
QUALITY-AWARE TASKING in
MOBILE OPPORTUNISTIC NETWORKS

Distributed Information Retrieval and Processing utilizing
Opportunistic Heterogeneous Resources

Dem Fachbereich Elektrotechnik und Informationstechnik
der Technischen Universität Darmstadt

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

vorgelegte Dissertation

von

the an binh nguyen, m.sc.

Geboren am 24. März 1987 in Hanoi, Vietnam

Referent: Prof. Dr.-Ing. Ralf Steinmetz
Korreferent: Prof. Dr.-Ing. Michael Zink

Tag der Einreichung: 03. Juli 2018
Tag der Disputation: 30. August 2018

Hochschulkennziffer D17
Darmstadt 2018



The An Binh Nguyen, M.Sc.: Quality-aware Tasking in Mobile Opportunistic Networks
Distributed Information Retrieval and Processing utilizing Opportunistic Heteroge-
neous Resources.
Darmstadt, Technische Universität Darmstadt
Tag der mündlichen Prüfung: 30.08.2018
Jahr der Veröffentlichung der Dissertation auf TUprints: 2018

Dieses Dokument wird bereitgestellt von This document is provided by
tuprints, E-Publishing-Service der Technischen Universität Darmstadt.

http://tuprints.ulb.tu-darmstadt.de

tuprints@ulb.tu-darmstadt.de

Bitte zitieren Sie dieses Dokument als: Please cite this document as:
URN: urn:nbn:de:tuda-tuprints-77486

URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/7748

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.de

This publication is licensed under the following Creative Commons License:
Attribution-NonCommercial-NoDerivatives 4.0 International
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
urn:nbn:de:tuda-tuprints-77486
https://tuprints.ulb.tu-darmstadt.de/id/eprint/7748
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.de
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


A B ST R AC T

Advances in wireless technology have facilitated direct communication among
mobile devices in recent years, enabling opportunistic networks. Opportunistic

networking among mobile devices is often utilized to offload and save cellular network
traffic and to maintain communication in case of impaired communication infrastruc-
ture, such as in emergency situations. With a plethora of built-in capabilities, such as
built-in sensors and the ability to perform even intensive operations, mobile devices
in such networks can be used to provide distributed applications for other devices
upon opportunistic contact. However, ensuring quality requirements for such type of
distributed applications is still challenging due to uncontrolled mobility and resource
constraints of devices. Addressing this problem, in this thesis, we propose a tasking
methodology, which allows for assigning tasks to capable mobile devices, considering
quality requirements. To this end, we tackle two fundamental types of tasks required
in a distributed application, i.e., information retrieval and distributed processing.

Our first contribution is a decentralized tasking concept to obtain crowd collected
data through built-in sensors of participating mobile devices. Based on the Named
Data Networking paradigm, we propose a naming scheme to specify the quality
requirements for crowd sensing tasks. With the proposed naming scheme, we design
an adaptive self-organizing approach, in which the sensing tasks will be forwarded to
the right devices, satisfying specified quality requirements for requested information.

In our second contribution, we develop a tasking model for distributed processing
in opportunistic networks. We design a task-oriented message template, which enhances
the definition of a complex processing task, which requires multiple processing stages
to accomplish a predefined goal. Our tasking concept enables distributed coordination
and an autonomous decision of participating device to counter uncertainty caused by
the mobility of devices in the network. Based on this proposed model, we develop com-
putation handover strategies among mobile devices for achieving quality requirements
of the distributed processing.

Finally, as the third contribution and to enhance information retrieval, we integrate
our proposed tasking concept for distributed processing into information retrieval.
Thereby, the crowd-collected data can be processed by the devices during the for-
warding process in the network. As a result, relevant information can be extracted
from the crowd-collected data directly within the network without being offloaded
to any remote computation entity. We show that the obtained information can be dis-
seminated to the right information consumers, without over-utilizing the resource of
participating devices in the network.

Overall, we demonstrate that our contributions comprise a tasking methodology
for leveraging resources of participating devices to ensure quality requirement of
applications built upon an opportunistic network.
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K U R Z FA S S U NG

Mit Hilfe von drahtlosen Kommunikationstechnologien ist der Aufbau von direk-
ten (ad hoc) Verbindungen zwischen Mobilgeräten möglich. Über diese Verbin-

dung können Informationen lokal und direkt unter Mobilgeräten ausgetauscht wer-
den, was eine Grundlagen für viele Anwendungen bietet. Der sinnvolle Einsatz solcher
Technologien ist zum Beispiel die Entlastung der Mobilfunknetze durch lokale Daten-
verteilung und der Aufbau sowie die Aufrechterhaltung von infrastrukturlosen Netzen
in Katastrophenszenarien. Darüber hinaus verfügen Mobilgeräte über eine Vielzahl
an leistungfähigen Sensoren, und die Möglichkeit, komplexe Aufgaben auszuführen.
Solche Fähigkeiten können als Dienste im Kontext einer verteilten Anwendung mit
direkter Kommunikation angeboten werden. Dabei ist eine große Herausforderung,
die Qualitätanforderungen solcher Anwendungen bei limitierten Ressourcen und der
Mobilität der Geräte zu garantieren. In dieser Arbeit wird diese Problematik addres-
siert, indem wir ein Modell zur verteilten Aufgabenzuweisung unter teilnehmenden
Mobilgeräten entwickeln. Bei dieser Verteilung werden vor allem unterschiedliche
Qualitätsanforderungen und die Heterogenität der Geräte berücksichtigt. Dabei fo-
kussieren wir uns auf die Informationsakquise und die verteilte Datenverarbeitung,
welche die Grundsteine für die Entwicklung einer verteilten Anwendung darstellen.

In unserem ersten Beitrag entwickeln wir eine Methode basierend auf dem Named
Data Networking Paradigma, um die Qualitätanforderung einer Anfrage zum Daten-
sammeln zu spezifizieren. Dabei werden die Anforderungen direkt in das Namens-
schema integriert. Aufbauend auf dieser Spezifikation wird die Weiterleitung von
Anfragen an Daten durch Geräte im Netzwerk selbst organisiert und gestaltet, sodass
die Anforderungen an die angefragten Daten erfüllt werden können.

Mit unserem zweiten Beitrag wird eine verteilte und lokale Verarbeitung von Da-
ten auf Basis der Kooperation mit anderen Mobilgeräten untereinander ermöglicht.
Um eine Verteilung der Verarbeitung auf benachbarte Mobilgeräte zu ermöglichen,
wurde eine Nachrichtenvorlage konzipiert, welche ein komplexes Verarbeitungsziel
spezifiziert, in mehrere Operationen aufbricht und an umliegende Mobilgeräte ver-
teilt. Dabei erlauben wir autonome Entscheidungen der teilnehmenden Geräte, um
der hohen Dynamik und der Ressourceneinschränkung entgegen zu wirken.

Als letzten Beitrag kombinieren wir das entwickelte Model zur verteilten Daten-
verarbeitung mit unserer Methode zur Weiterleitung von Netzwerkpaketen. Dabei
werden die angefragten Daten während der Weiterleitung verarbeitet, um die rele-
vanten Informationen direkt im Netzwerk zu extrahieren. Wir zeigen, dass solche
Informationen effizient interessierten Mobilgeräte geliefert werden können, ohne da-
bei zusätzliche Last in Netzwerk zu generieren.

Die in dieser Arbeit vorgestellten Beiträge bilden gemeinsam ein Model zur Aufga-
benzuweisung, welches die Qualitätanforderungen einer Anwendung in dynamischen
Mobilnetzen erfüllt.
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1
I N T RO D U C T I O N

In a paper from early 1997, Satyanarayanan [170] highlighted the potential of mo-
bile computing for the next decade. Several application scenarios are envisioned,

such as mobile health-care which utilizes mobile devices for remote consultation and
emergency response scenarios which mostly require information obtained from par-
ticipating devices for better coordinating the relief works. A common ground of the
envisioned application scenarios is the opportunistic utilization of resources available
on mobile devices. This observation can be confirmed, looking into the development
of mobile devices related research topics in the last few years.

Today, a mobile device is capable of several tasks; for instance, obtaining information
either through active user’s inputs or leveraging the built-in sensors to sense the
environment opportunistically. The early adoption of this paradigm was people centric
sensing [26], which focused on environmental data collection, actively triggered by
the users. By combining the active user’s input with opportunistic sensing through
built-in sensors, this sensing paradigm was extended to the more general paradigm of
crowd sensing [63]. Compared to the classical Wireless Sensor Network (WSN), which
relies on pre-deployed static sensors to collect data, crowd sensing, which leverages
mobile devices to collect information, provides a more flexible framework to collect
information.

In addition to the ability to obtain information in various forms, modern mobile
devices are also capable of processing information and executing complex operations,
e.g., image processing [84] and data analysis using machine learning techniques such
as TensorFlow1. Furthermore, under the proliferation of mobile devices in the last few
years, offloading intensive computation to a set of mobile devices in an opportunis-
tic network emerges as a new, promising solution for distributed processing [207].
Compared to the legacy computation offloading to a remote cloud for processing,
opportunistic offloading provides several advantages: (i) reducing deployment cost,
since the idle resources of nearby mobile devices will be utilized [223], (ii) reducing
network traffic flowing through the communication infrastructure [76], and (iii) po-
tentially reducing responses delay [122], since the mobile devices can communicate
with each other directly through common available wireless communication, such as
WiFi-direct, or Bluetooth.

Communicating directly with each other through wireless technologies such as ad
hoc WiFi, recently WiFi-direct, or Bluetooth is the fundamental enabler for the utiliza-
tion of mobile devices in the aforementioned application scenarios. Early research on
Mobile Ad Hoc Network (MANET) allows us to construct and maintain communica-
tion among nodes in an ad hoc network; however, in consonance with the development
and proliferation of mobile hand-held devices, there is a shift towards people-centric

1 https://www.tensorflow.org/mobile/
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2 introduction

networking [34]. The main driver behind people-centric networking is the mobility
of the human carriers. On the one hand, human mobility makes the network more
dynamic and unstable; on the other hand, mobility can also be used to deliver mes-
sage to before unreachable network partitions, which is the main idea behind mobile
opportunistic networking [95]. The usage and deployment of mobile opportunistic
ad hoc network in practice have been studied and proved to be credible; for instance,
the BMBF funded project SMARTER2 enables information exchange in disaster relief
situations through opportunistic ad hoc network, formed by mobile hand-held devices.

Despite the plethora of advantages, which are available through the utilization
of mobile devices, building services and applications over an opportunistic network
formed by such devices still has not found the widely acceptance it deserves; as stated
by Lindgren et al. [99] "What would be the Killer app for opportunistic networks". This
question arises mainly due to the dynamic nature of opportunistic network, formed by
heterogeneous mobile devices, which makes it a challenging task to ensure the quality
of applications and services on top of such network.

Focusing on this challenge, in this thesis, we propose a tasking methodology, which
addresses the question of how to ensure quality for services and applications built
upon opportunistic networks.

1.1 motivation for opportunistic resource utilization

Opportunistic resource utilization is first introduced as a paradigm, generally focusing on
application built upon specialized ad hoc network, such as opportunistic network [96].
Thus, opportunistic resource utilization is a well-suited model for scenarios, which
mainly relies on opportunistic ad hoc network as the main communication medium,
such as in emergency response scenarios, in which the communication infrastructure
might be impaired or inaccessible [93]. In the work at hand, we focus on providing
Quality of Service (QoS) for applications and services, that are based on opportunistic
resource utilization.

Since mobility is the main driver for an opportunistic network, and an end-to-end
path between devices in an opportunistic network is not always possible, a plethora of
forwarding mechanisms have been proposed, which mainly focus on increasing the
messages delivery rate [17, 24, 92, 98, 147]. Some applications, directly profiting from
high delivery rate of opportunistic forwarding are, for instance, information dissemi-
nation, e.g., notification in emergency response [115], or traffic information in vehicular
networks [145]. However, increasing messages delivery rate in opportunistic network
in general does not automatically ensure the quality requirements of applications and
services.

Following the paradigm of opportunistic resource utilization, Conti et al. introduce
and discuss the advantages of the so-called opportunistic computing [35]. Here, a de-
vice upon opportunistic contact with other devices or infrastructure, can leverage the
idle, available computing resource of these to offload computation. Many approaches

2 http://smarter-projekt.de/



1.2 research challenges 3

for opportunistic offloading to date offload computation to one-hop edge computing
infrastructures [114, 119, 122, 216], with two main targets: i) saving energy of devices
with low computing-capacity, and ii) reducing network traffic for communication in-
frastructure required for computation offloading to a remote cloud server. Accordingly
QoS is often measured by the amount of energy for the offloading devices, or how
much network traffic can be saved. With regards to offloading over multiple hops, pri-
marily targeting mobile devices, several approaches dealing with services composition
as a type of computation offloading in opportunistic network have been proposed [146,
150, 166, 187]. The main QoS targets of services composition in opportunistic network
lie in optimizing response time, and success rate of the services execution. Another
important target for opportunistic offloading is load balancing [167], benefiting overall
performance, and increasing user’s acceptance. While the aforementioned approaches
deal with different aspects of computation offloading for mobile devices, they still lack
support for adaptation and for enabling autonomous decisions of the participating de-
vices, which is required due to the dynamic nature of opportunistic networks.

Despite the flexibility, acquiring distributed information leveraging built-in sensors
and user’s input through mobile devices, i.e, mobile crowd sensing, introduces another
dimension of quality requirements, i.e., quality of information [62]. With regards to
information, quality requirements can be simple, such as which sensor to use, when
to trigger data collection etc. [215]. The quality requirements can also be complex, for
instance to cover up the sensing area [77, 206]. Most of the approaches, however, rely
on a centralized coordination entity to keep track of the participating mobile devices,
in order to formulate an optimization problem and accordingly derive a solution for
sensing tasks allocation. Several distributed recruitment frameworks [75, 195] attempt
to realize crowd sensing on opportunistic networks, these, however consider the cov-
erage problem of a sensing area, therefore assume a rather homogeneous setup.

In this thesis, we explicitly consider the heterogeneity to assign tasks to the capable
devices, aiming to leverage their resources and capabilities opportunistically to ensure
quality requirements.

1.2 research challenges

While providing QoS is a non-trivial task in centralized systems, it becomes even
more challenging in opportunistic networks to satisfy quality requirements due to
the mobility and rapid changes of participating devices. With respect to the goal of
the thesis as aforementioned and to the focus on mobile opportunistic networks, the
following research challenges are identified:

Challenge: Rapid changing context of the participating devices, resulting from mobility,
heterogeneity and resource constraints.

The two most important aspects characterizing the rapidly changed context of the de-
vices, that need to be considered for tasking in a mobile opportunistic network are the
mobility and the heterogeneity. The mobility and the heterogeneity of the participating
devices can be considered as both chances, as well as challenges for tasking in mobile
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opportunistic networks. On the one hand, the mobility makes the network unstable,
leading to rapidly changed network topology. On the other hand, the mobility of of
the devices can be utilized to bridge the communication in case the end-to-end path
among devices are not available at particular time. Similarly, the heterogeneity of the
participating devices can be leveraged in a collaborative processing of complex task.
To this end, a complex task can be divided in several simple tasks, which require a
special operation, a particular amount of resources, available due to the heterogeneity
of devices in the network. Nevertheless, the heterogeneity together with the mobility
of the participating devices can also result into the unavailability of required resources
at particular time. All in all, how and when to leverage, or to countermeasure mobility
and heterogeneity have to be specially taken into consideration. Last but not least, the
participating devices in a mobile opportunistic network are mostly resource constraint
w.r.t. computation capacity, energy level etc., which adds up to the complexity of the
task allocation.

Challenge: Decentralized and distributed coordination.

As discussed in the motivation, access to a centralized coordination entity cannot
always be guaranteed for the participating devices. Furthermore, the devices in a
mobile opportunistic network tend to move and change their location frequently,
which makes a centralized coordination both remote as well as in a close proximity,
e.g., through clustered-head devices, less feasible. Consequently, the devices in a
mobile opportunistic network should coordinate with each other in a decentralized
distributed manner. Due to the fact, that each device in the opportunistic network
only possesses a partial view of the network and due to rapidly changed context as
elaborated in the first challenge, distributed and decentralized coordination can lead
to inefficient resources utilization and generate much overhead. Thus, achieving a
good performance, while generating less overhead through distributed coordination
is the second challenge that needs to be addressed.

1.3 research goals and contributions

The main objective of this work is to develop a tasking methodology for mobile opportunis-
tic networks, providing mechanisms to utilize the available resources and capabilities
of the participating devices in such opportunistic network to (i) acquire information,
(ii) process the acquired information to extract more valuable, situation-aware informa-
tion, and (iii) disseminate information to the information-consumers efficiently, while
ensuring quality requirements. Accordingly, the main objective is translated into three
major research goals

Research Goal 1: Decentralized mechanism to distribute sensing tasks.

To acquire information, the built-in sensors in mobile devices can be leveraged. How-
ever, not all information and sensing data are relevant. Particularly, relevant data
requested by an information consumer should satisfy spatio-temporal requirements
as being specified by this information consumer. To this end and to account for the
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aforementioned challenges, we contribute a naming scheme and a forwarding pro-
tocol to allow for efficient sensing tasks distribution in decentralized opportunistic
network [131]. The proposed naming scheme incorporates the tasks requirements,
which allow the participating devices to act autonomously, thus facilitating decen-
tralized and distributed coordination. The forwarding mechanism is designed aiming
to leverage mobility of the participating devices to forward the sensing tasks to the
capable mobile producers.

Research Goal 2: Mechanism to enable distributed in-network processing.

The information as being acquired through the contribution stated in research goal 1,
has to be further processed to extract more valuable and high-level information. Since
processing information might require several (complex) operations, a local process-
ing on a single device might consume much energy, rendering resource-constraint
devices useless. Therefore, the processing can be offloaded to a remote cloud or to
devices in close proximity for collaborative computation. While the former is often
used in general, an access to a remote cloud server is not always guaranteed (impaired
communication infrastructure, urban rural areal with limited access, failure and un-
available cloud server). Hence, we focus on the later, i.e., collaborative processing of
information utilizing heterogeneous resources of devices in opportunistic networks.
To this end, we propose a mechanism to enable distributed processing of complex
processing tasks and to facilitate autonomous decision of the participating devices
aiming towards decentralized, distributed coordination [134]. Accordingly, we design
computation handover strategies for efficient distributed processing [136].

Research Goal 3: Mechanism to deliver results to mobile information consumers.

The results of crowd sensing tasks and distributed processing need to be delivered to
the right consumers. While information dissemination is intended for multiple infor-
mation consumers, results delivery is more targeted. Thereby, common dissemination
mechanisms in opportunistic networks, which mostly rely on flooding and replicating
messages are inefficient for results delivery. Furthermore, results delivery becomes
more complicated if the information consumers are also mobile. We address this prob-
lem in our third and last research goal. We design a mechanism to integrate mobility
prediction to estimate the future locations of mobile consumers for results delivery.
Thereby, results delivery based on mobility prediction needs to be accurate, achieve
low latency while generate less overhead.

