×

[59] × × ×
√

×
√

[60] × ×
√ √

× ×
[61, 63] ×

√ √
× × ×

[62]
√ √

×
√

× ×
[64] × × × × ×

√

[65] ×
√

×
√

×
√

[72] ×
√

× × ×
√

user’s privacy, including task tracing attacks, location-based attacks and malicious task-
ing. To et al. [67] presented a framework for assigning tasks to mobile users in an online
manner without corrupting the location privacy of mobile users and customers based on
geo-indistinguishability, and then devise techniques to quantify the probability of reach-
ability between a customer and a mobile user, given their perturbed locations. Xiao et
al [68] investigated secure mobile crowdsensing and presented how to use deep learning
methods, such as stacked autoencoder, deep neural network, and convolutional neural net-
work to improve the MCS security approaches including authentication, privacy protection,
faked sensing countermeasures, intrusion detection and anti-jamming transmissions in M-
CS. Chen et al. [69] investigated the influence of sensing data correlation on differential
privacy protection for MCS systems, and explored the perturbation mechanisms from two
different perspectives. From a protector’s perspective, based on the Bayesian Network, the
classical definition of differential privacy is used to deduce the scale parameter; and from
an adversary’s perspective, the importance of the maximum correlated group is analyzed
to compute the Bayesian differential privacy leakage. Sei et al. [70] proposed a new anony-
mous data-collection scheme to estimate data distribution accurately. Using simulations
with synthetic and real datasets, they proved that the proposed method can reduce the
mean squared error and the JensenShannon divergence by more than 85% compared with
other existing schemes.
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2.2.3 Secure Crowdsensed Data Collection

The success of MCS strongly depends on the quality of sensing data generated by mobile
users. The quality can be guaranteed if mobile users are gratified for their contributions
on tasks and security policies for data protection. For example, in crowdsourced traffic
monitoring, the accuracy of traffic estimation relies on the number and quality of sensing
reports, however, the more reports submitted by a mobile user, the larger the probability
of the mobile user being traced or identified. Varshney et al. [73] modeled the trade-offs
among task fulfillment quality, privacy preservation against collusion attacks and the cost
of data collection for mobile users. To address these trade-offs, Kajino et al. [74] defined a
user-private quality control problem and proposed a user-private latent class protocol from
decentralized secure computation, in which a customer can estimate the true results with
privacy preservation of mobile users. To preserve users’ privacy and improve prediction
accuracy, He et al. [75] proposed a privacy-preserving upload mechanism that satisfies di-
verse privacy requirements of mobile users and guarantees the quality of traffic estimation.
This mechanism formalizes the upload decision process under an incomplete information
game model, where each mobile user autonomously decides whether to upload or not to
balance the trade-off between traffic service quality and location privacy. In crowdsensed
map generation, Chen et al. [76] presented a systematic participatory-sensing-based high-
quality map generation scheme to meet the privacy demand of individual users. This
scheme addresses three major challenges, namely, how to quantify the privacy leakage of
mobile users, how to generate theoretically-proven map using the unorganized points, and
how to design map generation scheme robust to GPS error. Chang et al. [77] investigated
the local data collection and proposed an innovative scheme to accurately estimate the
global regression model without knowing local private data even when a large portion of
outliers are present. All the information exchanged among mobile users is in an aggre-
gated and privacy-preserving way and only the aggregated reports are submitted to the
service provider, which solidly preserves local data confidentiality. Subsequently, Gong
et al. [72] mentioned that the aforementioned solutions only address the trade-offs for re-
stricted instances, and proposed a privacy-preserving off-line statistical collection approach
to reliably compute the required statistics from a dynamic group of potentially malicious
mobile users based on a distributed statistical collection protocol. Hu et al. [78] proposed
an integrated strategy to enhance data trustworthiness and defend against the internal
threats for mobile crowdsourcing. The strategy integrates several effective methods, in-
cluding an evaluation scheme for the attribute relevancy and familiarity of participants, a
trust relationship establishment method, a group division strategy based on attributes and
metagraph, and a core-selecting based incentive mechanism.
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2.2.4 Privacy-preserving Data Analysis

How to generate crowdsensing results without leaking any information about individual
reports is a challenging problem in MCS. To address this issue, Erlingsson et al. [79] pro-
posed randomized aggregatable privacy-preserving ordinal response (RAPPOR) to achieve
crowdsourced statistics for mobile users anonymously with strong privacy protection. RAP-
POR is designed to allow the service provider to perform statistics on the sensing data,
e.g., categories, frequencies, histograms and other set statistics. PAPPOR also offers a
strong security guarantee on the sensing data based on local differential privacy to re-
strict the exposure of private information. Wang et al. [80] proposed a data aggregation
scheme with personalized privacy preservation by utilizing the sparsity of Bloom filter to
protect the security levels of mobile users during the aggregation process. The service
provider permits to derive unbiased statistical information (histogram) from crowdsensed
data, while no adversary can learn the correlation between the privacy levels of mobile users
and data values. Chen et al. [81] introduced a group management protocol to guarantee
differential privacy of personal data and support user dynamics, data integrity verifica-
tion and fault tolerance by leveraging a future message buffering mechanism. Wang et al.
[82] defined a concept of geo-indistinguishability and proposed a privacy-preserving his-
togram aggregation mechanism for fine-grained and high-dimensional location-based data.
In this mechanism, the occurrence rate of each location is less constrained by the number
of locations, and estimation accuracy is much better for big histogram. Chen et al. [83]
demonstrated the necessary of protecting mobile users’ location privacy and accountability,
and presented a participant-density-aware privacy-preserving aggregate statistics scheme.
Multi-pseudonym mechanism is utilized to deal with the vulnerability of low participant
density, the Paillier cryptosystem and noninteractive zero-knowledge verification are em-
ployed to handle Sybil attacks and achieve the accountability of mobile users. Wang et
al. [84] investigated the problem of real-time spatio-temporal crowdsrouced data pub-
lishing, and designed an online aggregate monitoring scheme over infinite streams with
privacy guarantee. Miao et al. [85] proposed a cloud-enabled privacy-preserving truth
discovery framework in MCS, which achieves the protection of the sensing reports and the
reliability scores derived by the truth discovery approaches. This framework utilizes the
homomorphic cryptosystem to realize weighted aggregation on the encrypted reports of
mobile users. Chen et al. [86] developed private data aggregation with integrity assurance
and fault tolerance for mobile crowdsensing. Specifically, an efficient group management
protocol is designed to deal with the participants’ dynamic joins and leaves, and a fu-
ture message buffering mechanism is leveraged to guarantee fault tolerance. The proposed
scheme enables continuously obtaining aggregate results and integrity verifications when
failures happen.
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Table 2.2: Comparison on Related Works in Privacy-Preserving Data Aggregation
References User Anonymity Statistics Differential Privacy Aggregation

[47]
√

× ×
√

[79] ×
√ √ √

[80] ×
√

×
√

[81] × ×
√ √

[82] ×
√

× ×
[83] ×

√
×

√

[84] × ×
√ √

[85] × × ×
√

2.2.5 Privacy-aware User Incentive

To prevent privacy leakage for mobile users, privacy-aware incentive mechanisms in MCS
have attracted quite a few attentions, some of which leverage auction mechanisms. Zhang
et al. [87] proposed a secure and dependable auction scheme by integrating game theory,
logical deductions and cryptography, which is proved secure against dishonest participants
under the factor that both mobile users and customers may behave dishonestly for their
own benefits. Sun and Ma [88] presented a heterogeneous user based privacy-preserving
verifiable incentive mechanism for online crowdsourcing with a limited budget by utilizing
privacy-preserving verifiable auction schemes. Dimitriou and Krontiris [89] proposed an
efficient reverse auction mechanism to offer privacy-preserving user incentive in MCS. Not
only could this mechanism guarantee the anonymity of mobile users, but also suggest a re-
ward distribution mechanism from electronic cash and a decentralized scheme that enables
mobile users to claim their reward without being linked to their contributed data. Consid-
ering data integrity in MCS, Xu et al. [90] presented a universal system model to satisfy the
desirable properties for time window dependent tasks in MCS by utilizing a reverse auction
mechanism, which models the interactions between the service provider and mobile users.
However, these mechanisms fail to preserve bid privacy of mobile users, Jin et al. [91]
proposed a differentially private (DP) incentive mechanism to preserve the privacy of each
mobile user’s bid against curious entities. Based on the single-minded reverse combinatorial
auction, this mechanism is differentially private, approximately truthful, individual ratio-
nal, and computationally efficient, which approximately minimizes the service provider’s
total payment. For specific application, spectrum sharing, Jin and Zhang [92] presented
a novel framework for spectrum database administrator to choose spectrum-sensing par-
ticipants in a differentially privacy-preserving manner. A reverse auction problem is used
to evaluate each participant’s true cost on tasks accomplishment, and a new formulation
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Table 2.3: Comparison on Related Works in Privacy-Preserving User Incentive
References Auction reward Verification DP User Privacy

[63, 88]
√

×
√

×
√

[90, 93]
√

× × ×
√

[91, 92, 100]
√

× ×
√ √

[94, 95, 89, 96, 97, 98] ×
√

× ×
√

is employed to offer differential location privacy. Wang et al. [93] combined off-line and
online incentive mechanisms to propose an incentive mechanism to select mobile users stat-
ically and determine winners dynamically after bidding. A privacy protection scheme is
presented to preserve the privacy of mobile users, and a two-stage auction algorithm is
designed to determine the winners in bidding to overcome the unfairness problem and user
encouragement.

Other approaches, such as reward/credit distribution based on crowdsensed data eval-
uation, have been proposed. Li and Cao [94] emphasized the open problem to address
the contradiction of incentive and privacy, and proposed two credit-based privacy-aware
incentive schemes for mobile sensing, one depends on a trusted third party and the other
does not, from blind signatures, partially blind signatures and extended Merkle tree. To
distribute the reward, Niu et al. [95] designed an electronic cent scheme and employed it to
propose an electronic cent-based privacy-preserving incentive mechanism for encouraging
mobile users to participate tasks. Delgado-Segura et al. [96, 97] analyzed three importan-
t issues in MCS: user participation, sensing data quality and user anonymity, and their
correlations, and proposed a general framework, PaySense, to incentivize user participa-
tion and validate the data quality based on users’ reputation using the Bitcoin network.
Gisdakis et al. [98] proposed a privacy-preserving incentive scheme to fairly remunerate
mobile users to provide various incentives, such as micropayments, and offer high privacy
guarantee for mobile users. As a result, this scheme can address security, privacy, account-
ability and incentive provision issues in MCS, simultaneously. Gisdakis et a. [99] proposed
a holistic framework to assess sensing reports and sift malicious contributions, while offer-
ing adequate incentives to motivate mobile users for high-quality data submission. Jin et
al. [100] integrated user incentive, data aggregation and data perturbation mechanisms to
design an incentivizing privacy-preserving data aggregation scheme to offer user selection
and incentive. This scheme incorporates the reliability of mobile users to generate highly
accurate aggregated results, and provides privacy protection for mobile users and desirable
accuracy on final perturbed results.
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2.3 Summary

In this chapter, we have briefly reviewed the preliminaries, including bilinear map, number-
theoretic problems, BBS+ signature, PS signature, proxy re-encryption, zero-knowledge
proof and blockchain. Also, we have given a survey on the existing works about securi-
ty and privacy in MCS, including privacy preservation for mobile users and customers,
privacy-enhanced task allocation, secure crowdsensed data collection, privacy-preserving
data analysis, and privacy-aware user incentive. From the comprehensive literature review,
we are aware that the security and privacy challenges have not solidly resolved currently.
In the following chapters, we will introduce several countermeasures to address the critical
challenging issues and reach the research objectives of this thesis.
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Chapter 3

Strong Privacy-preserving Task
Allocation

3.1 Introduction

The development of wireless communications and mobile devices triggers the emergence
of mobile crowdsensing [1], in which user-centric mobile sensing and computing devices,
e.g., smartphones, in-vehicle devices and wearable devices, are utilized to sense, collect
and process data from the environment. This “Sensing as a Service” [101] elaborates our
knowledge of the physical world by opening up a new door for data collection and sharing
[4]. Due to the increasing popularity of mobile devices, mobile crowdsensing supports a
broad range of sensing applications nowadays, ranging from social recommendation, such
as restaurant recommendation, parking space discovery and indoor floor plan reconstrction
[102], to environment monitoring, such as air quality measurement, noise level detection
and dam water release warning. With human intelligence and user mobility, mobile crowd-
sensing can significantly improve the trustworthiness of sensing data, extend the scale of
sensing applications and reduce the cost on high-quality data collection [103].

While mobile crowdsensing makes data sensing appealing than ever, it also brings new
challenges towards mobile users, one of which is privacy leakage, indicating that mobile
crowdsensing puts the privacy of mobile users at stake [104, 105, 106]. The sensing data
collected from the surrounding areas are necessarily people-centric and related to some
aspects of mobile users and their social setting: where they are and where they are go-
ing; what places they are frequently visited and what they are seeing; how their health
status is and which activity they prefer to do. Photos on social events may expose the
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social relations, locations or even political affiliations of mobile users [107]. Furthermore,
the more sensing tasks mobile users engaged in and the richer data the users contribute
to, the higher probability that their sensitive information may be exposed with. There-
fore, preserving the privacy of mobile users is the first-order security concern in mobile
crowdsensing. If there is no effective privacy-preserving mechanism to protect the private
information for mobile users, it is of difficulty to motivate mobile users to join in mobile
crowdsensing services. In addition, the sensing tasks may contain sensitive information
about the customers who issue them. Some personal information about the customers,
such as identities, locations, references and purchase intentions, can be predicted by curi-
ous entities from the releasing tasks. For example, a house agency may know Bob desire to
buy a house in a particular area if Bob releases tasks to collect traffic condition and noise
level in the neighborhood. To preserve the privacy for both customers and mobile users,
several privacy-preserving mobile crowdsensing schemes [32, 33, 35, 47] have been proposed
by utilizing anonymization techniques. Nevertheless, anonymity is insufficient for privacy
preservation, since the mobile users may be traced from travel routes and social relations.
It is possible to uniquely identify 35% of mobile users based on their top-two locations
and 85% of them from their top-three locations based on a large set of call data records
provided by a US nationwide cell operator [108]. Therefore, it is important to explore
strong privacy-preserving mechanisms to prevent privacy leakage for customers and mobile
users in mobile crowdsensing.

Once all information about mobile users and customers is perfectly preserved, it is
impossible for service providers to accurately recruit mobile users for task performing,
while task allocation is a critical component in mobile crowdsensing to ensure the quality
of sensing results. Different from traditional sensing networks [109, 110], the produced
data cannot be predicted as a priori, and their trustworthiness totally depends on the
intelligence and behaviors of mobile users. In general, the higher quality the sensing data
have, the more efforts and costs the mobile users should pay. Therefore, the set of mobile
users would directly impact the quality of sensing data. How to identify the right groups
of mobile users to produce the desired data according to the targets of sensing tasks is a
complex problem from the service provider’s perspective. Geography-based and reputation-
based approaches are popular in mobile crowdsensing to allocate tasks to mobile users, but
either has its inherent weaknesses. Firstly, reputation-based task allocation mechanisms
[33, 43, 54, 111] need a trusted third party (TTP) to perform heavy reputation management
and are vulnerable to reputation-linking attacks, in which the anonymous mobile users can
be re-identified from their reputations. Secondly, geography-based task allocation schemes
can optimize users selection based on their spatial and temporal correlation [112], but
unfortunately it also discloses the content of sensing tasks and the locations of mobile users
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to the service provider, while location privacy is one of the primary concerns for mobile
users in pervasive environments. In summary, privacy preservation and task allocation
become a pair of contradictory objectives in mobile crowdsensing.

To resolve this issue, we propose a Strong Privacy-preserving mObile crOwdseNsing
scheme (SPOON) supporting location-based task allocation, decentralized trust manage-
ment and privacy preservation for both mobile users and customers simultaneously [113,
114]. By leveraging the blind signature [23] and randomizable matrix multiplication, we
fully prevent the privacy leakage from all sources for both mobile users and customer-
s, including locations, identities and credit points, without scarifying the normal mobile
crowdsensing services of service providers, such as task allocation, data filtering and trust
management. The main contributions of this chapter are summarized as three folds:

B We design a privacy-preserving location matching mechanism based on matrix mul-
tiplication to allow service providers to allocate sensing tasks based on the sensing
areas of tasks and the geographic locations of mobile users. Specifically, the service
provider can determine whether a mobile user is in the sensing area of a task from two
randomized matrices generated from the sensing area and the user’s location. Thus,
the service provider can learn the result of location matching, but has no knowledge
about the interested areas of customers and the locations of mobile users.

B By extending the proxy re-encryption and BBS+ signature, we protect the sensitive
information for mobile users and customers to prevent privacy leakage, including their
identities, credit points, sensing tasks and sensing reports. Specifically, we allow the
registered customers and mobile users to anonymously prove their capacities and trust
levels to participate in the crowdsensing services and securely perform the sensing
tasks without exposing contents of sensing tasks and sensing reports. Besides, to
prevent the mobile users from misbehaving for unfair rewards, a trusted authority
enables to detect the greedy mobile users and trace their identities.

B We introduce a privacy-preserving credit management mechanism for mobile users,
in which mobile users are able to prove their trustworthiness without the exposure of
credit points and the management of centralized servers. In particular, it supports
the positive and negative updates of credit points for mobile users based on the
contributions on the tasks. In addition, multiple service providers can cooperatively
maintain a unique trust evaluation system, in the way that mobile users are allowed to
participate in the mobile crowdsensing services offered by different service providers
using unique credit points.
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3.2 Problem Statement

We formally define the system model and threat model, and identify our design goals.

3.2.1 System Model

The mobile crowdsensing service provides customers a people-centric way for data collection
from surrounding environment. The architecture consists of three kinds of entities: a
service provider, customers and mobile users.

Service Providers: Service providers develop cloud services by themselves or rent the
cloud resources offered by cloud service providers. They have sufficient storage and com-
puting resources to provide mobile crowdsensing services. The service providers receive
sensing tasks from customers and allocate them to mobile users based on their locations.
They collect sensing reports from mobile users, select sensing reports based on the credit
points of mobile users and generate sensing results for customers. The service provider
also distributes credit points to mobile users for incentive.

Customers: The customers can be individuals, corporations or organizations. They need
to accomplish data collection tasks, e.g., to study traffic congestion in a city, pollution
level of a creek and satisfactory on public transportation, but they do not have sufficient
capabilities to perform tasks by themselves. Thereby, they issue their sensing tasks to the
service providers to obtain the sensing results.

Mobile Users: Every mobile user has several mobile devices, e.g., mobile phones, tablets,
vehicles and smart glasses. These mobile devices, with rich computational, communication
and storage resources, are carried by their owners wherever they go and whatever they
do. The mobile users make sure the battery on mobile devices have sufficient power to
support their normal functions. The mobile users participate in sensing tasks and utilize
their portable devices to collect data from their surrounding areas to fulfill sensing tasks,
and report sensing data to the service providers for earning credit points.

3.2.2 Threat Model

The service provider is responsible for offering mobile crowdsensing service to customers,
but it may strive to increase the income and violate its privacy policy of data protection.
For example, Uber, a crowdsourcing-based ride-sharing service provider, made ride-booking
data publicly accessible without the permission of customers in January, 2017, for its own
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purpose. Therefore, the service provider is not fully trusted, but honest-but-curious. On
one hand, the service provider would honestly perform the mobile crowdsensing service; one
the other hand, it may learn a spatio-temporal probability distribution for a specific mobile
user and other sensitive information about customers and mobile users, e.g., preference,
social relation, political affiliation and purchase intention, from the maintained information,
including sensing tasks and sensing reports. Moreover, the employees in service provider
may capture and exploit the sensitive information about mobile users.

Mobile users are interested in the privacy about the customers and the other mobile
users. In particular, they are willing to know the other mobile users participating in the
same tasks, and learn more information about customers they are working for to reach
the expectations of customers. Further, mobile users may be greedy for the credit points,
such that they may anonymously submit more sensing reports than allowed to warn unfair
credit points. In addition, the mobile users may maliciously forge, modify the sensing
data or deliver ambiguous, biased sensing data to cheat customers for credit points. These
forged or biased data can be discovered using redundancy or truth discovery approaches.
The locations are extracted from GPS trusted chips in mobile devices or access points, we
assume that mobile users cannot modify their location information.

The external attackers, such as eavesdroppers and hackers, also bring serious security
threats towards mobile crowdsensing services. It is possible for an attacker to obtain the
identities of the nearby mobile users or customers via physical observation, such that the
anonymity may be insufficient for privacy preservation for customers and mobile users. The
customers are fully trusted since they are the main beneficiaries of mobile crowdsensing
service. They will keep the received crowdsensing results confidential to prevent the expo-
sure of sensitive information of mobile users, such as identities, locations and crowdsensing
reports.

3.2.3 Design Goals

To enable strong privacy-preserving mobile crowdsensing under the aforementioned system
model and against security threats, SPOON should achieve the following design goals:

B Location-based Task Allocation: The sensing tasks are allocated to the mobile users in
the sensing areas defined by the customers, and other mobile users out of the given
areas cannot learn any information about the tasks.

B Location Privacy Preservation: The locations of mobile users and the sensing areas
of sensing tasks would not be exposed to others. The mobile users are only aware
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whether they are in the sensing area or not.

B Data Confidentiality: No entity, except the delegated participants, can obtain the
content of releasing tasks or sensing reports, such that the privacy of customers and
mobile users would not be disclosed to others.

B Anonymity of Mobile Users and Customers: The customers, mobile users, the service
provider or their collusion are unable to link a sensing report to a mobile user or link
a sensing task to a customer. It is even impossible for an attacker to identify whether
two sensing reports are generated by the same mobile user or two sensing tasks are
issued by the same customer.

B Privacy-Preserving Credit Management: Credit points are used to represent the repu-
tation of mobile users and encourage them to participate in the mobile crowdsensing
activities as rewards. The service provider selects the sensing reports based on the
credit points of mobile users and awards credit points to mobile users without know-
ing the exact credit points of mobile users. The balance of credit points is achieved,
which means that it is impossible for the mobile users to forge credit points without
being detected, such that the total credit points of a mobile user should be equal to
the awarded credit points plus the initial points.

B Greedy User Tracing: The identities of greedy mobile users, who submit more than
one sensing report for the same task in a reporting period, are recovered to prevent
the mobile user from awarding unfair credit points.

3.3 SPOON

We propose our SPOON, which is composed of five phases, Service Setup, User Regis-
tration, Task Allocation, Data Reporting and Credit Assignment, based on the matrix
multiplication, the BBS+ signature [23] and the proxy re-encryption [22].

3.3.1 High-Level Description

We first provide a high-level description of SPOON and its information flow, which is
shown in Fig. 3.1. The notions frequently used in SPOON are listed in Table 3.1.

Service Setup: A trusted authority (TA) bootstraps the whole mobile crowdsensing ser-
vice for the service provider by defining the public parameters (G,GT , p, g, g0, g1, g2, g3, h, h0,
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Table 3.1: Frequently Used Notions

Ui{i∈R} Set of registered mobile users
Ui{i∈L} Set of mobile users in sensing area L
ST A task issued by a customer
task The detailed content of a task ST
expires The expiration time of a task ST
area The sensing region of a task ST
Lm×n A matrix to represent the service area of the service provider

L̂m×n A matrix to represent the sensing area of a task ST

L̃m×n A matrix to represent the current and future locations of a user

M̂m×n A random invertible matrix

M̃m×n A random invertible matrix
I The unique identity of a registrant (mobile user or customer)
P0 The initial credit point of a mobile user
ε The trust level of a sensing report
γ The maximum of trust level in a task ST
Q The credit threshold chosen by a mobile user
A, e, s The anonymous credential of a mobile user or customer
B, f, t The anonymous credential of a mobile user with credit point P
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h1, h2, h3, h4, G,H,G,H,F) and generates its secret key α and the public key T . The ser-
vice provider also generates the secret key β and the public key S, and defines a matrix
Lm×n to denote the geographic region of its crowdsensing service.

User Registration: The TA registers the mobile users and customers, who are willing
to participate in the mobile crowdsensing service. It evaluates the registrant to determine
the initial credit point P0 and interacts with the registrant to generate an anonymous
credential (A, e, s, B, f, t). (A, e, s) is used to access the mobile crowdsensing service and
(B, f, t) is used to credit management for the registrant. To achieve the anonymity, the
ownership of (A, e, s) and (B, f, t) is proved by the registrant for identity authentication
and credit evaluation using zero-knowledge proofs, respectively. Besides, RK is assigned
to the registrant for the decryption of allocated sensing tasks.

Task Allocation: A customer generates a sensing task ST and sends the message
(c1, c2, c3, expires, N̂n×n, γ, w,PK2) to the service provider, which consists of the encrypt-

ed task (c1, c2, c3), the expiration time expires, the randomized sensing area N̂n×n, the
identity proof PK2 and other information. The latter releases (num, expires, γ) to attract
mobile users for participation, where num is the identifier of ST . A mobile user Ui{i∈R}
sends its location Ñn×n and identity proof PK3 to the service provider. Then, the service
provider finds the set of mobile users Ui{i∈L} in the sensing area of ST based on two matri-

ces (N̂n×n, Ñn×n). Since (N̂n×n, Ñn×n) are randomized matrices, the service provider can
learn whether Ui is in the sensing area of ST based on matrix multiplication, but has no
information about ST ’s sensing area and Ui’s location. The service provider re-encrypts
the ciphertext (c1, c2, c3) to be decryptable for Ui{i∈L} using β. Finally, the service provider
sends (num, c2, c3, c4, expires, γ, w) to Ui{i∈L}.

Data Reporting: Ui{i∈L} encrypts the collected data mi to generate (Di, D
′
i), and sends

the sensing report (num,Di, D
′
i, C

′
i, Xi, Yi, Zi, Qi, τj,SPK) to the service provider, in which

C ′i is the commitment on the identity Ii and credit point Pi, Xi is the identifier of this
report, Yi is the identifier of Ui, Zi is a tag to identify the double-reporting user, Qi is the
claimed credit threshold to show that the number of credit points Ui has is larger than Qi,
τj is the current slot for reporting, and SPK is used to prove the ownership of its credit
points Pi. The service provider selects w−sensing reports based on the claimed thresholds
and forwards the selected reports to the customer. The TA can recover the identity of
anonymous mobile user who double-reports sensing reports with the service provider using
the double-reporting tag Zi.

Credit Assignment: The customer evaluates the trustworthiness of each report and re-
turns the corresponding trust level εi ∈ [−γ, γ] to the service provider. The latter computes
the number of credit points awarded to Ui, θi, and forwards (Bi, t

′′
i , fi, θi, Yi) to Ui, where
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Figure 3.1: Information Flow of Mobile Crowdsensing.

(Bi, t
′′
i , fi) is the ticket for awarded credit points θi, and Yi is used to identify the mobile

user Ui. Once receiving (Bi, t
′′
i , fi, θi, Yi), Ui updates its credit points P ′i = Pi + θi and the

anonymous credential (Bi, fi, ti) for the new P ′i .

3.3.2 The Detailed SPOON

We then show the detailed SPOON as follows.

3.3.2.1 Service Setup

Let (G,GT ) be two cyclic groups with a prime order p, where p is λ bits, and ê : G×G→ GT

be a bilinear map. The authority randomly picks generators g, g0, g1, g2, g3, h, h0, h1, h2, h3,
h4 ∈ G and computes G = ê(g, g) and H = ê(h, h) respectively. The TA also chooses
a random value G ∈ GT and defines a cryptographic hash function H : {0, 1}∗ → Zp
and a pseudo-random function F : Zp × {0, 1}∗ → Zp. The public parameters param
are (G,GT , p, g, g0, g1, g2, g3, h, h0, h1, h2, h3, h4, G,H,G,H,F). The TA randomly chooses
α ∈ Zp as its secret key and calculates the public key T = gα.

To setup the mobile crowdsensing service, the service provider randomly chooses its
secret key β ∈ Zp and computes S = hβ as its public key. It also employs a matrix Lm×n
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to denote the geographical region that the crowdsensing service can cover according to the
longitude and latitude. Each entry in the matrix denotes a small grid in the sensing region,
as shown in Fig. 3.2. Assume the longitude of Ontario is from 74.40◦W to 95.15◦W, the
latitude is from 41.66◦N to 57.00◦N, we can use a 208× 154 matrix or 2075× 1534 matrix
more precisely to represent the Ontario region.

3.3.2.2 User Registration

Either customer or mobile user is required to register at the TA to obtain an anonymous
credential, which is used to participate in the crowdsensing service. Each registrant is
assigned a unique identity I in the system, which can be the telephone number or mailing
address in practise. The registrant picks three random values s′, a, t′ ∈ Zp to compute

C = gs
′

1 g
a
2 , C ′ = ht

′
1h

a
2, Â = ga, and sends (I, C, C ′, Â) to the TA, along with the following

zero-knowledge proof:

PK1{(s′, t′, a) : C = gs
′

1 g
a
2 ∧ C ′ = ht

′

1h
a
2 ∧ Â = ga}.

The TA firstly checks the proof PK1 for ensuring that (C,C ′, Â) are generated correctly.
Then, it evaluates the registrant’s initial credit point according to its credit record, which
is assumed to be P0. After that, the TA randomly picks s′′, e, t′′, f ∈ Zp to calculate A =

(g0Cg
s′′
1 g

I
3)

1
α+e , B = (h0C

′ht
′′

1 h
I
3h

P0
4 )

1
α+f , RK = Â

1
α , and returns (A,B, s′′, t′′, e, f, P0, RK)

to the registrant through secure channels. Finally, the TA stores the tuple (I, P0, Â) in its
database.

The registrant computes s = s′ + s′′, t = t′ + t′′ and checks

ê(A, Tge)
?
= ê(g0g

s
1g
a
2g

I
3 , g), ê(B, Thf )

?
= ê(h0h

t
1h

a
2h

I
3h

P0
4 , h).

The registrant stores (A, e, s, B, f, t, a, I, P0, Â, RK) secretly on the read-only memory of
mobile device.

3.3.2.3 Task Allocation

A customer with registered information (A, e, s, B, f, t, a, I, P0, Â, RK) generates a sensing
task to be allocated to mobile users and requests the sensing data slot by slot, where each
slot ranges from minutes to days depending on the specific requirements of the sensing task.
The statement of the task is defined as ST = (task, expires, area, γ, w), which indicate the
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Figure 3.2: Sensing Area and the Matrix L̂6×6.

content (what to sense), the expiration time (when to sense), the sensing area (where to
sense), the maximum trust level and the number of required reports, respectively. Other
attributes (e.g., sensing intervals, acceptance conditions, benefits, reporting periods) can
be illustrated in task. To protect the content of the task, the customer randomly picks
k, r1, r2, r3 ∈ Zp to calculate u = gk, c1 = Sr2 , c2 = T r1 and c3 = (task||u)Gr1Hr2 . Then,

the customer generates a matrix L̂m×n to indicate the target sensing region area. As
depicted in Fig. 3.2, for each position in the sensing area, the corresponding entry in L̂m×n
is set to be a random value chosen from Z∗p, and the value for a location outside is set to

be zero. To mask the sensing area in L̂m×n, the customer picks m × n random numbers

from Z∗p to generate an invertible matrix M̂m×n and computes N̂n×n = L̂Tm×n ·M̂m×n, where

L̂Tm×n is the transpose of the matrix L̂m×n. Note that all non-zero entries in L̂m×n should

be distinct, unless an attacker still can learn the sensing region from N̂n×n. Finally, the
customer keeps k in private and sends (c1, c2, c3, expires, N̂n×n, γ, w) to the service provider,
along with the following zero-knowledge proof:

PK2{(A, e, s, a, I) : ê(A, Tge)=ê(g0g
s
1g
a
2g

I
3 , g)}.

The service provider checks the validity of the proof PK2. If yes, it assigns a task
identifier num, releases (num, expires, γ) and stores (num, c1, c2, c3, expires, N̂n×n, γ, w)
in its database.

When a mobile user Ui{i∈R} with (Ai, ei, si, Bi, fi, ti, ai, Ii, Pi, Âi, RKi) is willing to par-
ticipate in crowdsensing activities, it firstly picks a random value ν ∈ Zp to calculate

µ = hν . Then, Ui generates a matrix L̃m×n according to its current location and the places
it will visit. For each location Ui will reach, the corresponding entry in L̃m×n is set to be a
random value chosen from Z∗p, and the rest entries are set to be zero. The non-zero entries

in L̃m×n should be different. To protect these location information, it also generates a
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random invertible matrix M̃m×n by picking m× n random values from Z∗p, and calculates

Ñn×n = M̃T
m×n · L̃m×n. Finally, Ui keeps ν secretly and sends (µ, Ñn×n) to the service

provider, along with the following zero-knowledge proof:

PK3{(Ai, ei, si, ai, Ii) : ê(Ai, T g
ei)=ê(g0g

si
1 g

ai
2 g

Ii
3 , g)}.

The service provider returns failure if PK3 is invalid. Otherwise, for each unexpired
task, it uses N̂n×n to calculate Nn×n = Ñn×n · N̂n×n and checks whether Nn×n is zero
matrix or not. If Nn×n is non-zero matrix, which means that Ui can match ST , the service

provider calculates c4 = ê(µ, c1)
1
β and releases (num, c2, c3, c4, expires, γ, w) for Ui. If there

is no task to match Ui, the service provider responds failure.

When Ui obtains (num, c2, c3, c4, expires, γ, w), it decrypts (c2, c3, c4) by using (ν, ai) as

task||u = c3c
− 1
ν

4 ê(c2, RKi)
− 1
ai . Then, Ui evaluates the task and determines to participate

in or abandon this task according to benefit and cost. If Ui accepts the task ST , it starts
to perform the sensing work according to the details in task. The correctness of task||u is
elaborated as follows:

c3c
− 1
ν

4 ê(c2, RKi)
− 1
ai (3.1)

= c3ê(µ, c1)−
1
βν ê(c2, RKi)

− 1
ai

= (task||u)Gr1Hr2 ê(hν , Sr2)−
1
βν ê(T r1 , g

ai
α )
− 1
ai

= (task||u)Gr1Hr2H−r2G−r1

= task||u.

3.3.2.4 Data Reporting

Ui collects and, pre-processes the data mi ∈ GT and submits a sensing report to the
customer periodically, which includes the collection time, the sensing location and the
detailed content. The reporting periods are defined by the customer, and we assume the
current slot is τj. To prevent attackers from learning mi, Ui uses u to encrypt mi as
Di = ur̂i , D′i = miG

r̂i , where r̂i is a value randomly chosen from Zp. Then, Ui randomly

picks t′i ∈ Zp to compute C ′i = h
t′i
1 h

ai
2 h

Ii
3 h

Pi
4 . Next, Ui computes Xi = H(num||mi||τj),

vi = Fai(num||I||τj), Yi = Hvi and Zi = ê(g, Âi)GXivi . Finally, Ui chooses a credit
threshold Qi and sends the report (num,Di, D

′
i, C

′
i, Xi, Yi, Zi, Qi, τj) to the service provider,
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along with the following zero-knowledge proof:

SPK



(Bi, fi, ti, t
′
i, ai, Ii, Pi, vi) :

ê(Bi, Th
fi)=ê(h0h

ti
1 h

ai
2 h

Ii
3 h

Pi
4 , h)∧

C ′i = h
t′i
1 h

ai
2 h

Ii
3 h

Pi
4 ∧

Pi > Qi ∧
Yi = Hvi ∧
Zi = ê(g, Âi)GXivi


(num).

The service provider returns failure if SPK is invalid; otherwise, the service provider
checks whether there is another report (num, D̃i, D̃

′
i, C̃

′
i, X̃i, Yi, Z̃i, Q̃i) that has the same

Yi and different X̃i with the new received report (num,Di, D
′
i, C

′
i, Xi, Yi, Zi, Qi). If yes,

the service provider computes and sends W = (
Z̃
Xi
i

Z
X̃i
i

)
1

Xi−X̃i to the TA, and the TA can find

the mobile user’s identity Ii by utilizing Âi in the database to check W = ê(g, Âi). In
other words, the identity of the greedy mobile user is recovered by the TA if it submits two
different sensing reports in a reporting slot. Then, according to the claimed thresholds, the
service provider chooses w reports that have top-w thresholds, and releases them for the
customer. Note that the mobile users, whose reports are not selected, can increase their
thresholds in the next reporting slot τj + 1.

When the customer retrieves the reports, it can decrypt them using the stored k as
mi = D′iê(g,Di)

1
k one by one.

3.3.2.5 Credit Assignment

After the customer obtains the sensing result, it evaluates the trustworthiness of each report
and responds the corresponding trust level to the service provider. The trust level of mi is
defined as εi ∈ [−γ, γ]. If εi is positive, mi is trustworthy, otherwise, mi is incredible.

Upon receiving trust levels, the service provider randomly picks t′′i , fi ∈ Zp to compute

θi = INT (εiQi), Bi = (h0h
t′′i
1 C

′
ih
θi
4 )

1
β+fi , and releases (Bi, t

′′
i , fi, θi, Yi) for Ui, where INT (x)

is the nearest integer function.

Ui retrieves (Bi, t
′′
i , fi, θi, Yi) from the service provider, computes ti = t′i+t

′′
i , P

′
i = Pi+θi

and checks whether ê(Bi, Sh
fi)=ê(h0h

ti
1 h

ai
2 h

Ii
3 h

P ′i
4 , h) or not. If yes, Ui uses the new tuple

(Bi, fi, ti, P
′
i ) to replace the previous one and stores them with (Ai, ei, si, ai, Ti, Âi, RKi).

Meanwhile, Ui updates P ′i in the read-only memory, which can be used to show the credit
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points in the future crowdsensing activities. Further, since (Bi, fi, ti, P
′
i ) are managed by

Ui, Ui enables to prove the ownership of (Bi, fi, ti) cross service providers. The credit
points awarded by different service providers can be accumulated and Ui can prove the
credit points to multiple service providers during the participation of mobile crowdsensing
services offered by different service providers.

3.4 Security Analysis

We show that SPOON satisfies five security goals defined in 3.2.3: location privacy,
anonymity, data confidentiality, credit balance and greedy user tracing.

3.4.1 Location Privacy

The sensing region of a task is represented as a matrix L̂m×n, which is randomized by a

random matrix M̂m×n to generate N̂n×n. The location of the mobile user is transformed
to be Ñn×n. Having two matrices N̂n×n and Ñn×n, the service provider cannot learn any
information about the location of the mobile user and the sensing area of the task. The
service provider computes Nn×n = N̂n×n · Ñn×n. If there is no overlapping between the
sensing area of task and the location of mobile user, Nn×n must be zero matrix. If one
overlapping grid exists, whose corresponding entry is L̂ij in L̂m×n and is L̃ij in L̃m×n,

respectively, the entries in j-row of N̂n×n are nonzero, as well as the entries in j-column
of Ñn×n. Thus, the service provider enables to know that there are some overlapping
locations on the j-column of the sensing area, while it is unable to distinguish which
location is overlapped from m locations. Further, N̂n×n · Ñn×n and Ñn×n · N̂n×n cannot give
more information to the service provider. The results are the same if the overlapping grids
are more than one. Therefore, the sensing area and the location of mobile user would not
be exposed to the service provider and other entities.

3.4.2 Data Confidentiality

We aim to ensure that only the mobile users whose locations can match the sensing area
have the capacity to recover the corresponding sensing task. In SPOON, the adversaries
may be the service provider, unmatched mobile users and external attackers. To resist
these adversaries, the task protection consists of two stages. In the first stage, the sensing
task is encrypted by the customer under the public keys of the TA and the service provider;
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in the second one, the service provider partially decrypts the ciphertext using its secret key
and then re-encrypts the result for the matched mobile users. Therefore, we demonstrate
the task confidentiality in the following two procedures:

B Firstly, the first-stage ciphertext should not be entirely decryptable for the service
provider or the mobile users. To be specific, given the first-stage ciphertext (c∗1, c

∗
2, c
∗
3)

and two plaintexts (task1||u1, task2||u2), if an adversary can distinguish which one
out of (task1||u1, task2||u2) is the plaintext of (c∗1, c

∗
2, c
∗
3), we show how to construct

a simulator S to solve the q−DBDHI problem [22].

Given the simplified q−DBDHI tuple g, T1 = gz1 , T2 = gz2 ∈ G, Q ∈ GT , the simula-

tor S’s goal is to determine whether Q = ê(g, g)
z1
z2 via interactions with the adversary.

S sets T = T1. The adversary possessing the secret key of the service provider, β,
can query any chosen message task||u to the simulator S to obtain the corresponding
the ciphertext. Then, S picks two messages (task1||u1, task2||u2) and a random bit
b ∈ {0, 1} to compute the challenge (c∗1, c

∗
2, c
∗
3) = (Sr2 , T2, (taskb||ub)QHr2), where r2

is a random value chosen from Zp, and returns (task1||u1, task2||u2) to the adversary,

along with (c∗1, c
∗
2, c
∗
3). Finally, the adversary returns b̂ ∈ {0, 1} to S. If b̂ = b, S can

address the simplified q−DBDHI problem as Q
?
=

c∗3

(taskb||ub)ê(c∗1,h)
− 1
β

.

The task confidentiality against the adversary, who possesses α, also relies on the
simplified q−DBDHI problem, given h, T1 = hz1 , T2 = hz2 ∈ G, Q ∈ GT , The proof
is the same as that above with one difference that the challenge is (c∗1 = T2, c

∗
2 =

T r11 , c
∗
3 = (taskb||ub)QGr1), where r1 is a random value chosen from Zp. Finally, S

can address the simplified q−DBDHI problem as Q
?
=

c∗3

(taskb||ub)ê(c∗2,g)
− 1
α

.

B Secondly, the sensing task should only be recovered by the matched mobile users
from the second-stage ciphertext. To prevent unmatched mobile users from learning
the content of sensing task, the service provider encrypts the sensing task with the
temporary public key µ using the proxy re-encryption scheme [22]. Therefore, the
security of the second-stage ciphertext can be reduced to the q−DBDHI assumption
as well.

To guarantee the confidentiality of sensing reports, each mobile user employs the proxy
re-encryption scheme [22] to encrypt mi under the temporary public key u = gk, which
is distributed to the mobile users along with the sensing task. The decryption key k is
kept by the customer secretly. Therefore, the confidentiality of mi directly depends on the
semantic security of proxy re-encryption scheme, which can be reduced to the simplified
q−DBDHI assumption [22].
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3.4.3 Anonymity

The anonymity of the mobile user is defined via the game in which the adversary cannot
distinguish an honest mobile user out of two under the extreme condition that all other
interactions are specified by the adversary. We prove that the mobile user’s identity is
preserved properly, provided the DDH assumption [115] holds. Specifically, if there exists
an adversary A that can identify an honest mobile user out of two challenging identities,
we show how to construct a simulator S to solve an instance of the DDH problem. That
is, given a tuple T1, T2, T3, T4 ∈ GT , S can tell whether exists (z1, z2), such that T2 = T z11 ,
T3 = T z21 , T4 = T z1z21 . S generates (param, S, T ), picks two identities (I0, g

a0), (I1, g
a1),

where a0, a1 ∈ Zp, and sends them to A. S acts on behalf of the users I0 and I1 to register
at the TA. S then interacts with A in the following interactions:

B S acts as I0 honestly to submit the location information. For I1, in the j-th query,
S randomly chooses µj ∈ G and simulates the zero-knowledge proof PK3 to prove
its identity interacting with A.

B S honestly acts on behalf of I0 to report the data. For I1, S sets H = T1, G =
T2. For the j-th query, S randomly chooses Xj, vj ∈ Zp and computes Yj =

T
vj
1 , Zj = ê(g, ga1)T

Xjvj
2 . S simulates the zero-knowledge proof SPK and sends

(Xj, Yj, Zj,SPK) to A, along with a random sensing report.

S picks a random bit b ∈ {0, 1}. If b = 0, S honestly reports the data acts as I0. If b = 1
and S randomly chooses X1 ∈ Zp and calculates G = T2, Y1 = T3, Z1 = ê(g, ga1)TX1

4 .
Then, S simulates SPK and a sensing report, and sends them to A. It is easy to see that
the simulation is perfect if logT1T4 = logT1T2logT1T3; otherwise, it contains no information
about I0 and I1.

Finally, A returns b̂. If b̂ = b, S can confirm that there exists (z1, z2), such that
T2 = T z11 , T3 = T z21 , T4 = T z1z21 . Thus, S resolves the DDH problem.

In the proof of customer’s anonymity, a simulator S simulates the transcript of the zero-
knowledge proof of the signature (A, e, s), PK2, to interact with the adversary A. Since S
can perfectly simulates PK2, the adversary cannot obtain any identity information about
the customer, such that it is impossible to distinguish an honest customer from two for A.
Therefore, the customer’s anonymity can be fully guaranteed.
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3.4.4 Credit Balance

Credit balance means that no one can own the credit points more than the initial credit
points plus the credit points awarded by service providers. This is the most significant
requirement for credit management from the respective of security. Assume P0 be the
initial credit points and θj be the earned points from the service provider in the j-th query.

If the adversary A at most makes R̂ reporting queries, and owns final credit points Pf ,

where Pf > P0+
∑R̂

j=1 θj, while service providers do not identify the double-reporting, there
must exist a simulator S to conduct a forgery attack on the underlying BBS+ signature
[23].

Firstly, we assume that the zero-knowledge proofs PK1, PK2, PK3 and SPK are sound.
That is, there exist extract algorithms EX 1, EX 2, EX 3 and EX S to obtain the witnesses
of the zero-knowledge proofs, respectively.