In order to realize resources utilization in an opportunistic network, one has to as-
sume cooperative behavior of the participating devices. Thus, trust among the devices
is desired. We assume that the devices can set up a trusted environment among each
other in a distributed manner such as [44], and do not provide our own mechanism
targeting trust. Additionally, privacy is also an important aspect, since we rely on
distributed coordination and on context information shared by participating devices
to enable autonomous decision making. Considering the privacy for participating
devices, the information disclosed in the shared context information in our mecha-
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nisms only reveals sufficient information required for either forwarding or processing
tasks. Overall, we assume that the participating devices cooperate with each other in
a collaborative manner and do not have any malicious intentions.

1.4 structure of the thesis

In this chapter, we have elaborated on our main research goal to develop a tasking
methodology, that leverages the resources of mobile devices to ensure quality require-
ments for applications and services built upon opportunistic network. Following the
introduction, in Chapter 2 we provide an overview of background information with
regards to the enabling technologies to achieve the contributions of this thesis. Based
on the background, we review and discuss the related work, focusing on three main
aspects of our contributions, namely, (i) location based forwarding in opportunistic
networks as well as interest forwarding in Named Data based mobile networks, (ii)
distributed processing, and (iii) information dissemination.

The contributions of this thesis constitute an information retrieval workflow, that in-
volves three main steps (i) creation and assignment of information (sensing) tasks, (ii)
distributed processing of crowd collected data within networks, and (iii) delivery of
the processed data to the right information consumers. According to these steps, we
will present the contributions in Chapter 3, 4, and 5. We propose the mechanism for
crowd sensing tasks distribution as the first step of information retrieval in Chapter 3,
addressing the mobility and the heterogeneity of the information producers. For the
second step of information retrieval, to process the collected data directly in an oppor-
tunistic network, we leverage the idle resources available on participating devices. We
introduce our distributed processing mechanism focusing on opportunistic networks
in Chapter 4. To wrap up the information retrieval workflow, we present the concept for
results delivery, addressing the mobility of information consumers in Chapter 5.

Finally, the thesis will be concluded in Chapter 6, summarizing our core contribu-
tions. Thereby, we provide a discussion on potential research directions taking the
contributions of this thesis as a basis.



2
BAC KG RO U N D A N D R E L AT E D WO R K

In this chapter, we provide background information, discuss the enabling technolo-
gies, and review the state of the art which are relevant for our research goals. First,

in Section 2.1, we elaborate on several sensing paradigms as the basis for information
retrieval. We consider emergency response as the motivating scenario for our con-
tributions. Given the impaired communication infrastructure in emergency situation,
we rely on forwarding in an opportunistic network as communication medium to
provide services and applications. Therefore, in Section 2.2, we review related work
for message forwarding in opportunistic networks. Particularly, for the purpose of
crowd sensing tasks distribution, location-based forwarding concepts such as geo-
cast in opportunistic networks are of interest. Furthermore, the information request
forwarding concepts to retrieve information in Named Data Networking (NDN) in
mobile networks, that are primarily built upon wireless direct ad hoc communication
such as MANET and Vehicular Ad Hoc Network (VANET), are closely related to our
work. Second, in Section 2.4, we analyze related work for distributed data process-
ing, in which the processing functions are distributed and carried out by the nodes
directly in the network, without offloading to any cloud server. Thereby, we review
in-network processing concepts of relevant research contexts such as WSN, Complex
Event Processing (CEP) operator placement, and enabling techniques for distributed
processing in opportunistic network, such as Delay-tolerant Networking (DTN) based
Remote Procedure Call (RPC), Named Function Networking (NFN). Third, for in-
formation/results delivery, forwarding concept of mobile opportunistic network and
NDN based mobile network can also be leveraged. Thereby, we concentrate on the state
of the art for information/results dissemination in opportunistic network, as well as
data forwarding for NDN based networks. We conclude the chapter by discussing the
challenges for providing QoS for applications and services built upon opportunistic
network and consequently investigating the research gap.

2.1 information retrieval through sensing paradigms

Information retrieval is a term with a very broad meaning. For further discussion, we
refer to the definition coined by Larson from an academic perspective with regards to
computer systems as follows:

Definition 2.1: Information Retrieval

"Information retrieval is finding material [...] that satisfies an information need
from within large collections (usually stored on computers)." [86]

7
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As per Definition 2.1, three aspects of information retrieval are apparent (i) in-
formation need, i.e., requirements that have to be defined for the purpose of getting
information, (ii) finding material, i.e., data in several forms that can be used to ex-
tract information, and (iii) large collections, which refers to the scale and distributed
manner of information location. Information retrieval can occur, for instance, when a
user searches on his computer, looks for something in the Internet, or collects data
from a sensor network. With respect to the context of this thesis, we refer to the act
of information retrieval, as acquiring information from geographically distributed sen-
sors of different types. In the following, we discuss the two most important sensing
paradigms, i.e., wireless sensor network and crowd sensing.

Wireless Sensor Networks — WSNs: WSN technology has gained attention, both in aca-
demic research and production systems due to its great potential for application [12,
42]. Information retrieval with WSN technology relies on sensors, which are in gen-
eral small devices with capabilities to capture data from the surrounding environment,
e.g., temperature, humidity etc.; sensors are also capable of networking via wireless
communication standards such as ZigBee/IEEE 802.15.4 [69]. Furthermore, a sensor
also possesses a processing unit, which allows for simple data processing. Multiple
sensors can form an ad hoc network and allow the user to interact with the WSN
network. Within the WSN network, several nodes can be elected as sink nodes, which
on the one hand serves as an interface that receives user’s command, and on the
other hand receives the data collected from the sensor network. Through the sinks as
interfaces, a user is able to inject sensing or processing tasks to the sensor network,
which will be forwarded to the appropriate sensors for execution. Due to the fact, that
sensors are small low-cost devices, mostly powered by a battery, energy efficiency is
the biggest challenge to tackle in WSNs. A plethora of research work has been pro-
posed to address the energy issue of WSN from different perspective, e.g., Medium
Access Control (MAC) techniques [22], routing techniques for WSN [205], topology
control techniques [169], and data processing, e.g. filter, aggregation within sensors
networks [208]. Overall, the concepts and techniques developed for retrieving infor-
mation from WSNs provide a foundation, which inspires other sensing paradigms
as well as information retrieval systems. In comparison to opportunistic networks
(cf. Section 2.2), a WSN is typically of small scale, and does not fully consider rapid
changes and mobility of participating devices.

To create an application using WSN technology, the sensors have to be deployed in
advance, which induces deployment cost and reduces the flexibility of the technology.
Recently, inspired by WSN the crowd sensing paradigm emerged with more flexibility
with regards to deployment.

Crowd Sensing: Due to the proliferation of mobile devices in recent years, and to
the fact that modern mobile devices are equipped with diverse built-in sensors, the
crowd sensing paradigm has emerged as a new, flexible model to acquire distributed
information. Crowd sensing can take on two forms, i.e., participatory sensing and op-
portunistic sensing [85]. While in participatory sensing, the requested information is
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collected upon being actively triggered by the device’s carrier; in opportunistic sens-
ing, the requested information is collected when certain conditions are met, without
requiring any interaction from the human carrier. For this thesis, we abstract from
both crowd sensing forms, and assume that if a device receives a sensing task, the task
will be executed. Figure 1 shows the illustration for a common crowd sensing system
architecture.

1) Registration

3) Sensing Tasks assigment

4) Upload collected data

2) Tasks

Creation

Crowd Sensing System

Participating Devices

Figure 1: Illustration of a general architecture for crowd sensing systems (adapted from [151]).

A typical crowd sensing system consists of two parts; one part is implemented in
form of distributed servers for management purpose, and another part is implemented
on the participating devices in form of an application [55]. The participating devices
can register themselves with the management server, to inform the server on its will-
ingness to receive and execute the appropriate sensing tasks to its capabilities (step 1).
A user, who wants to retrieve particular information, can interact with the crowd sens-
ing system, to create sensing tasks based on the information need (step 2). Thereafter,
the crowd sensing system relies on a list of available devices obtained through the
registration, to assign the sensing tasks to the devices, that can execute the tasks (step
3). To facilitate sensing tasks creation (step 2) and tasks assignments/execution (step
3), a machine readable abstraction/representation might be required. For instance,
Medusa [155] provides such abstraction, and a corresponding semantic to specify the
goal of the sensing task, the steps to execute the sensing tasks on the participating
devices, which can be interpreted and scheduled for execution by the application run-
ning on the participating devices. Finally, the data collected from the participating
devices will be uploaded to the server, utilizing communication interfaces available
on the participating devices (step 4). Since a mobile device possesses multiple com-
munication interfaces, several upload options are possible, e.g., directly to the server
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via LTE, WiFi network when connected, or indirectly through multiple-hop ad hoc
communication to forward data to some gateway devices [111].

Compared to WSN, crowd sensing provides more flexibility and reduces deploy-
ment cost, since crowd sensing utilizes existing mobile devices as sensors. Conse-
quently, crowd sensing introduces several inherent characteristics [55]: (i) crowd sens-
ing enables data collection from a large scale scenario, given the participation of a
sufficient number of devices to cover the area, which is not possible with preinstalled
sensors, (ii) as a tradeoff, the quality of data collection can vary due to heterogeneous
configuration and quality of sensors available on participating mobile devices, (iii)
while WSN in-network processing units are only capable of simple data processing,
mobile devices are capable of executing complex operations; consequently the col-
lected data can be processed and analyzed completely within the network without
offloading to a remote computation entity. However, even though mobile devices are
capable devices, they still suffer from resource constraints. A crowd sensing applica-
tion might have to share the resources with other applications running in the mobile
devices and a crowd sensing application might have to serve several sensing tasks in
parallel.

Research on crowd sensing has focused on several aspects. Many works deal with
practical aspects of crowd sensing with regards to definition and implementation of
crowd sensing applications, such as automotive-oriented applications [51, 143], health-
care [152, 153], disaster relief [108, 212], and design of middleware solution to develop
crowd sensing applications on participating devices [2, 155, 179, 213]. Other research
directions of crowd sensing, which focus more on the theoretical perspective, are to
recruit more devices to participate in the crowd sensing application, and to assign
sensing tasks to satisfy predefined requirements, taking into consideration the highly
dynamic nature of mobile devices [157]. To date, the most commonly used quantifica-
tion for crowd sensing quality used in research is still sensing area coverage and cost
minimization [62]. Accordingly, the most common approaches rely on the formulation
of an optimization problem, taking into account the current state of available partici-
pating devices, such as current energy level [72, 100], the total budget for the crowd
sensing campaign [102, 180], as constraints to determine a tasks assignment, satisfying
both the constraints and the area coverage. Thereby, these approaches have to assume
that the participating devices can maintain a connection to the tasking servers of the
crowd sensing system, in order to track and send requests to these devices. How-
ever, a persistent connection between participating devices and the tasking servers
cannot always be guaranteed, e.g., in emergency response scenarios. Ma et al. [111]
point out, that the WiFi interface of mobile devices can be utilized to enable commu-
nication directly among participating devices via opportunistic contacts, allowing for
sensing tasks assignment and resource utilization even if the central tasking servers
are not reachable, consequently ensuring the successful information retrieval. This
type of communication belongs to the opportunistic networks paradigm, which will be
discussed next.
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2.2 opportunistic networks

Opportunistic networks are considered as a subclass of Delay-tolerant Networking
(DTN). Therefore, we first briefly review the concept of DTN. DTN-based communi-
cation [48, 49] is proposed with focus on intermittently connected networks, in which the
connections between network entities are only short-lived. The biggest challenge in
intermittently connected networks is that the end-to-end connection between network
entities cannot always be guaranteed. As a consequence, flow based Internet proto-
cols such as TCP/IP cannot function properly in such partitioned networks. Examples
of intermittently connected networks can be found in interplanetary networks for deep
space communication [5], or in disaster situations, in which the communication in-
frastructure might be impaired and the network becomes divided into several regions.
To allow for communication and for inter-operability among separated regions of the
network, DTN relies on an overlay protocol, named bundle layer.

Application
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Transport

Network

Link S

Phy S

Bundle

Transport
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Source Destination
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Transmission Mediums

Figure 2: Illustration of the protocol stack with bundle in DTN communication (adapted
from [79]).

The bundle layer [173] resides between application layer and transport layer as
shown in Figure 2. A bundle encapsulates all data and control information within a
single entity, which can be delivered asynchronously from source to destination. Each
bundle can travel through several gateways or routers. It is assumed, that the pairwise
transmission of a bundle between two DTN network entities is reliable. Thereby, the
transmission mediums between each pairs of DTN entities can be different, e.g., Eth-
ernet, wifi, satellite based communication. Consequently, the inter-operability among
different network regions can be realized. Each DTN gateway or router is capable of
storing a bundle, therefore, enables asynchronous delivery of a bundle through store
and forward, in which each network entity first stores the bundle, and later forwards or
delivers the bundle when connected to other network entities or to the destination. The
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concept of DTNs and bundle as transmission entity can be generalized with a bundle
being a message. Mobile opportunistic networking paradigm realizes this generalization
as a subclass of DTN concept. Mobile opportunistic networking, which can also be
referred to as only opportunistic networking, focuses on asynchronous delivery of
messages. The illustration of an opportunistic network is shown in Figure 3.
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Figure 3: Illustration of opportunistic forwarding to deliver a message.

Since an end-to-end path between sources and destinations in an opportunistic
network cannot always be guaranteed, we refer to the message delivery process as
opportunistic forwarding, since the term routing is normally used when a route can be
established between source and destination, e.g., in MANET [188]. The objective of
the forwarding process in opportunistic networks is to successfully deliver messages
to the intended destination, while minimizing the resources used by the participating
devices [175]. Opportunistic networking focuses primarily on devices which are highly
mobile and can communicate with each other through a wireless communication in-
terface upon opportunistic contact. Each opportunistic contact can be used as a chance
to forward or to replicate a message. Due to the fact that in opportunistic networks the
devices are highly mobile, mobility of devices can be leveraged for message delivery.
Thereby, opportunistic networks extend the store and forward concept of DTN to the
store, carry, and forward principle to deliver messages. After receiving a message, a de-
vice can store the message, carry the message, thus becomes a message ferry and later
forward either to other devices with better chance to reach the destination, or deliver
to the destination itself. As mentioned previously, opportunistic network is a generic
networking paradigm. The concept can be implemented upon wireless communica-
tion interfaces of mobile devices in different ways. For instance, Doering et al. [43]
base the implementation to allow for opportunistic networking among Android based
devices on the original specification of the bundle overlay [43]. This implementation
can work for ad hoc WiFi, WiFi direct, as well as Bluetooth. Baumgärtner et al. [13] ex-
tend Serval [57], a middleware developed for providing services on wireless mesh ad
hoc networks for mobile devices based on the 802.11 standard, with store, carry and for-
ward capabilities, thus realize opportunistic network. In general, any self-encapsulated
message entities transported pairwise over wireless communication interfaces among
mobile devices, are compatible for being used in opportunistic networks.
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2.2.1 Forwarding Mechanisms

In this section, we first briefly review several prominent common forwarding ap-
proaches for opportunistic networking, before going into more details of related work
for location-based forwarding and interest forwarding.

First to be mentioned is epidemic forwarding [200] proposed as a reliable solution for
successful message delivery in opportunistic networks. Reliable message delivery is
achieved by letting devices exchange and synchronize the messages in their buffers
upon each opportunistic contact, i.e., flooding the whole network. Thereby, all partic-
ipating devices will receive all messages sooner or later. It is clear, that this approach
has a trade-off between redundancy and reliability. Following up on the redundancy
draw-back of epidemic forwarding, several forwarding approaches attempt to reduce
the number of redundant messages, being replicated in the network, while still aim-
ing to achieve successful delivery of messages in a timely manner. One prominent
example of approaches relying on message replication is spray and wait [181], which
injects several copies of a message into the network, and wait for these to be success-
fully delivered. An improved version of spray and wait is proposed, i.e., spray and
focus [182] which instead of waiting in the second phase, tries to forward messages
to devices with higher probability the reach the destinations. The probability for the
focus phase in spray and focus is calculated based on the last encounter time with
the destination. Several approaches dig deeper into the direction of estimation and
prediction to further regulate the forwarding decision. For instance, PROPHET [98]
bases the forwarding decision on an aging metric, which lets each device estimate the
probability that it can meet other devices in the network. In PROPHET, more frequent
meetings mean a higher chance one device can receive messages intended for the other;
however, less frequent meetings will result in a decay value, which consequently de-
creases the chance of a device to become a relay node. Lately, with the shift towards
more people-centric opportunistic networks, many forwarding approaches thus lever-
age context information of devices, which in turn includes the context information of
their human carriers. Under this category, we mention prominent approaches such as
HiBOP [17], profile-cast [70, 71], and CAR [130]. The common idea behind forwarding
approaches, that use context information for message deliveries, is to create a profile
of participating devices based on the context information and to match the profile of
the relay devices with the destination, in order to derive the similarity. Devices with
higher value of the similarity metrics will be favored during the forwarding process.
Context information used in these approaches can be social-based metrics, such as
community, group, frequent visiting locations etc.

The general forwarding approaches for opportunistic networks focus on the delivery
of messages to a specified destination. In recent years, location-based services, e.g.,
location-based data collection in emergency response [105], is gaining importance.
Consequently, for location-based services built upon opportunistic network, messages
are not only intended and delivered to specified recipients, but also for region, for a
group of recipients, which fulfill location requirements. Accordingly, next we review
and discuss the related work for location-based forwarding in opportunistic network,
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as well as several location-based applications/services built on this type of network
in detail.

2.2.2 Location-based Forwarding

Location-based forwarding in opportunistic networks can be considered from two
perspectives, infrastructure-supported and infrastructure-less communication archi-
tecture. For several circumstances, such as in an emergency response scenario, a hybrid
communication infrastructure might still be available, such that part of the network
relies on communication infrastructure, while part of the network has to rely on a
flat opportunistic ad hoc network. Thereby, several gateway devices can be selected
to connect partitioned network regions [39]. Location-based forwarding thus can be
realized by forwarding to gateway devices near the designated regions [117]. This
approach is also quite common in VANET, in which Road Size Units (RSU) and road
segments can be leveraged for location-based forwarding [90, 97, 125]. However, in the
considered emergency response scenario, the coverage of such gateway devices over
the designated region cannot always be guaranteed, accordingly, very often in the last
mile of the location-based forwarding, the devices have to rely on an infrastructure-less
opportunistic ad hoc networks. Next, we review and discuss selected location-based
forwarding approaches designed for opportunistic networks.

Obviously, epidemic forwarding can also be used for location-based applications in
opportunistic networks. However, due to the high overhead caused by flooding, this
approach is often used as a baseline for comparison. Location-based forwarding mainly
relies on context information such as location, movement speed, moving directions
of the devices. Thereby, location-based forwarding has to assume that each device is
capable of determining its current location, and movement; thus each device is capable
of estimating its current distance to the designated geographical regions.

Using distance information from participating devices has been proposed since
early research in location-based routing designed for MANET, with the location-based
aided routing (LAR) [80]. LAR defines the expected zone where the destination might
appear, and the request zone, covering the expected zone, which serves as the designated
region for the routing decision. In LAR approach, distances of the MANET nodes are
broadcast towards the source, so that this can build corresponding routes, leading
towards the direction request zone, by choosing nodes with minimum distance for the
next hop. For opportunistic networks, since an end-to-end path does not always exist,
consequently, the forwarding decision is made by the mobile devices along the way.

The MOVE framework introduced in [87] is one of the first location-based forward-
ing schemes designed for opportunistic networks. In the MOVE approach, each node
estimates the nearest distance that this node can get with regards to the designated lo-
cation. The estimation is done based on the current location, and the moving direction
of the corresponding node. A device responses upon a request for information with
its predicted nearest distance towards the destination. Consequently, the devices with
the closest distance are chosen as the next forwarding hops. Thereby, despite being
designed as location-based forwarding, the MOVE framework does not consider a
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region, but rather a destination point. Furthermore, with the prediction for the near-
est distance, the MOVE framework needs to assume a stable movement trajectory of
the participating devices, which might not be suitable in the case of people-centric
opportunistic network, in which the mobility of devices is uncontrollable.

Ma et al. [112] tackle the problem of forwarding towards a geographical region by
identifying nodes with higher chances to visit the destination. The authors assume
that the characteristic of the mobility pattern can be modeled as a Poisson process.
Thus, by keeping track of the past visited locations, each device is able to construct
a function to calculate the probability of this device to visit a designated location,
which is expressed by the coordinates and a radius. To implement geographic based
forwarding, Ma et al. duplicate several copies of a geocast message, which contain
the coordinates of the geographical destination and broadcast the geocast messages
in the network. Upon opportunistic contact, two devices can exchange the missing
geocast messages, calculate the probability of the required location in the messages,
and notify the source of the results. As a result, the source of a message can determine
the candidate to carry the messages to the designated location based on the predicted
probability value.

Geoopp [107] considers the geocast problem for opportunistic networks by dividing
the area into different cells. For each cell, the authors calculate three probability values
for each device, which indicate (i) the probability that the corresponding device will
visit a particular cell, (ii) the probability that the corresponding device will stay long
enough in the cell to deliver a message, and (iii) the probability that the corresponding
device will be connected with other devices, which indicates whether this device will
have sufficient resources and capacities for messages delivery. All three probability
metrics are calculated by having each device track and record its past locations as well
as connections with other devices within a cell. As a result, this consumes resources
on the devices for storing information. Location-based geocast is realized, when two
devices are connected to each other. Thereby, they will request to take over geocast
messages intended for regions which belong to a cell that this node has a high visit
frequency and a high probability of having sufficient resources for messages delivery.

A common point of the approaches mentioned above is that the location-based
forwarding only utilizes a single copy of the geocast message. Using a single copy
can save communication overhead. However, the location tracking and probability
estimations on these devices suffer from computation overhead. Another direction
to realize geocast is to utilize multiple copies of geocast messages. Soares et al. [178]
propose a location-based forwarding concept named Geospray. Thereby, the authors
use multiple copies of a geocast message to increase the delivery rate. Geospray com-
bines geoopp [107] and the binary version of spray-and-wait [181]. The calculation of
the visiting probability introduced in geoopp is used to estimate the time when the
corresponding node will visit the destination. Geospray uses the binary spray-and-
wait to replicate geocast messages. At each opportunistic contact, a device will give
half of the replicated geocast messages to its neighbors until one copy of the message
remains. In this way, several replicated geocast messages are disseminated in the net-
work, increasing the chance to reach the destination. To restrict the overhead caused
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by replicating messages, geospray uses the active receipts to notify the devices in the
network to remove copies of the delivered messages. When two devices meet each
other, they exchange information about the geocast messages in their buffers. Thereby,
they estimate the expected time to visit the destinations as being requested in the
geocast messages. If a device is expected to visit a destination sooner that the current
carrier, then the corresponding message will be given to the new carrier.

Cao et al. [27, 28] propose adaptive replication of messages for location-based for-
warding with respect to a designated device. In the first step, when two devices meet
each other, they will exchange information about their encounters with the destination.
Based on the aggregated history encounters with the destinations from these devices,
a future location for the designated device can be estimated. In [27], the authors pro-
pose to replicate the messages on devices which satisfy either one of two conditions (i)
devices are approaching the destination faster, and (ii) devices will stay longer within
a range near to the destination. To reduce delivery time and overhead, messages are
prioritized in the buffer of each device according to a time-to-live value and to the
distance of the carrier node towards the destination. A message will be prioritized
more when the time-to-live value almost runs out and when the distance towards the
destination is getting smaller. In this way, the messages are only replicated towards a
predefined range. Extending this approach, in [28] the authors base their work on the
spray-and-wait forwarding and only replicate a maximum number of messages into
the geographical range towards the destination.

Similar to the approach above, Rajaei et al. propose GSAF in [156]. GSAF allows
users to define a cast region flexibly by choosing multiple coordinates; consequently,
defining a polygon form for a cast region is possible. With the defined geocast region
for each message, the message is forwarded based on spray-and-wait. In the first step,
a fixed number of copies of a geocast message are replicated and forwarded to the
devices moving towards the cast region. As soon as a device reaches the cast region,
it switches from replication using spray-and-wait approach to the epidemic flooding
approach. Thereby, the messages are broadcast to all devices within the cast region,
which ensures the availability of the messages within this region. When a device
moves outside the cast region, it will automatically delete all corresponding geocast
messages.

In this section, we reviewed state of the art for opportunistic forwarding in gen-
eral and location-based forwarding in particular, since these approaches provide the
communication basis for applications and services built on opportunistic networks.
To wrap up this section, we provide some samples for applications and services built
based on opportunistic forwarding to demonstrate the potential of opportunistic net-
works. In [194, 195], Tuncay et al. propose an approach for recruiting mobile devices to
carry out sensing tasks. Thereby, the authors only consider homogeneous sensors in
the network and use profile-cast [71] to disseminate sensing tasks to devices with vis-
ited locations closely matched with the intended sensing destination. Zhao et al. [221]
design a solution to tackle the sensing area coverage problem. Thereby, epidemic flood-
ing is utilized to exchange and synchronize the area which has been covered between
two devices pairwise. Thus, a distributed coordination for crowd sensing is achieved.
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In Fleanet [88], Lee at al. propose a marketplace for vehicular networks, which rely
on epidemic flooding to facilitate dissemination of query and transaction between
vehicles as sellers and buyers. Dealing with query dissemination for opportunistic
networks using social metric, in [50], Fan et al. assume that the devices belong to at
least one from many social communities and thus each device frequently visits its
communities. This visiting pattern can reveal information about the future location of
a device, thus can be leveraged for forwarding decision of a query.

Overall, opportunistic networks provide the communication medium to realize
many types of services and applications. However, the communication in an op-
portunistic network is still host-based communication, therefore, special adaptation
and handling on application layer to retrieve information are necessary. Recently,
information-centric networking paradigm emerges, in which the communication is
primarily based on a naming schema. Such a communication paradigm naturally facil-
itates information retrieval. In the next section, we discuss this networking paradigm
in detail.

2.3 named data networking — ndn

We base our mechanism to distribute crowd sensing tasks on the Named Data Net-
working paradigm due to its focus on addressing information. In this section, we first
elaborate on the concept of information-centric networks in general and on Named
Data Networking in particular.

2.3.1 Background

Even though location-based forwarding concepts of opportunistic networks can be
adapted and utilized to support information retrieval, in essence, an opportunistic
network is still based on host-to-host communication. Realizing the increasing impor-
tance of information retrieval in communication networks, recently, several research
projects propose to shift the focus from host-to-host communication in existing net-
works to Information-centric Networking (ICN). ICN [3] has the following distinctive
features: (i) named data, which is used to address the requested data/content/infor-
mation instead of addressing the host, (ii) routing and forwarding based on naming
conventions, which focus on retrieving the requested information, and (iii) in-network
storage/caching to store named data, as well as request on each ICN capable node,
which is similar to the bundle concept of DTN to decouple source and destination.
Since ICN relies on self-encapsulated named data objects for communication, the re-
quests for data are propagated to multiple data sources by default. Therefore, another
advantage of the ICN concept is to leverage multiple data sources to balance the traffic
of the network [14].

Named Data Networking (NDN) [217] is a networking architecture that implements
the ICN concept, which is still being actively developed. NDN uses two types of packets
for its communication to retrieve information, i.e., Interest packet and Data packet,
which are shown in Figure 4. Interest packets are used to request information, while



18 background and related work

Content Name

Selector

(order preference, 

filters..)

Guiders

(scope, Interest 

lifetime)

Nonce

Interest Packet

Content Name

MetaInfo

(content type, 

freshness period ...)

Content

Signature 

(Signature Type, Key 

Locator...)

Data Packet

Figure 4: Illustration of interest and data packets used in NDN (adapted from [217]).

Data packets contain the information being requested. Interest and Data packets are
identified through a naming convention, predefined by the NDN-based application.
The process of requesting and retrieving information is illustrated in Figure 5.
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Figure 5: Illustration of interest and data packets forwarding in NDN (adapted from [217]).

Each NDN-capable device uses three data structures to realize the forwarding pro-
cess, i.e., Content Store (CS), Pending Interest Table (PIT), and Forwarding Informa-
tion Base (FIB). Information retrieval in NDN is divided into two phases, i.e., Interest
forwarding phase and Data forwarding phase. The whole process is triggered when an
information consumer wants to retrieve a particular piece of information. Thereafter,
the consumer sends out an interest packet with a predefined name. When an NDN
node receives an interest packet, it first checks the CS, which serves as the storage to
cache data packets. If a data packet exists in the CS with its name matched with the re-
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quested interest, this data packet will be forwarded back to the information consumer,
along the way that the interest packet has traversed. In case a similar interest already
exists in the PIT, the incoming interest packet will be dropped. If there is no matched
data in the CS, the interest and the communication interface from which this interest is
received will be added to the PIT. Thus, the PIT enables the data packets to backtrack
towards the information consumers later. Afterward, the FIB and strategies module
of the NDN node will be consulted for forwarding decision. When an interest packet
reaches the information producer, which holds the requested data, the data packet will
be constructed and forwarded back to the information consumers. This process is
called data forwarding phase. By default, when data packets reach an NDN node, this
node first checks to see if a matching interest exists in the PIT. Data packets will be
dropped if no matched interest can be found to minimize possible redundant storage.
If a matching interest exists, data packets will be stored in the CS. Thereby, if a similar
interest comes in, the data can be served back directly to reduce the networking traffic
to request for the same interest multiple times. NDN uses a hierarchical naming con-
vention, e.g., /tu-darmstadt.kom/room218/temperature/_t18, to identify interest and data.
With such hierarchical naming convention, similar interest packets can be aggregated
to save network traffic. Furthermore, an information consumer can request for infor-
mation even when the naming convention is only known partially. To facilitate interest
forwarding in networks with stable topology, devices can propagate the names of their
possessed data over all network, so that each device can construct its FIB to guide the
interest forwarding.

The performance of NDN in intermittent and disconnected networks has been stud-
ied and confirmed to be better than the legacy MANET in [190]. Tyson et al. [196]
discuss in their work and point out several similarities between NDN and DTN/op-
portunistic networking, motivating for an integration of both networking concepts:
(i) both support in-network storage, (ii) both decouple synchronous communication
between sources and destinations, (iii) both rely on self-encapsulated network unit
(message bundle, named data object). Despite these similarities, the challenge regard-
ing the mobility of the information producer still has to be addressed to realize the
integration of these two concepts [197]. In intermittently connected networks such
as mobile opportunistic networks, the FIB table cannot always ensure a correct for-
warding decision due to the rapid changes within networks. Furthermore, to realize
NDN on mobile networks, one has to rely on broadcast using wireless transmission
medium to forward interest and data packets [8]. As a result, broadcasting generates
much overhead and collision of interest as well as data packets in NDN-based mobile
networks. Consequently, forwarding strategies have to be designed carefully to allow
successful delivery of data packets, considering potential packet collision. In the fol-
lowing, we review state of the art for interest packets forwarding in such dynamic
mobile environments.



20 background and related work

2.3.2 Interest Forwarding in NDN-based Mobile Networks

As aforementioned, interest forwarding to request for data on mobile networks is pri-
marily based on wireless broadcast. In wireless ad hoc networking paradigms such as
WSN, MANET, VANET, opportunistic networks, NDN-based forwarding approaches
can be classified into two types according to [101]: (i) forwarding approaches that
assume an existing route between information consumers and producers, and (ii) for-
warding approaches that assume no available route. In general, for approaches that
typically assume a stable network topology, the FIB can still be used to hold routing
information based on requested name and to make the forwarding decision. For ap-
proaches with highly mobile devices, such as in a VANET and opportunistic networks,
the FIB does not contribute to making forwarding decision, since rapid changes within
the network can lead to bad forwarding decision. Therefore, further context informa-
tion is required included in each broadcast packet to help devices make forwarding
decision within the network. Regardless of the network stability, the challenge to avoid
a broadcast storm, i.e., to minimize the interest collision as well as redundancy caused
by the broadcast remains. The general idea to avoid a broadcast storm in NDN-based
mobile networks is to introduce a defer timer, which lets each NDN-enabled device
schedule packet broadcast by itself [8, 56, 158, 159].

The typical example of approaches considering stable topology can be found in the
context of WSN research. Gao et al. [56] focus on enabling NDN-based WSNs. Since
the topology of a WSN is rather stable, the FIB is utilized for forwarding decisions. The
authors propose two modes to support interest forwarding, i.e., flooding mode and
directive mode. The directive mode extends the interest packet with an ID, specifying
the next forwarder. If this ID can be found in the FIB, the interest will be sent to
the specified forwarder, accordingly. If the ID of the next forwarder cannot be found
(due to the disappearance of nodes, or topology changes), the flooding mode will
be used, which simply broadcast the interest further to all nodes. To avoid interest
collision, a defer timer based on the residual energy of the corresponding node and the
distance between the current node and the destination is calculated. Data packets will
be forwarded back using the same interest forwarding route. Thereby, data packets
contain hop count, and residual energy value of the information producers, which
allow the devices along the path to learn and update news routing information in the
FIB.

In [118], Meisel et al. propose an interest forwarding approach named listen first
broadcast later (LFBL), which pioneers the integration of NDN concept in wireless ad
hoc networks. The core idea of LFBL is to let each forwarder node to make its own
decision, based on information embedded in each packet. Each packet contains source
and destination IDs, which allow a node to determine the distance between these
two. Upon receiving a packet, each node can add its distance to the destination into
the packet before broadcasting (any distance metric can be used in the concept, e.g.,
hop count, geographical distance). The broadcast is triggered, only after each node
overhears from other broadcasts, to confirm that it is an eligible forwarder with the
smallest distance towards to destination. A random defer timer is used to schedule
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broadcast on each node, to avoid packets collision, however, how this defer timer can
be determined, is not further discussed by LFBL.

Inspired by [118], other approaches for forwarding in NDN-based mobile networks
follow the LFBL line of thought, thereby, specifying the calculation of the deter timer,
distance metrics, as well as adding further context information in each broadcast
packet. Amadeo et al. propose E-CHANET to realize NDN for MANET [9]. E-CHANET
includes transmission rate information, the ID of consumer and producer, as well
as, hop count as the distance metric in the packets. Similar to the approach of [56],
E-CHANET relies on two modes, blind flooding if no forwarding information for a
producer is available, and producer aware flooding, if the consumer can learn the route
towards the producer from the past. In E-CHANET, nodes determine the defer time-
based on a fixed defer time slot, multiplying with a random component. The random
component is chosen to ensure the defer time of data packets is less than the defer
time of interest packets. For every successful delivery of data packets, the consumers
can learn about the hop counts, the transmission rate which causes congestion of the
network. Thus, the transmission rate of interest packets and the estimated distance
towards to producers can be adjusted by the consumers for future interest forwarding.

The aforementioned approaches provide a foundation to cope with the challenges
when integrating NDN with wireless ad hoc networks but still focus on generic
MANETs. In [38], Deng et al. distinguish between location-based interest forward-
ing, e.g., gas station for cars, and blind interest forwarding for VANET. To support
location-based interest forwarding, the authors include the coordinates of the desti-
nation in interest packets. When a device receives a broadcast interest, it includes its
current coordinates before rebroadcasting. Thereby, a device only rebroadcast if its
coordinate is closer to the requested coordinate. The defer timer is calculated based
on the distance of node and the destination, which ensures, that a node closer to the
destination will have a lower defer time to speed up the transmission. To enable the
carry and forward behavior similar to opportunistic forwarding, the authors rely on an
explicit acknowledgement included in data packets. In case no acknowledgment is
received after some time, the same interest packets will be rebroadcast again.

Navigo [58] is another approach for information retrieval for vehicular networks
based on NDN. Thereby, Navigo focuses on retrieving information from multiple
geographic-based sources. Navigo divides the map into several grid-based regions/-
cells and introduces the abstraction GeoFace, which represent a single geographical
region/cell. If the location of an interest is unknown, Navigo will flood the interest
to all directions of the network. When data are found and forwarded back to the in-
formation consumers, the nodes along the way will learn about the association of the
requested data with a GeoFace. The association between data and GeoFace is stored
in the FIB table. Navigo relies on a Link Adaptation Layer to forward interest packets
using Vehicle-to-vehicle (V2V) communication. Thereby, each device also chooses a
random defer timer to delay broadcasting interest packets. For the forwarding strategy,
with the association of data and GeoFace, each node can determine the cost to reach
the destination, by applying Dĳkstra’s algorithm to determine the shortest path of the
street segments, which leads to the destination from the corresponding node. Upon
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receiving an interest packet, a node only rebroadcast this interest, if the cost to reach
the geo-destination is less than the cost of the previous hop.

Kuai et al. [82] consider a "delay tolerant interest forwarding" for vehicular networks.
The destination for the interest forwarding in this work is the coordinate of an infor-
mation producer. Thereby, the authors distinguish between the notion rebroadcast,
which happens right after receiving an interest packet, and retransmission, which let
the node store an interest after broadcasting, and forward it again later. In this work,
the defer timer is determined through several priority values. A node closer to the
destination of the producer will have higher priority. Between a forwarding device
and the destination, the authors define an area characterized by an angle. Each for-
warder node periodically broadcasts a special hello packet, which allows each node to
determine its neighbors. Accordingly, each node can calculate a spatial priority value,
based on the density of the neighbors, which lie inside the defined area among this
node and the destination. A node will retransmit immediately if this spatial priority
is greater than zero, which means that there are multiple nodes with closer distance
to the destination.

Overall, the previously reviewed approaches represent the current state of the art
for interest forwarding in NDN-based wireless ad hoc networks. In a nutshell, to
enable location-based interest forwarding for this type of network, one needs to rely
on broadcasting over wireless transmission medium. Therefore one has to consider
the broadcast storm problem, the representation of geographical destination, distance
metrics, as well as residual energy of participating devices. These metrics can be
utilized for either the calculation of the defer timer or for the forwarding strategies
to choose the next forwarding device. The reviewed interest forwarding approaches,
however, do not consider the heterogeneity of information producers, which affects
the quality of acquired information. In our work, we explicitly focus on the quality
requirements of the information and on the heterogeneity of the participating devices.

2.4 distributed data processing

In this section, we review mechanisms to enable distributed data processing. Mainly,
we focus on related research that allows for processing data directly within commu-
nication networks, i.e., distributed in-network processing, which is relevant for the
second step of information retrieval. We refer to the definition of distributed data
processing proposed by Enslow as follows:
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Definition 2.2: Distributed Data Processing

"A distributed data processing [system] has five components:

• A multiplicity of general-purpose resource components, including both
physical and logical resources, that can be assigned to specific tasks on a
dynamic basis.

• A physical distribution of these physical and logical components of the
system interacting through a communication network.

• A high-level operating system that unifies and integrates the control of
the distributed components. Individual processors each have their own
local operating system, and these may be unique.