Then, we show the simulator S that interacts withA. S generates the public parameters
param, the public keys (T, S) and the secret keys (α, β), and is allowed to access the
signature oracle SO to get the BBS+ signature of an input. S sends (param, S, T ) to A
and interacts with A as follows:

B A randomly chooses C,C ′, Â ∈ G, and generates the proof PK1 and sends them
to S. S extracts the witness (s′, t′, a) from PK1 using EX 1, and then picks a ran-
dom credit point P0 and queries the signature oracle SO to obtain (A, e, s) and

(B, f, t). Finally, S calculates s′′ = s − s′, t′′ = t − t′ and RK = Â
1
α , and returns

(A, e, s′′, B, f, t′′, P0, RK) to A.

B For the j-th query, A picks a random C ′j ∈ G and executes SPK with S. S utilizes
EX S to extract the witness (Bj, fj, tj, t

′
j, aj, Ij, Pj, vj). If (Bj, fj, tj) is not an output

of SO, it is a forgery of the BBS+ signature. Otherwise, S queries SO to obtain a
signature (Bj, fj, tj) on input (aj, Pj + θj, Ij). S receives (Bj, fj, tj) and computes
t′′j = tj − t′j, and returns (Bj, fj, t

′′
j ) to A.

Finally, assume A executes R̂ queries. A wins the game if it can prove Pf > P0 +∑R̂
j=1 θj. However, if Pf > P0 +

∑R̂
j=1 θj, A must have conducted a forged BBS+ signautre

or double-reported the data. While the BBS+ signature is secure under the q−SDH as-
sumption [23], A cannot forge a BBS+ signature, unless the q−SDH assumption [23] does

not hold. If A double-reports the sensing data, it must generate another Z̃i, which is
unequal to the previous Zi, in the same time slot. Due to the soundness of zero-knowledge
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Table 3.2: Computational Overhead of SPOON

Phase
User Registration Task Allocation

Authority User Customer Provider User

Point Multiplication 16 19 11 12 9
Point Addition 12 13 5 8 5
Bilinear Map 0 4 1 1 2

Exponentiation in GT 0 0 6 15 8
Running Time (ms) 83.429 293.372 100.123 138.529 154.980

Phase
Data Reporting Credit Assignment

Customer Provider User Provider User

Point Multiplication 0 19 25 3 5
Point Addition 0 14 16 3 5
Bilinear Map 1 5 2 0 2

Exponentiation in GT 1 19 15 0 0
Running Time (ms) 56.415 197.324 203.129 15.643 130.448

proof protocol, Zi = ê(g, Âi)GXivi is the only valid Zi to accompany the specific report

identified by Xi and Yi. Since Xi should be different for two reports, ê(g, Âi) would be
obtained as long as the proof is valid. We assume the proof SPK is sound. Thus, the
success probability of double-reporting for A is negligible. Therefore, the probability to

obtain Pf > P0 +
∑R̂

j=1 θj is negligible if the q−SDH assumption holds.

3.4.5 Greedy User Tracing

Greedy user tracing consists of two objectives, namely, slandering and hiding. Slandering
means that an attacker cannot slander an honest mobile user, and hiding means that a
greedy user must be identified by the TA. For the slandering, the attacker releases pieces
of reporting transcripts that can link to other reports submitted by an honest mobile user.
It is infeasible for the attacker to compute the tracing information about an honest mobile
user since the proof SPK is sound. Therefore, no attacker enables to slander an honest
mobile user. In terms of the hiding, the attacker is required to generate different pieces
of tracing information without being traced. However, it is impossible for a greedy mobile
user to compute Zi if the pseudo-random function F is correct.
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3.5 Performance Evaluation

Here, we evaluate the performance of our SPOON in terms of computational and commu-
nication overheads, and analyze privacy rate and accuracy rate for credit management.

3.5.1 Computational Overhead

We demonstrate the computational overhead of our SPOON by counting the number of
the time-consuming cryptographic operations, such as point multiplication, point addition,
bilinear map and exponentiation in GT . Here we only show four kinds of operations because
other operations, e.g., multiplication in GT , addition, multiplication and inverse operations
in Zp, are not comparable with these four operations. Besides, since the bilinear map is the
most time-consuming operation in cryptographic calculations, we utilize the pre-processing
technique to reduce the computational burden for each entity. Specifically, the TA pre-
computes the bilinear maps {Ei}4

i=0, {Fi}4
i=0, K,K

′
0, {Ki}3

i=0 in service setup phase as shown

in Appendix A, and the bilinear maps {ê(g, Âi)}Ni=0 in user registration phase, where N

is the number of registrants. The mobile user Ui also can pre-compute ê(g, Âi) in user
registration phase. Table 3.2 shows the number of the operations executed by each entity
in each phase of SPOON, respectively.

We also conduct an experiment to show the efficiency of SPOON. The operations of TA
and service provider are performed on a notebook with Intel Core i5-4200U CPU, the clock
rate is 2.29GHz and the memory is 4.00 GB. The operations of customers and mobile users
are run on HUAWEI MT2-L01 smartphone with Kirin 910 CPU and 1250M memory. The
operation system is Android 4.2.2 and the toolset is Android NDK r8d. We use MIRACL
library 5.6.1 to implement number-theoretic based methods of cryptography. The Weil
pairing is utilized to realize the bilinear pairing. The parameter p is approximately 160
bits and the elliptic curve is defined as y = x3 + 1 over Fq, where q is 512 bits. The
execution time of each entity in every phase of SPOON is shown in Table 3.2. The running
time is less than 300 ms for each entity. Therefore, our SPOON is quite efficient to be
deployed on mobile devices.

3.5.2 Communication Overhead

We show the communication burden of all entities in SPOON. The public parameters are
set the same as those in the experiment, that is, |p|=160 bits and |q|=512 bits. In user
registration phase, a registrant, either customer or mobile user, sends a registering request
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(I, C, C ′, Â,PK1) to the TA, which is |I| + 2176 bits, where |I| is the binary length of
the identity, and the TA returns (A,B, s′′, t′′, e, f, P0, RK) to the registrant, whose binary
length is |P0| + 2176 bits, where |P0| is the binary length of credit point. In task alloca-

tion, the customer uploads (c1, c2, c3, expires, N̂n×n, γ, w,PK2) and the mobile user sends

(µ, Ñn×n,PK3) to the service provider, which are 4512+160n2+|expires|+|γ|+|w| bits and
2976 + 160n2 bits, respectively. The service provider responds (num, c2, c3, c4, expires, γ),
which is 2560 + |num| + |expires| + |γ| bits, to a matched mobile user or false, 1 bit,
to an unmatched one. After the mobile user obtains the sensing data, it generates the
sensing report (num,Di, D

′
i, C

′
i, Xi, Yi, Zi, Qi, τj,SPK) to the service provider, which is

8864+ |num|+ |P0|+ |τj| bits. The service provider needs to send 1024-bit W to the TA if a
mobile user double-submits data, and then sends w sensing reports (num,Di, D

′
i, Yi, Qi, τj),

which is of binary length w ∗ (2560 + |num| + |P0| + |τj|) to the customer. Finally, the
customer returns (1024 + |γ|)-bit (εi, Yi) to the service provider for each report and the
service provider sends (Bi, t

′′
i , fi, θi, Yi) to every mobile user, which is 1856 + |P0| binary

bits.

3.5.3 Credit Analysis

To prevent credit points from disclosing to other entities, each mobile user claims a thresh-
old Qi, which is less than its exact credit point Pi, such that the service provider can
select the sensing reports based on the claimed thresholds. In this way, neither the service
provider nor the customer enables to learn the precise credit points of mobile users. Unfor-
tunately, this method reduces the accuracy of report selection as the service provider may
select a sensing report of the mobile user, whose threshold is larger than others’, while the
credit point has the opposite result. On the other hand, customers may prefer mobile users
to choose the thresholds that are approximate to their credit points, while the privacy of
mobile users are sacrificed. Therefore, it seems impossible to reconcile the contradiction
between privacy and accuracy, because they exhibit opposite trends.

To balance this trade-off, it is critical to find a reasonable strategy for mobile users
to determine the thresholds. We define four parameters to evaluate privacy and accuracy
in credit claiming. Specifically, accuracy rate A denotes the maximum probability of a
given threshold in the selected reports can possess top-w credit points in sensing reports.
Accuracy rate B denotes the maximum probability that a given credit point in the sensing
reports is larger than the minimum threshold in the selected reports. Privacy rate A means
the probability that a given sensing report, whose credit point is larger than the minimum
of thresholds in selected reports, has top-w credit point in all sensing reports. Privacy
rate B means the probability that a given sensing report would be selected by the service
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provider, whose credit point is larger than the minimum of thresholds in selected reports.
To determine how the threshold choosing strategy impacts the defined privacy and accuracy
rates, we simulate the credit points of mobile users on Matlab and use different threshold
choosing strategies to compute the accuracy rates and the privacy rates. The simulation
results are illustrated in Fig. 3.3 and Fig. 3.4. We set the number of the mobile users
to be 1000 in Fig. 3.4 and the number of the selected reports to be 100 in Fig. 3.4. We
compare three threshold choosing strategies, the first one is basing on uniform distribution;
the second one is based on Gaussian distribution, in which the mean is three quarters of
credit points and the standard deviation is one quarter; the last one is based on Gaussian
distribution, where the mean and the standard deviation are one quarter of credit points.
The second strategy can achieve the highest accuracy and the third strategy can achieve
the best privacy preservation on credit points in three strategies.

3.6 Summary

In this chapter, we have proposed a strong privacy-preserving mobile crowdsensing scheme
with credit management to balance the trade-off between privacy preservation and task
allocation. The service provider is allowed to select mobile users to perform sensing tasks
according to the sensing areas of tasks and the geographic locations of mobile users, and
select the sensing reports based on the credit points of mobile users. The sensitive in-
formation, including identities, locations, credit points, sensing tasks and sensing reports
are preserved for mobile users and customers during task allocation and report selection.
Furthermore, no trusted third party is required to achieve the credit management for mo-
bile users. Finally, we have evaluated the security and privacy properties of the proposed
scheme and demonstrated the scheme is sufficiently efficient to be implemented in real
world.
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Figure 3.3: Accuracy and Privacy Rates with N=1000
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(b) Accuracy Rate B
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Figure 3.4: Accuracy and Privacy Rates with w=100
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Chapter 4

Fog-assisted Secure Data
Deduplication

4.1 Introduction

Mobile crowdsensing [1] is a compelling paradigm that allows a large group of individual-
s to collaboratively sense data and extract information about social events and national
phenomena with common interest using their mobile devices, e.g., smart phones, smart
glasses, drones, cameras and smart vehicles. It supports an ever-increasing number of
sensing applications [116], ranging from social recommendation, such as restaurant recom-
mendation, vehicular navigation and parking space discovery, to environment monitoring,
such as air quality measurement, noise level measurement and dam water release warning
[117, 118]. With the human intelligence and user mobility, it improves the quality of sens-
ing data, extends the scale of sensing applications, and reduces the cost on high-quality
data collection.

In mobile crowdsensing, one of the main challenges is to find proper mobile users for
sensing tasks to achieve efficient and scalable data collection [112]. Firstly, due to the
unique requirements of sensing tasks and the user mobility, a crowdsensing server (CS-
server) collects various types of information about mobile users, e.g., location, reputation
and activity pattern, and thereby customizes a task allocation policy for each sensing task
[119]. For example, to measure traffic congestion in downtown Toronto, the CS-server
should recruit the mobile users driving on the roads in downtown Toronto. Secondly, it
is hard to guarantee that the potential mobile users could receive the assigned sensing
tasks and upload sensing reports in time [120]. Thirdly, to perform sensing tasks, mobile
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users have to travel to specific locations with a certain cost on time and travel. Therefore,
there should be an effective framework for the CS-server to allocate sensing tasks to proper
mobile users.

In addition, with the increasing number of participating mobile users, there are in-
evitably some duplicates in sensing reports [80]. For a social event or national phenomenon,
mobile users in the same location may obtain the same sensing data and generate the i-
dentical or similar items in sensing reports. For example, let us consider the following two
scenarios:

B To measure the air quality in an urban area, mobile users measuring at proximate
points may submit the same measurements;

B To survey the satisfaction on the government in a certain area, some mobile users
may make the same options and give similar comments.

In these cases, the replicate data consumes a large amount of network bandwidth and stor-
age space. A straightforward method to reduce the overhead is to discard the redundant
copies on intermediates. Nevertheless, this approach exposes the detailed sensing data,
which may contain plenty of personal information about mobile users, e.g., location, ref-
erences, occupations, health status and religious beliefs [94]. To preserve the privacy of
mobile users, data encryption is widely used to achieve data confidentiality, but brings a
huge obstacle on the detection of replicate data for intermediates. Message-locked encryp-
tion (MLE) [121] (the most prominent manifestation of which is convergent encryption)
may resolve this problem, where the same plaintexts always map to the same ciphertexts.
Nonetheless, MLE is inherently subject to off-line brute-force attacks [122], where adver-
saries can learn the sensing data by guessing the possible plaintexts in encrypted sensing
reports. Furthermore, the sensing data is predictable in some mobile crowdsensing ap-
plications, such as air quality measurement, place recommendation and traffic congestion
monitoring. As a result, an attacker may guess to obtain the correct sensing data in an
encrypted sensing report. Therefore, it is necessary to design a secure data deduplication
mechanism to allow the intermediates to detect replicate reports without violating the
privacy of mobile users.

However, if the equality of sensing reports can be detected in public, anyone can predict
that the mobile uses are in approximate positions or have similar preferences knowing that
they submit the identical sensing reports. For this “duplicate-linking” leakage, some sensi-
tive information would be exposed in duplicate-sensitive mobile crowdsensing applications,
e.g., air quality monitoring and place recommendation. In these applications, the mobile
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users in the same location or with the same profiles may report the identical sensing data.
If two mobile users report identical measurements, the one may predict that the other
is nearby. If two patients report the same symptoms, they may have the same disease
[123]. Therefore, it is important to prevent privacy disclosure from the identical reports in
mobile crowdsensing. However, data deduplication and privacy preservation are inherently
in conflict. On one hand, if the intermediates can detect the replicate reports, they can
know that there may be some correlation between the corresponding mobile users. On the
other hand, if the privacy of mobile users is perfectly preserved, it is impossible for the
intermediates to perform data deduplication. Therefore, it is an open problem to design
a straightforward approach to prevent “duplicate-linking” leakage in duplicate-sensitive
applications.

Furthermore, once the redundant copies in sensing reports are deleted, the CS-server
cannot identify the contributions of mobile users. Although the redundant copies do not
contribute to the completeness of sensing results, they improve their trustworthiness. The
CS-server should not ignore the contributions of the mobile users whose data are replicate
with others’. However, if these mobile users are rewarded, some lazy mobile users may ac-
quire unfair benefits by replaying the sensing reports generated by other mobile users and
eavesdropped on communication channels. This “duplicate-replay” attack should be aban-
doned to get rid of the lazy mobile users, who are unwilling to perform crowdsensing tasks,
but greedy for benefits. In short, it is of significant importance to not only support secure
data deduplication over sensing reports against brute-force attacks, “duplicate-linking”
leakage and “duplicate-replay” attacks, but also record the contributions of mobile users
fairly without exposing the sensing data.

To the end, we exploit fog computing [124] to support accurate task allocation and
secure data deduplication for mobile crowdsensing, which is a new architecture providing
computing, storage and networking services proximate to terminal devices with appealing
properties, including location awareness, geographic distribution and low latency. With
fog computing, a large number of decentralized mobile devices can self-organize to commu-
nicate and potentially collaborate with each other via a fog node located at the edge of the
Internet [125]. In this chapter, we propose a Fog-assisted Mobile CrowdSensing framework
(Fo-MCS) [126] that enables fog nodes to perform task allocation based on the mobility
patterns of users to improve the accuracy of task assignment. Under this framework, we
design a Fog-assisted Secure Data Deduplication scheme (Fo-SDD) based on BLS-Oblivious
Pseudo-Random Function (BLS-OPRF) to achieve the detection of replicate data, and ex-
tend the Fo-SDD to prevent “duplicate-linking” leakage for duplicate-sensitive applications.
Specifically, the main contributions of this chapter are as follows:
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B We develop fog-assisted task allocation based on the local information about mobile
users, such as mobility patterns and preferences. Specifically, the CS-server firstly
assigns the sensing tasks to the fog nodes located in the intended sensing area. Then
the fog nodes, acting as geography-related local servers, further find proper mobile
users to fulfill the tasks. Fo-MCS not only reduces the overhead of CS-server on task
allocation, but also improves the accuracy of task assignment.

B We design a BLS-OPRF scheme based on the BLS signature [127] to generate the
encryption key of sensing data and enable fog nodes to detect and delete the identical
sensing data in sensing reports for saving communication bandwidth. During this
process, the fog nodes can learn nothing about the reports, except the equality of
sensing data. Meanwhile, we also leverage the key-homomorphic signature [128] to
sign the sensing data and allow fog nodes to aggregate the signatures of mobile users.
By doing so, the CS-server only receives one copy of replicate sensing reports, but
learns the contributions of the mobile users who generate these replicate sensing
reports.

B We balance the trade-off between data deduplication and privacy preservation a-
gainst “duplicate-linking” leakage. We leverage blind signatures [23] to ensure that
no one can link the sensing reports to a specific mobile user, even if the user sub-
mits the identical reports with others. Nevertheless, once the participating mobile
users are anonymous, it is difficult for the CS-server to distribute benefits based on
their contributions. To address this issue, we utilize Chameleon hash function [129]
to enable mobile users to claim their contributions and retrieve the corresponding
rewards. In addition, the misbehavior of mobile users, including double-reporting of
sensing data and double-retrieving of benefits, could be detected to guarantee the
fairness of mobile crowdsensing.

4.2 Problem Statement

We formalize Fo-MCS framework and security threats. Then, we identify design goals.

4.2.1 Fo-MCS Framework

Fo-MCS framework consists of three layers: service layer, fog layer and mobile users layer,
and four types of entities: customers, a CS-server, fog nodes and mobile users. In the service
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layer, customers can be individuals or organizations. They have sensing tasks to fulfill but
do not have sufficient resources to complete individually. Hence, they release these tasks
on a CS-server. The CS-server provides mobile crowdsensing services for customers. It
is responsible to assign sensing tasks to fog nodes based on the spatial information of
tasks, process sensing reports, and distribute benefits to mobile users. In the fog layer,
the fog nodes are deployed at the edge of the Internet and stretch from different network
equipment, e.g., roadside units on roads, access points, gateways and edge routers. They
have computing capability and storage space to provide computation and storage services
to mobile users. Their responsibilities include assigning sensing tasks to mobile users on
behalf of local servers, processing on sensing reports and forwarding the processed reports
to the CS-server. In the mobile users layer, the mobile users perform the sensing tasks
to collect data for earning rewards using their own mobile devices with the capabilities of
data sensing, processing and communication.

As illustrated in Fig. 4.1, the whole Fo-MCS framework works as follows. A customer
generates a sensing task and sends it to the CS-server, along with the rewards to attract
mobile users. After obtaining the sensing task, the CS-server performs fog-assisted task
allocation to assign it to mobile users. Specifically, the CS-server allocates the sensing task
to the fog nodes according to the sensing area of the task and the coverage areas of fog
nodes; and the fog nodes further recruit mobile users in their coverage areas to fulfill the
task based on their mobility patterns and the task requirements. Then, the participating
mobile users collect sensing data, generate sensing reports and submit them to the fog
nodes. The fog nodes process the received sensing reports, including data deduplication
and data aggregation, and forward the processed reports to the CS-server. After that, the
CS-server generates a crowdsensing result for the customer based on the processed reports.
Finally, the customer reads the crowdsensing result and determines the contributions of
mobile users and the CS-server distributes the rewards to mobile users according to their
contributions on the sensing task.

4.2.2 Threat Model

Security threats come from both external and internal attackers. The global eavesdrop-
pers may wiretap on wireless communication channels to capture the messages exchanged
between two entities, e.g., fog nodes and mobile devices. The CS-server and fog nodes are
both honest-but-curious, indicating that they follow the protocols agreed with customers
and mobile users honestly, but they are also interested in the sensing reports generated
by mobile users. The mobile users are honest to perform sensing tasks for benefits, but
curious on the sensing reports submitted by other users, lazy for sensing data and greedy
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Figure 4.1: Fo-MCS Framework

for benefits. Specifically, the attackers may launch the following attacks to achieve their
goals:

B Brute-Force Attack: A curious entity, including the CS-server or mobile users, checks
all possible sensing data or measurements with the hope of eventually obtaining the
correct plaintexts in the encrypted sensing reports.

B “Duplicate-Linking” Leakage: The identical sensing reports disclose the equality of
sensing data generated by mobile users. Thus, it is predictable that these mobile
uses are in proximate positions or have similar profiles, such as references, habits or
health status.

B “Duplicate-Replay” Attack: A lazy mobile user captures a sensing report delivered
by others through eavesdropping and replays it to cheat the fog node to believe that
his report is identical with a submitted one. Thus, the mobile user would be rewarded
although the replayed report will be deleted by the fog node.

B Double-Reporting: A greedy mobile user may submit more sensing reports than
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allowed without being detected, in such a way that the user would obtain more
rewards.

B Double-Retrieving: To acquire more benefits than that rewarded by the CS-server, a
greedy mobile user may retrieve the rewards more than once without being detected.

In addition, the mobile users may deliver forged sensing data to cheat customers for ben-
efits. This active attack has been discussed in [130, 131], which can be resisted by using
trust management of mobile users or tasks duplication among multiple participants (to
recruit multiple mobile users to collect the same data or measure the same phenomenon).
Therefore, we assume that the majority of mobile users are fully trusted to perform the
sensing tasks, and multiple fog nodes would not collude together, or collude with the CS-
server to invade the privacy of mobile users. The customers are honest as they are the
beneficiaries of mobile crowdsensing services.

4.2.3 Design Goals

To achieve secure data deduplication under the Fo-MCS framework and resist the security
threats, Fo-SDD should achieve the following design goals.

B Secure Data Deduplication: To save communication bandwidth, the replicate data
in sensing reports should be securely deleted. Specifically, the fog nodes are able
to detect and erase the replicate data without learning any information about the
sensing reports. To ensure the confidentiality of sensing data, Fo-SDD should satisfy
the following security goals:

– Security against Brute-Force Attacks: The sensing data should be encrypted
to prevent attackers from recovering it through brute-force attacks. Although
the semantic security cannot be achieved, Fo-SDD should reach high security
guarantee, except that the encrypted sensing reports expose the equality of
underlying sensing data.

– No “Duplicate-Linking” Leakage: The privacy leakage from the equality of sens-
ing data should be prevented in duplicate-sensitive applications. A mobile user
cannot predict that another user is similar with him in some aspects if they
submit identical sensing reports.
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– Security against “Duplicate-Replay” Attacks: To prevent lazy mobile users from
replaying the captured sensing reports, it is necessary to prove that the mobile
users actually possess the sensing data if they submit the corresponding reports
to fog nodes. A lazy mobile user can be detected if he replays captured sensing
reports generated by others.