• System transparency, permitting services to be requested by name only.
The server does not have to be identified.

• Cooperative autonomy, characterizing the operation and interaction of
both physical and logical resources." [47]

According to this definition, we discuss the related concepts with regards to the
following aspects (i) the architecture and the communication, which correspond to
the first two components of the definition, (ii) the abstraction of the function, which
corresponds to the third and fourth components of the definition, and (iii) how the
entities interact and coordinate the processing, which corresponds to the fifth and last
component of the definition.

2.4.1 Distributed In-Network Processing for Sensor Networks

In Section 2.1, we have briefly elaborated on the WSN paradigm. In-network process-
ing is an important concept introduced in WSN to execute operations, such as filter
and aggregation on transmitted data directly within the network. This execution is
carried out by the sensors located on the transmission path. The goal of in-network
processing in WSNs is to minimize the communication traffic by reducing the data on
the transmission path and consequently to preserve the energy of the whole WSN. One
central question is which sensor nodes should execute which operations. This prob-
lem is termed operator placement [20]. In several cases, the topology of a WSN is stable,
therefore, the placement problem can be solved by a centralized entity searching for an
optimal solution, e.g, through Integer Linear Programming or greedy algorithms [30,
183]. However, in many cases and applications, the topology of WSN can also be
changed. For instance, the WSN topology changes, if a sensor runs out of battery and
disappears or if sensors are installed on moving objects such as animals. As a con-
sequence, the operators placement in these cases needs to be solved in a distributed
manner to allow for possible adaptation. In general, distributed algorithms for oper-
ator placement in WSNs rely on a periodic exchange or flooding of state information
among local sensor nodes. A distributed placement algorithm starts with an initial
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placement, which will be refined and replaced with a new placement over time; a new
placement is valid in case the total cost (e.g., total amount of data, energy consump-
tion) for the old placement can be improved [20, 32]. To facilitate the deployment and
the dynamic configuration for in-network processing or for operator placement, an
abstraction schema is required. For instance, in [168], a rules-based abstraction is de-
signed, which allows defining a processing goal, the conditions, and the rules to reach
the processing goal through distributed processing by WSN nodes. Another example
is T-Res [7], which defines a Representational State Transfer (REST) like Application
Programming Interface (API) to enable reconfiguration of operations on the sensor
nodes during runtime.

The concept of distributed in-network processing for sensor networks can be gen-
eralized. In a broader meaning, sensor networks can also be considered as networks
with devices that are able to produce and process data. In this context, mobile devices
in MANET and cars in VANET with the capability to sense/capture information from
their surrounding also belong to this category. Hereby, Complex Event Processing
(CEP) [165] emerges as an enabling technology for in-network processing of event
streams. CEP is realized by installing an event processing engine on the participating
devices and by deploying/placing functions/operators on these. Similar to in-network
processing of WSN, algorithms for efficient operators placement to accomplish a process-
ing goal and to achieve low latency while generating less overhead is desired. Thereby,
centralized and decentralized placement algorithms for CEP in MANET have been
studied [184]. Recently, Luthra et al. [109] also study a transition-enabled placement
approach, which switches among different placement algorithms during runtime de-
pending on the conditional changes, e.g., network load. Due to the application of CEP
on mobile networks, the mobility of participating devices has to be considered. As a
result, in addition to operator placement problem, operator migration is proposed as a
solution to counter changes in the environment and to prevent degraded performance
caused by these changes. Aiming to minimize the migration cost, Ottenwalder et
al. [140, 141] propose to generate migration plans, which contain the policies to trigger
migration and the migration targets. In this work, the migration targets are considered
to be a network of infrastructure-based brokers. Mobility prediction for information
consumers can be incorporated during the creation of a migration plan. Focusing on
CEP operators migration for device-to-device communication in an Internet of Things
(IoT) setup, Dwarakanath et al. [45] propose a lightweight intermediate buffer to store
the processing states and the operations. This model can be used together with the
mobility management to trigger a migration locally and directly among devices.

The concepts of in-network processing for sensor networks and of complex event
processing as discussed in this chapter can enable distributed data processing. How-
ever, for opportunistic networks with rapid changes caused by mobility and without
infrastructure based coordination such concepts cannot be directly used. In the next
section, we discuss and review distributed processing mechanisms proposed for op-
portunistic networks.
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2.4.2 Distributed Processing in Opportunistic Networks

In an opportunistic network, when two devices are connected to each other, they can
not only exchange messages, but they can also provide their capabilities and resources
as a service for the others [35]. Consequently, distributed processing can be realized
upon each opportunistic contact by having a device send a task to offload the com-
putation to the other device. Hereby, several aspects corresponding to Definition 2.2
have to be considered: (i) how can the participating devices interpret/understand the
processing task, i.e., the need of an abstraction, (ii) how can the devices contribute to
and coordinate the distributed processing under the the mobility of the devices and
the rapid changes of the network, and (iii) how can devices make processing decision.

To provide abstraction and to facilitate the creation of distributed processing task,
several researchers design and create middleware solutions for smartphones which
enable computation offloading between two devices [36, 78]. The middleware solu-
tions are often based on a client/server interaction model. A common abstraction
among devices is realized through a stub/proxy residing on both the client and the
server. A device that wants to provide a service, has to run the server instance, while
a device that wants to use a service needs to run the client instance. As a result, a
device in an opportunistic network might have to run both client and server instances,
if it wants to offer and also utilize the resources in the network at the same time.
Such model, however, restricts the flexibility of mobile opportunistic networks and
constraints the services provisioning only between two one-hop neighboring devices.
Recently, DTN-RPC [186] has been proposed based on Serval [57] with opportunistic
forwarding capability. DTN-RPC utilizes the message bundles of Serval to realize a re-
mote function call, which allows for asynchronous calls and thus decouples services
provisioning between service consumers and service providers. Thereby, DTN-RPC
supports two modes, i.e., direct offloading mode if the processing service provider is
known and flooding mode to leverage mobility of devices to offload the processing
task to a distant service provider. To allow for more flexibility when invoking remote
processing, NFN [176, 193] introduces the application-agnostic named function to in-
voke the processing. NFN is designed as an extension for information-centric networks.
NFN uses Lambda-expressions with a hierarchical naming convention of functions
to allow the network to orchestrate and to coordinate the distributed processing. As
an extension of information-centric network, the computation based on NFN can also
be cached within the network, which benefits the execution time and reducing over-
head. However, NFN does not support opportunistic networks with rapidly changing
topology, no end-to-end path among devices, and intermittent connections between
any two devices. Inspired by the concept of named functions from NFN, Graubner
et al. [59] extend the Serval middleware [57] with hierarchical naming convention
for function calls. Thereby, each message bundle of the Serval middleware, which
contains the data and the named functions, can traverse through an opportunistic
network. The execution of the function can be invoked upon finding a matching func-
tion on forwarding devices. Despite using the named function for data processing,
the authors explicitly decouple the processing from networking. In our work, we in-
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tegrate distributed processing into the data forwarding phase. Thereby, we leverage
idle resources of participating devices during the result delivery phase of information
retrieval.

In general, a device in an opportunistic network has to make a decision for the pro-
cessing upon each opportunistic contact, i.e., whether a device can leverage resource
of its neighbor to assign a processing task. This process is also called opportunistic com-
putation offloading. Several strategies to support local decision making for opportunistic
computation offloading have been studied. Two primary objectives of opportunistic
offloading are to improve execution time and to reduce energy consumption of mo-
bile devices. In [119], opportunistic task offloading on a cloudlet-enabled router is
considered. Here, cloudlets are static devices with sufficient computing power in the
proximity. The authors rely on probing several offloading tests to estimate the capac-
ity of the cloud to make the offloading decision. Similarly, considering task offloading
to cloudlet, Zhang et al. [219] rely on the workload and the accessibility to multiple
cloudlets to make the offloading decision. In [214], Zeng et al. broadcast the processing
tasks throughout the whole network with epidemic flooding. Devices that receive the
complete data and possess enough computing resources will process. Besides having
a device make a local decision, distributed processing can also be coordinated by sev-
eral elected devices. In case the devices in an opportunistic network can form a cluster
despite their mobility, the offloading decisions for mobile devices can be made by a
local coordinator within each cluster [52, 64, 73]. Thereby, the participating devices
have to notify the local coordinator of their current workload and capability profile,
so that the coordinator can search for an optimal solution before assigning processing
tasks. Such approaches, however, cannot sufficiently cope with the uncertainty caused
by the mobility of devices in opportunistic networks.

Aforementioned opportunistic offloading approaches mostly focus on one-hop in-
teraction and assume homogeneous processing tasks. To extract information from
data, distributed processing might require to invoke multiple different functions and
operations. Such requirement resembles the concept of services composition, in which
services from different network entities are composed to create a new type of service.
There have been several attempts to integrate and to enable services composition in
mobile opportunistic networks. With respect to the mobility and the rapid changes
of opportunistic networks, several objectives of opportunistic services composition
have been considered, i.e., completion time, energy efficiency for devices individual
devices, as well as load balancing for the whole network. The basic idea to enable
services composition on opportunistic networks is to combine and unify the binding
of a service provider in the composition and the execution of the services [60]. In [60],
the authors, however, still rely on a request to search for a service provider, which can-
not be guaranteed to be available until the binding and execution take place. Mascitti
et al. [116] rely on a reactive approach. In this approach, instead of actively looking
for a service provider, a device waits until the required service provider appears. To
enhance the discovery of service providers, an overlay graph for service providers can
be constructed dynamically to facilitate the discovery of service providers [29, 187]. To
construct such overlay graph, upon each opportunistic contact, two devices exchange
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and extend their services graph. Therefore, these are able to look for the missing
service provider. Based on the services graph, one can also select the composition
path with the minimum network cost and a high probability of success. However, the
handling of composition and services discovery as mentioned above still do not cope
well the high mobility of devices in opportunistic networks. Without relying on an
overlay services graph to look for a provider, several approaches delegate the com-
plete composition and the responsibility of binding services to a service provider [33,
61, 167]. A service provider upon receiving the composition will execute the service
accordingly. Thereafter, this provider searches for the next service provider (locally)
and handover the whole composition hop-by-hop to the next service provider. In case,
the next service provider cannot be found locally, the composition can be forwarded
using epidemic flooding. Here, active announcement of services can be used to en-
hance the discovery of service providers. In this manner, services compositions and
their corresponding requirements are realized for opportunistic networks.

The mechanisms discussed in this chapter considers individual aspects of dis-
tributed data processing, i.e., abstraction for functions, distributed coordination, ser-
vices discovery. In our work, we propose a distributed processing model which consol-
idates all three aspects. Furthermore, we rely on autonomous decision of participating
devices to cope with the rapid changes and uncertainties of opportunistic networks.
Thereby, in our approach, the autonomous decision is not restricted only to the pro-
cessing itself, but is also extended to controlling and management capabilities directly
within network.

2.5 information dissemination

The third step of information retrieval is results delivery. Since results delivery can also
be considered as a subclass of information dissemination, we review relevant concepts
of dissemination in this section. Thereby, we focus on dissemination on opportunistic
networks.

Since forwarding and replicating messages are inherent for opportunistic networks,
information dissemination is a natural application of an opportunistic network. In gen-
eral, information dissemination resembles the concept and the goal of the publish/-
subscribe model [19]. In a publish/subscribe model, several nodes act as publishers
or information producers, that want to disseminate information to several interested
nodes as subscribers. Hereby, for information dissemination on an opportunistic net-
work, the information producers and consumers might not be aware of each other. In
contrast, for results delivery, the disseminated information is the result/response of an
explicit request for information retrieval. Therefore, in results delivery, the information
producers might be aware of the identity of the information consumers. Accordingly,
we can consider information dissemination from two perspectives: generic dissemina-
tion and consumer-aware.

To realize generic information dissemination on opportunistic networks, integrat-
ing publish/subscribe model seems to be a natural approach. To this end, Yoneki
et al. [209] use the social metrics to realize publish/subscribe. Since mobile devices
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are carried by humans, which implies a potential social tie among devices, an op-
portunistic network can be divided into several communities. To detect a community
within an opportunistic network, a distributed scheme such as k-clique [142] and the
centrality metric are used. As a result, several communities can be detected and the
central nodes of the community can be selected as the messages brokers according
to the publish/subscribe model. The brokers exchange messages using normal op-
portunistic forwarding schemes to form an overlay network, which will be used for
managing interest subscription and to disseminate information. The social metrics can
also be used to determine the frequently visited locations of the participating devices,
which indicate several rendezvous points to disseminate information [18]. Informa-
tion dissemination also needs to adhere to the spatio-temporal requirements under
the circumstances. For instance, in emergency response scenario, the information/no-
tification are dependent on specific regions. Hence, information needs to be available
within this region over a time period. To this end, Ott et al. propose the floating con-
tent [139], which relies on the replication of messages by devices entering the specified
region to increase the availability of information. Based on the concept of floating con-
tent and considering emergency response scenarios, in [154], Psaras et al. propose to
assign priorities to different types of information, e.g., authority notification, personal
messages. The size of a floating region for information will be adjusted based on the
priority. As a result, more critical information will have a greater floating region.

Dissemination of information on mobile opportunistic networks can also be realized
with the information-centric networking approach in general and with Named Data
Networking (NDN) architecture in particular. As an inherent feature, NDN-based
mobile networks provide the in-network caching of data through Content Store (CS),
which naturally supports dissemination by matching names of cached data packets
with incoming interest packets. Due to the wireless broadcast used in NDN-based
opportunistic networks, the data is available on multiple devices in the network; thus
it increases the chance of successful dissemination. In [203], Wang et al. demonstrate
a fast traffic information dissemination through the data forwarding phase of NDN-
based vehicular networks. When a car detects an important event, e.g., traffic informa-
tion, this car becomes an information producer that will disseminate this information
through the data forwarding phase. The authors choose the defer timer for a data
packet to avoid a broadcast storm and to allow the nodes with farther distance to
broadcast faster, aiming to achieve faster and farther dissemination of traffic informa-
tion in vehicular networks. Compared to [203], CODIE [4] is more consumer-driven.
Thereby, the data forwarding is triggered only when receiving an interest packet,
which explicitly requests for particular information. To reduce the caching overhead,
the authors include a hop counter in each interest packet, which is used by the infor-
mation producer to estimate an upper bound of hops count to forward the data back
to the information consumer. In this manner, the authors achieve the goal that the
data is disseminated to an area only near the information consumers. However, in this
work, the authors use a simple street segment in which the cars are moving only in
line with similar velocity. As such, the hop counts between the information consumer
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and the information producer do not change much over time. This assumption is in
general not applicable in a highly mobile opportunistic network.

In case the data should be delivered to a specific information consumer, the oppor-
tunistic forwarding approaches introduced in Section 2.2 can be utilized. Thereby, the
results of the information retrieval requests should be delivered in a timely manner;
otherwise, the data might not be relevant anymore [126]. Most approaches, which aim
to reduce delivery time, rely on the replication of messages to increase the chance of
reaching the destination. However, for results delivery the data requested by an infor-
mation consumer are only relevant for this one consumer. Hereby, replicating data
introduces many redundant copies of the results in the network, wasting resources.
In opportunistic networks, a consumer might also be mobile which makes it more
challenging for results delivery. To cope with this problem, in [191, 192], Timpner et
al. propose "breadcrumb" based routing to guide and forward the result of a query
towards a mobile requester. If a mobile information consumer moves away from the
original position, where it initially sends the query request, this information consumer
will leave a "breadcrumb" message indicating the location where this information con-
sumer leaves. A "breadcrumb" is realized based on floating content, which leverages
devices in opportunistic networks to share and to maintain the information of the con-
sumer’s movement. Therefore, when the query request is completed, the result will be
forwarded following the "breadcrumb" trace that the mobile information consumers
leave behind. This approach, however, still generates overhead for keeping "bread-
crumb" messages available to maintain the "breadcrumbs" trace. In our approach, we
rely on mobility prediction to deliver results, which does not require an opportunistic
network to maintain any tracking information.

Finally, as an extension for results delivery, the data can be pre-processed or aggre-
gated during the forwarding process to reduce communication overhead. For instance,
COUPON [222] considers the application of crowd sensing on opportunistic networks.
Thereby, COUPON extends epidemic flooding and spray-and-wait forwarding with a
fusion function. The goal of COUPON is to build a map of sensed data cooperatively
using participating devices in the network, wheres each message in the network con-
tains part of this map. As a result, it is possible to aggregate the contents of two similar
sensing tasks into one thus reducing the number of replicated messages as well as re-
ducing generated overhead. Despite the assumption of homogeneous data, COUPON
demonstrates successful integration of distributed data processing and results delivery
in opportunistic networks. In our work, we consider the heterogeneous capabilities of
forwarding devices. Consequently, we are able to support more complex processing
tasks during results delivery.

2.6 discussion and identified research gap

In this chapter, we have provided background information of mobile opportunistic
networks in Section 2.2. We reviewed related work with respect to the three steps
of information retrieval, namely (i) location-based forwarding which can be utilized
for sensing tasks distribution in Section 2.2.2, (ii) distributed data processing to pre-
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process or to analyze data directly within the network in Section 2.4, and (iii) in-
formation dissemination as well as result delivery in Section 2.5. Even though, most
application scenarios such as emergency response situations rely on opportunistic net-
works as an alternative solution for infrastructure-supported communication, these
applications still require certain quality guarantees to function properly. According
to Steinmetz et al. [185], QoS requirements contain a set of parameters and condi-
tions for an application/a service, that needs to be satisfied under any unforeseen
circumstances which might occur during the service provisioning time. Providing
QoS for applications/services require the applications/services to negotiate on the
requirements with the relevant system components. The QoS negotiation consists of
three steps: specifying the QoS requirements, determining the capacity of a system
and the corresponding conditions, e.g., appropriate thresholds for QoS parameters,
and resource reservation within the system to ensure the QoS provisioning. However,
QoS negotiation is not feasible in mobile opportunistic networks, due to the following
reasons [103]. (1) Due to the mobility of devices and the intermittent connectivity in
opportunistic networks, there can be practically no hard QoS guarantee. (2) In general,
there exists no end-to-end path among the sources and the destinations in opportunis-
tic networks, which makes QoS negotiation impossible. Increasing delivery rate of
messages in opportunistic networks alone cannot cover QoS requirements in general.
(3) The QoS requirements for applications and services on opportunistic networks are
not static and might change over time. E.g., the information might not be relevant
anymore in the future, other operations might be added with higher priority than
the currently running operations. Accordingly, we identify and raise the following
questions for our work.