B Efficient Contribution Claim: The contributions of mobile users who submit the
replicate sensing reports should not be ignored. To reduce communication overhead
and record the contributions of mobile users, the fog nodes are able to aggregate
the signatures on the identical sensing data generated by different mobile users.
In addition, to maintain the fairness of mobile users, Fo-SDD should achieve the
following goals:

– Detection of Double-Reporting: A greedy mobile user cannot submit more sens-
ing reports than allowed to the CS-server without being detected.

– Detection of Double-Retrieving: A greedy mobile user cannot double-retrieve
the rewards from the CS-server without being detected.

In addition, to offer sophisticated security protection on the Fo-MCS framework, we
should achieve other fundamental security goals, such as the confidentiality of sensing tasks
against external attackers, the authentication and integrity of sensing reports.

4.3 Fo-SDD

We introduce the overview of Fo-SDD, describe the Fo-SDD in detail and discuss the
security properties of Fo-SDD.

4.3.1 High-Level Description

To resist brute-force attacks, we design a BLS-OPRF scheme to prevent attackers from
guessing the predictable sensing data. Specifically, the local fog node Fj aids each mobile
user Ui in its coverage area to generate the encryption key Si with its secret key xj for the
sensing data Pi. Thus, the attackers cannot compute Si without xj and thereby recover
Pi from the target ciphertext Zi using brute-force attacks. Unfortunately, a curious Fj is
still able to guess Pi in Zi. To prevent the brute-force attacks of Fj, we employ mobile fog
nodes to generate the encryption key Si of sensing data Pi for Ui. As a result, a single fog
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node Fj cannot launch brute-force attacks to recover Pi from Zi. In addition, to further
reduce communication overhead and achieve contribution claim, we allow each mobile user
to generate a signature on the sensing data based on the key-homomorphic signature [128].
The distinguished feature of the key-homomorphic signature is that the signatures from
multiple mobile users who generate replicate reports can be aggregated to be one signature,
while all the public keys of these mobile users should be used to verify the validity of the
aggregated signature. In this way, the communication overhead between fog nodes and
CS-server is reduced and the customer can learn the identities of contributors during the
verification of the aggregated signature. In addition, proxy re-encryption [22] is leveraged
to realize the confidentiality of sensing tasks and allow the CS-server to efficiently delegate
the decryption capability of sensing tasks to fog nodes.

4.3.2 The Detailed Fo-SDD

Fo-SDD consists of six phases: Service-Setup, Task-Releasing, Task-Allocation, Data-
Collection, Data-Deduplication and Data-Reading. The detailed Fo-SDD is described
below.

4.3.2.1 Service-Setup

This phase is run by the CS-server to bootstrap mobile crowdsensing services. Given
the security parameter λ, the CS-server defines two cyclic groups (G,GT ) with the same
prime order p, where p is λ bits. Let g be a random generator of group G, ê : G ×
G → GT be a bilinear map. H : {0, 1}∗ → G and H : {0, 1}∗ → {0, 1}λ are two full-
domain hash functions, such as SHA-256 or SHA-3 [20]. (SE ,SD) are the encryption and
decryption algorithms of a deterministic symmetric encryption scheme. Such a scheme can
be constructed from AES scheme with a fixed IV in CTR mode [20]. (SE, SD) are the
encryption and decryption algorithms of the standard AES scheme [20]. The CS-server
randomly chooses s ∈ Zp as its secret key and computes S = gs ∈ G as its public key.
The DSA signature [20] is employed to achieve the integrity and authentication of sensing
tasks and sensing reports during transmission.

A fog node Fj randomly chooses xj ∈ Zp as the secret key and computes Xj = gxj ∈ G
as the public key.

A mobile user Ui randomly picks vi ∈ Zp as the secret key and computes Ui = ê(g, g)vi

as the public key.
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4.3.2.2 Task-Releasing

When a customer C is willing to collect data for some purpose, such as measuring air
quality, monitoring traffic condition or reconstructing indoor floor plan, C first generates
a sensing task T = (Tt, Te, Ta, Tb), indicating the goal (what to sense), the expiration time
(when to sense), the sensing area (where to sense) and the benefits, respectively. Then,
C chooses a random k ∈ Zp to calculate a temporary public key K = gk. After that, C
encrypts T by randomly picking r ∈ Zp, T ∈ GT to compute

(C1, C2, C3) = (Sr, T ê(g, g)r, SE(H(C2||T ), Tt||Te||Tb)).

Finally, C sets Cc = (C1, C2, C3) and sends (Cc, K, Ta) to the CS-server.

4.3.2.3 Task-Allocation

Upon receiving (Cc, K, Ta), the CS-server first chooses N ∈ Zp as a unique identifier of T
and picks a set of fog nodes F = {F1, · · · ,FN} located in Ta, where N is the number of
fog nodes in the set F. Then, for each Fj ∈ F, the CS-server uses s and Xj to compute

RKj = X
1
s
j , C ′j = ê(C1, RKj).

Finally, the CS-server sends (N , C ′j, C2, C3, K, Ta) to Fj.

When Fj receives (N , C ′j, C2, C3, K, Ta), it first decrypts the sensing task as T ′ = C2

(C′j)
1/xj

and Tt||Te||Tb = SD(H(C2||T ′), C3). Then, Fj checks whether the task T is expired or not.
If not, Fj recruits a set of mobile users U = {U1, · · · ,UM} to perform T based on the
requirements of T and the mobility patterns of mobile users [112, 55, 59], where M is the
number of mobile users in U. For each Ui ∈ U, Fj randomly chooses ri ∈ Zp, R ∈ GT and
encrypts T as

(Di1, Di2, Di3) = (gri , RU ri
i , SE(H(N||R), Tt||Te||Tb)).

Finally, Fj sets Di = (Di1, Di2, Di3) and sends (N , Di, K, Ta) to Ui.
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4.3.2.4 Data-Collection

When receiving (N , Di, K, Ta), Ui first decrypts the ciphertext Di as R′ = Di2
ê(g,Di1)vi

and

Tt||Te||Tb = SD(H(N||R′), Di3). If this task is not expired, Ui starts to perform the task,
collect and generate the sensing data Pi according to the requirements of T . Then, Ui
randomly chooses si ∈ Zp to compute Si = H(Pi)si and sends (N , Si) to Fj. After Fj
receives (N , Si), it calculates S ′i = S

xj
i and returns S ′i to Ui (To prevent brute-force attacks

from Fj, S ′i can be generated by multiple fog nodes, that is, S ′i = S
∑
j∈M xj

i , where M is

the set of indices of Fj and its neighboring fog nodes). Then, Ui computes Si = (S ′i)
1
si and

verifies whether
ê(H(Pi), Xj) = ê(Si, g) (4.1)

or not. If not, Ui returns failure and aborts; otherwise, it computes Zi = SE(H(N||Si),Pi).
Furthermore, Ui chooses a random wi ∈ Zp and generates a signature σi as

σi = (σi1, σi2) = (g−wi , gviH(N||Si,Pi)wi).

Ui sets the sensing report Pi = (Zi, σi) and sends (N ,Pi) to Fj. Upon receiving (N ,Pi), Fj
computes Yi = H(N||Zi) and checks whether Yi exists in the database. If yes, Fj returns
success and aborts; otherwise, it keeps (N ,Pi, Yi) and requests Ui to return (Wi, Ji). Ui
generates (Wi, Ji) by picking a random number ai ∈ Zp to calculate Wi = gai , a′i =
H(Wi||Kai), Ji = SE(a′i,Si) and sends (Wi, Ji) to Fj.

It is worth pointing out that the ciphertext of sensing data Pi supports replicate data
detection and deletion. Specifically, Yi is a tag used to detect the duplicate of Pi. Si is
derived from (N ,Pi) and used to encrypt Pi. Therefore, Fj is able to detect the replicate
data based on Yi in sensing reports. The data collection and deduplication processes are
shown in Fig. 4.2, and the information flow of data collection phase is illustrated in Fig.
4.3.

4.3.2.5 Data-Deduplication

Upon receiving {P1, · · · ,PM} from U, Fj checks whether {P1, · · · ,PM} are replicate or
not. If there are two reports, in which Yi=Yî, the reports in Pi and Pî are identical. If a
set of reports {Pi}i∈Q are identical, where Q is the set of indices of replicate reports, Fj
aggregates the corresponding signatures {σi}i∈Q as

σQ = (σQ1, σQ2) = (
∏

i∈Q σi1,
∏

i∈Q σi2).
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Figure 4.2: Information Flow of Data Collection

Then, Fj keeps the first copy Zî generated by Uî who delivers (Wî, Jî) and deletes the repli-
cate copies. Fj sets the sensing reports that are not replicate with others as {Pi} for each
1 ≤ i ≤M and i /∈ Q. Finally, Fj forwards the deduplicated reports (N , {(Zi, σi,Wi, Ji)}i/∈Q,
Zî, σQ,Wî, Jî) to the CS-server.

When receiving (N , {(P̂i,Wi, Ji)}i/∈Q, Zî, σQ,Wî, Jî) from Fj, the CS-server forwards
them to the customer C.

4.3.2.6 Data-Reading

When C receives the deduplicated reports from the CS-server, C uses k to decrypt the
deduplicated reports and checks the contributors (mobile users) as follows:

B For each (Zi, σi,Wi, Ji) ∈ {(Zi, σi,Wi, Ji)}i/∈Q, C computes

Si = SD(H(Wi||W k
i ), Ji), Pi = SD(H(N||Si)||Zi).

After recovering all sensing reports {(Zi, σi,Wi, Ji)}i/∈Q that are not replicate with
others, C verifies the signatures {σi}i/∈Q by checking whether

ê(
∏
i/∈Q

σi2, g)
∏
i/∈Q

ê(H(N||Si||Pi), σi1)
?
=
∏
i/∈Q

Ui. (4.2)
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Figure 4.3: Data Collection and Deduplication

If yes, C accepts the sensing data {Pi}i/∈Q and learns {Ui}i/∈Q are the contributors;
otherwise, C uses the recursive divide-and-conquer approach to find and delete the
corrupted data.

B For (Zî, σQ,Wî, Jî), C computes

Sî = SD(H(Wî||W k
î

)||Jî), Pî = SD(H(N||Sî)||Zî).

After obtaining the sensing data Pî, C verifies the signature σQ by checking whether

ê(σQ2, g)ê(H(N||Sî||Pî), σQ1)
?
=
∏
i∈Q

Ui. (4.3)

If yes, C accepts the sensing data Pî and learns {Ui}i∈Q are the contributors of Pî;
otherwise, C deletes it.

Finally, C obtains the sensing data ({Pi}i/∈Q, Pî) and distributes the benefits to mobile
users in U based on their contributions.

4.3.3 Security Analysis

We demonstrate the achievement of security properties, i.e., secure data deduplication and
efficient contribution claim. Secure Data Deduplication: To deduplicate sensing reports and
achieve data confidentiality, a BLS-OPRF scheme is designed to compute the encryption
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key from the sensing data. Thus, a fog node is able to detect the replicate data based
on the ciphertexts, which are identical if the sensing data is equal. The Fo-SDD not only
supports the deduplication of sensing reports, but also achieves high security guarantee on
sensing data.

B Security against Brute-Force Attacks: The encryption key Si is secret that no adver-
sary is able to distinguish it from a random value, except Fj. With (H(Pi)si , H(Pi)sixj),
it is hard to compute H(Pi)xj ; otherwise, the Computational Diffie-Hellman (CDH)
problem [127] is intractable. Moreover, since the external attackers do not have the
secret key of Fj, they cannot guess the sensing data Pi. Thus, the sensing data
is confidential against brute-force attacks. Nonetheless, since the Decisional Diffie-
Hellman (DDH) problem [127] is tractable, it is possible for Fj to obtain Pi by using
brute-force attacks, that is, to guess a P ′i and test whether ê(H(P ′i), S ′i) = ê(Si,Si)
holds or not. To prevent this attack from Fj, we employ multiple neighboring fog
nodes to cooperatively generate S ′i for Ui. Thereby, a single fog node Fj cannot
launch brute-force attacks to acquire Pi, unless all neighboring fog nodes collude to
guess. Certainly, to achieve higher security guarantee against brute-force attacks, it
is possible to employ a trusted key server to generate encryption keys for all mobile
users, such as a cellular service provider or network operator.

B Security against “Duplicate-Replay” Attacks: To prevent lazy mobile users from
replaying other users’ sensing reports, we ensure that only the mobile users possessing
sensing data can generate valid sensing reports. Specifically, Ui needs to use the
sensing data Pi to generate the signature σi, which would be verified by the customer
in Data-Reading phase. If Ui replays a captured report Zi without possessing Pi,
the misbehavior can be detected by the customer. Therefore, as long as the key
homomorphic signature [128] is unforgeable, Fo-SDD is secure against “duplicate-
replay” attacks.

Efficient Contribution Claim: To claim the contribution, Ui utilizes the key-homomorphic
signature scheme to generate σi on Pi, such that C can confirm whether Ui is the contribu-
tor of Pi or not by verifying σi. If some mobile users {Ui}i∈Q upload the same data Pî, Fj
aggregates the corresponding signatures {σi}i∈Q to generate σQ for reducing the communi-
cation overhead from Fj to C. Meanwhile, C is able to verify the validity of the signature
σQ with the public keys of {Ui}i∈Q. Therefore, C approves that Pî is generated by {Ui}i∈Q.
Since the key-homomorphic signature [128] achieves existential unforgeability based on the
CDH assumption, no attacker can forge the signatures or claim the contributions of the el-
igible mobile users to itself. Therefore, C believes that the claimed contributions of mobile
users should belong to them indeed.
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In addition, it is possible to detect double-reporting and double-retrieving, since both
the customer and the CS-server know the identities of mobile users. The CS-server can
record the identities when the mobile users deliver their reports and retrieve their rewards.
Once a mobile user double-submits reports or double-retrieves rewards, the CS-server can
find the misbehavior by checking the records.

4.4 Extended Fo-SDD

Since the symmetric encryption scheme used to encrypt sensing data in Fo-SDD is deter-
ministic, it produces the same ciphertext from a given identical plaintext and an encryption
key, when it is separately executed by different mobile users. If several mobile users gener-
ate the same sensing data Pi, the ciphertexts are identical, that is, Zi. As a result, any one
can learn that two sensing reports are identical, and thereby predict that these mobile uses
are in proximate positions or have similar profiles. To prevent privacy leakage of mobile
users in duplicate-sensitive applications, we extend the Fo-SDD by means of anonymiza-
tion. Specifically, we leverage the blind signature [23] to extend the Fo-SDD to prevent
malicious hackers or curious entities from learning the identities of participating mobile
users. Unfortunately, once the mobile users are anonymous, some problems are emerged.
For example, greedy mobile users may submit more sensing reports than allowed to earn
unfair benefits; it is difficult for the CS-server to distribute rewards to mobile users; and
greedy mobile users may double-draw their rewards from the CS-server. Therefore, we de-
sign a contribution claim and reward retrieval mechanism from Chameleon hash function
[129] to allow mobile users to claim their contributions and retrieve their rewards fairly.
Meanwhile, the CS-server is able to discover the misbehavior of greedy mobile users, and
thereby recover their identities.

4.4.1 Extended Fo-SDD

The detailed description of the extended Fo-SDD scheme is shown below.

4.4.1.1 Service-Setup

The CS-server bootstraps the mobile crowdsensing services following the same procedures
as those in the Fo-SDD, except that five more public parameters (g0, g1, G,G,F) are needed.
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g0, g1 are two random generators of group G, G is a random value chosen from GT , G =
ê(g, g) and F : Zp × {0, 1}∗ → Zp is a pseudo-random function.

A fog node Fj randomly chooses xj ∈ Zp as the secret key and computes Xj = gxj ∈ G
as the public key.

A mobile user Ui randomly picks vi ∈ Zp as the secret key and computes Ui = Gvi as the
public key. Ui is required to register at the CS-server to obtain an anonymous credential,
which is used to access the crowdsensing services, in the following steps:

B Ui randomly chooses u′i ∈ Zp to compute Ai = g
u′i
0 g

vi
1 , and sends (Ai, Ui) to the CS-

server, along with the following zero-knowledge proof expressed in Camenisch-Stalder
notation [132]:

PK{(u′i, vi) : Ai = g
u′i
0 g

vi
1 ∧ Ui = Gvi}.

B The CS-server checks PK to ensure (Ai, Ui) is generated properly. It randomly picks

u′′i , ei ∈ Zp to calculate Bi = (gAig
u′′i
0 )

1
s+ei and returns (Bi, u

′′
i , ei) to Ui.

B Ui computes ui = u′i + u′′i and checks ê(Bi, Sg
ei)

?
= ê(ggui0 g

vi
1 , g). If yes, Ui maintains

(Bi, ei, ui) along with vi.

Finally, Ui obtains an anonymous credential (Bi, ei, ui).

4.4.1.2 Task-Releasing

The Task-Releasing phase is the same as that in Fo-SDD.

4.4.1.3 Task-Allocation

The Task-Allocation phase is the same as that in Fo-SDD.

4.4.1.4 Data-Collection

Ui follows the same operations as those in Fo-SDD to recover Tt||Te||Tb, generate Pi, interact
with the CS-server to compute Si and encrypt Pi to obtain Zi. Furthermore, Ui randomly
chooses bi ∈ Zp to compute Yi = H(N||Zi||t), li = F (vi,N||t||Ui), Vi = gli0 , Ti = GviGYili ,
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Hi = GliUibi , where t denotes the current reporting period. After that, Ui picks a random
value ai ∈ Zp to calculate Wi = gai , a′i = H(Wi||Kai), and Ji = SE(a′i,Si). Finally,
Ui sends the sensing report Pi = (N , Zi, Vi, Ti, Hi,Wi, Ji) to Fj, along with the following
zero-knowledge proof expressed in Camenisch-Stalder notation [132]:

SPK


(Bi, ei, ui, vi, li, bi) :

ê(Bi, Sg
ei)=ê(ggui0 g

vi
1 , g)∧

Vi = gli0∧
Ti = GviGYili∧
Hi = GliU bi

i

 (Zi).

4.4.1.5 Data-Deduplication

Upon receiving {P1, · · · ,PM} from U, Fj first verifies the validity of SPK and checks
whether there are double-submitted reports. Given two sensing reports, Pi = (N , Zi, Vi,
Ti, Hi,Wi, Ji) and P′i = (N , Z ′i, V ′i , T ′i , H ′i,W ′

i , J
′
i), Fj computes Yi = H(N||Zi||t), Y ′i =

H(N||Z ′i||t). If Vi = V ′i and Yi 6= Y ′i , the mobile user double-submits two reports in a
time period. Fj recovers the public key of the greedy mobile user by computing Ui =

( (Ti)
Y ′i

(T ′i )
Yi

)
1

Y ′
i
−Yi , and deletes one of the reports. If Vi = V ′i and Yi = Y ′i , these reports are the

same and submitted by the same mobile user. Fj keeps one of them. If Yi=Yî and Vi 6= V ′i ,
two sensing reports Pi and Pî are identical, but delivered by different mobile users. Pi and
Pî are replicate reports. If a set of reports {Pi}i∈Q are replicate, Fj keeps the first received
copy (Zî,Wî, Jî) generated by Uî and deletes the replicate copies. The sensing reports that
are not replicate with others are {Pi} for each 1 ≤ i ≤M and i /∈ Q. Finally, Fj forwards
(N , {(Zi, Hi,Wi, Ji)}i/∈Q, Zî,Wî, Jî, {Hi}i∈Q) to the CS-server.

When receiving the deduplicated reports (N , {(Zi, Hi,Wi, Ji)}i/∈Q, Zî,Wî, Jî, {Hi}i∈Q)
from Fj, the CS-server forwards them to the customer C.

4.4.1.6 Data-Reading

When C receives the deduplicated reports from the CS-server, C uses k to decrypt the
deduplicated reports and distributes the rewards Tb to the contributors (mobile users) as
follows:

B For each (Zi,Wi, Ji) ∈ {(Zi,Wi, Ji)}i/∈Q, C computes
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Si = SD(H(Wi||W k
i ), Ji), Pi = SD(H(N||Si)||Zi).

After recovering Pi, C checks whether

ê(H(Pi), Xj)
?
= ê(Si, g). (4.4)

If yes, C accepts Pi and believes Ui actually generates Pi.

B For (Zî,Wî, Jî), C computes

Sî = SD(H(Wî||W k
î

), Jî), Pî = SD(H(N||Sî), Zî).

After recovering Pî, C checks whether

ê(H(Pî), Xj)
?
= ê(Sî, g). (4.5)

If yes, C accepts Pî and believes {Ui}i∈Q actually generate Pî.

After obtaining ({Pi}i/∈Q, Pî), C determines the rewards that the participating mobile
users can acquire based on their contributions. Suppose the mobile user with Hi can earn
Bi. C sends the items {(N , Hi,Bi)}1≤i≤M to the CS-server.

When a mobile user Ui retrieves the earned rewards, Ui sends (N , Hi) to the CS-server.
The CS-server randomly picks l′i ∈ Zp and returns it to Ui. After receiving l′i, Ui computes
b′i = v−1

i (vibi + li − l′i) and returns b′i to the CS-server. Then, the CS-server calculates

H ′i = Gl′iU b′i
i , finds the item (N , Hi,Bi), in which H ′i = Hi, and returns the corresponding

rewards Bi to Ui. In addition, if Ui tries to double-retrieve the benefit, which means that
there is another b′′i computed by Ui for a random challenge l′′i , the secret key of Ui is easy

to be recovered by the CS-server as vi =
l′′i −l′i
b′i−b′′i

.

4.4.2 Security Analysis

The extended Fo-SDD only exposes the knowledge that some anonymous mobile users have
submitted identical sensing reports. This is the best result supporting data deduplication
with high security guarantee currently. Now we discuss the security properties of the
extended Fo-SDD.

Secure Data Deduplication: The method to realize data deduplication in the extended
Fo-SDD remains the same as that in Fo-SDD. The fog node is able to detect the replicate
reports based on the ciphertexts if the sensing data is identical. The improved security of
the extended Fo-SDD is analyzed as follows:
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B No “Duplicate-Linking” Leakage: In the extended Fo-SDD, we use the blind signa-
ture [23] to protect the identities of mobile users and thereby prevent information
leakage from the equality of sensing reports. Specifically, in Service-Setup phase,
the CS-server generates the anonymous credentials for mobile users using blind sig-
natures and each mobile user utilizes the credential to prove its capability to join
crowdsensing activities in Data-Collection phase without exposing its identity. To
prove the unforgeability of the credential, we assume that the zero-knowledge proof
SPK is sound, that is, there is an extract algorithm EX to capture the witness used
by the mobile user. In the credential generation query, an adversary can obtain a
valid credential on any identity with the aid of a simulator, who can use EX to extract
the witness from the proof. If the adversary can forge a valid credential, the simula-
tor can utilize this credential to forge a valid blind signature within a non-negligible
probability. However, since the blind signature is unforgeable under the q-Strong
Diffie-Hellman (q-SDH) assumption [23], it is intractable for the adversary to forge
a valid credential. Therefore, the mobile users are anonymous in the extended Fo-
SDD, as long as the q-SDH assumption holds. In short, even if a curious entity can
learn the equality of sensing reports, it cannot link these duplicates to specific mobile
users. Therefore, there is no “duplicate-linking” leakage in the extended Fo-SDD.

B Security against “Duplicate-Replay” Attacks: To prevent “duplicate-replay” attack-
s, Fj checks whether Vi = V ′i and Yi = Y ′i in two given sensing reports Pi =
(N , Zi, Vi, Ti, Hi,Wi, Ji) and P′i = (N , Z ′i, V ′i , T ′i , H ′i,W ′

i , J
′
i). If Vi = V ′i and Yi = Y ′i ,

these reports are the same and from the same mobile user, such that one of the re-
ports may be replayed. Since a greedy mobile user does not have Pi, the user cannot
obtain Si. Thus, the user is unable to generate a new sensing report from a captured
one. The greedy mobile user only can replay the captured one, what can be detected
by Fj. To ensure all encryption keys can correctly decrypt the sensing reports, C
verifies the recovered data by checking ê(H(Pi), Xj)

?
= ê(Si, g). If the equation hold-

s, the sensing data is recovered correctly. Therefore, the extended Fo-SDD is secure
against “duplicate-replay” attacks.

Efficient Contribution Claim: In the extended Fo-SDD, we allow honest anonymous
mobile users to claim the contributions and retrieve the rewards from the CS-server, and
prevent a greedy mobile user from double-reporting the sensing data or double-retrieving
rewards. The security of contribution claim is discussed as follows:

B Detection of Double-Reporting: We design a double-reporting tag Ti = GviGYili for
each sensing report. If a greedy mobile user Ui submits two sensing reports in a
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reporting period to the CS-server, there are two different pairs (Yi, Ti) and (Y ′i , T
′
i ),

but the same li in two reports. Having (Yi, Ti) and (Y ′i , T
′
i ), it is easy to recover

the public key of Ui, that is, Ui = ( (Ti)
Y ′i

(T ′i )
Yi

)
1

Y ′
i
−Yi . In addition, the CS-server cannot

slander an honest mobile user. To do it, a new T ′i should be computed for the
CS-server. Nonetheless, it is difficult for the CS-server to compute T ′i without a
valid li. Therefore, if the pseudo-random function F is secure, the CS-server cannot
successfully slander an honest mobile user.

B Detection of Double-Retrieving: Chameleon hash function [129] is employed to en-
able mobile users to claim their contributions and discover greedy mobile users who
double-retrieve the rewards. The Chameleon hash function is Hi = GliU bi

i , which is a
secure hash function based on Discrete Logarithm (DL) assumption in group GT . To
retrieve the rewards, Ui can use its secret key vi to open the hash function with (b′i, l

′
i).

However, a greedy anonymous mobile user who double-retrieves the rewards would

be traced, when the CS-server has two items (b′i, l
′
i) and (b′′i , l

′′
i ), that is, vi =

l′′i −l′i
b′i−b′′i

.

Besides, it is also impossible for the CS-server to slander an honest mobile user, since
it cannot generate a valid item (b′′i , l

′′
i ) without the user’s secret key vi.

In summary, the extended Fo-SDD supports sensing data deduplication with high se-
curity guarantee, and efficient contribution claim with the detection of double-reporting
mobile users or double-retrieving mobile users.

4.5 Performance Evaluation

We evaluate the computational and communication overhead of Fo-SDD and extended
Fo-SDD, and show the performance of fog-assisted task allocation.

4.5.1 Computational Overhead Evaluation

To evaluate the computational overhead, we implement Fo-SDD and extended Fo-SDD on
a notebook with Intel Core i5-4200U CPU and the clock rate is 2.29GHz and the memory
is 4.00 GB. The notebook acts as the customer, the CS-server and a fog node. We also
use a HUAWEI MT2-L01 smartphone with Kirin 910 CPU and 1250M memory to run
the operations on mobile devices. The operation system is Android 4.2.2 and the toolset
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Table 4.1: Run time of Fo-SDD (Unit: millisecond)
Phases C CS-server Fj Ui

Task-Releasing 10.329 – – –
Task-Allocation – 33.534 18.649 5.732
Data-Collection – – 4.847 193.459

Data-Deduplication – 1.543 6.234 –
Data-Reading 794.624 – – –

Table 4.2: Run time of the Extended Fo-SDD (Unit: millisecond)
Phases C CS-server Fj Ui

Task-Releasing 11.043 – – –
Task-Allocation – 33.968 19.425 5.653
Data-Collection – – 4.275 464.649

Data-Deduplication – 1.434 6617.835 –
Data-Reading 1435.657 – – –

is Android NDK r8d. We use a version 5.6.1 of MIRACL library to implement number-
theoretic based methods of cryptography. The Weiling pairing is utilized to realize the
bilinear pairing operation and the elliptic curve is chosen with a base field size of 512 bits.
The size of the parameter p is 160 bits. 50 mobile users submit sensing reports, in which 10
reports are replicate. The running time for every entity in the Fo-SDD and the extended
Fo-SDD is shown in Table 4.1 and Table 4.2, respectively. It seems that the operations
in Data-Deduplication phase of the extended Fo-SDD are costly for Fj to deal with 50
sensing reports simultaneously. But in reality, these reports are received randomly, instead
of arriving at the same time. Therefore, it is still efficient for Fj to respond to the mobile
users in Data-Deduplication phase.

4.5.2 Communication Overhead Evaluation

We demonstrate the communication overhead of the Fo-SDD among the CS-server, C,
F and U. The parameter p is set to be 160 bits. When releasing a sensing task T , C
sends (Cc, K, Ta) to the CS-server, which is 2048 + |T | bits, where |T | denotes the binary
length of T . The CS-server forwards (N , C ′j, C2, C3, K, Ta), whose size is 2720 + |T | bits,
to each fog node Fj ∈ F. After that, Fj sends 2208 + |T |-bit (N , Di, K, Ta) to each
mobile user Ui ∈ U. After generating the sensing report, Ui needs to forward 1760 + |Pi|-
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bit (N , Zi, σi,Wi, Ji) to Fj, where |Pi| is the binary length of Pi. Fj performs the data
deduplication after obtaining the reports from U, and forwards the deduplicated reports
(N , {(P̂i,Wi, Ji)}i/∈Q, Zî, σQ,Wî, Jî) to the CS server, which is of binary length 2208 +
2048(M − |Q|) + |Pi|(M − |Q| + 1) bits, where |Q| is the number of replicate reports in
{P1, · · · ,PM}. Then, the CS-server sends the deduplicated reports to C. If there is no
replicate data in sensing reports, that is, |Q| = 1, the communication overhead between
Fj and the CS-server is 160 + 2048M + |Pi|M bits, as well as the burden between the
CS-server and the customer C.

The communication overhead of the extended Fo-SDD is low. The data exchanged
among C, the CS-server, Fj and Ui in Task-Releasing and Task-Allocation phases has the
same length with those in the Fo-SDD. In Data-Collection phase, Ui needs to forward
6368 + |Pi|-bit (N , Zi, Vi, Ti, Hi,Wi, Ji,SPK) to Fj. Fj performs the data deduplication
and forwards the deduplicated reports (N , {(Zi, Hi,Wi, Ji)}i/∈Q, Zî,Wî, Jî, {Hi}i∈Q) to the
CS server, which is of binary length 1184+2048(M−|Q|)+|Pi|(M−|Q|+1)+1024|Q| bits,
where |Q′| is the number of replicate and non-replayed reports in {P1, · · · ,PM}. Then, the
CS-server forwards the deduplicated reports to C.

We compare Fo-SDD, extended Fo-SDD and TraS (AES [20] is used to encrypt the
sensing data and DSS [20] is used to claim contributions) about the communication over-
head between the CS-server and the fog nodes. Fig. 4.4 shows the comparison of the TraS,
Fo-SDD and extended Fo-SDD, when 50% of sensing reports are replicate, and each mobile
user delivers one sensing report to fog nodes. The length of sensing reports is 512 bits,
1024 bits and 2048 bits in Fig. 4.4(a), Fig. 4.4(b) and Fig. 4.4(c), respectively. With the
increasing number of mobile users participating in crowdsensing activities, Fo-SDD and
extend Fo-SDD can reduce a large number of communication overhead compared with the
TraS. The Fo-SDD has the best communication efficiency as the replicate sensing data are
deleted and the signatures of mobile users who report the replicate data are aggregated.
Fig. 4.5 illustrates the comparison of the TraS, Fo-SDD and extended Fo-SDD about the
communication overhead, when 50 mobile users submit 50 sensing reports. The length of
reports is 512 bits, 1024 bits and 2048 bits in Fig. 4.5(a), Fig. 4.5(b) and Fig. 4.5(c),
respectively. With the increasing percentage of replicate sensing reports, Fo-SDD and ex-
tend Fo-SDD can save plenty of communication bandwidth compared with the TraS. As
shown in Fig. 4.4 and Fig. 4.5, the Fo-SDD is the most efficient scheme in three ones.
Fig. 4.6 shows the relation among the TraS, Fo-SDD and extended Fo-SDD in terms of
communication overhead under the various percentage of replicate data, the report length
and the number of mobile users. In Fig. 4.6 (a), if the points determined by the number of
mobile users and the percentage of duplicates are located in the red area, the communica-
tion overhead of Fo-SDD between the CS-server and fog nodes is lower than that of TraS;
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Figure 4.4: Comparison Results on Communication Overhead between Fog and CS-server
with Q/M = 50%
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Figure 4.5: Comparison Results on Communication Overhead between Fog and CS-server
with 50 Mobile Users
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Figure 4.6: Relation among TraS, Fo-SDD and Extended Fo-SDD

otherwise, TraS is more communication-efficient than Fo-SDD. In Fig. 4.6 (b), if the points
determined by the number of mobile users and the percentage of duplicates are located in
the blue area, the extended Fo-SDD is more efficient than the TraS on the communication
overhead, and the TraS has lower communication overhead than the extended Fo-SDD, if
the points are located in the opposite area. For example, if there are 60 mobile users to
deliver 60 sensing reports and the percentage of duplicates is 60%, the Fo-SDD is more
efficient than the TraS as shown in Fig 4.6(a), and the extended Fo-SDD is more efficient
than the TraS as shown in Fig 4.6(b). In addition, the length of sensing reports does not
have a big impact on the relations of communication efficiency for the TraS, Fo-SDD and
extended Fo-SDD.

4.5.3 Performance of Task Allocation

We conduct a simulation to show that the fog-assisted task allocation approach can improve
the accuracy of sensing tasks assignment. The simulation is conducted on Infocom06 trace
[133], which formalizes the mobility pattern of mobile users. The setting is similar with
the simulation in [134]. We compare the fog-assisted task allocation approach with two
methods. One is epidemic allocation, in which the CS-server allocates the tasks to all the
mobile users connected with and the mobile users perform the tasks straightway; the other
is random allocation, where the SC server randomly chooses 5 mobile users to perform
the tasks. As shown in Fig. 4.7(a), Fig. 4.7(b) and Fig. 4.7(c), fog-assisted method
has a higher task perform ratio, receives more crowdsensing reports and has lower delay
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Figure 4.7: Performance on Fog-Assisted Task Allocation
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to accomplish the tasks than the random allocation. Although the epidemic method can
get higher perform ratio and lower delay than the fog-assisted method, the CS-server may
receive a large amount of reports that are collected out of the sensing area, which results
in the waste of precious bandwidth and storage resources.

4.6 Summary

We have developed a fog-assisted mobile crowdsensing (Fo-MCS) framework to improve
the accuracy of task allocation with the aid of fog nodes. We have also proposed a fog-
assisted secure data deduplication scheme (Fo-SDD) to reduce the communication overhead
between fog nodes and CS-server. The Fo-SDD enables fog nodes to detect and erase the
replicate data in sensing reports, and provides high security guarantee against brute-force
attacks and “duplicate-replay” attacks. To resist “duplicate-linking” leakage, we have
extended the Fo-SDD to hide the identities of mobile users, such that no attacker can
link the identical sensing reports to specific mobile users. In addition, we have leveraged
Chameleon hash function to achieve contribution claim and reward retrieval for anonymous
mobile users. Finally, we have discussed the security and efficiency of the proposed schemes
and demonstrated the advantages of the Fo-MCS framework.
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Chapter 5

Privacy-preserving Data Statistics

5.1 Introduction

Smart grid integrates the power grid with information and communication technologies,
e.g., network communication, control systems and computation facilities, to achieve two-
way electricity and information exchange between operation centers and smart meters,
while making the grid more reliable, efficient, secure and greener [135]. It enables operation
centers to measure, collect and analyze real-time energy consumption and local electricity
generation for energy distribution management, state estimation, outage identification and
dynamic billing. The operation centers expose the customers’ electricity consumption to
power plants, which may help them to adjust the energy production and reduce the need
to fire up costly and secondary power plans. The customers not only access their real-time
usage information and electricity prices, but also decrease their electricity costs by shifting
the uninterrupted activities from peak time to non-peak time [136, 137].

Although power usage data collection promotes the balance between supply and de-
mand, it brings serious privacy issues toward customers, as it is possible to infer the
customers’ daily activities, habits and other privacy witnessable references from power
consumption data. A relatively low and static daily consumption of a household may in-
dicate that no one is at home [138]; a conspicuous drop of power consumption at midnight
may indicate the households go to sleep [139]. The determination of personal behavior pat-
terns is a serious privacy concern in smart grid defined by Electronic Privacy Information
Center. To preserve customers’ behavior patterns, IEC 62351 [140] resists eavesdropping
attacks using TLS encryption [141], including AES CBC, AES GCM or 3DES EDE CBC.
Ontario Information Technology Standards suggest to use IPsec or TLS to provide authen-
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tication, privacy protection, integrity checking and replay protection for advanced metering
communications.

Traditional data encryption increases the data size of consumption reports and causes
heavy communication overhead. To address this issue, privacy-preserving data aggregation
schemes [142, 143, 144] have been proposed to compress the consumption reports at local
collectors and forward them in a compact form to operation centers. These schemes achieve
end-to-end confidentiality of meter readings, but sacrifice the integrity of consumption
reports, indicating that they cannot provide sufficient integrity protection on consump-
tion reports against misbehaving collectors. Unfortunately, the consumption reports are
transmitted on public networks, such as Cellular and the Internet, with the storage and
forwarding of collectors, according to Toronto Hydro. The collectors are vulnerable to be
hacked by attackers. Malicious attackers can inject false data into the aggregated reports
or corrupt the meter readings without being detected, and thereby affect state estimation,
break power dispatch and control electricity prices through misbehaving collectors [110].
The power outage in Ukraine on Dec. 23, 2015 caused by a devastating cyber attack on
a power station warns us that any vulnerability in advanced metering infrastructure may
be exploited by hackers to create a blackout. Misbehaving collectors have not being paid
enough attentions lately. A handful of schemes [145, 146] aimed to reduce the dependence
on a single collector, but bring heavy communication overhead to distribute the reliability
to multiple collectors by means of secret sharing. Further, once the consumption reports
of different customers are aggregated, it is impossible to achieve dynamic billing for cus-
tomers. Therefore, it is of importance to design an efficient smart metering scheme that
simultaneously supports data aggregation and dynamic billing with high security guaran-
tee.

To balance security and efficiency, we propose a Privacy-Preserving Smart Metering
scheme (P2SM) [109] to achieve end-to-end security, data aggregation and dynamic billing,
simultaneously. Considering a realistic case that the collectors deployed at public areas
may be controlled by attackers, we build a new security model between traditional semi-
honest model and malicious model to formally define the misbehavior of collectors. We
achieve the authentication, confidentiality and integrity of consumption reports against
misbehaving collectors for smart metering based on Chameleon hash function [147], proxy
re-encryption [22] and homomorphic authenticators [148]. In addition, we upgrade the
collectors with computing and storage resources, such that they can temporarily maintain
individual reports for dynamic billing. Our contributions can be summarized as four folds:

B Inspired by the fact that the collectors at public areas may be hacked, we introduce a
stronger security model to formalize the collectors’ misbehavior in reality. Different
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from semi-honest adversaries, the misbehaving collectors are not only interested in
the personal behavior patterns of customers, but also launch pollution attacks to
insert false data into normal meter readings to corrupt state estimation of operation
centers.

B To prevent pollution attacks from collectors, we design the P2SM by leveraging prox-
y re-encryption [22] and homomorphic authenticators [148]. The privacy-preserving
data aggregation is achieved to prevent privacy leakage and reduce communication
overhead. P2SM does not allow the collectors to generate their signatures by them-
selves, but aggregate the smart meters’ signatures to guarantee the integrity of the
aggregated consumption reports. As a result, a misbehaving collector cannot inject
false data into the consumption reports or invade the privacy of customers.

B Once smart meters’ signatures are aggregated, it is impossible to offer message au-
thentication for customers. We design an identity authentication mechanism from
Chameleon hash function [147] for smart metering. With the desirable property of
homomorphism, the authentication messages of different customers can be aggregat-
ed to further improve communication efficiency.

B To support dynamic billing, P2SM enables collectors to use the maintained individual
consumption reports to generate verifiable daily bills for customers. Specifically, the
collectors aggregate the consumption reports of each customer with the electricity
prices to generate daily bills, and submit them to the operation center. The operation
center transforms the encrypted bills to be readable for customers. Furthermore, the
customers can verify the correctness of their daily bills to detect the corruption of
misbehaving collectors and greedy utilities.

5.2 Problem Statement

We formalize system model, present security threats and identify design goals.

5.2.1 System Model

We formalize power consumption data collection for operation centers and dynamic billing
for energy companies as depicted in Fig. 5.1. Energy companies (utilities) have a good
supply of electricity from plants and provide electricity retailing services to customers.
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Figure 5.1: System Model for Smart Metering

To realize real-time power dispatch, operation centers collect, analyze and process real-
time power usage data of customers and monitor the power consumption through varying
electricity prices. A temper-proof smart meter is installed in each customer’s house to
measure real-time power consumption and submit the meter readings to operation centers
every ρ minutes, in general, ρ = 15 or 60. A local collector, which is a wireless access
point or base station, is deployed to connect the operation center and smart meters in a
home area network. In each reporting time slot, smart meters measure meter readings
and deliver consumption reports to the collector through relatively inexpensive WiFi or
ZigBee technologies. After receiving the individual consumption reports, the collector
transiently stores them, aggregates these reports into a compact one, and delivers the
aggregated report to the operation center several times a day through wired network,
e.g., the Internet. According to these aggregated reports, the operation center monitors
electricity distribution and determines dynamic electricity prices. The electricity price is
returned to the collector per day, and the collector computes the daily bills of customers
using the maintained individual consumption and sends the electricity bills to the utility.
Finally, the customers access their electricity bills via the Internet and regulate their daily
activities to decrease electricity costs.

5.2.2 Security Model

As the intermediates in advanced metering infrastructure, local collectors are deployed at
the public areas and they are vulnerable to be hacked by malicious hackers. The hack-
ers may invade customers’ privacy, inject false data, corrupt state estimation and control
electricity prices through the misbehaving collectors. To be more close to the reality, we
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define a new security model with a misbehaving adversary that has rational attack behav-
iors. The misbehaving collector may be neither completely malicious, to block the power
usage data transmission that can be quickly detected by the operation center, nor just
honest-but-curious, to be interested in customers’ living patterns through eavesdropping.
The hacked collector is more powerful than the honest-but-curious adversary, and more
rational than the malicious adversary. On one hand, to prevent its misbehavior being
identified, a misbehaving collector will follow the communication protocols and pretend
to be honest; on the other hand, it tries to use all sorts of methods to achieve the goals
of ulterior motives. Specifically, a misbehaving collector launches the following attacks to
invade customers’ privacy and corrupt state estimation in smart grid:

B A misbehaving collector learns the customers’ privacy via eavesdropping.

B A misbehaving collector injects false data into power consumption in home area
network to corrupt state estimation or control electricity prices.

B A misbehaving collector may forge the smart meters’ individual reports or aggregated
reports to corrupt state estimation of the operation center.

B A misbehaving collector may forge the daily electricity bills to cheat the operation
center, utilities and customers.

The eavesdropping attack and forgery attack have been discussed in the existing litera-
tures [149]. The pollution attack is brightly new in our security model. Therefore, we
utilize the following game between the misbehaving adversary and the advanced metering
infrastructure to formally define this attack:

1. The advanced metering infrastructure setups the whole system to collect the power
consumption of customers in a home area network.

2. The adversary can interact with the system and query the individual consumption re-
ports, providing, for each query, a smart meter and its reading. The system generates
the individual report for each query and returns the report to the adversary.

3. Finally, the adversary outputs an aggregated report different from the aggregation
of queried individual consumption reports.

If the adversary is able to generate a valid aggregated report that is not the aggregation
of queried individual reports with non-negligible probability, we say that the adversary
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wins the game. The smart metering scheme is able to resist pollution attacks if for any
misbehaving collector the probability that the collector wins the above game is negligible.

The smart meters are physically protected to prevent customers from stealing electricity.
The malfunction of smart meters would be discovered and replaced by utilities in time. In
addition, the customers are honest to purchase the electricity from utilities and access their
daily electricity bills. The operation center, fully controlled by the government, is honest to
manage power transmission and balance the electricity demand and response. The damage
of the operation center may directly impact national security and social stability, thereby
sufficient security policies are implemented to protect the operation center. The utilities
are honest to provide electricity retailing services to customers, while they are curious
on customers’ privacy and greedy on their benefits, such as increasing their income by
modifying customers’ bills.

5.2.3 Design Goals

To enable privacy-preserving smart metering under the aforementioned system model and
resist various security threats, P2SM should achieve the following objectives:

B Authentication: To assure that individual consumption reports are from legal cus-
tomers. It is impossible for an attacker to deliver a forged consumption report ac-
ceptable for the operation center.

B Privacy Preservation: To guarantee that no attacker is able to learn the meter read-
ings and thereby invade the privacy of customers, even it either eavesdrops on com-
munication channels or hacks the collectors. The curious utility cannot learn the
power consumption of their customers, except the daily electricity bills.

B Integrity Checking : To ensure that neither individual consumption reports nor ag-
gregated reports can be modified by attackers. Even the misbehaving collectors are
not able to corrupt the integrity of consumption reports by injecting false data in-
to normal meter measurements. Therefore, the operation center can obtain correct
power consumption data.

B Dynamic Billing : To achieve that the daily bills are generated from individual con-
sumption reports and fluctuant electricity prices. The customers can access their
bills and verify the correctness.
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B Efficiency : The communication cost is required to be low to save energy during
data transmission and guarantee that the operation center receives the consumption
reports within short delay. In addition, there should be no time-consuming operation
for smart meters due to their constrained computational capabilities.