How to specify QoS requirements for information retrieval in opportunistic networks?
Most forwarding approaches, both generic forwarding as well as location-based

forwarding proposed for opportunistic networks, mainly focus on optimizing success-
ful message delivery to a single device or a group of destinations. However, these
approaches are still limited to host-based communication and not designed for infor-
mation retrieval. Accordingly, quality requirements of information retrieval cannot be
translated directly to message delivery metrics. Related work on Named Data Net-
working, which is designed for name-based communication, show the potential to
be integrated with opportunistic networks. In this research domain, most interest for-
warding approaches, however, do not consider the heterogeneity and the dynamic
mobility of information producers. Furthermore, general naming schemes in Named
Data forwarding approaches in wireless networks still neglect the possibility to specify
different granularity levels for quality requirements. Taking the changing QoS require-
ments caused by opportunistic networks into consideration, in our work we propose a
naming scheme to specify multiple granularity levels for QoS requirements regarding
information retrieval. We design an interest forwarding approach based on our nam-
ing scheme, which allows the forwarding devices to self-adapt towards satisfying the
QoS requirements for information retrieval as fine-granular as possible.
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How to enable distributed coordination and autonomous decision for processing?
Related work for distributed processing in opportunistic networks such as WSN,

Complex Event Processing, opportunistic offloading, and opportunistic services com-
position primarily focus on theoretical models to formulate an optimization problem
and to solve this by a distributed algorithm. Several approaches that attempt to pro-
vide an abstraction which enables coordination and cooperation among participating
devices, mostly rely on a middleware solution and a pairwise client/server communi-
cation model between two devices to offload computation tasks. Consequently, such
abstractions restrict the flexibility of autonomous decision making by participating
devices as well as restrict the integration and realization of distributed processing
for mobile opportunistic networks. Following a message-oriented approach, which
naturally fits for opportunistic networks, we propose an adaptive task-oriented mes-
sage template to facilitate distributed coordination. Thereby, we explicitly support
and promote autonomous decision making of participating devices; in the sense, that
participating devices are allowed to change and to adapt the content of not only the
data but also of the processing workflow, adding more flexibility for adaptation in
opportunistic networks.

How to leverage heterogeneity and local strategies for supporting QoS requirements?
The heterogeneity in resources and capabilities of participating devices can affect

both forwarding and distributed processing. On the one hand, the heterogeneous re-
sources regarding the residual energy, CPU, etc. have to be considered in order not
to exhaust the available resources on participating devices. On the other hand, the
heterogeneity in capabilities (sensors, available services) can be leveraged to improve
the overall performance supporting QoS requirements. In all steps of information re-
trieval in an opportunistic network, a local strategy as well as an autonomous decision
are required to handle the heterogeneity and to cope with the rapid changes of the
opportunistic environment. Consequently, in this work we explicitly address the het-
erogeneity and the local decision for both forwarding as well as distributed processing.
Regarding the forwarding phases (interest forwarding as crowd sensing task distribu-
tion and data forwarding as results delivery), we design our mechanisms to counter
the heterogeneity of devices w.r.t. available resources in terms of the residual energy,
mobility, and built-in sensors while satisfying quality requirements for information
retrieval. With regards to distributed processing, we design several computation han-
dover mechanisms supporting autonomous decisions and leveraging heterogeneity to
satisfy quality requirements of a complex processing task.

In the upcoming chapters, we will present our forwarding and processing concepts,
corresponding to three steps of information retrieval, i.e., crowd sensing tasks distribu-
tion, distributed in-network processing for data, and results delivery. All concepts are
designed to utilize distributed coordination, autonomous decision, and local strategies
to cope with the changing environment of opportunistic network, to uphold quality
requirements.





3
S E N S I NG TA S K S D I ST R I B U T I O N

Acquiring information through crowd sensing in general requires the participants
to collect data from an Area of Interest (AoI) and to upload the collected data

to a central cloud server. For example, PEIR [129] collects location data from people
and combines with environmental data from other sources, such as weather data to
assess their influences on the environment; Ushahidi [138] requires participants to
report observed incidents during a crisis situation. In crowd sensing applications, the
devices of the participants have to be triggered for data collection, with or without
interaction of the participants. Regardless, the participating devices need to be aware
of the conditions for the sensing campaign, such as predefined AoI, or the type of
the requested data. To this end, the requirements for a crowd sensing campaign can
be predefined in advance by the organizers. However, this does not fully utilize the
potential of the various sensors available on participant’s hand-held devices. A key
factor to utilize the flexibility of crowd sensing is to create and distribute the so-called
sensing task, which contains the requirements for the data that need to be collected
by the participants. A sensing task can be created during run-time of the sensing
campaign and distributed to the appropriate participant satisfying the conditions of
the sensing tasks [62, 63]. In this manner, a crowd sensing campaign can be adapted to
the changing needs by distributing the respective sensing tasks. Such feature is useful
for an emergency response scenario, in which the information is critical for planning
relief operations but constantly changing. In this context, one challenge arises: the
communication infrastructure in an emergency situation, such as in disaster relief
scenario, might not be available. Consequently, sensing tasks distribution in these
situations has to be tailored towards the inherent specific requirements of such a
scenario.

In this chapter, we tackle the problem of distributing sensing tasks to suitable partic-
ipating devices in a decentralized fashion [131]. In Section 3.1, we discuss the general
requirements of crowd sensing, as well as, specific requirements for a decentralized
scenario, such as in emergency response situation. Based on the elaborated require-
ments, we present the core concept of our approach in general and, the corresponding
system model in Section 3.2. Particularly, in this section, we elaborate on the communi-
cation architecture, the naming scheme, and the construction of the so-called Interest
packet required for distributing the sensing tasks in decentralized manner. Based on
the components of the system model, we provide details of the designed forward-
ing mechanism as the enabler for the sensing tasks distribution in Section 3.3. The
proposed forwarding mechanism is designed to counter mobility and the constantly
changing conditions. The concept presented in this chapter focuses on the distribution
of the sensing task; as such, the evaluation presented in Section 3.4 is constructed to al-
low us to analyze the sensing tasks distribution in depth. Together with the distributed
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processing concept in Chapter 4 and the concept for results delivery in Chapter 5, in-
formation retrieval in an opportunistic network can be achieved. Thereupon, we will
present a consolidated evaluation of sensing tasks distribution and results delivery
later in Chapter 5.

3.1 requirements and challenges

Due to the fact that crowd sensing relies on mobile devices carried by humans to
collect data, the quality of crowd sensing relies largely on human factors, e.g., how the
participants move, which capabilities their devices provide. Since most of the human
factors are uncontrollable, the requirements needed to ensure high quality of a crowd
sensing campaign have to be considered. The following requirements for a general
crowd sensing paradigm can be derived [62, 111, 215]:

Quality of Information (QoI): The objective of crowd sensing is to collect data
from an AoI to extract valuable information. Quality of information is therefore an
inherent requirement. Distributing the sensing tasks to appropriate participants con-
tribute to improving the overall quality of crowd sensing. Thereby, the quality of the
crowd sensing tasks can be characterized by "4W1H—what, when, where, who, and
how" [215]. What refers to the type of data that need to be collected; this again depends
primarily on the type of sensors available on the mobile devices of the participants.
When indicates the temporal requirement, at which time the data need to be captured.
Where refers to the spatial requirement of the AoI. Who indicates the requirements
of the participants, which need to be considered before assigning sensing tasks. In
this regard, mobility of the participants plays an important role, since the mobility
is uncontrollable and can affect both the spatio-temporal requirements. How refers to
the specific execution of the sensing tasks on the participating mobile devices, e.g.,
frequency of the data sample rate.

Cost of crowd sensing campaign: Since crowd sensing leverages mobile devices of
participants, the deployment cost of a static/special-purpose sensor hardware can be
saved. However, the cost for executing the crowd sensing application (e.g., network cost
to allocate the sensing tasks, energy cost on participating devices when performing
data sampling) in general often conflicts with the quality of information [202]. Often, to
acquire enough measurements to cover an AoI while satisfying the QoI requirements, a
large number of participants might be required, which in turn requires the distribution
of large number of sensing tasks, indicating more cost. As a result, one of the main
challenges is how to allocate the sensing tasks to a minimum number of participants
to ensure QoI.

Incentive for participants: One common aspect that can be observed from the dis-
cussion of the aforementioned requirements is the number of participants. In order to
achieve high participation of humans (their mobile devices) for a crowd sensing ap-
plication, there needs to be an incentive. Three categories are identified: entertainment,
money, and services [218]. Entertainment refers to crowd sensing in form of a multiplayer
game, which motivates the players to provide crowd sensed data. Money refers to the
monetary payment, which the participants get in return for providing data. The last
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category, services, refers to the form of providing data for a group of users, or commu-
nity, such that all members of this group, or community can benefit from the crowd
collected data. The last category aligns well with the considered emergency response
scenario in our work, in which the crowd collected data can be used to provide emer-
gency services such as Person Finder1, or to generate a heat map of affected regions,
which enhances the relief operations. We assume, that the participating devices want
to contribute their resources according to this incentive category.

In addition to the requirements discussed above, the crowd sensing application in
emergency response situations introduces the following challenges, making it more
challenging to satisfy the aforementioned requirements.

Decentralized communication infrastructure: The communication infrastructure
plays a vital role in both distributing sensing tasks, as well as in collecting the data [62].
However, in an emergency situation, such as in disaster relief scenario, the commu-
nication infrastructure tends to be a hybrid communication infrastructure. As such,
not all devices have access to the Internet; however, mobile devices can still commu-
nicate directly through (WiFi) Ad Hoc communication. Overall, the network of the
participating devices in the crowd sensing application in this case might be highly
partitioned. Furthermore, the mobility of participants also renders the ad hoc network
highly dynamic and unstable, adding to the challenge of assigning the sensing tasks.

Heterogeneity of participating devices: Users participating in a crowd sensing ap-
plication possess different mobile devices, hinting at heterogeneity in capabilities [89].
Accordingly, not all mobile devices can fulfill the requirements for the QoI of the ap-
plication. Given the decentralization caused by partitioned network in an emergency
response situation, an overview of participating devices is not always available; it is
therefore even more challenging to find, and to assign the sensing task to the right
participants. Besides heterogeneous capabilities, the participating devices might also
possess heterogeneous resources, such as their current energy level. This type of het-
erogeneity has to be considered when assigning sensing tasks, since the quality of
crowd sensing also depends heavily on this factor, e.g., assigning sensing tasks to a
device with low energy level can potentially lead to low data availability, for such
device can fail to capture data when running out of battery.

3.2 system model

With the requirements discussed in the previous section, we now detail the system
model for crowd sensing. We focus on designing a solution for crowd sensing tasks
distribution in highly dynamic mobile opportunistic networks, considering the disas-
ter relief scenario. Based on the common taxonomy of a crowd sensing architecture
shown in [63], our system model follows a hybrid communication architecture, which
is more suitable for disaster relief scenario [93]. The system model consists of a tasking
server, which in an emergency response scenario serves as an interface for the authority
to define and organize the overall crowd sensing campaign; of several gateway devices
with access to the tasking server despite the possible impaired communication infras-

1 https://google.org/personfinder
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tructure; and of mobile devices with built-in sensors, which can provide requested
data for the sensing tasks, and which can also be used to exchange information locally
through opportunistic ad hoc communication. With respect to the system model and
the considered scenario, we make the following assumptions:

- Without loss of generalization, we assume that the sensing tasks, intended to
request data from an AoI, cannot be distributed directly to mobile devices inside
the AoI. This assumption is due to the typical decentralized communication of
the disaster relief scenario caused by impaired communication infrastructure.

- The heterogeneity of participating devices implies, that not all devices possess
the same set of built-in sensors. This also means that not all devices are able to
capture the data type as requested. Therefore, we assume that only a subset of
devices are capable of satisfying the sensing task’s requirements.

- As discussed through the requirements for crowd sensing, crowd collected data
in a disaster relief scenario can be used to provide emergency services, which
are beneficial for all concerned people. Thus, we assume that the participating
devices collaborate with each other without malicious intention.

- As common in modern mobile devices, we assume that the participating devices
can determine their current locations accurately, either through built-in GPS, or
through collaborative local monitoring mechanism such as in [162].

Our goal of distributing sensing tasks thus can be divided into two sub-objectives:
(i) the first sub-objective is to successfully carry the sensing tasks to the requested
AoI, considering the challenging communication architecture in emergency response
situations; (ii) the second sub-objective is to search for the mobile devices within the
requested AoI, that possess the right capabilities to capture the requested data, taking
the heterogeneity into consideration.

3.2.1 Hybrid NDN based Communication Architecture

To achieve the two sub-objectives, we propose a hybrid communication architecture
for our crowd sensing solution, which we base on the NDN paradigm. The decision is
made due to its focus on addressing information, instead of addressing hosts, and its
inherent characteristic to support highly dynamic networks. The suitability of the NDN
paradigm to collect information through crowd sensing is also confirmed by Moreira
et al. [127]. Additionally, Bouk et al. [21] point out that the NDN paradigm can co-exist
with the existing networking technology, such as IP-based networks. Hence, for our
communication architecture, a hybrid solution of NDN and widely deployed IP-based
networks is proposed. Our hybrid architecture is illustrated in Figure 6.

To achieve the sub-objective of bringing the sensing tasks nearer to the AoI, the
tasking server relies on several gateways to first inject the sensing task into the op-
portunistic ad hoc network, formed by participating mobile device. We consider the
tasking server as an abstract interface for the crowd sensing organizers, therefore we
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Figure 6: Illustration of our hybrid NDN based communication architecture for distributing
sensing tasks (image from our publication in [131])

assume the availability of this entity in the system. As the name suggests, gateways
are devices which still have connection to the tasking server, despite the critical net-
work condition in emergency situations. Such gateways can take on several forms. For
instance, in [132], an on-board component for firefighter’s truck is built based on a
Raspberry Pi device, which utilizes LTE to maintain a connection between each truck
and the tasking server. Meurisch et al. [120, 121] analyse the coverage of home routers
within a city, and show that the home router can be upgraded to a cloudlet, which can
provide communication in emergency situation; there is a high possibility, that several
devices from the high number of router-upgraded cloudlets are still able to uphold
connection to the backbone network, thus is able to communicate with the server.
Last and not least, the mobile devices themselves might still be able to communicate
with the tasking server in emergency situation, thus a gateway device can be chosen
from such devices through gateway selection mechanisms, e.g, using clustering mech-
anisms [161, 164]. All in all, it is possible to first inject the sensing tasks from the server
through several gateway devices nearest to the AoI into the emergency opportunistic
network.

Beside the role of a client to receive the sensing tasks from the tasking server, a
gateway device also assumes the role of an information consumer according to the NDN
networking paradigm. As an information consumer, a gateway device is in charge of
constructing an interest packet, which contains the requirements requested from the
sensing tasks. Next the gateway device—information consumer propagates the interest
packets within the NDN-based opportunistic ad hoc network. The goal of the interest
propagation is to successfully transport the interest to the mobile devices capable of
providing requested data within the AoI. This process represents the distribution of
sensing tasks in an opportunistic network. Accordingly, such mobile devices assume
the role of information producer for the NDN-based network. After receiving the data
back from the information producer as requested, the gateway devices can forward the
data back to the tasking server for overall aggregation.
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Under the assumption, that the gateway devices are not located directly inside
the AoI, and that the participating devices are highly mobile, the mobility of the
participating devices can be leveraged to bring forward the Interest packets from the
information consumer to the AoI. Hereby, the participating devices (consumers, forwarders,
and information producers) can communicate with each other through ad-hoc WiFi
connections. Corresponding to the two sub-objectives of our design, we propose to
construct two phases for the Interest forwarding. These two phases are illustrated in
Figure 6 as approach phase and wait phase. The goal of the approach phase is to first leverage
the mobility of the forwarding devices for bringing the Interest packets as near to the
AoI as possible; while the goal of the wait phase is to counter the mobility of mobile
information producers. To this end, our approach is inspired by the floating content
concept introduced in [139]. In the wait phase, interest packets are floated, i.e., bound
geographically in close proximity of the AoI, aiming to increase the chance of reaching
the appropriate mobile information producers, which can provide the requested data
as soon as possible. Binding sensing tasks to geographical region can also increase
the chance that, when an information producer leaves the region the sensing tasks
can be offloaded to other producer. Consequently it can improve data availability
and avoid missing potentially critical information. Similarly, the idea of creating and
maintaining sensing tasks geographically can be found by the work of Campbell et
al. in [106]. However, their work relies on communication infrastructure, while our
approach is designed for and focuses on decentralized mobile opportunistic networks.

Having elaborated on the system model in general and on the hybrid communication
architecture in particular, in the following we will describe the naming scheme of the
interest packets, which is used to express the requirements of the sensing tasks and
the construction of the interest packet, which contributes to facilitate the interest
forwarding. Using the proposed naming scheme and the interest packets construction,
we then detail our concept of two-phase interest forwarding.

3.2.2 Naming Scheme

In NDN-based networks, each interest packet contains the request for data, which
is identified through a predefined naming scheme. The naming scheme serves for
two purposes: (i) identification of the requested data, and (ii) guiding information for
forwarding decision as defined in FIB. However, using a naming scheme and the FIB
alone is not sufficient to make forwarding decision in an opportunistic network, since,
the entries in the FIB are not reliable when an end-to-end path is not always possible.
Hence, further information is needed in interest packets to guide the forwarding
process, which will be discussed in the following section. In this section, we focus on
the naming scheme for identification of requested data.

For crowd sensing applications, the data requested has to satisfy several QoI re-
quirements. As discussed in Section 3.1, the requirements for a crowd sensing task
are characterized by five main quality dimensions [215], i.e., "what to measure, where to
measure, when to measure, who to measure, and how to measure". Accordingly, the naming
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scheme for an interest packet needs to cover these dimensions as well. We propose the
naming scheme for an interest packet of crowd sensing applications as follows:

Definition 3.1: Naming Scheme for Interest Packet

/CrowdSensing/<geographical-information>/<sensor-type>/<time>

In the above definition, <Geographical information> represents the requirements of
the requested AoI. Hence, the information on where to measure is given. <Sensor type>
represents the requested data type; i.e., the information producer should possess the
corresponding sensor, in order to trigger the data collection. Thereby, the information
on what to measure or who should measure is given. <Time> incorporates time related
requirements, i.e. specific time when to measure. Further instruction for the execution
of sensing tasks, such as the frequency of the measurement are given in how to measure,
which is part of time related requirements. Overall, all quality dimensions for a crowd
sensing application can be captured using the proposed naming scheme.

With regards to the geographical information, two options are possible to represent
the location of an AoI, i.e., the AoI can be represented through named association, such
as street address, or through coordinates of the location. The first option is not always
possible in a decentralized environment, in which the participating devices despite
being able to determine their own location, will be unable to interpret an address
association. Consequently, for the considered scenario, the geographical information
of the AoI should be represented through its coordinates. Furthermore, since in NDN
networks, each participating device maintains a CS table to cache the data, the naming
scheme can also be used to match the data temporarily stored within the forwarding
devices, reducing the data delivery time. For this reason, we use the geographical
representation proposed by Pesavento et al. [148]. Given (x,y) as coordinates of the
AoI, the authors use a Cantor pairing function to transform the pair (x,y) into an
ordered sequence of numbers c1..cn. The Cantor pairing function takes two numbers
as input, and is calculated as follows:

fC(n1,n2) =
1

2
(n1 +n2)(n1 +n2 + 1) +n2 (1)

The ordered sequence of numbers c1..cn is determined by applying the Cantor
pairing function on all aligned digits of the coordinate x,y. In case, x,y have different
digits length, zeros are padded until both of them have the same length. As such, the
<Geographical information> assumes the form /c1/../cn/. Since the name of the data
in NDN is matched based on the longest prefix, such representation allows a crowd
sensing application to define how accurate the data should be matched with respect
to the location of the AoI.

Furthermore, longest prefix matching in NDN also allows us to define sensing
request for different needs. Several examples to demonstrate the flexibility of the
proposed naming scheme to express different quality requirements for crowd sensing
requested data are given in Table 1.