5.3 P2SM

We describe a high-level description of P2SM to briefly show the work flow and information
flow, and then give the detailed description of P2SM.

5.3.1 High-level Description

The reason that the existing privacy-preserving data aggregation schemes in smart grid
are vulnerable to the pollution attack is that the collector generates the signature on the
aggregated consumption report by itself to ensure the report integrity. If the collector
becomes dishonest, it can arbitrarily insert forged data into the aggregated report without
being detected by the operation center. To prevent this attack, we extend the homomor-
phic authenticators in [148] to be pairing-based cryptosystem to achieve the aggregation
of the signatures of various measurements generated by different smart meters, which is a
big challenge if no parameter is pre-shared among smart meters [150]. To overcome this
challenge, we first allow the smart meters to sign the meter measurements rather than
their ciphertexts using the individual secret keys based on the homomorphic authentica-
tors [148], and then enable the collectors to re-sign the individual signatures to generate
signatures under a common key selected by the operation center for the smart meters in
the home area network based on bilinear pairing. Thereby, the re-signed signatures can
be aggregated to prevent the misbehaving collector from corrupting the meter measure-
ments. Unfortunately, after the individual signatures are re-signed and aggregated, they
cannot offer the authentication for smart meters. To fix this drawback, we design a new
identity authentication mechanism based on the Chameleon hash function [147] with batch
verification, resulting in the reduction of computational and communication overhead.

In addition, it is of difficulty for the operation center to generate daily bills after the in-
dividual consumption reports are compressed. To resolve this problem, we novelly upgrade
the capability of collectors with storage spaces. Hence, these individual reports transiently
maintained on the collectors can be used to compute the daily bills with the fluctuant
electricity prices. To delegate the decryption of daily bills, the proxy re-encryption [22] is
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leveraged to enable the operation center to re-encrypt the bills generated by the collectors
for the customers on behalf of a proxy. With the homomorphism of the proxy re-encryption
[22], the ciphertexts of meter readings can be aggregated to improve the communication
efficiency. Moreover, to prevent the misbehaving collector from generating cheating bills,
the individual signatures of meter measurements are aggregated with the prices to generate
verifiable tags on the daily bills. Therefore, the customers can check whether the daily bills
are correctly computed and identify the corrupted ones.

P2SM consists of six phases, namely, System Initialization, Customer Registration,
Report Generation, Report Aggregation, Report Reading and Dynamic Billing. The infor-
mation flow of P2SM is depicted in Fig. 5.2.

B System Initialization: The operation center bootstraps the whole system for smart
metering and generates the public parameters Params and its secret-public key pair
(k,K).

B Customer Registration: The customer Ci with an installed smart meter SMi on the
house registers at the operation center using the registration message (SMi, yi,Hi, zi1,
zi2), in which Hi is the commitment generated from the Chameleon hash function
and (zi1, zi2) is the ciphtetext of a random key k. The operation center returns
(SMi, RKi) to the local collector, where RKi is the re-sign key used to transform
Ci’s signature to a signature under the common key α selected by the operation
center for the smart meters in the home area network.

B Report Generation: The smart meter SMi reads the measurement mit at a time slot
t and generates a consumption report Pit = U||SMi||a′it||cit||eit||σit||t, in which a′it is
the authentication message, (cit, eit) is the ciphertext of mit and σit is the signature
on mit. SMi sends Pit to the local collector.

B Report Aggregation: The collector aggregates the authentication messages, cipher-
texts and signatures in the individual consumption reports during each forwarding
period Q to generate an aggregated report P = C||a||c||e||σ||Q using the re-sign keys
RKi of all smart meters in its home area network, and forwards P to the operation
center.

B Report Reading: The operation center checks the validity of the aggregated authenti-
cation message a, decrypts the aggregated ciphertext (c, e) and verifies the aggregated
signature σ. Finally, the operation center obtains the total power consumption m in
the home area network for state estimation and demand response.
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Figure 5.2: Information Flow of P2SM

B Dynamic Billing: The operation center determines the fluctuant electricity prices
(p1, · · · , pϕ) during a day. The collector aggregates the ciphertexts of meter readings
with the prices to generate the daily bill (ci, ei) for the customer, and aggregates
the signatures with the prices to obtain a verifiable tag τi on the daily bill. To
enable the customer to read the bill, the operation center re-encrypts the daily bil-
l Bi = yi||SMi||U||ci||ei||τi to generate B′i = yi||SMi||U||li||ei||τi for the customer.
Therefore, the customer can read the daily bill and uses τi to check the correctness
of the daily bill.

5.3.2 The Detailed P2SM

We then describe the construction of P2SM in detail.

5.3.2.1 System Initialization

The operation center (OC) provides electricity distribution and demand response for the
customers C = {C1, · · · , CN} in the residential area RA. Suppose that these customers buy
electricity from a utility U , (it is compatible that C use the power offered by multiple util-
ities). OC bootstraps the advanced metering infrastructure on behalf of a trust authority.
Concretely, OC first determines the security parameter κ, which denotes the security level
of the system and κ is 160 or 256 usually. OC chooses a large prime p, where |p| = κ. OC
also generates two cyclic groups (G,GT ) with the same order p. g, g0 are two generators
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of G, and ê : G×G → GT is a bilinear map. H : {0, 1}∗ → G and H1 : {0, 1}∗ → {0, 1}κ
are cryptographic hash functions and F : G × {0, 1}∗ → Zp is a pseudo-random function.
(Es, Ds) are the encryption and decryption algorithms of AES cryptosystem. Then, OC
randomly chooses k ∈ Zp to compute K = gk. Finally, OC releases the public parameters:

Params={p,G,GT , ê, g, g0, H,H1, F, Es, Ds, K},

and keeps the secret key k in private.

5.3.2.2 Customer Registration

When a customer Ci ∈ C’s house in the RA connects the smart grid, OC installs a smart
meter SMi for Ci. In the registration, Ci first randomly chooses xi ∈ Zp as the private
key and computes the corresponding public key as yi = gxi ∈ G. The secret key xi is
plugged into SMi or stored in a trusted platform module (TPM) integrated into the smart
meter SMi and the public key certificate is publicly accessed by any entity. Then, SMi

randomly picks ai, bi ∈ Zp to compute a Chameleon hash value as Hi = gaiybii . After that,
SMi chooses two random values ki, ri ∈ Zp to calculate zi1 = gri , r′i = H1(zi1||Kri) and
zi2 = Es(r

′
i, ki). Finally, SMi sends (SMi, yi,Hi, zi1, zi2) to OC, and keeps (ai, bi, ki) in the

TPM, along with xi.

Upon receiving (SMi, yi,Hi, zi1, zi2), OC decrypts (zi1, zi2) to obtain the tag ki as r′i =
H1(zi1||zki1) and ki = Ds(r

′
i, zi2). Then, OC randomly picks α ∈ Zp as a unique identifier of

RA to compute a re-sign key RKi = yαi , if Ci is the first customer in RA; otherwise, Ui uses
the existing α to compute RKi. Finally, OC sends (SMi, RKi) to the local collector in RA
through a secure channel, and stores (SMi, yi,Hi) in its database and keeps (Ti, RKi, α, g

α)
secretly.

5.3.2.3 Report Generation

To achieve real-time power dispatch, smart meters measure power consumption and deliver
electricity consumption reports every ρ minutes, i.e., ρ = 15 or 60 (ρ = 60 for Toronto
Hydro). Suppose that a smart meter SMi measures the meter reading mit at a time slot
t. SMi generates an individual consumption report as follows:

B Use b′it = F (H(SMi||ki), t) to compute the authentication message a′it = xi · (bi −
b′it) + ai mod p;
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B Randomly pick sit ∈ Zp to generate the ciphertext of meter reading mit as:

cit = Ksit , eit = ê(gmit0 gsit , g);

B Use xi to generate a signature on the meter reading as:

σit = (H(SMi||U||t)g
a′it
0 gmit)

1
xi ; (5.1)

B Send the individual consumption report Pit = U||SMi||a′it||cit||eit||σit||t to the collec-
tor in this area.

5.3.2.4 Report Aggregation

The collector transiently maintains the received individual consumption reports from smart
meters. It is required to forward the consumption reports to OC ϕ times per day (ϕ = 5
or 24). In each forwarding period Q, the collector aggregates the individual consumption
reports received in Q from N smart meters in RA into an aggregated report P as follows:

c =
∏
t∈Q

N∏
i=1

cit; e =
∏
t∈Q

N∏
i=1

eit; (5.2)

a =
∑
t∈Q

N∑
i=1

a′it mod p; σ =
∏
t∈Q

N∏
i=1

ê(σit, RKi). (5.3)

The collector sets P = C||a||c||e||σ||Q and forwards P to OC, where C is the identifier of
the collector.

5.3.2.5 Report Reading

After receiving P = C||a||c||e||σ||Q, OC performs the following steps to read the aggregated
report P :

B Use each customer’s unique tag ki to compute b∗it = F (H(SMi||ki), t) and verify
whether all reports are released by legitimate smart meters by checking the equation
(5.4): ∏

t∈Q

N∏
i=1

Hi
?
= ga ·

∏
t∈Q

N∏
i=1

y
b∗it
i . (5.4)

93



If the equation (5.4) holds, continue to decrypt (c, e); otherwise, retrieve the individ-
ual consumption reports from the collector to find the invalid reports.

B Decrypt the aggregated ciphertext (c, e) as M = eê(c, g)−
1
k and recover the dis-

crete log of M base ê(g0, g) using Pollard’s lambda method [151] to obtain m =∑
t∈Q
∑N

i=1mit.

B Verify whether the equation (5.5) is valid or not:

σ
?
= ê(

∏
t∈Q

N∏
i=1

H(SMi||U||t)ga0gm, gα). (5.5)

If yes, accept m, which is the total power consumption of customers in RA in the
period Q; otherwise, reject m and retrieve the individual consumption reports from
the collector to find the corrupted reports utilizing a recursive divide-and-conquer
approach.

5.3.2.6 Dynamic Billing

According to the power consumption of customers in RA, OC determines the electricity
price in every forwarding period during a day, that is, (p1, · · · , pϕ), where pj denotes the
electricity price in the jth forwarding period Qj, and sends (p1, · · · , pϕ) to the collector.
The collector aggregates the individual consumption reports of a customer with the elec-
tricity prices to generate an electricity bill for the customer. Specifically, for a customer
Ci, the collector computes

ci =

ϕ∏
j=1

∏
t∈Qj

c
pj
it , ei =

ϕ∏
j=1

∏
t∈Qj

e
pj
it , τi =

ϕ∏
j=1

∏
t∈Qj

σ
pj
i , (5.6)

where t ∈ Qj means that the time slot t is in the reporting period Qj, and delivers the bill
Bi = yi||SMi||U||ci||ei||τi to OC. Then, OC verifies the correctness of the bills in RA by
verifying the equation (7):

ê(g0, g)
∑ϕ
j=1mjpj =

N∏
i=1

eiê(ci, g)−
1
k , (5.7)

where mj is the total power consumption of customers in RA in the period Qj. If it holds,

OC further computes li = ê(ci, yi)
1
k and sends the bill B′i = yi||SMi||U||li||ei||τi to U . In

94



addition, OC can delegate U to perform proxy re-encryption to transform the ciphertexts

of OC to be decryptable for Ci on behalf of a proxy. Specifically, OC sends USKi = y
1
k
i

to U to enable it to compute li = ê(ci, USKi) for Ci. Finally, Ci decrypts (li, ei) by

computing Di = eil
− 1
xi

i and recovering the discrete log of Di base ê(g0, g) using Pollard’s
lambda method [151] to obtain di =

∑ϕ
j=1

∑
t∈Qj mitpj. To verify the correctness of di, Ci

checks the equation (5.8):

ê(τi, yi)
?
= ê(

ϕ∏
j=1

∏
t∈Qj

H(SMi||U||t)pjg

ϕ∑
j=1

∑
t∈Qj

a′itpj

0 gdi , g), (5.8)

where a′it = xi(bi − F (H(SMi||ki), t) + ai) mod p. If the equation (8) holds, Ci accepts
the bill di; otherwise, rejects it.

5.4 Security Analysis

We analyze the security properties of P2SM, following the security goals described in section
5.2.3, including authentication, confidentiality and integrity.

• Authentication: In customer registration, SMi utilizes the ElGamal encryption to
send ki to OC. Since the ElGamal encryption is semantically secure against chosen plain-
text attacks [152] based on Hash-Diffie-Hellman problem, only OC is able to recover
ki. Hence, ki is shared between SMi and OC. To achieve efficient authentication, the
Chameleon hash function is leveraged to design the interactions between SMi and OC.
Firstly, Hi = gaiybii is one-way, indicating that it is easy to compute Hi from (ai, bi), but
no one can recover (ai, bi) fromHi, as long as the Discrete Logarithm (DL) assumption [147]

holds. In addition, no one is able to find a collision (a′i, b
′
i) of (ai, bi) to make Hi = ga

′
ih
b′i
i

hold without xi in polynomial time with non-negligible probability, unless the DL problem
is tractable. However, having xi, SMi can compute ai from any given bi. Therefore, if
the ElGamal encryption is semantically secure and the DL problem is intractable, it is im-
possible for an adversary to pretend a legal smart meter to generate consumption reports
without being detected by OC.

• Confidentiality : To prevent the customers’ power consumption from being revealed,
we adopt to the proxy re-encryption [22] to encrypt meter readings. Since the proxy re-
encryption is proved secure against chosen plaintext attacks, the confidentiality of mit is
satisfied to prevent attackers from invading Ci’s privacy, even attackers can eavesdrop on
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communication channels and capture the ciphertexts. When the collector obtains all indi-
vidual consumption reports from smart meters in RA, it cannot recover the meter readings
but aggregating the ciphertexts based on additive homomorphism to reduce communica-
tion overhead. As for OC, it can recover the sum of power consumption in RA by using its
secret key. In Dynamic Billing phase, the collector aggregates the individual consumption
reports with the electricity prices to generate the bills and forwards the results to OC or
U to allow them to re-encrypt the bills to be decryptable for the customers. As the proxy
re-encryption is secure based on the Computational Bilinear Inverse Diffie-Hellman (BID-
H) assumption [22], the meter readings and the electricity bills are confidential against
eavesdroppers and curious entities.

• Integrity : To resist pollution attacks, P2SM should ensure the integrity of consump-
tion reports from smart meters to the operation center. The signatures of smart meters
are used to ensure the integrity of individual consumption reports, and the aggregated
signature is generated from the signatures of smart meters by the collector to prevent data
corruption during the transmission from the collector to the operation center. Thus, the
integrity of reports depends on the unforgeability of both the individual signatures and
the aggregated signature. We prove the unforgeability of the individual signatures and the
aggregated signature separately.

To ensure the integrity of the individual consumption report, SMi generates a signature

using its private key as σit = (H(SMi||U||t)g
a′it
0 gmit)

1
xi . The unforgeability of this signature

can be reduced to the Diffie-Hellman Inversion (DHI) assumption [153], that is, within
non-negligible advantage, there is no probabilistic polynomial-time algorithm to solve DHI
problem: given h, hs ∈ G, where s ∈ Zp, to compute h

1
s ∈ G.

Theorem 1 : The signature in the individual consumption report is existentially unforge-
able against adaptive chosen message attacks under the security model [127], provided that
the DHI problem is difficult to be addressed with a non-negligible probability in proba-
bilistic polynomial time.

Proof. Suppose that an adversary A can break the existential unforgeability of the
signature with a non-negligible probability, then we can construct an algorithm B to solve
the DHI problem. Let h be a generator of G. B is given h, hs ∈ G, where s ∈ Zp, its goal

is to compute h
1
s . B simulates a challenger and interacts with A in the following way.

B In setup, B sets the public key v to h
s
r and the parameters g to hsr1 , g0 to hsr2 , where

r, r1, r2 are random values chosen from Zp, and forwards them to A.

B B programs a random oracle to answer hash queries. To ensure the consistency, it
maintains a list of tuples to keep the queries and corresponding responses. When
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receiving queries (SMi,U , t) from A, B flips a bias coin θi ∈ {0, 1}, such that Pr[θi =
0] = 1/(qs + 1), where qs is the maximum of signing queries that A can make. If
θi = 0, B computes wi = hβi ; otherwise, θi = 1 and B computes wi = hsβi , where βi
is a random value chosen from Zp. At last, B adds a tuple (SMi,U , t, θi, βi, wi) to
the list, and returns wi to A.

B B also programs a signing oracle and maintains a list of tuples to keep the queries
and responses. When A queries (SMi,U , t, a′it,mit), B firstly checks the list in hash
queries. If (SMi,U , t) has not been queried, B generates the corresponding (θi, βi, wi)
for (SMi,U , t). If θi = 0, B aborts and returns failure; If θi = 1, B sets σit =
hβir+r1a

′
itr+r2mitr. Observe that σit is a valid signature on (SMi,U , t, a′it,mit) under

the public key h
s
r . Finally, B returns σit and adds (SMi,U , t, θi, βi, a′it,mit, σit) to the

list.

B Eventually, A produces a message-signature pair (SM i,U , t̂, â′i, m̂i, σ̂i), such that no
signature query has been made for (SM i,U , t̂, â′i, m̂i). If there is no tuple in hash list,
B issues (SM i,U , t̂) to hash query. B aborts and returns failure, if σ̂i is invalid. Next,
B finds the tuple on hash list. If θ̂i = 1, B aborts and returns failure; otherwise, θ̂i = 0

and therefore H(SM i||U||t̂) = hβ̂i . Hence, σ̂i = h
β̂ir

s hr1â
′
ir+r2m̂ir. Then, B outputs

the required h
1
s = (σ̂ih

−(r1â′ir+r2m̂ir))
1

β̂ir

Therefore, if the DHI problem cannot be solved with a non-negligible probability in
probabilistic polynomial time, no adversary can forge the signatures on individual reports.
�

The integrity of bills can be reduced to the DHI assumption as the signatures on bills
are the aggregation of smart meter’s signatures. If the single signature σit is unforgeable,
its aggregated signature τi cannot be forged by attackers as well.

Then, we show that it is impossible to forge a valid aggregated report-signature pair
(σ,m) in probabilistic polynomial time under the assumption of Conference-Key Sharing
(CONF) [21] in group GT , that is, there is no probabilistic polynomial-time algorithm that
solves CONF problem [21] within a non-negligible probability: given g, gsgsv ∈ G, where
s, v ∈ Zp, to compute ê(g, g)v ∈ GT .

Theorem 2 : The probability of generating a valid aggregated signature σ, which is not
equal to the aggregation of smart meters’ signatures, in probabilistic polynomial time is
negligible, provided that the CONF problem is hard.
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Proof. If there is a probabilistic polynomial-time adversary A can break the unforge-
ability of the aggregated signature within a non-negligible probability, we can construct an
algorithm B to solve the CONF problem.

Let g be a generator of G. B is given g,D = gs, D1 = gsv ∈ G, where s, v ∈ Zp, its
goal is to compute D2 = ê(g, g)v. B simulates a challenger, who is allowed to access the
signing oracle SO that can output the signatures on individual reports, and interacts with
the adversary A as follows.

B In setup, B randomly chooses ri ∈ Zp to set the public key hi to Dri and the re-sign
key RKi to Dri

1 , for 1 ≤ i ≤ N . Then, B randomly picks γ ∈ Zp to set the parameter
g0 to gγ. Finally, B sends ({hi, RKi}1≤i≤N , g, g0) to A.

B A queries the signatures on individual reports under any public key in {hi} for
1 ≤ i ≤ N . B issues a signature query to SO and receives σi, then, returns σi to A.

B Eventually,A produces an aggregated signature σ̂ on the compressed reports (SM i,U ,
t̂, â, m̂) for 1 ≤ i ≤ N in a time period t ∈ Q. Suppose that σ̂ is a valid signature on
m̂; otherwise, B reports failure and aborts. Thus, σ̂ satisfies the verification equation,
i.e.,

σ̂=ê(
∏
t∈Q

N∏
i=1

H(SM i||U||t)gâgm̂0 , gv).

Assume the expected signature, which would be obtained from the honest smart
meters, be σ on the report (SM i,U , t, a,m) for 1 ≤ i ≤ N in a time period t ∈ Q. σ
also satisfies the verification equation, i.e.,

σ=ê(
∏
t∈Q

N∏
i=1

H(SMi||U||t)gagm0 , gv).

If â = a and m̂ = m, then σ̂ = σ. Define ∆a = â− a and ∆m = m̂−m, then, either
∆a or ∆m is nonzero.

– If σ̂ 6= σ, we divide the verification equation for σ̂ by the equation for σ and
obtain

σ̂/σ=ê(
∏
t∈Q

N∏
i=1

g∆ag∆m
0 , gv).
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Since g0 = gγ, we have

σ̂/σ=ê(g

∑
t∈Q

N∑
i=1

∆a+γ∆m

, gv).

Rearranging the equation yields

D2 = ê(g, g)v = (σ
σ̂
)

∑
t∈Q

N∑
i=1

∆a+γ∆m

,

which is the solution to the CONF problem.

– Otherwise, we get ê(g

∑
t∈Q

N∑
i=1

∆a+γ∆m

, gv) = 1 and

D2 = ê(g, g)v = 1

∑
t∈Q

N∑
i=1

∆a+γ∆m

.

So we can solve the CONF problem.

Therefore, if the CONF problem cannot be solved within a non-negligible probability
in probabilistic polynomial time, any adversary cannot corrupt the aggregated reports.
�

In summary, P2SM can achieve the authentication, confidentiality and integrity of the
individual consumption reports and aggregated reports, as well as the electricity bills.
Thus, the misbehaving collector cannot corrupt both consumption reports and electricity
bills without being detected.

5.5 Performance Evaluation

We evaluate the performance of P2SM in terms of computational, communication and
storage burden, and discuss the implementation on the current advanced metering infras-
tructure.