With the naming scheme, we accomplish the objective of defining the sensing tasks
and their quality requirements. In the following section, we further elaborate on
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Table 1: Examples of named interest packet for crowd sensing application

Named Interest Meaning

/CrowdSensing/ request for all information

/CrowdSensing/c1/../cn/ request for all information covered the AoI with
coordinates corresponding to the sequence c1..cn

/CrowdSensing/c1/../cn/

SensorX

request for data type X (collectible through sensor
X), from the requested AoI

/CrowdSensing/c1/../cn/

SensorX/date/time/f

request for data type X, from the requested AoI, for
particular data, time, with sampling frequency f.

the construction of the whole interest packets, aiming to aid the interest forwarding
decision in opportunistic ad hoc networks.

3.2.3 Interest Packet Construction

Forwarding interest packets in our scenario has to rely on the store, carry, and forward
paradigm of opportunistic networks, in which each device after receiving an interest
packets, can store it locally and later forward the interest packets to other devices with
better chance to reach the intended destination. This is due to the fact, that an end-to-
end path between the information consumers and the information producers is not always
available; the topology of the network keeps changing over time. Therefore, the com-
mon approach of NDN to propagate an interest through network (inter-)faces which is
predefined in the FIB table of each device, is not possible. Instead, each interest packet
will be (re-)broadcast through the same network interface of the devices. In case of mo-
bile opportunistic ad hoc network, interest packets will be (re-)broadcast through WiFi
network interface. As a result of such uncoordinated interests (re-)broadcast, much
overhead, redundancy and collisions are generated, potentially leading to an overall
degradation of network performance [210]. To cope with this problem, distributed
coordination for interest packet forwarding is desired. As a consequence, we rely on
each device to share its context information, such that this context information can
be utilized by other devices to improve the forwarding decision. For this purpose, we
leverage the attribute fields of the interest packet to embed context information of each
device before broadcasting the interest packets. The modified interest packet with the
additional attribute fields is illustrated in Figure 7.

The context attributes embedded into interest packets are: (i) the current distance of
the corresponding devices, before broadcasting the interest packets, (ii) the maximum
distance from the information consumers to the AoI, as observed by the corresponding
devices, and (iii) the total number of interest packets, that have been broadcast by the
corresponding devices up until now. When a device receives an interest packet, it can
extract these three attributes from the packet. Combining the extracted attributes with
the current local context information (such as residual energy level, characteristics of
the current movement), a device can make a forwarding decision in favor of reducing

/CrowdSensing/c1/../cn/SensorX
/CrowdSensing/c1/../cn/SensorX
/CrowdSensing/c1/../cn/SensorX/date/time/f
/CrowdSensing/c1/../cn/SensorX/date/time/f
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Figure 7: Data packet and modified interest packet with 3 additional attribute fields (image
from our publication in [131]). Default fields are adapted from [217].

interest over-broadcasting, reducing the time-to-find information producer, and convers-
ing the energy of the whole opportunistic network. We discuss the detailed use of the
context information for forwarding decision in the next section.

3.3 two-phase interest forwarding

We design our interest forwarding solution as a concept to distribute sensing tasks
to the appropriate participating devices, to acquire data from a predefined AoI. In
this section, we first elaborate on the overall concept and the corresponding workflow.
Thereafter, we provide details on our context-aware forwarding, aiming to satisfy
quality requirements of the crowd sensing application, while generating minimum
overhead.

3.3.1 Overall Concept and Workflow

As previously discussed in Section 3.2, we first utilize gateways to inject the sens-
ing tasks to the NDN-based opportunistic ad-hoc network. Based on the quality re-
quirements predefined by the tasking server, the gateways in the role of information
consumers, constructs the corresponding interest packet. Thereafter, the information con-
sumers start broadcasting the interests into the network. When a forwarding mobile
device receives the interest packet broadcast from its neighbors, it acts accordingly
to the NDN based paradigm, and checks to see if the requested data is available in
the CS table. In case the longest prefix of the name of the requested interest and the
name of the stored data can be matched which indicates the data in the CS satisfy
the quality requirements of the information consumers (cf. sample in Table 1), then the
data can be forwarded back to the information consumers directly from the correspond-
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ing devices. In case no matched data can be found stored in the forwarding device,
this device will further broadcast to forward the requested interest towards the AoI.
Since broadcasting interest in an uncoordinated manner will generate much overhead,
leading to collision and high energy consumption at each participating devices, there
needs to be a distributed coordination among the devices (a centralized coordination
is not always possible in the considered scenario, and is also inefficient for highly mo-
bile networks). To achieve distributed coordination in the interest forwarding process,
we rely on decentralized self-organizing patterns [37]. Decentralized self-organizing
patterns are proposed and designed to coordinate autonomous software agents in a
distributed manner. The basic idea is to utilize virtual force fields to guide the behav-
ior of the devices. Within the decentralized self-organizing patterns, we utilize the
SPREAD and ATTRACT gradient patterns to guide the interest forwarding decision.
These are illustrated in Figure 8.

SPREAD

ATTRACT

Request Initiator
 

Area of Interest

Figure 8: Combining spread and attract gradient patterns to guide interest forwarding
decision. (image from our publication in [131])

The illustration in Figure 8 also corresponds to the two phases discussed with the
hybrid communication architecture in Section 3.2.1. The approach phase in the interest
forwarding first aims at forwarding the interest packets closer to the AoI; the wait
phase focuses on dealing with the mobility of the information producers. As soon as
the interest packets approximate the location of the AoI, the wait phase is triggered to
bind the interest packet close to the AoI, aiming to wait for mobile information producers
to appear in the AoI, that can provide the requested data. Accordingly, the spread
gradient field is applied around the request initiator, a.k.a., information consumer; while
the attract gradient field is applied around the AoI. The combination of these two
patterns results in a directive forwarding flow, performing the desired behavior to (i)
first push the interest as far away from the request initiator as possible to look for the
information producer, while (ii) regulate the direction of the forwarding by pulling the
interest packet towards the AoI, as these get closer to the AoI location. Altogether, our
combining pattern can solve the two sub-objectives introduced in Section 3.2, leading
to a decentralized concept to distribute sensing tasks in opportunistic networks.

The details of our two-phase forwarding mechanism will be given next.
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Table 2: Parameters for interest forwarding concept and their meaning

Parameters Meaning

TimeDeferSlot maximum defer time

DTInt defer time for interest packet

DTdata defer time for data packet

RBZ radius of the buffer zone

RAoI radius of the AoI

si current speed of device Ni

ei current energy level of device Ni

bi current number of broadcast interest packets by device Ni

bp number of broadcast interest packets from neighboring devices,
as extracted attribute from a received packet

dNi→
the current distance between device Ni and AoI

dNp→
the current distance between device neighboring devices and AoI,
as extracted attribute from a received packet

dc→ the distance between consumer and AoI
−→

md vector representing moving direction of device Ni
−→

Ni vector representing straight direction from deviceNi towards AoI

3.3.2 Context-Aware Two-Phase Forwarding

In a nutshell, the two-phase interest forwarding concept relies on an approach phase
to first forward the interest towards the direction of the AoI and second to "float"
the interest packets geographically around the AoI. To realize the two-phase interest
forwarding concept, based on the decentralized self-organizing pattern as discussed in
the previous section, we introduce the notion of a buffer zone. The goal of the buffer zone
is to serve as the area to float around the AoI to wait/buffer for the appearance of the
appropriate information producers. In Figure 8, the buffer zone corresponds to the attract
gradient field. Respectively, outside the buffer zone, devices broadcast interest packets
according to approach phase; as soon as devices enter the buffer zone, the interest will
be broadcast according to wait phase. All the parameters required for the two-phase
forwarding mechanism are summarized in Table 2. The pseudo algorithms to process
interest packets according to approach phase and wait phase can be found in algorithm 1
and 2 respectively.
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Algorithm 1 : Interest packet processing of device Ni during the approach phase
with RBZ as the radius of the buffer zone

Input : Interest packet containing context attributes
Result : Forwarding decision; Interest drop or rebroadcast with defer time

1 begin

2 (dNp→
,dc→,bp)←− extractContextAttributes(InterestPkt);

3 dNi→
←− d(Ni,AoI);

4
−→

md←− N ′

is current moving direction;
5 si ←− N ′

is current speed;
6 ei ←− N ′

is current energy;
7 bi ←− N ′

is total broadcast packets;
8 dmax ←− max(dc→);
9 if Data with matched name found in Content Store then

10 DTdata ←− TimeDeferSlot ∗ (
dNi→

dmax
) + TRandom;

11 Schedule to broadcast Data after DTdata;

12 else

13 if (dNi→
< dNp→

) and (∠(
−→

md,
−→

Ni) < ∠threshold) and (ei > ethreshold)
and (si = 0 or si > sthreshold) then

14 isForwarder←− TRUE;

15 if ¬ isForwarder then

16 Drop Interest;

17 if dNi→
> RBZ then

18 if Interest←− Find(PIT) then

19 Discard incoming Interest;
20 Increase Interest’s lifetime and update PIT;

21 else

22 Add (dNi→
,dmax,bi) to Interest packet;

23 Insert Interest to PIT;
24 DTInt ←− TimeDeferSlot ∗ (Td + Te + Ts + Tmd) + TRandom;
25 if bi < median(bp) then

26 DTInt ←− DTInt ∗
bi

median(bp)
;

27 Schedule to broadcast Interest after DTInt;

28 else

29 proceed to Wait phase;
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Algorithm 2 : Interest packet processing of deviceNi during the wait phase with
RBZ as the radius of the buffer zone

Input : Interest packet containing context attributes
Result : Forwarding decision; Interest drop, rebroadcast, and replication with

defer time

1 begin

2 (dNp→
,dmax,bp)←− readContext(InterestPkt);

3 dNi→
←− d(Ni,AoI);

4 bi ←− N ′

is total broadcast packets;
5 if dNi→

< RBZ then

6 if Data with matched name found in Content Store then

7 DTdata ←− TimeDeferSlot ∗ (
dNi→

dmax
) + TRandom;

8 Schedule to broadcast Data after DTdata;

9 else

10 if Interest←− Find(PIT) then

11 Discard Interest;
12 Increase Interest lifetime and update PIT;

13 else

14 if dNi→
< RAoI then

15 dmax ←− RAoI;

16 else

17 dmax ←− RBZ;

18 Add (dmax,bi) to Interest;
19 Insert Interest to PIT;

DTInt ←− TimeDeferSlot ∗ (Td + Te + Ts + Tmd) + TRandom;
20 if bi < median(bp) then

21 DTInt ←− DTInt ∗
bi

median(bp)
;

22 nREP ←− nmax ∗
RBZ−dNi→

RBZ
;

23 for i← 1 to nREP do

24 Schedule to broadcast Interest after DTInt;
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In order for a participating device Ni to determine, when to switch to wait phase,
this device can compare its current distance towards the center of the AoI (dNi→

)
and the radius RBZ of the buffer zone. Under the assumption, that each device can
determine its current location in longitude, latitude coordinates (longNi

, latNi
) via

GPS, these values can be transformed into the Cartesian coordinates (locxi
, locyi

) by
the Mercator formula [113]. Since the Cartesian coordinates (locxAoI

, locyAoI
) of the

AoI are also given in the interest packet, we use the Euclidian distance for the current
distance from device Ni towards AoI calculated as:

dNi→
=

√

(locxi
− locxAoI

)2 + (locyi
− locyAoI

)2 (2)

If dNi→
> RBZ, then forwarding behavior according to approach phase is triggered.

The pseudocode for the approach phase is provided in algorithm 1. The radius size of
the buffer zone RBZ is a configurable parameter for the forwarding mechanism, which
can be set by the tasking server or the gateway devices. However, it is impossible to
specify an optimal value for RBZ in advance, since in a mobile opportunistic network
the size and the topology of the network can change rapidly. We will show later in the
evaluation presented in Section 3.4, that the buffer zone radius affects the performance
of the sensing tasks distribution with regards to the density of the network; thereby,
we present the trade-off between buffer zone radius and other performance metrics.

As discussed in Section 3.2, interest packets in an NDN-based opportunistic ad hoc
network have to be (re)-broadcast, which relies on the store, carry, and forward paradigm
to carry the interest towards the AoI. Thus, to reduce the number of interest bursts,
and to avoid collisions in such a network, the broadcast needs to be regulated by each
participating device itself. In [8], Amadeo et al. show that a set of timers (called defer
time) used to schedule interest broadcast on a forwarding device can alleviate this
problem. Based on this observation, we also introduce our defer time parameters for
the two-phase forwarding mechanism.

In the very first step of the two-phase forwarding, the gateway devices after receiv-
ing the sensing tasks from the tasking server will assume the role of the information
consumers, and start broadcasting the interest packets. The information consumers in-
clude their own distance towards the AoI into the interest packets before broadcasting.
Participating devices upon receiving the broadcast interest packet will determine
which phase of the two-phase they are currently in and process the interest packet ac-
cordingly. Regardless of forwarding phases, if data matched with the named interest
can be found in the CS of any devices, the data will be forwarded backwards to the
consumers directly. To schedule broadcast for the matched data packet at node Ni, the
timer DTdata is determined as:

DTdata = TimeDeferSlot ∗ (
dNi→

dmax
) + TRandom (3)

In the above equation TimeDeferSlot is a system configurable parameter which
indicates the maximum value of defer time, dNi→

is the distance from Ni towards
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the AoI, dmax is the maximum distance from a consumer towards the AoI which can
be extracted from the interest packet, and TRandom is a random component added
to avoid data/interest collision. With the defer timer for broadcasting a data packet
determined in this way, the defer time for data packets at devices nearer to the AoI
will be shorter (since for these devices, component dNi→

is smaller). Such a defer
timer works in favor of improving the quality of the data, since the data cached
near to the AoI is in general fresh collected data, i.e., more relevant according to
the time requirements. Furthermore, as another effect of the proposed defer time for
data packet, data stored at devices farther from the AoI but closer to an information
consumer will have to wait longer before being rebroadcast. This effect increases the
chance for such devices to receive more current data, which are forwarded back from
the information producer. Hereby, the old data cached on devices nearer to the AoI
will be replaced, leading to better data quality in general. Additionally, each device
maintains two priority queues for the packets, a high priority and a low priority queue.
The packets in the high priority queue will always be scheduled for broadcasting before
the packets from the low priority queue. To ensure that the requested data can reach
the information consumer as soon as possible, data packets are always pushed into
the high priority queue, while interest packets are pushed into the low priority queue.

In case there is no matched data for an interest at a device, this device will rebroad-
cast the interest according to the two-phase forwarding mechanism. In the approach
phase, each device determines its current distance towards the AoI and determines
the total number of interest packets which this device has broadcast until the current
observation time. These two attributes will be included into an interest packet before
it is being rebroadcast. As a result, the interest packet will contain three pieces of infor-
mation, i.e., (i) the current distance of the corresponding devices before broadcasting
the interest packets, (ii) the maximum distance from the information consumers to the
AoI as observed by the corresponding devices, and (iii) the total number of interest
packets that have been broadcast by the corresponding devices up until now, as shown
in Figure 7.

Thanks to the embedded information, each device receiving an interest packet can
make an autonomous decision on how to further forward the interest. The forward-
ing/rebroadcasting decision is made based on (i) the current distance, (ii) the moving
characteristics (direction, speed), and (iii) the residual energy of the corresponding
devices.

To account for the moving direction of a device with regards to the two-phase
forwarding concept, we determine the angle Θ between the moving direction of this
device (

−→

md) and the straight direction (
−→

Ni) from this device towards the center of the
AoI. This process is illustrated in Figure 9.

The angle Θ is calculated using the slopes of the two direction vectors as follows:

Θ = tan−1(
|
−→

md|− |
−→

Ni|

1+ |
−→

md||
−→

Ni|
) (4)

A device only decides to rebroadcast, i.e., to forward the interest packet if rebroad-
casting works in favor of bringing the interest packets nearer to the AoI. With regards
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Figure 9: Illustration angle between moving direction of device Ni, and straight direction
towards AoI to estimate how far device Ni is moving away from AoI direction.

to distance factor and moving characteristics, a device will drop an interest packet
if its current distance towards the AoI exceeds the distance value extracted from the
received interest packet, since this indicates that the corresponding device is located
farther from the AoI compared to its neighbors. Forwarding interest towards the di-
rection of the AoI is realized through rebroadcasting only from devices located closer
to the AoI. Additionally, two thresholds can be set, i.e., a threshold for the moving
speed of participating devices and an angle threshold Ψ for the angle Θ between
moving direction and straight direction towards AoI of a device as calculated above.
Such thresholds only allow the devices that are moving fast towards the buffer zone
to rebroadcast. Furthermore, stationary devices such as emergency routers are also
eligible candidates for rebroadcasting, since such devices are in general connected to
power sources and are able to reliably buffer interest packets within the opportunistic
networks. With regards to the residual energy, a threshold for energy reading can also
be set to make sure that the participating devices should be able to carry the interest
packets to the information before running out of energy. All in all, considering distance,
moving characteristics, and residual energy ensures, that only the best forwarders will
rebroadcast, thus improving forwarding time and reducing overhead.

Next, we elaborate on the defer timer for rebroadcasting interest packets DTInt to
counter the interest burst problem in NDN-based opportunistic networks. Our defer
timer is calculated as follows:

DTInt = TimeDeferSlot ∗ (Td + Te + Ts + Tmd) + TRandom (5)

in which:

Td = wd ∗
dmax − dNi→

dmax
, Te = we ∗

emax − eNi

emax

Ts = ws ∗
smax − sNi

smax
, Tmd = wmd ∗

Ψ−Θ

Ψ

(6)

In Equation 6, each factor of the defer timer for interest packet has a weight-
ing value based on how important each factor should contribute to the forwarding.
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Td, Te, Ts, Tmd are the factors related to distance, energy, speed, and moving direc-
tion of the corresponding devices, respectively. TRandom is a random component
included to avoid interest collision. In this way, the defer time at the best forwarding
devices will be less, i.e., when devices are moving farther away from information con-
sumers (compared with distance dmax as the distance from consumers towards AoI,
extracted from interest packet), when devices have a high energy level (compared with
threshold emax), when devices move fast (compared with threshold smax), and when
devices move straight towards AoI (compared with moving angle threshold Ψ). As a
result of this defer time, interest packets can be expected to be forwarded towards the
AoI as fast as possible.

Next, we elaborate on the wait phase. The pseudocode for wait phase is given in algo-
rithm 2. The wait phase is activated, when the distance dNi→

< RBZ. Devices entering
the wait phase are devices located within the buffer zone. As such, the objective is to
quickly find a mobile producer within the AoI. To this end, the buffer zone in our
concept basically represents the attract gradient field to attract as well as pull the in-
terest faster towards the AoI. Accordingly, we realize this phase by adapting the defer
timer for interest packets. Within the wait phase, we replace the factor dmax, which
was the maximum distance from the information consumers towards the AoI with the
size RBZ of the buffer zone radius. Since RBZ is in general smaller than the distance
between information consumers and AoI, replacing dmax with RBZ will make the
defer timer for broadcasting an interest shorter. Thereby, the chances to find the ap-
propriate mobile producers close to the AoI are increased. As soon as a device enters
the AoI, the factor dmax will be further replaced by RAoI, which is even less than RBZ

aiming to increase the chance to reach mobile producers even more when being inside
the AoI. In NDN-based opportunistic networks, an interest packet is rebroadcast only
when receiving an incoming interest. We therefore introduce the concept of replicated
(re)broadcasting for the wait phase. Through replicated (re)broadcasting, the devices
in the wait phase can schedule rebroadcast of an interest packet multiple times without
having to rely on an incoming interest packet. The number nREP of replicated interest
packets is calculated as follows:

nREP = nmax ∗
RBZ − dNi→

RBZ
(7)

in which, nmax is the configurable maximum number of replication. This value
can be determined or adjusted based on the available residual energy at each device.
Calculating the number of replicated interest packets in this way will increase the
number of replication when a device moves closer towards the AoI, potentially leading
to higher chances to find mobile information producer.

Our two-phase forwarding mechanism is designed to achieve short time to find mobile
information producer, reducing overhead and interests congestion for the participating
devices. As discussed in Section 3.1, forwarding/broadcasting in an uncoordinated
way can result in wastage and degradation of network performance. The reason is due
to the energy consumption of participating devices caused by each redundant broad-
casting, possible collisions, sensing etc. Since we consider an opportunistic network as
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the communication medium for emergency response, this issue has to be addressed.
We deal with this problem indirectly by addressing the fairness for the forwarding
process. For this purpose, each device includes the total number of broadcast packets as an
attribute into the interest packet before broadcasting. This value also serves as shared
context information for other devices to make their broadcasting decision. Accord-
ingly, each device after receiving several interest packet will determine the median
value (mb) of the broadcasting numbers, extracted from the overheard interest packets.
Thereby, the device can compare its current number of broadcasting interest packet bi

against mb. Having bi < mb suggests, that the corresponding device has contributed
less in forwarding process than its neighbors. As a result, this device will decrease its
current defer time DT = DT ∗ bi

mb
. Through this adjustment, an underutilized device

will (re)broadcast more frequently regardless of which phase it currently is in. Since
this adjustment is executed each time a new interest packet is broadcast in the network,
the participating devices adapt themselves over time with respect to their neighbors,
leading to more efficient resource consumption overall.

3.4 evaluation

With the design of the context-aware two-phase forwarding protocol, we focus on the
distribution of sensing tasks in an opportunistic network, considering the emergency
response scenario. Therefore, the evaluation for this chapter especially focuses on how
our interest forwarding concept can cope with the requirements for crowd sensing
as well as with the harsh conditions of the emergency response situation. Next, we
will elaborate on the configuration of our evaluation setup. We divide the evaluation
results into three categories, i.e., time related metrics, communication overhead, and
fairness measure. Altogether, these metrics allow us to analyze the performance of the
forwarding concept w.r.t. crowd sensing requirements as well as study the respective
trade-offs.

3.4.1 Evaluation Setup

We relied on the NDNSim network simulator [1] to implement and evaluate our for-
warding concept. NDNSim is an NS-3 [68] based network simulator. Thus, all network
models available in NS-3 can be reused. NDNSim implements the fundamental de-
signs of the NDN paradigm architecture as proposed originally in [217]. While on
packet level, NDNSim is compatible with the implementation of NDN which is used
in testbed and real devices, using NDNSim for evaluation allows us to generate large
scale simulative experiments. Furthermore, since NDNSim is based on NS-3, we can
make use of the existing interface to incorporate mobility of devices into the evalua-
tion. NDNSim provides the abstraction of face to realize an NDN-based application. To
create an application on a mobile opportunistic ad hoc network, the NetDeviceFace as
the abstraction for communication on the link layer is provided. The defer timers can be
incorporated into the NetDeviceFace directly for the purpose of reducing interest bursts,
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and avoiding interest collision. The rest of the forwarding concept (drop, rebroadcast)
can be realized as forwarding strategy with the application abstraction AppFace.

As the baseline used to compare with our approach, we implemented three other for-
warding mechanisms: geo-forwarding, controlled-flooding, and pure flooding. Geo-forwarding
is implemented as geocast for NDN-based opportunistic ad hoc networks regarding
the predefined AoI. In general, implementing geocast for opportunistic ad hoc net-
works is to forward the packets to the neighbors with a better chance to reach the
destination [112], using context information such as the current distance towards AoI,
the frequency of devices visiting the AoI etc. In an emergency response scenario, the
environment tends to be affected which leads to rapidly changed mobility and chaotic
behavior of human-carried devices in large-scale scenario [204]. Due to this reason,
we leverage only the current distance towards the AoI of mobile devices for realizing
geo-forwarding. As such, after receiving an interest packet, only mobile devices with
shorter distance towards the AoI will be eligible to rebroadcast. This behavior can
be realized based on our implementation of the two-phase forwarding concept by
disabling the wait phase. In this way, geo-forwarding in our evaluation still follows the
behavior of geocast for opportunistic networks, while also benefitting from the consid-
eration of energy, moving characteristics in the approach phase of our concept. However,
geo-forwarding alone is not designed to counter the mobility of information producers.

Controlled flooding is based on the implementation of Amadeo et al. [8]. Controlled
flooding relies only on the defer timer with random factor to avoid interest collision.
Besides defer timer and broadcasting, there is no other special mechanism affecting
the forwarding behavior. As such, controlled flooding can serve as a good baseline in
this case, similarly to epidemic flooding as in normal opportunistic networks [147, 207].
Lastly, pure flooding relies on the default behavior of the NDN paradigm, in which for
each incoming interest the participating devices will rebroadcast immediately without
waiting for defer time. Hence, the pure flooding is used not only for comparison, but
also for analyzing the need of adjustment in order for the NDN paradigm to function
properly on opportunistic ad hoc networks.

We set up a simulation scenario to represent a crowd sensing application in an
emergency response situation, in which the sensing tasks are distributed from the
information producers, in form of interest packets, through the opportunistic ad hoc
network. According to this scenario, the mobile devices simulated for the evaluation
can communicate with each other through the 802.11 WiFi model. We use the Yan-
sWiFiChannel model of the NS-3 simulator, which leverages the 802.11g WiFi model
and Rayleigh propagation model [177]. Correspondingly, we set the TimeDeferSlot

to be a multiple of 28 µs. The base 28 is set according to the Distributed Inter-Frame
Space (DIFS) for the 802.11 WiFi family [15]. We base our work on and extend the patch
for NDN NetDeviceFace developed by Amadeo et al. [8]. Thereby, interest rebroadcast-
ing is enabled, consequently, multiple-hop transmission over an opportunistic ad hoc
network with NDN paradigm is achieved.

The structure of the simulation scenario is illustrated in Figure 10. We simulate an
area of size 800× 800m2. The AoI has a radius of 50m, and is located near the bottom
of the simulated area. We create 12 information consumers, located near the top of the
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Figure 10: Illustration of the simulation scenario for evaluation of decentralized crowd
sensing task distribution.

simulated area. For the evaluation in this chapter, we concentrate more on the perfor-
mance of the interest forwarding concept, therefore, we set the information consumers
to be static. We will evaluate the mobile information consumers later together with the
concept of results delivery in Chapter 5. The information producers are mobile and lo-
cated around the AoI. We set up a movement range surrounding the AoI, in which
producers can move freely and randomly. As a result of this set up, the information pro-
ducers will be available inside the AoI arbitrarily, thus simulating the unavailability of
information producers. Note that, an information producer provides requested data only
when it is located inside the AoI. For our scenario, we created 25 information producers.
We generated and varied the number of forwarding nodes (from 20 to 100 nodes), which
are the devices used for rebroadcasting the interest packets between the location of the
static consumers and the location of the AoI. The forwarding nodes are also mobile.
To challenge our concept, we decided on using the RandomWalk2dMobilityModel for
this evaluation, since we wanted to first simulate the possible uncertain behavior of
humans within the first hours of a disaster relief scenario, i.e., to assess the chaotic
and dynamic interaction among devices [144]. Each forwarding device moves with a
movement speed between 2 and 5 m/s, which approximates the running speed of a
pedestrian [224]. We equip the forwarding devices with two energy consumers, i.e.,
the WifiRadioEnergyModel and the BasicEnergySource. The BasicEnergySource model will
reduce the energy unit of the simulated devices over time, while the WifiRadioEnergy-
Model will reduce the energy unit of the simulated devices when they communicate
via WiFi interface, i.e., every time a device broadcasts an interest. To incorporate het-
erogeneity into the scenario, we assigned an arbitrary energy level between minimum
3000 and maximum 19000 Joules to the forwarding devices according the normal
distribution. (Note that, 19000 Joules corresponds to 1300 mAh, which is the typical
capacity of a smart phone). We choose the energy threshold of 10000 Joules, i.e, only
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Table 3: Simulation parameters for the evaluation of crowd sensing tasks distribution

Parameter Value

Simulated area 800× 800m2

Number of forwarding nodes 20, 40, 60, 80, 100

AoI radius 50 m

Transmission range 100 m

Energy capacity 3000− 19000 Joules

Velocity of nodes 2–5 m/s

Mobility model RandomWalk2dMobilityModel

Energy model WifiRadioEnergyModel,
BasicEnergySource

Buffer zone radius 100m, 150 m, 200m, 250m, 300m

Simulation time 18-20 hours

devices having more than half of their battery left will rebroadcast. We install the
NDN-based ad hoc protocol stack on all simulated devices. Table 3 summarizes the
most important parameters for our simulation scenario.

We varied the configuration parameters, i.e., the number of forwarding devices
(from 20 to 100) and the size of the buffer zone radius (from 100m to 300m) for the
simulation as summarized in Table 3. For each configuration, we repeated the run 100
times with different random seeds to obtain more dependable results. The obtained
results can be divided into three categories, i.e., time related metrics, overhead metrics,
and fairness metrics. For time related metrics, we determined the time to find producer
and the end to end delay. Time to find producer is calculated as the time elapsed after
the first interest packet is broadcast from the information consumers until the first
information producer receives the interest packet while being inside the AoI. End to
end delay is calculated as the time elapsed after the first interest packet is broadcast
until the first data packet is received at one of the information consumer. While the
performance of the interest forwarding mechanisms is mainly characterized by time to
find producer metric, the end to end delay can consider the performance for data retrieval
as a whole by incorporating both interest forwarding phase and data forwarding phase as
results delivery process. With regards to the overhead measurement, we determine the
total number of interest broadcasts by all participating devices and the total summed
energy consumption of all participating devices. These two metrics characterize the
trade-off that has to be made for each forwarding mechanism. Last but not least, we
measure the fairness of the forwarding devices with regards to their contribution to
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the forwarding mechanism. We use the well-know Jain’s fairness index [23] to quantify
the fairness factor. Jain’s fairness index is calculated as:

JI(x1, ..xn) =
(
∑n

i=1 xi)
2

n ∗
∑n

i=1 x
2
i

(8)

This index is calculated over x1, .., xn as the measurement for resource consumption
on the considered entities e1, .., en of a distributed system. For our purpose, we use
the number of broadcast interest packets as the indicator of resource consumption
on forwarding devices. The Jain’s fairness index yields a value between [0, 1], which
can be translated to the equality level of resource consumption, distributed on the
percentage value of the considered entities. Hence, a value closer to 1 means better
fairness for the whole system.

Having elaborated on the setup of the evaluation scenario and on the evaluation
metrics, in the next sections we will discuss the obtained results.

3.4.2 Time related Metrics

We measured time to find producer and end to end delay, to (i) compare the performance of
our two-phase forwarding concept against the other three approaches geo-forwarding,
controlled flooding, and pure flooding with varying network density and (ii) to assess
the effect of the buffer zone notion introduced in our concept, since the optimal size of
the buffer zone cannot be determined in advance in the considered scenario. Figure 11
presents the results obtained for (i), while Figure 12 presents the results obtained for
(ii). In all result plots, we use abbreviations to name the forwarding approaches. 2PF
represents our two-phase forwarding concept, GF represents the geo-forwarding, CF
represents controlled flooding, and lastly, PF represents pure flooding concept.
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Figure 11: Time comparison among interest forwarding approaches with varying number of
forwarding devices.
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From the results shown for time to find producer in Figure 11a, it is obvious that pure
flooding performs worst of all forwarding approaches. We cut the limit of the time
axis to 200 ms, since in all cases, pure flooding requires more than 3000 ms to find the
mobile information producer. This result is expected, since pure flooding assumes the
default behavior of directly rebroadcasting an incoming interest, which is designed
for the NDN paradigm being applied in a stable network, e.g., wired networks. As
such, chances are high that interest broadcasting with pure flooding generates a large
number of collisions, degrading the overall performance of the network. This clearly
underpins the need to adapt NDN for mobile opportunistic ad hoc networks. By in-
troducing the defer timer for interest rebroadcast as controlled flooding, the time to find
producer can be improved greatly compared to the pure flooding. For lower number of
forwarding devices, it requires more time to find the mobile producers (with 20 for-
warding devices, around 77 ms are needed). A higher network density helps to reduce
time to find producer, since more forwarding nodes will increase the chance to build-up
a path towards the AoI faster. With 100 forwarding devices, the time to find producer
can be cut down to average 26 ms. The linear increase of the number of forwarding
devices also indicates the linear decreasing in the time to find producer. Compared
to controlled flooding, both geo-forwarding and two-phase forwarding are able to improve
the time to find mobile information producers. The improvement is more obvious
with low number of forwarding nodes. In the simulation with 20 forwarding nodes,
two-phase forwarding requires on average 28 ms, while geo-forwarding requires on
average 38 ms to complete the search for mobile information producer. Hereby, with
low network density the two-phase forwarding approach is able to performs better, it
requires around 25% less time compared to the geo-forwarding in case of 20 nodes.
In general, for all network densities used for the evaluation, two-phase forwarding
always performs better than other forwarding approaches with regards to the time
to find producer. The main reason is that two-phase forwarding with the wait phase
floats the interest request around the AoI waiting for mobile information producers
to show up inside the AoI. In other approaches, the interest might reach mobile infor-
mation producers when these are located outside the AoI, thus making the producer
unsuitable to provide data. The performance gap among forwarding approaches is
linearly decreasing with increasing number of forwarding nodes. For instance, with
100 forwarding nodes two-phase forwarding requires on average 17 ms, while geo-
forwarding requires around 23 ms and controlled flooding requires around 33 ms.
This observation suggests that the two-phase forwarding might be more suitable and
be able to offer more benefit for low density opportunistic networks. Figure 11b shows
the end to end delay as the data delivery time for the information consumers. Like-
wise to the evaluation for time to find producers, pure flooding also performs worst
in this case, confirming again the unsuitability of such concept in both interest and
data forwarding. In all network densities, two-phase forwarding and geo-forwarding
allow for faster data delivery time for information consumers compared to controlled
flooding. Two-phase forwarding is still able to perform better than geo-forwarding
and controlled flooding with all network densities. The end to end delay, as the time
required to deliver data depends on both interest forwarding and data forwarding.
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Figure 12: Assessment for the effect of the radius size of the buffer zone for two-phase
forwarding with varying number of forwarding devices.

By providing faster time to find producer, the two-phase interest forwarding already
contributes to improving the overall data delivery time as a whole.

Previously, we have raised the issue of our concept that it would be impossible to
determine an optimal value for the buffer zone of the wait phase. While replicated
rebroadcasting in the buffer zone can float the interest packet around the AoI to
wait for mobile information producers thus improving the time to find a producer
(cf. Figure 11), this will come with a trade-off for overhead which will be discussed
later. Therefore, we analyze how the radius size of the buffer zone affects the time
related performance metrics. Figure 12 presents the results when varying the size of
the buffer zone in our two-phase forwarding approach. For the AoI with radius size of 50
m, we vary the radius size of the buffer zone from 100 m to 300 m. Figure 12b presents
the end to end data delivery time when varying the size of the buffer zone radius.
This result shows that, regardless of buffer zone radius end to end data delivery time
decreases with increasing number of forwarding nodes. Such a result is expected, since
from the previous evaluation results we could learn that 100 forwarding devices are
sufficient to cover the simulated area, leading to faster forwarding time. Interestingly,
with regards to the time to find a producer, the obtained results confirm that there is
indeed a correlation between the size of the buffer zone radius and this metric. We can
observe in Figure 12a, that there is a greater time performance gap among varying
buffer zone radii with sparse network density of 20 forwarding nodes. In this case, a
buffer zone of 300 m only requires on average 17 ms, while a buffer zone of 100 m

increases the time by a factor of 3, i.e., 60 ms to find mobile information producers. The
reason for this performance time gap with different radii size can be explained, by the
fact that in a sparse network forwarding devices might have fewer neighbors, thus the
choice for a suitable forwarding device (e.g., closer to the AoI, having enough energy,
etc.) might not always be possible. As a result, a larger buffer zone radius allows the
forwarding devices to float the interest not only to wait and reach mobile producers
faster, but also to wait for a suitable forwarding device to appear as a new neighbor.
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The performance gap among different buffer zone radii is smaller with increasing
number of forwarding nodes in the network. With 100 forwarding nodes, the time
to find producers for all radii almost converges. The performance gap among buffer
zone radii is marginal. From this insight, the size of the buffer zone radius can be
configured in an adaptive manner to balance both the performance and the trade-off
overhead. For a sparse network larger buffer zone radius size is required while for a
dense network only a small buffer zone will be sufficient.

3.4.3 Overhead Assessment

In the previous section, we have analyzed and compared the performance of our
two-phase forwarding approach against our selected benchmarks. The results have
confirmed that our two-phase forwarding mechanism performs better than other
approaches with regards to searching for mobile producers to provide data from
the requested AoI. By design, the two-phase forwarding mechanism has to take an
overhead trade-off into consideration (by introducing replicated rebroadcast) in order
to find mobile producers faster. To assess the overhead, we measured the total number
of interest packets which are broadcast in the NDN based opportunistic network and
the overall energy consumption of all devices. The main source for energy drain in
the simulation is when a device broadcasts, thus higher energy consumption means
more overhead for the forwarding approach. The results can be observed in Figure 13.
Figure 13a shows the total number of interest packets after the simulation for the
forwarding approaches with varying number of nodes, while Figure 13b shows the
total energy consumption. Figure 14 shows the overhead with regards to varying buffer
zone radii.
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Figure 13: Overhead Comparison among Interest Forwarding Approaches.

Expectedly, when increasing the size of the buffer zone radius both total number
of broadcast interest packets and total energy consumption increase linearly. This
again pleads for a careful choice of the buffer zone radius as discussed previously in
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Figure 14: Overhead generated when varying buffer zone radius in the two-phase forwarding
approach with varying number of forwarding devices.

order to balance between the overall performance and the generated overhead of two-
phase forwarding concept. In Figure 13, it can be observed that the overhead caused
by pure flooding far exceeds the other approaches. Two-phase forwarding and geo-
forwarding are able to reduce overhead compared to controlled-flooding in terms of
both generated interest packets as well as energy consumption. Due to the introduction
of replicated rebroadcasting inside the buffer zone, the overhead generated by two-
phase forwarding is more than geo-forwarding, which deactivates the wait phase from
the two-phase forwarding concept. However, in comparison to the controlled flooding
two-phase forwarding still generates less overhead for all network densities. With 100
forwarding nodes, two-phase forwarding generates on average 3800 interest packets,
while controlled flooding generates more than 5200 interest packets. With regards
to resource consumption, two-phase forwarding and geo-forwarding are comparable.
This suggests, that despite generating more interest packets, two-phase forwarding
mechanism is still able to reduce the energy consumption. This effect can be explained
by the fact, that we introduce a mechanism to regulate fairness for forwarding among
devices. We study this effect in the following section.

3.4.4 Fairness regarding Forwarding Contribution

To analyze the fairness with regards to forwarding contribution, we determined Jain’s
fairness index as shown in Equation 8 over the total number of interest packets which
are broadcast at each forwarding device during the simulation. Thereby, we compared
the fairness index of our two-phase forwarding approach against the geo-forwarding
and controlled flooding (pure flooding is omitted due to its inefficiency). We obtained
the results for the fairness index with varying number of forwarding nodes and the
fairness index evolution over time; both of which are shown in Figure 15.