5.5.1 Computational Cost

To evaluate the computational cost of P2SM, we count the number of time-consuming
operations on elliptic curve groups, including scalar multiplication (SM), point addi-
tion (PA), hash to point (HP ), bilinear pairing (BP ) and multiplication in GT (MUT ).
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Table 5.1: Comparison of Time Costs
Unit: ms, N = 100

Phase
Report Generation Report Aggregation Report Reading

Smart Meter Collector Operation Center
P2SM 24.7 2355.4 328.1

EPPA [142] 26.2 4906.3 97.7

Fan14 [154] 7.3 6737.6 130.9

Ohara14 [155] 96.2 25.4 174.3

Phase
Dynamic Billing

Collector Operation Center Customer
P2SM 2254.7 3564.1 54.9

EPPA [142] Null Null Null

Fan14 [154] Null Null Null

Ohara14 [155] Null 26.5 183.4

When a customer Ci registers on OC, it is required to perform 3SM+HP+2PA op-
erations to generate (Hi, zi1, zi2), and OC runs 2SM+PA operations to recover ki and
computes RKi. In each reporting slot t, SMi computes (a′it, cit, tit, σit) to generate Pit,
which needs SMi to execute 4SM+HP+2PA+2MUT operations. Here ê(g0, g) and ê(g, g)
can be pre-computed in System Initialization phase to reduce the computational over-
head of SMi. To aggregate the individual consumption reports, the collector perform-
s (2N |Q| − 2)PA + N |Q|BP operations to generate P , where |Q| denotes the number
of individual reports of SMi received in a forwarding period Q. Finally, OC executes
(2N |Q|+ 1)PA+ (N |Q|+ 4)SM +N |Q|HP +MUT +BP and discrete logarithm opera-
tions to obtain the sum of power consumption in RA, if all the reports are valid. Otherwise,
OC needs to execute N |Q|(2SM +PA) operations to find the invalid authentication mes-
sages if the equation (4) does not hold; or N |Q|(2PA + 2SM + HP + 2BP ) operations
to identify the invalid signatures if the equation (5) does not hold. In Dynamic Billing
phase, for a customer Ci, the collector needs to aggregate the power consumption by
performing 72|Qj|SM + (24|Qj| − 3)PA operations, where |Qj| denotes the number of re-
porting slots in each forwarding slot. Then, OC runs NSM + (2N − 1)MUT operations
to verify the correctness of electricity bills and executes SM + BP operations to gener-
ate li or U helps OC to compute BP operation. Finally, Ci performs MUT and discrete
logarithm operations to recover the bill di, and checks the correctness of di by running
(24|j|+2)SM+2PA+24|j|HP+2BP operations.
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Figure 5.3: Comparison on Computational Overhead
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Figure 5.4: Comparison on Communication Overhead
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We conduct an experience on a notebook with Intel Core i5-4200U CPU @ 2.29GHz
and 4.00GB memory. We use the MIRACL library to implement number-theoretic based
methods of cryptography. The Weil pairing is utilized to realize the bilinear pairing and
the elliptic curve is chosen with a base field size of 512 bits. The parameter p is 160
bits. We compare the P2SM with three schemes, EPPA [142] (based on Paillier encryption
[156]), Fan14 [154] (based on BGN encryption [149]) and Ohara14 [155] (based on Lifted
ElGamal encryption [152]). While P2SM is constructed from proxy re-encryption [22]. To
keep the consistency, we utilize the same settings of these schemes in the experience. The
number of customers in RA is 100, the number of reporting slots in a period Q is 1 and the
number of reporting period per day ϕ is 24. The execution time of each entity in report
generation, report aggregation, report reading and dynamic billing phases of four schemes
are shown in Table I. Fig. 5.3 shows the comparison results of four schemes about the
computational cost for each entity. Although Fan14 [154] is the most efficient scheme in
report generation, since it utilizes the BGN encryption to encrypt the meter measurements
and no commitment is generated, it is the most inefficient one in report aggregation. EPPA
[142] is the fastest scheme in report reading, as no discrete logarithm computation is needed
and less bilinear pairings are computed compared with P2SM, but it is time-consuming in
report aggregation. Moreover, Fan14 [154] and EPPA [142] do not achieve dynamic billing
for customers. Ohara14 [155] has a good performance on the computational overhead,
but it is vulnerable to the pollution attacks from misbehaving collectors, as well as Fan14
[154] and EPPA [142]. P2SM is not the most efficient one in four schemes, even the least
efficient one in report reading, because it utilizes the pairing-based cryptosystem to offer
a higher security guarantee compared with Fan14 [154], EPPA [142] and Ohara14 [155].
Moreover, the bottleneck of the smart metering on computational capability is the smart
meters, while our scheme is very efficient on report generation for smart meters. P2SM
is still efficient since the time cost on report reading is only 328ms, while the operation
center is always powerful on computation. The collector’s computational overhead can be
reduced by decreasing the number of smart meters in its coverage area and building the
hierarchical network structure to improve the efficiency of meter measurement collection.

5.5.2 Communication and Storage Overhead

The communications of P2SM composes of SM -to-Collector communication and Collector-
to-OC communication. In the SM -to-Collector communication, SMi is required to send
2688-bit Pit at a time slot t to the collector, where U , SMi and t are assumed to be 160 bits,
respectively. In the Collector-to-OC communication, all Pit are aggregated to be P , which
is only 2388 bits, if C and Q are 160 bits, respectively. Therefore, the communication
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overhead is significantly reduced through data aggregation. In addition, the collector
aggregates the individual reports to generate a bill for each customer every day. The
bill is only 2880 bits. Fig. 5.4 shows the comparison results of four schemes about the
communication overhead of SM -to-Collector communication (Fig. 5.4(a)) and Collector-
to-OC communication (Fig. 5.4(b)). Since the ciphertext of proxy re-encryption [22] is
shorter than those of Paillier encryption [156], BGN encryption [149] and Lifted ElGamal
encryption [152] (the commitment in [152] is 1024 bits), the communication burden of
SM -to-Collector communication in P2SM is lower than those in the other three schemes
as shown in Fig. 5.4(a). After the individual consumption reports are aggregated, the
communication overhead becomes constant, which is still lower than those in EPPA [142],
Fan14 [154] and Ohara14 [155] (the overhead of Collector-to-OC communication is linear to
the number of smart meters in the home area network). Fig. 5.4(c) shows the comparison
on communication overhead of P2SM and TLS protocol (T-AES) [141], in which AES-256 is
used to encrypt meter readings and BLS signature [127] is used to guarantee authentication
and data integrity. If N > 2 in RA, P2SM is more efficient than TLS protocol on Collector-
to-OC communication.

In addition, the collector needs sufficient storage space to transiently maintain the
individual reports in RA. If N = 1000 in RA and ρ = 15, these individual reports
would possess 30.8MB storage space every day. Therefore, each collector only needs to
deploy 61.6MB memory to support power consumption collection and dynamic billing for
customers.

5.6 Summary

In this chapter, we have introduced a new security model to formally define the misbehavior
of hacked collectors and have proposed a privacy-preserving smart metering scheme to
achieve end-to-end security and high communication efficiency in smart grid. P2SM not
only allows collectors to aggregate authentication messages, meter readings and signatures
to reduce communication overhead and preserve the privacy of customers, but also prevents
a misbehaving collector from corrupting power consumption reports. Further, the collector
is able to generate verifiable daily electricity bills from individual consumption reports
based on dynamic prices for customers. We have proved the security of P2SM and evaluated
its performance through the comparison with the existing schemes. P2SM is a secure and
efficient communication protocol that can replace the TLS protocol to achieve secure smart
metering in smart grid.
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Chapter 6

Dual-anonymous Reward
Distribution

6.1 Introduction

The proliferation of increasingly capable mobile devices (e.g., smartphones, smartwatches,
smartglasses) with a plethora of on-board sensors (e.g., accelerometer, gyroscope, camera,
GPS) has given rise to MCS [1], a compelling paradigm that enables mobile users to
collect, process and share sensing data from social events and phenomena. Due to the
rich resources and sensing modalities of mobile devices and the mobility and intelligence
of mobile users, MCS can support large-scale sensing applications for collecting higher-
quality and semantically complex data. Currently, a large variety of MCS systems (e.g.,
GreenGPS [157], SmartRoad [158] and Jigsaw [159]) have been emerged, which serve an
ever-increasing number of sensing applications, including vehicular navigation, indoor floor
reconstruction, environment monitoring, urban sensing, and many others.

Participating in such MCS applications is usually a costly activity for mobile users,
since it may consume not only their time, but also system resources of mobile devices, e.g.,
computing power, communication bandwidth and battery [101]. Moreover, some spatial-
temporal tasks need mobile users to physically go to specific locations at certain time points
for data collection, such that they have to spend travel cost to reach the locations in order
to perform the tasks. Therefore, without satisfactory rewards that can compensate the
cost of mobile users, they will be reluctant to participate in MCS tasks. The incentivizing
mobile users participation in MCS systems is paramountly important and promising to
focus on. Many incentive mechanisms [54, 160, 161, 162, 163, 164] have been proposed to
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encourage mobile users for participation, which can be divided into two categories, reward-
sharing mechanisms [54, 161] and auction-based mechanisms [162, 163, 164]. Typically, a
reward-sharing mechanism claims the reward that a customer can provide to attract mobile
users for participation and distributes the reward based on the claimed rules after the task
fulfillment, and an auction-based incentive mechanism chooses the mobile users who are
interested in performing tasks based on their bids and determines the amount of payments
to mobile users for compensating their costs. Nevertheless, these mechanisms only achieve
a single design goal of incentive but ignore other critical issues.

The practical incentive mechanism also needs to preserve the privacy for both customers
and mobile users, because they are unwilling to participate in crowdsensing activities if their
privacy is exposed [31]. Firstly, the releasing tasks may contain some sensitive information,
from which a curious attacker can learn the intentions why customers issue these tasks.
For instance, if a customer releases a task to collect noise level and traffic condition in a
residential area, a house agent can learn that this customer may attempt to buy a house
in that area [165]. Secondly, the sensing data are necessarily people-centric and related to
some aspects of mobile users and their social setting: where mobile users are and where
they are going; what habits they have and what places they frequently visit; how is their
health status and which activity they prefer to do. The leakage of these information
may cause plenty of troubles to mobile users in life and even threats to their lives and
property. For example, when a mobile user delivers the comments on a medical experience
of visiting a psychologist, the service provider is aware of that this mobile user may have
some mental diseases. As a result, he may suffer discrimination in life. Therefore, if there
is no sufficient privacy-preserving mechanism to preserve the privacy of mobile users, they
may be reluctant to participate in crowdsensing tasks, although the reward obtained from
the customers can compensate their costs on data collection.

To overcome these obstacles, some privacy-preserving incentive mechanisms [91, 94, 88,
95] have been proposed to encourage mobile users to participate in crowdsensing tasks and
protect the privacy of mobile users, simultaneously. Most of these [91, 94, 88] studied the
auction-based incentive methods, which allow a crowdsensing server provider to select a
set of anonymous mobile users to perform tasks according to their bids. However, privacy-
preserving reward-sharing mechanisms have not received enough attention lately. Niu et
al. [95] designed a new E-cent protocol and proposed an E-cent-based privacy-preserving
incentive mechanism to achieve reward distribution. Nevertheless, this protocol cannot
trace the customer who double-uses the E-cent, since all the identities of customers and
mobile users are invisible. Subsequently, Zhang et al. [41] utilized dividable electrical
cash to design a privacy-preserving market scheme for privacy-preserving reward sharing.
However, this scheme is inefficient and the identities of mobile users would be exposed to
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the curious service provider.

In this chapter, we propose a Dual-Anonymous Reward Distribution (DARD) scheme
from randomizable techniques to achieve efficient and privacy-enhanced incentive in MCS
systems [166]. Specifically, the main contributions of this chapter are as follows:

B We propose DARD, a new reward distribution scheme based on the PS signature [17].
In DARD, a customer creates a task and claims a fixed amount of coins withdrew from
the bank as a reward for attracting mobile users to perform the task, and the service
provider divides the reward into several individual rewards and distributes them to
mobile users according to their contributions on the task. The mobile users deposit
their obtained rewards to the bank. We design an approach of coins circulation in
reward-sharing incentive mechanism and achieve the payment balance of the bank in
DARD.

B We preserve the privacy of both customers and mobile users in DARD. By adopting
randomizable techniques, the customer can claim the reward anonymously and every
mobile user deposits the individual reward distributed by the service provider to the
bank without disclosing the identity. Even the customer, colluding with the bank
and the service provider, cannot learn identity information about the participating
mobile users. In addition, the identity of a cheater, who double-uses the coins or
rewards, can be recovered by a trusted authority.

B DARD allows the service provider to divide the claimed reward into several individual
rewards with various amount of coins and distribute them to the corresponding mobile
users, such that it is unnecessary for the service provider to deal with each coin
separately. Therefore, the computational and communication overhead is quite low.

6.2 Problem Statement

We state the problem by formalizing system model and security model, and identifying
security goals.

6.2.1 System Model

System model consists of five kinds of entities: a trusted authority (TA), a bank, a crowd-
sensing service provider, customers and mobile users. The TA bootstraps the mobile
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crowdsensing system and generates public key certificates for all the entities in the system.
It is also responsible to detect the cheater who double-claims coins or double-distributes
rewards to mobile users. The bank is a financial institution, which manages the circulation
of electrical coins. It issues electrical coins to customers and receives the coins from mobile
users for deposit. The crowdsensing service provider (CSP) provides mobile crowdsensing
services to customers. Specifically, it assigns mobile crowdsensing tasks to mobile users,
collects and aggregates crowdsensing reports, distributes rewards to mobile users according
to their distinct contributions on tasks. The customers can be individuals or organizations.
They have mobile crowdsensing tasks to perform but do not have sufficient resources to
accomplish individually. Hence, they release these tasks on the CSP. They also withdraw
electrical coins from the bank and claim the coins as a reward to attract mobile users for
performing their tasks. The mobile users perform the tasks to earn coins using their own
mobile devices with rich resources of data sensing, processing and communications.

A customer firstly creates a mobile crowdsensing task and withdraws electrical coins
from the bank. When owning the coins, the customer determines the amount of coins
used to reward participating mobile users and sends the task to the CSP, along with
a claim on the reward. The CSP releases the received task and the claimed reward to
attract mobile users for participation. The mobile users, who are interested in the releasing
task, collect data according to the requirements of the task and report their sensing data
to the CSP. After gathering enough crowdsensing reports from mobile users, the CSP
generates and returns a crowdsensing result to the customer. Then, the CSP determines
the amount of coins as an individual reward that a specific mobile user could obtain based
on his/her contribution on the task, and distributes it to the mobile user. After receiving
the individual reward from the CSP, the mobile user deposits it to the bank. As illustrated
in Fig. 6.1, in the system model of DARD, we describe the processes of reward claim and
distribution, coins withdraw and deposit. Task releasing and allocation, data collection
and reporting are the same as those in [165].

6.2.2 Threat Model

In threat model, all the entities except TA are semi-honest, since everyone may be greedy
for wealth. Specifically, a customer may double-claim the electrical coins, indicating that
the customer may claim a same coin in two or more mobile crowdsensing tasks, and the
CSP might distribute a coin to two or more mobile users. The mobile user may also
deposit a coin to the bank more than once. These misbehavior would break the payment
balance of the bank. Furthermore, although the CSP and the bank have their responsibility
for hosting their business and service honestly, they are curious about customers and
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Figure 6.1: System Model of DARD

mobile users, including identity, location, habit, health status, daily route and political
affiliation. The customers and mobile users are not fully trusted. They are also interested
in other customers who release similar tasks or mobile users who perform the same tasks.
In addition, to have a powerful attack capability, the CSP, the bank, some customers
and mobile users may collude to capture the privacy of a specific customer or mobile
user. Nevertheless, the majority of mobile users honestly perform the tasks based on their
requirements for earning rewards.

6.2.3 Security Goals

To design a secure reward distribution scheme under the aforementioned system model and
security model, DARD should achieve the following security goals.

B Dual Anonymity : To protect the privacy of both customers and mobile users, their
identities should be preserved against curious attackers. Although the contents of
a crowdsensing task or a crowdsensing report may be disclosed, it is impossible for
attackers to link these contents to a specific customer or mobile user.
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B Reward Balance: To ensure the payment balance of the bank, a customer is unable
to claim the coins more than he withdrew from the bank without being detected,
even he colludes with the CSP; the CSP cannot distribute the coins more than the
total coins claimed by the customer without being detected. Moreover, the mobile
users are not able to deposit more than the customer withdrew from the bank, even
they can collude with other entities.

B Cheater Tracing : If a customer double-claim the withdrew coins, the TA can recover
the identity of the customer. Besides, the TA can catch the misbehavior of double-
distribution of the CSP, when the mobile users deposit the individual rewards to the
bank.

6.3 DARD

We propose our DARD scheme, which consists of six phases: Setup, Withdraw, Claim,
Distribution, Deposit and Cheater Tracing.

6.3.1 Setup

This phase is run by the TA to bootstrap the mobile crowdsening system. Given a security
parameter λ, TA defines three cyclic groups (G1,G2,GT ) of a same prime order p. Let
ê : G1 × G2 → GT be a bilinear pairing of type 3, where G1 6= G2 and no efficiently
computable homomorphism exists between G1 and G2 in either direction, g be a generator
of G1 and g̃ be a generator of G2. H : {0, 1}∗ → Z∗p is a collision-resistant hash function.
Assume that the number of coins a customer can withdraw from the bank once be V = 2n,
which is denoted as a wallet. Let Sn be the set of bitstrings of size smaller than or equal
to n and Fn be the set of bitstrings of size exactly n. TA generates a binary tree of depth
n as illustrated on Fig. 6.2. The root of the tree is an empty string ε, each node of the
tree refers to an element s ∈ Sn and each leaf to an element f ∈ Fn. For any node x ∈ Sn,
Fn(x) contains all the leaves in the subtree below x.

B For each leaf f ∈ Fn, TA randomly picks lf ← Z∗p.

B For each node s ∈ Sn, TA randomly picks rs ← Z∗p to compute gs = grs .

B For each s ∈ Sn and for each f ∈ Fn(s), TA computes g̃s→f = g̃lf/rs .
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Figure 6.2: Binary Tree

The public parameters are {p,G1,G2,GT , ê, g, g̃,H, n, V, Fn,Sn, {gs}s∈Sn , {g̃s→f}s∈Sn,f∈Fn(s)}.
TA keeps {rs}s∈Sn and {lf}f∈Fn in private.

The bank randomly chooses α, β ← Z∗p to compute ṽ1 = g̃α and ṽ2 = g̃β. The secret
key of the bank is (α, β) and its public key is (ṽ1, ṽ2). Besides, the bank maintains two
lists (L1, L2). L1 keeps yi identifying the deposited claims and L2 stores πi identifying the
deposited individual rewards.

The CSP chooses a random τ ← Z∗p as its secret key and calculates its corresponding
public key as v̂ = gτ .

Each customer or mobile user also selects a random γ ← Z∗p as the secret key and
computes the public key as v = gγ.

6.3.2 Withdraw

To withdraw V from the bank, a customer firstly picks random x, k1, k2 ∈ Z∗p to compute

C = gx, T1 = gk1 , T2 = gk2 ,
c = H(T1||T2||V ), z1 = k1 + cγ, z2 = k2 + cx.

He then sends a withdraw request (C, c, z1, z2) to the bank. After receiving (C, c, z1, z2)
from the customer, the bank computes T ′1 = gz1v−c, T ′2 = gz2C−c and verifies whether
c = H(T ′1||T ′2||V ) holds or not and C is not previously used. If either does not hold,
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the bank returns failure and aborts; otherwise, the bank chooses a random u ∈ Z∗p and
computes a signature on C as

σ1 = gu, σ2 = (gαCβ)u, σ3 = ê(σ1, ṽ2).

The bank returns the signature (σ1, σ2, σ3) to the customer. Finally, the customer keeps
M = (x, σ1, σ2, σ3) as the withdrew coins with a wallet V .

6.3.3 Claim

A customer with a wallet V generates a mobile crowdsensing task TK to recruit mobile
users for data collection. To encourage mobile users to participate in TK, the customer
determines the number of coins L = 2l ≤ 2n as a reward to be distributed to mobile
users who make contributions on fulfilling the task. To generate a claim on the reward L,
the customer firstly selects an unused node s of level n − l and computes ts = gxs . The
customer then randomly chooses t← Z∗p to randomize M as σ′1 = σt1, σ′2 = σt2, and proves
that (σ′1, σ

′
2) is a valid signature on x and ts = gxs . To do so, the customer selects a random

k ← Z∗p to compute

K = gks , σ′3 = σkt3 ,
C = H(σ′1||σ′2||ts||K||σ′3||TK), Z = k + Cx.

Finally, the customer sends the claim (σ′1, σ
′
2, ts, gs, C,Z) to CSP, along with the task TK.

Upon receiving (σ′1, σ
′
2, ts, gs, C,Z, TK), the CSP learns the amount of the reward L

from gs and verifies the validity of this claim by computing

K ′ = gZs t
−C
s , σ′′3 = ê(σ′1, ṽ1)C ê(σ′2, g̃)−C ê(σ′1, ṽ2)Z ,

and checking whether C = H(σ′1||σ′2||ts||K ′||σ′′3 ||TK) or not. If not, the CSP returns failure
and aborts; otherwise, it releases the crowdsensing task TK and recruits mobile users for
performing TK. At the same time, the CSP publishes the claim (σ′1, σ

′
2, ts, gs, C,Z) to

attract mobile users for participation.
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6.3.4 Distribution

Some mobile users, who are interested in the crowdsensing task TK, collect data according
to the requirements of TK and report the sensing data to the CSP. The CSP gathers all the
crowdsensing reports and returns a result to the customer. After that, the SP determines
the number of coins a specific mobile user Ui can obtain based on his contribution on TK
and then distributes an individual reward to Ui. Suppose Ui can get Li = 2li coins from
this task, where li ≤ l. To do so, the CSP chooses an unused node si of level n− li below
the node s, and computes tsi = gτsi . The CSP also picks a random w ∈ Z∗p to compute
W = gw, e = H(σ′1||σ′2||ts||gs||C||Z||tsi ||gsi ||W ) and f = w + eτ . Finally, the CSP sends
the individual reward (σ′1, σ

′
2, ts, gs, C,Z, tsi , gsi , e, f) to Ui.

When receiving the individual reward from the CSP, Ui verifies whether the obtained
reward is valid or not. Specifically, Ui checks whether si is a node of the subtree below
s, and verifies the CSP’s signature by computing W ∗ = gf v̂−e and checking whether e =
H(σ′1||σ′2||ts||gs||C||Z||tsi ||gsi ||W ∗) or not. Ui also checks the validity of (σ′1, σ

′
2, ts, gs, C,Z).

If one of three conditions does not hold, Ui returns failure and aborts; otherwise, Ui accepts
the individual reward (σ′1, σ

′
2, ts, gs, C,Z, tsi , gsi , e, f).

6.3.5 Deposit

Ui forwards the individual reward to the bank for deposit. Upon receiving (σ′1, σ
′
2, ts, gs, C,

Z, TK, tsi , gsi , e, f), the bank firstly checks that it is not previously used and verifies its
validity. Since the bank can know the used node s from gs, for each leaf f ∈ Fn(s), it
computes yj = ê(ts, g̃s→f ) and checks whether yj ∈ L1. If ∀j, yj /∈ L1, then the bank
verifies the validity of the claim and adds these elements (σ′1, σ

′
2, ts, gs, C,Z, TK) to the list

L1 if the claim is valid. Else, there is an element ȳ ∈ L1 such that ȳ = yi. The bank finds
the corresponding claim (σ̄′1, σ̄

′
2, t̄s, ḡs, C,Z, TK) from L1 and sends (σ̄′1, σ̄

′
2, t̄s, ḡs, C,Z, TK)

and (σ′1, σ
′
2, ts, gs, C,Z, TK) to TA. The bank also learns the used node si from gsi , for

each leaf f ∈ Fn(si), it calculates πρ = ê(tsi , g̃si→f ) and checks whether πρ ∈ L2. If ∀ρ,
πρ /∈ L2, then the bank verifies the validity of the CSP’s signature (e, f) and adds these
elements (ts, gs, tsi , gsi , e, f) to the list L2 if the signature is valid. Else, there is an element
π̄ ∈ L2 such that π̄ = πρ. The bank finds the corresponding (t̄s, ḡs, t̄si , ḡsi , ē, f̄) from L2,
and sends (t̄s, ḡs, t̄si , ḡsi , ē, f̄) and (ts, gs, tsi , gsi , e, f) to TA. If the individual reward is valid
and unused previously, the bank returns 1 to Ui. Then, Ui randomly chooses x∗1, k

∗
1, k
∗
2 ∈ Z∗p

to compute

C∗ = gγig
x∗1
si , T ∗ = gk

∗
1g
k∗2
si ,
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c∗ = H(T ∗||Li), z∗1 = k∗1 + c∗γi, z∗2 = k∗2 + c∗x∗1.

Ui sends (C∗, c∗, z∗1 , z
∗
2 , Li) to the bank. The bank verifies the validity of (C∗, c∗, z∗1 , z

∗
2) by

computing T ′′ = gz
∗
1g

z∗2
si (C∗)−c

∗
and checking whether c∗ = H(T ′′||Li). If it does not hold,

the bank returns failure and aborts; otherwise, it randomly chooses x∗2, h
∗ ∈ Zp to compute

ε = (C∗g
x∗2
si )

1
α+h∗ and sends (x∗2, h

∗, ε) to Ui. After that, Ui can deposit 2li coins to the bank
by computing x∗ = x∗1 + x∗2 and generating a zero-knowledge proof as

SPK
{

(ε, x∗, h∗, γi) :
v = gγi∧

ê(ε, ṽ1g̃
f∗) = ê(gγigx

∗
si
, g̃)

}
(Li).

Ui sends SPK to the bank, along with Li. Finally, the bank verifies the validity of SPK
and deposits the reward for Ui if SPK is valid; otherwise, it aborts and returns failure.

6.3.6 Cheater Tracing

When receiving (σ̄′1, σ̄
′
2, t̄s, ḡs, C,Z, TK) and (σ′1, σ

′
2, ts, gs, C,Z, TK) from the bank, the

TA computes C = tt
−1
s
s , from which the TA can learn the identity of the customer. When

receiving (t̄s, ḡs, t̄si , ḡsi , ē, f̄) and (ts, gs, tsi , gsi , e, f) from the bank, the TA computes τ =

tt
−1
s
si

, which is the public key of the CSP.

6.4 Security Analysis

We explain the achieved security goals described in 6.2.3, including dual anonymity, reward
balance and cheater tracing.

Dual Anonymity : To hide the identity of the customer, the bank uses the PS sig-
nature [17] to generate electronic coins. It signs the customer’s commitment C to obtain
(σ1, σ2, σ3), which can be randomized in the Claim phase to generate a claim (σ′1, σ

′
2, ts, gs, C,Z)

on the reward L. Thus, the CSP and mobile users cannot learn the identity of the customer
except the validity of the claim. Every mobile user receives the individual reward from the
CSP and deposits it to the bank without disclosing the identity information. Specifically,
Ui sends the crowdsensing report to the CSP and the CSP returns the individual reward
(σ′1, σ

′
2, ts, gs, C,Z, TK, tsi , gsi , e, f). It is unnecessary for Ui to expose the identity to the

CSP, since the CSP distributes the individual reward based on the worth of the report.
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Ui then sends (σ′1, σ
′
2, ts, gs, C,Z, TK, tsi , gsi , e, f) to the bank for deposit. The bank can-

not infer any personal information of Ui from (σ′1, σ
′
2, ts, gs, C,Z, TK, tsi , gsi , e, f) as it is

randomized from the claim. Finally, Ui proves the validity of the signature (ε, x∗, h∗) em-
ploying the zero-knowledge proof and stores Li coins to the bank. Since the transcript of
the zero-knowledge proof SPK is unlinkable to (ε, x∗, h∗), the bank is not able to link Ui’s
identity to the deposited coins, even it colludes with the CSP and the customer. Therefore,
dual anonymity is achieved in DARD.

Reward Balance: To keep the payment balance of the bank, the digital signatures
are adopted to guarantee that no attacker can forge or double-use the electrical coins or
rewards, even the CSP, customers and mobile users are allowed to collude. The withdrew
wallet is a PS signature [17], which is proved to be unforgeable based on Modified LRSW
assumption. The customer can claim on L ≤ V to reward the participating mobile users
by randomizing (σ1, σ2, σ3). The bank checks whether the withdrew coins are double-used
by computing yi and checking whether yj ∈ L1 for each leaf in binary tree. The CSP uses
a Schnorr signature on the node si to generate a signature (tsi , gsi , e, f). The banks verifies
whether the CSP double-uses the claimed coins to distribute individual rewards or not.
Therefore, the customer and the CSP cannot double-use the withdrew coins or claimed
coins without being detected by the bank, respectively. Ui also cannot double-deposit the
same individual reward to the bank, since the bank can be easy to find that the individual
reward received from a mobile user is the same as that stored in its database. Therefore, as
the PS signature and the Schnorr signature cannot be forged and the customer, the CSP
or the mobile users are unable to double-use their received coins or rewards without being
detected, the payment balance of the bank can be achieved.

Cheater Tracing : The bank checks whether the claimed reward and the individual
rewards are double-used by computing yj and πρ, and checking whether yj ∈ L1 for ∀j,
πρ ∈ L2 for ∀ρ, respectively. The TA can recover the commitment of a customer C = tt

−1
s
s

and the public key of the CSP τ = tt
−1
s
si

, if they double-use the coins in the rewards.

6.5 Performance Evaluation

We evaluate the computational overhead of DARD by counting the number of the ex-
ponentiation in G1, the exponentiation in G2, and the bilinear pairing operations. The
other operations, such as the multiplication in G1 and the hash operation, are not time-
consuming comparing with the three kinds of operations above. We use EG1 , EG2 and BP
to denote the exponentiation in G1, the exponentiation in G2, and the bilinear pairing, re-
spectively. In Setup phase, the TA should perform (2n+1− 1)EG1 to bootstrap the system.
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The bank, the CSP and a customer/mobile user have to run 2EG2 , EG1 and EG1 to generate
their secret-public key pairs, respectively. To withdraw a wallet with V coins, a customer
performs 3EG1 to generate (C, c, z1, z2) and the bank runs 7EG1 +BP to verify the validity
of (C, c, z1, z2) and generates (σ1, σ2, σ3). The customer randomizes (σ1, σ2, σ3) to generate
the claim by executing 5EG1 and the CSP runs 5EG1 + 3BP to verify the validity of the
claim. After that, the CSP performs 2EG1 to generate an individual reward for Ui and
Ui has to run 7EG1 + 3BP to check the validity of the individual reward. In the Deposit
phase, the bank firstly verifies the validity of the individual reward and checks whether
the claimed coins are double-used by performing 7EG1 + (3 + 2l + 2li)BP . Then, Ui runs
4EG1 to generate a new commitment (C∗, c∗, z∗1 , z

∗
2) and the bank executes 5EG1 to obtain

(x∗2, h
∗, ε). Finally, Ui performs 6EG1 + 4BP to generate SPK and the bank verifies it by

performing 6EG1 + 4BP .

We conducted an implementation on a notebook with Intel Core i5-4200U CPU @2.29GHz
and 4.00 GB memory. We use the MIRACL library to implement number-theoretic based
methods of cryptography. The parameter p is 160 bits. We compare the simulation results
with PPMS [167], which is a reward distribution scheme derived from dividable electrical
cash. The wallet size is V = 2n, where n ∈ {1, 2, · · · , 10}. The computational overhead of
a customer to withdraw a wallet is linear with n in PPMS, while the time cost is constant in
DARD in Fig. 6.3(a). As shown in Fig. 6.3(b) and Fig. 6.3(c), the computational burden
on Ui to verify the validity of the individual reward and the time cost of a customer to
generate a claim are light and constant in DARD, but Ui and the customer in PPMS have
to perform 2n times to verify the individual reward and generate a claim, respectively. The
computational overhead on a bank in Deposit phase of PPMS is much heavier than that in
DARD in Fig 6.3(d). The reason DARD is more computation-efficient than PPMS is that
2n coins have to be processed one by one in PPMS, but in DARD, they can be processed
together.

We also discuss the communication overhead among the bank, the CSP, the customer
and the mobile users. To withdraw a wallet, the customer sends (C, c, z1, z2) to the bank,
which is 992 bits, and the bank returns 2048-bit (σ1, σ2, σ3) to the customer. In Claim
phase, the customer sends a claim on 2l coins, (σ′1, σ

′
2, ts, gs, C,Z, TK), to the CSP, which

is 2368+|TK| bits, where |TK| denotes the binary length of the task TK. Then, the CSP
distributes the individual reward on 2li coins, (σ′1, σ

′
2, ts, gs, C,Z, tsi , gsi , e, f), to Ui, whose

binary length is 3712 bits. After that, Ui forwards it to the bank for deposit. If the reward
is valid, Ui sends (C∗, c∗, z∗1 , z

∗
2 , Li) to the bank, which is 1152 bits, and the bank responds

832-bit (x∗2, h
∗, ε) to Ui. Finally, Ui forwards SPK with the length of 3552 bits to the bank.

Finally, we compare the communication overhead between DARD and PPMS [41] in
Fig. 6.4. In Claim and Deposit phase, the communication burden of DARD is constant,
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Figure 6.3: Comparison on Computational Overhead
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Figure 6.4: Comparison on Communication Overhead

although the size of a wallet and the number of coins in an individual reward increase
exponentially. However, the communication cost of PPMS increases linearly with the size
of a wallet and the number of coins in an individual reward, respectively.

6.6 Summary

We have proposed an efficient dual-anonymous reward distribution scheme to achieve
reward-sharing incentive and prevent privacy leakage for customers and mobile users in
MCS systems. Mainly based on the PS signature and randomizable techniques, DARD al-
lows a customer to claim electrical coins withdrew from the bank as a reward to motivate
mobile users for participating in a crowdsensing task. The mobile users can deposit the
rewards awarded by the CSP to the bank without exposing their identities. Nevertheless,
once the customer double-claims coins, the identity can be recovered by a trusted authori-
ty. In addition, DARD has lighter computational and communication overhead compared
with the existing schemes.
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Chapter 7

Conclusions and Future Work

In this thesis, we have investigated security and privacy for MCS. We highlight the main
contributions of this thesis and introduce several future research directions.

7.1 Summary

In this thesis, we have developed a set of efficient, secure and privacy-preserving schemes
to countermeasure and mitigate the aforementioned security and privacy threats. The
requirements of security, privacy and fairness are satisfied by solving all the challenges in
task allocation, data collection, data analysis and reward feedback. We summarize the
following contributions of this thesis.

• To achieve privacy preservation and task allocation, we have proposed a strong
privacy-preserving mobile crowdsensing scheme supporting location-based task al-
location, decentralized trust management and privacy preservation for both mobile
users and customers simultaneously. Based on blind signatures and randomizable
matrix multiplication, the user’s privacy information, including identity, location,
trust level are well protected, and the customer’s identity is also hidden against the
service provider, mobile users and other outsiders. In doing so, the privacy of both
mobile users and customers are preserved. Moreover, a privacy-preserving location
matching mechanism is developed based on matrix multiplication to enable the ser-
vice provider to learn whether the sensing areas of tasks and the location of mobile
users are matched. To achieve credit management, we have designed a privacy-
preserving credit management mechanism for mobile users, in which mobile users are
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able to prove their trustworthiness without the exposure of credit points. As a result,
the challenge on privacy-preserving task allocation is solidly solved that the service
provider can recruit mobile users based on the requirements of crowdsensing tasks,
the locations and trust levels of mobile users without invading the privacy of either
mobile users or customers.

• To enable data confidentiality and data collection, we have proposed a fog-assisted
mobile crowdsensing framework that allows fog nodes to perform task allocation and
data deduplication, and developed a fog-assisted secure data deduplication scheme to
achieve the detection of replicate data. Based on the BLS signature, the BLS-OPRF
scheme enables fog nodes to detect and delete the identical sensing data in sensing
reports for saving communication bandwidth, without have any knowledge about the
sensing data. To record the contribution of mobile users who generate reduplicate
data with others, we have leveraged key homomorphic signature to support the aggre-
gation of crowdsensing reports, while keeping the communication efficiency in data
reporting. Moreover, We have considered the privacy leakage of mobile users from
duplicate reports. To balance the trade-off between data deduplication and privacy
preservation against “duplicate-linking” leakage, we have further protected the iden-
tities of mobile users who submit the identical reports with others by utilizing the
blind signature, and prevent the anonymous mobile users from double-reporting sens-
ing data and double-retrieving rewards by exploiting Chameleon hash function. The
security analysis and performance evaluation demonstrate that our proposed schemes
are sufficiently secure against all potential attackers and efficient with respect to the
communication overhead due to the achievement of data deduplication.

• To settle the problem of privacy preservation and aggregate statistics, we investigate
privacy-preserving data statistics on crowdsensed meter readings from smart meters
in smart grid. We define a new security model to formalize the misbehavior of collec-
tors, in which the misbehaving collectors can launch pollution attacks to corrupt the
crowdsensed consumption during transmission. The corruption of the crowdsensed
usage data may result in the false estimation of smart grid state. To prevent pol-
lution attacks, we propose a novel privacy-preserving data statistics scheme on the
crowdsensed data collected by multiple smart meters. It achieves end-to-end security,
data aggregation and integrity protection against the misbehaving collectors, which
act as local gateways to collect and aggregate usage data and forward to operation
centers. As a result, the misbehaving collectors cannot access or corrupt power us-
age data of customers. In addition, a privacy-preserving verifiable linear statistics
mechanism is developed to realize the linear aggregation of multiple crowdsensed
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data and the verification on the correctness of aggregate results. By leveraging this
mechanism, verifiable dynamic billing can be supported based on individual power
consumption, and the correctness of daily bills can be verified by the customers to
prevent cheating of utility. The proposed scheme achieves secure smart metering and
verifiable dynamic billing against misbehaving collectors with low computational and
communication overhead.

• To support privacy preservation and reward feedback, we have developed a dual-
anonymous reward distribution scheme from randomizable technique to achieve effi-
cient and privacy-enhanced incentive in MCS. In this scheme, we have modeled the
reward circulation for reward-sharing incentive in MCS, in which a customer claims
a fixed amount of coins withdrew from the bank as a reward for attracting mobile
users in task allocation, the service provider divides the coins into several individual
rewards and distributes to mobile users based on their respective contributions on the
task fulfillment, and finally each mobile user is able to deposit the received reward to
the bank. In doing so, the balance of rewards during coin circulation is guaranteed.
Furthermore, to preserve the privacy, all the processes of coin circulation will not
reveal the identities of both mobile users and customers, including reward claiming,
separation, distribution and deposit. Even the bank cannot identify the coins and
their owners who participate in mobile crowdsensing activities. In addition, the iden-
tity of a cheater, who double-uses the coins, can be recovered by a trusted authority.
Finally, we have demonstrated that the computational and communication overhead
is pretty low since the service provider is unnecessary to separately handle each coin.
Instead, the service provider can divide the claimed reward into several individu-
al rewards with various amounts of coins and distribute them to the corresponding
mobile users.

7.2 Future Research Directions

This thesis introduces the MCS architecture and applications, identifies security and pri-
vacy challenges in MCS, and proposes several promising solutions to achieve security and
privacy threats. Although some preliminary results on security and privacy in MCS are
provided, there are still several open research directions including but not limited to the
followings.
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7.2.1 Blockchain-based Fair Crowdsensed Data Sharing

We have proposed a preliminary work to explore the potentials of exploiting blockchain
to balance the fairness among mobile users and customers. In the future work, we further
leverage the appealing properties, including distribution, opening, permanency, security,
timing and pseudonymity, to extend the security, privacy and fairness in MCS. Specifi-
cally, as a decentralized and distributed digital ledger, blockchain can be used to record
transactions (e.g., contracts, reputation and crowdsensed data) of mobile users and cus-
tomers across many nodes so that the record cannot be altered retroactively without the
corruption of all subsequent blocks and the collusion of the network. It also allows the
participants to verify and audit all the on-block transactions. Further, the blockchain is
managed by network nodes and serves as a distributed timestamping server, such that
all the transactions are recorded with permanent timestamps. The smart contract is not
only an auto-executed protocol offering fairness to participants, but a computer program
that digitally facilitate, verify, or enforce the negotiation or performance of a contract with
intelligence. Although the blockchain is attractive in MCS, there are still fundamental
problems to be solved, such as how to build a private blockchain using proof of stake for
saving power consumption, while guaranteeing the distributed and decentralized system to
have the desired features, even when various participants have their individual incentives;
how to provide the verification, correctness and completeness of smart contracts for enforc-
ing the desired behaviors and abandon the irrational results. To address these issues, we
will explore new techniques to build incentives for decentralized applications and design
new approaches for verifying the correct execution of smart contracts.

In MCS, we plan to investigate on the approach of utilizing blockchian to achieve
crowdsensed data sharing among different crowdsensing tasks. The data collected for a
specific task can contribute to other related tasks for different service providers, such that
it is possible to reduce the repeated work for mobile users cross different tasks. The
crowdsensed data feed is promising to reduce the cost on data collection and improve
data utility. However, to prevent the privacy leakage of mobile users and customers, it is
unrecommendable to immediately expose all the crowdsensed data to the service provider
with the purpose of data sharing. From the perspective of mobile users, the incentive
of data sharing is a new problem in MCS that has not mentioned. A straightforward
approach is to seek a favor from the smart contract, in which the mobile user defines
the condition on the data exposure and utilization in other tasks. Nevertheless, how to
determine whether the crowdsensed data for a task can be cross-used for other tasks is
still challenging if the data is protected against privacy leakage. To address this problem,
we may need to use privacy-preserving knowledge discovery or searchable encryption for
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data matching, but the efficiency and scalability are hard to be guaranteed, once the size
of the crowdsensed data is large. In addition, although smart contracts can define sharing
policy of the crowdsensed data, intelligent punishment mechanisms should be designed to
support the fairness of multi-party data exchange with the validation and verification in
MCS. Therefore, how to define the transactions and smart contracts between participants
for data sharing in MCS is the problem we will focus on in the future work.

7.2.2 Local Differentially Private Truth Discovery

In MCS, the aggregation of crowdsensed data is essential for the success of MCS. To
complete crowdsensing tasks, mobile users offer the collected data that may be conflict
with others’ or contain noisy information. These information biased with the data provided
by others may mislead customers to make false decision. To reduce the impact of false
collected data, voting and aggregation are widely used approaches in MCS, but these
methods cannot get rid of the negative effects. Intuitively, customers should trust the
mobile users who participate in data collection and believe the crowdsensing results given by
the service provider. However, users’ reliability degrees are various and unknown in priori.
To capture the trustworthy crowdsensed data from reliable mobile users, truth discovery is
of significant importance for discovering the principle or reliable information from massive
collected data. Although a large number of truth discovery schemes have been on hand,
they perform the discovery operation on phaintexts, which means that the service provider
has all the clear information over crowdsensed data, resulting in the privacy violation of
mobile users. A handful of schemes enable privacy-preserving truth discovery in MCS based
on homomorphic encryption, which end up with the heavy computational overhead for
each mobile user. Differential privacy, which provides means to maximize the accuracy of
queries from statistical databases, while minimizing the possibility of identifying individual
record, has huge potential to be exploited for protecting individual crowdsensed data in
data analysis. In MCS, each mobile user is required to keep data confidentiality before
uploading them to the service provider, such that we need the “local model” of differential
privacy, i.e., location differential privacy, to support the local data protection and remote
data statistics. Therefore, we aim to explore efficient truth discovery by leveraging local
differential privacy in MCS. Considering the trade-off between accuracy of trust discovery
and the level of local differential privacy, our objective is to develop a local differentially
private truth discovery scheme with compact accuracy of trust discovery and high level of
privacy pretection in MCS.
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7.2.3 Secure Machine Learning on Crowdsensed Data

Machine learning and data analytics perform data statistics and build models from (sen-
sitive) crowdsensed data, such as location, medical, perference and financial data. With
the popularity of ubiquitous sensing and virtual assistants, crowdsensed data feed receives
collected data submission at anytime and from anywhere, such that users’ privacy is at
ever-increasing risk. Machine learning is powerful to discover knowledge from a large
volume of data, but at the same time may learn more personal information from them.
Machine learning is a double-edged sword, i.e., it extends human’s capability of knowledge
acquisition, invade users’ privacy by exposing potential sensitive information. If the pri-
vacy does not protected, mobile users may refuse to contribute their data to crowdsensed
data feed. Therefore, how to enable the utility of machine learning, while preserving user’s
privacy, is quite necessary to the flourish of MCS. To resolve this issue, we will further
explore the privacy-enhancing techniques, such as secure multi-party computation and ho-
momorphic encryption, to enable privacy-preserving machine learning and data analytics
in the real world, and aim to design and develop a general framework to enable automatic
data analytics and query analysis. Our objective is to provide practical real-world solution-
s for privacy-preserving machine learning and data analytics and deepen the theoretical
understanding for crowdsensed data.

Increasing number of data is being collected in all domains, ranging from business
activities, social networks, smart homes, intelligent transportation, to smart cities, with the
promise to improve decision making and enhance human’s convenience. The deep learning,
such as neural networks, has expressed the huge advances and power in many application
areas in many data-driven tasks. Nonetheless, deep learning can be fragile and easily
fooled. For instance, an attacker could insert adversarial perturbations invisible to human
vision into an image to mislead neural network to misclassify the perturbed image. Recent
physical-world attacks [168] on a real stop sign cause targeted misclassification in 100% of
the images in lab settings, and in 84.8% of the captured video frames obtained on a moving
vehicle (field test) for the target classifier, with perturbation in the form of only black and
white stickers. However, secure deep learning is in its infancy and many fundamental
problems have not been solved. Why are the neural networks easily fooled? How to model
the physical-world attacks on adversarial perturbation insertion? How to defense these
attacks to secure neural networks? Can we build provable security theory against these
physical-world attacks? Security will be one of the biggest challenges in deploying artificial
intelligence, directly impacting its success in applications. Traditional program verification
techniques cannot effectively secure deep learning systems. The security protection on
neural networks is still open problem. Therefore, we aim to take a multi-pronged approach
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to explore deeper understanding of attacks, defenses, and methods for reasoning about the
security of deep learning systems.

7.3 Final Remarks

In this thesis, we have presented a suite of security and privacy-preserving schemes for mo-
bile crowdsensing, and identified three further research directions to encourage successive
research efforts and complement of this thesis. To facilitate our research accomplishments
and findings to benefit real applications, we will carry out experiments to further confirm
our research findings.
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