Regardless of time and network density, our two-phase forwarding approach was
able to provide a better fairness index compared to both geo-forwarding and controlled
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Figure 15: Fairness index w.r.t. forwarding contribution

flooding. The best fairness index can be achieved with 100 forwarding nodes for all
approaches. In this case, the two-phase forwarding mechanism yields a fairness index
value of around 0.75, while this value is on average 0.7 and 0.55 for geo-forwarding
and controlled flooding respectively. The geo-forwarding as implemented in the sim-
ulation basically disables the wait-phase; as such, it benefits from the same regulation
mechanism to regulate the defer time within the approach phase, which explains the
high fairness index of 0.7. The better fairness index of two-phase forwarding is due to
the fact, that through two phases the interest packets are forwarded more directly to-
wards the AoI. Figure 15a shows a dependency of fairness index values on the number
of forwarding nodes. Fairness index values increase linearly with increasing number
of forwarding nodes. The reason is, with a higher number of forwarding nodes the
network is denser. In a denser network, more devices can receive the broadcast in-
terest packets, which allow them to extract the context attributes embedded in each
packet to self-regulate the defer time. Figure 15b shows that the fairness index in all
approaches also increases linearly with increasing simulation time. However, the in-
creasing trend is not as noticeable as compared to the trend when varying the number
of forwarding nodes. Overall, the results confirm the effect of a self-regulation mech-
anism, introduced in our concept to improve fairness in forwarding for the whole
network.

3.5 discussion

In this chapter, we introduced our concept to distribute sensing tasks in mobile op-
portunistic networks based on the NDN paradigm. To this end, we proposed (i) a
hybrid communication architecture, (ii) a naming scheme for interest packets, which
captures the quality requirements of crowd sensing application while enabling the
user to specify the granularity level of accuracy for the requested data, (iii) a modi-
fied construction of interest packets, which embeds context information to allow for
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distributed coordination of participating devices, and (iv) a two-phase forwarding
mechanism which successfully distributes the sensing tasks to the mobile informa-
tion producers in a decentralized manner. Through the evaluation, we assessed and
showed that our forwarding approach is able to utilize the opportunistic resources
and the mobility of forwarding devices, while introducing only minimum overhead.
Thereby, the distributed coordination for the forwarding only relies on local shared
context information embedded in each interest packet. This confirms the feasibility of
opportunistic resources utilization without centralized coordination.

Sensing task distribution accomplishes the first objective of our research goal, to
trigger data collection based on crowd sensing for a decentralized scenario such as
a disaster relief situation. Thus, the evaluation presented here focuses more on this
aspect. Even though, we have presented results for data delivery to information con-
sumers, we leave a deeper analysis and an extension for data delivery in Chapter 5.
The data, as successfully collected through two-phase interest forwarding concept, are
still raw measurements. To extract valuable information from these data, one option
is aggregate all data at the gateway devices and offload to a central cloud server for
further processing. However, in several situations of emergency response, the decision
has to be taken timely and locally. Thus, centralized solution for processing data is
not suitable. The alternative solution is to process data directly within the network,
leveraging idle computing resources of mobile devices. The distributed in-network
processing approach will be addressed in the next chapter. Finally, due to the focus
on interest forwarding we evaluated our concept with static information consumers.
In general, information consumers can also be mobile, e.g., first responders in emer-
gency situation might distribute a sensing task to collect information along the way,
while moving to other locations. In NDN-based networks, the problem of moving in-
formation consumers is considered to be solved by letting the information consumers
reissue their interest request, which will be served by matching data cached within the
network [198]. However, caching data and propagating data all over the network also
consume resources, which are scarce in emergency situations. Hence, to enhance the
data delivery, we later propose and evaluate the integration of mobility prediction for
the data forwarding phase. Overall, the mechanism to distribute crowd sensing tasks
presented in this chapter provides high quality measurements for information retrieval
as a whole.
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D I ST R I B U T E D P RO C E S S I NG

In the previous chapter, we have discussed on how to distribute sensing tasks to
trigger data collection in a decentralized manner, utilizing mobile devices as data

sources. To extract valuable information from the collected data, these data have to
be processed. In case the communication infrastructure is available, an obvious choice
for processing crowd collected data is to upload data to a central cloud server for
aggregation and sophisticated data analysis, as a cloud server can provide sufficient
resource for data storage as well as data processing. According to Kumar et al., such
computation offloading can help to save energy compared to processing data directly
on mobile devices [83]. This practice is common for the crowd sensing paradigm [54, 74,
129]. However, this turns the data processing cloud server into a single point of failure.
Several drawbacks of this model are noticeable. First, the privacy of the participants
for such centralized data collection is a growing concern [67], since the cloud server
can theoretically extract other information of the participants not withstanding just
the information intended for crowd sensing campaign. Second, the centralized model
is not applicable when the access to the cloud server is impossible due to either the
failure of server itself or due to the impaired communication infrastructure, e.g., in
disaster situations. As a consequence, there is a shift against computation offloading
to a cloud. As alternative solutions for computation offloading to cloud servers, other
locally offloading models are possible, e.g., offloading to nearby edge devices such as
cloudlet-upgraded routers [122, 123], or leveraging distributed computing resources
of local mobile devices for processing [41]. Due to the fact that the process to extract
information from data tends to be a complex computing task which involves several
processing stages and requires different logic operations [134], offloading computation
on multiple mobile devices for distributed processing is more favorable.

In this chapter, we propose a model to enable leveraging idle computing resources
of participating mobile devices in an opportunistic network to process and extract
valuable information from crowd collected data directly within the network. Again,
we tailor our model to work in a decentralized fashion, which relies on distributed
coordination and avoids any centralized entity. In an emergency response scenario,
such model is well-suited to facilitate relief operations; since first responders can use
the extracted information to organize the local relief works efficiently. For example,
a complex image processing task, which requires the execution of several resource-
intensive operations can be divided into several tasks and executed by participating
devices in order to determine the number of victims in an emergency situation [133].
Before going into details of our design, we first discuss the challenges and requirements
for a distributed processing concept in Section 4.1. The details of our solution to enable
distributed data processing will be given in Section 4.2. We present the models to
describe the complex operations and to allow for distributed coordination respectively
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in Section 4.3 and 4.4. Based on our solution for enabling distributed processing, we
further propose several local strategies for participating devices presented in Section 4.5,
aiming to increase the quality of the overall distributed processing. Our solution is
an enabling technique for distributed processing in mobile opportunistic network in
general and to facilitate data processing in crowd collected data in particular. Therefore,
in order to focus on the analysis and evaluation of our distributed processing concept
as a whole, we create a customized simulation that allows us to concentrate on the
processing aspect of the concept. Later, in Chapter 5, we will show how our distributed
processing concept can be integrated into the information retrieval workflow.

4.1 requirements and challenges

Our solution introduced in this chapter is based on the fact that modern mobile devices
are capable of executing complex operations despite the fact energy consumptions on
these devices remain a constraint [66, 172]. Thereby, the idle resources of mobile de-
vices owned by the participants can be volunteered to create a distributed processing
environment [189]. The notion of volunteer computing holds true especially in disaster
situations, in which the information extracted from the distributed data processing can
be used to offer emergency services, which are beneficial for all participants (this form
of incentive has been discussed in Section 3.1 for general crowd sensing applications).
Other form of incentive is the reservation of resources in disaster situations. Lieser et
al. [94] propose a resources market, in which the users can compete and reserve en-
ergy resources for recharging. With regards to volunteer computing, a resource market
can be extended so that, the devices which provide more computing resources will
be able to reserve for more energy recharging. Overall, in the considered emergency
response scenario, we assume that all participating devices are willing to contribute
their computing resources. Due to the dependence of the distributed processing con-
cept on mobile devices as well as on participants as human carriers of these devices,
the following challenges for distributed processing have to be addressed:

- Uncertainty: One of the biggest challenge for providing distributed processing
in this setup is the uncertainty as a result of a rapidly changing opportunistic
network. Since mobile devices as processing units are carried by human partici-
pants, the quality of the processing highly depends on the uncontrolled mobility
of the participants. The uncertainty caused by human mobility can for instance
result in the unavailability of a special operation or a special hardware that is
required to complete a complex processing task. Uncertainty can also lead to
an incorrect decision when assigning processing tasks, which affects the overall
performance.

- Resource constraints: Even though modern mobile devices are capable of process-
ing complex operation, we still have to consider them as resource constraint. This
is due to the fact that (i) a mobile device might have to execute several tasks, e.g.,
sensor reading, processing at the same time and (ii) recharging mobile devices
in emergency situations might be difficult.
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- Heterogeneity: As discussed in Section 3.1, participating mobile devices possess
different capabilities. With regards to distributed processing, two types of het-
erogeneity can influence the overall performance, i.e., (i) heterogeneity in capa-
bilities and (ii) heterogeneity in available resources. Heterogeneous capabilities,
similar to uncertainty, imply that not all devices are capable of executing a partic-
ular operation required for the computing tasks. Heterogeneous sources imply
that the participating devices might have different energy level left or possess
different Central Processing Unit (CPU), which makes them perform differently
in distributed processing.

Having discussed the challenges, the QoS requirements for distributed processing in
highly dynamic environments such as mobile opportunistic networks can be derived
and classified into two categories, i.e., functional and non-functional requirements. The
QoS parameters are derived from relevant research work in mobile cloud computing [11,
53, 189] and in-network processing paradigm [199].

Functional Requirements:

Due to the uncertainty challenge, the most important goal for a distributed process-
ing concept is to ensure the correctness for the processing, i.e., the outcome of the
distributed processing has to be as intended. The QoS parameter, which implies this
aspect, is the success rate. Together with the uncertainly, it is challenging to complete a
complex processing task with multi-stages operations. Hence, a high success rate can
capture how well a distributed processing concept can cope with the uncertainty of
the environment.

With regards to the integration with a crowd sensing application, the goal of dis-
tributed processing is to extract information from crowd collected data. As such, the
quality of the processing will impact the quality of the information. In addition to the
success of a complex processing task, the time factor also plays an important role; since
delay in extracting information can make this information less relevant or even not
usable under the circumstances [124]. As a result, low completion time of the distributed
processing concept is the second requirement.

Overall, fast and successful processing of complex tasks cover the functional require-
ments, which are mainly derived from the uncertainty of the considered environment.

Non-Functional Requirements:

The non-functional QoS requirements are derived taking into consideration the
issue of resource constraints of the participating mobile devices. The energy consump-
tion of a mobile device depends on the execution code and the functions called on this
device [66]. As a result, we cannot influence the energy consumption of the distributed
processing itself. Nevertheless, we need to make the enabling concept communication
and computation efficient, i.e., the resource consumption for communication and com-
putation overhead required for distributed coordination need to be minimum.

Additionally, computation/load balancing is another goal desired as non-functional
requirements for distributed processing [91, 128]. Thereby, the resource constraint is
addressed by dividing and distributing the portions of the complex processing task
equally on the participating devices. Thereby, the load is distributed. Hence, the re-
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source consumption will also be shared among devices equally. This can also poten-
tially lead to an improvement of the overall performance of the distributed processing.
Furthermore, since the distributed processing concept relies on the participation of
humans, fair computation/load balancing might also be another incentive to motivate
participants to offer their idle computing resource.

4.2 the adaptive task-oriented message template — atmt

In this section, we first present the adaptive task-oriented message template proposed to
enable distributed processing in a mobile opportunistic network. The goal of the task
message is to allow the participating devices to cooperate with each other through
distributed coordination. To cope with the problem of uncertainty caused by the
network, a distributed coordination scheme has to be fast and precise. From an archi-
tecture point of view, one way to enable distributed coordination without relying on a
centralized coordination entity is to distribute the coordination itself to multiple coor-
dination entities. In dynamic mobile networks the coordination entities can be chosen,
e.g., by clustering the devices and assigning the coordination function to the corre-
sponding cluster head [31, 171]. Hereby, each cluster keeps track of which computing
services, which resource are available in its cluster in order to assign the distributed
processing task. However, in this approach, within each cluster the devices still have
to rely on a single cluster head for coordination, which might not react fast enough
with uncertainty. Hence, in order to cope with uncertainty, in our approach we enable
autonomous decision of each participating device. Each participating device decides
for itself how much it should contribute and what it should do next for the distributed
processing. As such, our solution follows a fully-decentralized approach. We rely on
shared context information of each device to facilitate distributed coordination as well
as autonomous decision of individual devices. Inspired by the idea to enhance cloud
monitoring in [137] where the monitoring tasks are defined and coordinated through
a template, in our mechanism, we propose a message template to define the processing
tasks for distributed processing.

Our enabling concept for distributed processing is named adaptive task-oriented mes-
sage template (abbr. ATMT), which basically provides a construction template for users
to define a complex processing task as the final goal, its corresponding operations
as well as the execution order of these operations to accomplish the processing goal.
The task messages will be distributed into an opportunistic network formed by mobile
devices for distributed processing. Hereby, each device, when receiving the task mes-
sage can make autonomous decision on how to proceed by itself. The autonomous
decision is possible by bundling and embedding relevant context information of the
processing task as well as the payload data required for the processing altogether in a
task message. As such, each task message is a self-encapsulated message which describes
itself. The illustration of the message template is shown in Figure 16.

We divide an ATMT message into the ATMT header which contains context infor-
mation and the ATMT payload which contains the data required for the processing
task. To enable continuous processing, the ATMT payload can also contain the results
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Figure 16: Adaptive Task-oriented Message Template (ATMT) for enabling distributed
in-network processing (image from our publication in [136]).

of successfully executed operations. As such, the ATMT payload is mixed and can
have varied lengths depending on the types and the total number of unexecuted oper-
ations. Therefore, in order to make each ATMT message communication efficient, we
support compression of the data pieces required for the operations so that the total
size of each ATMT message remains small enough for efficient communication in a
mobile opportunistic network. To allow for more flexibility, each data piece associated
with one particular operation can be compressed using different encoding methods.
The association of data and operation is achieved through the ATMT header. Within
the ATMT header, we further divide the header into a message header and an analysis
header. The analysis header, as its name suggests, contains information required for data
analysis as processing task. Two sub-components are required for the analysis header,
i.e., an operations graph and a data dictionary. As aforementioned, we need a mechanism
to associate the payload data, which are compressed with different encoding with the
corresponding operations. This association is realized through the data dictionary. Ba-
sically, the data dictionary is a data structure to map data to operations. It also indicates
start and end of the payload data. The operations graph defines the operations required
to complete the computing task and the processing order of the operations.

Within the ATMT message header, we include an Universally Unique Identifier
(UUID), a checksum, and a length field. The length field indicates the total length of
the analysis header, since the size of the operations graph can also vary for different
computing tasks. With the length of the analysis header given in the message header, a
device is able to distinguish between the ATMT header and the ATMT payload. This
information is useful if a device wants to check the context information without hav-
ing to read and parse the content of the payload. Thereby, the UUID and the checksum
can be used. Since an ATMT task message template can be duplicated in a mobile
opportunistic network, when a device receives several task messages, it can check and
drop messages with the same UUID. As a result, messages with different UUID will
be considered differently. The checksum is a field that represents the current state of
the processing task. If the checksums of two messages are identical, it indicates that the
processing state of both messages are the same and one message can be dropped. We
only determine the checksum over the operation graphs due to two reasons: (i) knowing
the processing state is sufficient for a participating device to decide whether or not to
participating in the processing or to drop the messages, and (ii) due to the autonomous
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characteristic of our concept and the heterogeneity of the devices, two devices pro-
cessing the same operation might result in slightly different results (e.g., if these two
devices use different execution codes libraries).

4.3 graph-based primitives

We dedicate this section to elaborate on the operations graph introduced as one essential
field of the analysis header for the ATMT messages. To distribute the computation, it is
common to divide an intensive computing task into several operations. Therefore, a
complex computing task contained in an ATMT message can consist of more than one
operation. The goal of the operations graph is thus to represent the goal of the processing
task, the corresponding operations, and the execution order of the operations. For
this purpose, we use a Directed Acylic Graph (DAG) to contain all of the required
information.

(a) Create (b) Read (c) Update (d) Delete

(e) Merge (f) Delegate (g) Operate (h) Split

Figure 17: Illustration of graph-based primitives for ATMT messages (image from our
publication in [136]).

The operations graph of an ATMT message is thus modeled as a graphGO = (VO,EO);
with VO being the set of vertices and EO being the set of directed edges. The set VO

consists of vertices with each vertex indicating an operation. Each directed edge in
the set EO, which connects two vertices as two operations, indicates the dependent
execution order between these two operations. For instance, edge Vx → Vy implies
that the operation represented by vertex Vx has to be executed before the operation
contained in the vertex Vy and that the output of the executed operation in Vx is
required as an input for operation in the vertex Vy. The resulting operations graph
is topological sorted to ensure that overall the graph-based representation for the
execution oder of the operations lead to the final processing goal. Therefore a device
reading the operations graph can traverse the graph quickly to look for an operation
that can be executed by the respective device.

We formally define several graph-based primitives, which provide us an interface
to interact and to operate on the ATMT messages. The illustration of examples for all
graph-based primitives can be found in Figure 17. Four essential graph-based primitives are
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required: create (C), read (R), update (U), and delete (D) which are abbreviated as CRUD
primitives. Additionally, we define four sub-primitives for the update (U) primitive.
These are named merge (UM), operate (UO), delegate (UD), and split (US), which are
abbreviated as MODS primitives. Table 4 and 5 summarize all defined graph-based
primitives as an overview.

Table 4: Common primitives on the ATMT messages (CRUD)

Abbr. Names Meaning

C (C)reate Create a new ATMT message, with unprocessed,
raw payload data attached

R (R)ead Parse the message and read its content

U (U)pdate Adjust the content of the message, i.e., operations
graph and payload data can be modified (details
in Table 5)

D (D)elete Drop and thus remove the message from the
network

Table 5: Possible update primitives on the ATMT messages (MODS)

Abbr. Names Meaning

UM (M)erge Merge and join two ATMT messages into one, i.e.,
merge the operations graph and the correspond-
ing data

UO (O)perate Execute an operation on the corresponding at-
tached data

UD (D)elegate Construct a new operation graphs, or add a new
operation to the existing operations graph

US (S)plit Split an ATMT messages into two different ones

We now elaborate on how the graph-based primitives should be used with the ATMT
concept. In a crowd sensing application, a device after collecting data can create an
ATMT message and attaches the collected raw data with the created message. Within
the operations graph the raw data are associated with the root node of the graph to signify
the begin of the execution order. Devices in the network can read the whole content of
an ATMT message. Note that the read primitive does not imply any modification on
the content. For the purpose of modifying the content of an ATMT message, the update
primitive is used. There are four types of modifications possible for the update primitive.
(i) The merge primitive is used to merge the operations graphs and contents of two
ATMT messages. The merge primitive is defined, as the chances are high that ATMT
messages are duplicated and processed differently in a mobile opportunistic network.
(ii) The operate primitive is used when a device possesses an operation required next
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in the execution order of the current ATMT message and decides to execute this
operation. The operate primitive also allows the processing device to replace the raw
payload data with the result obtained from the executed operation. (iii) The delegate
primitive is used to enable a device to construct a new operations graph and to associate
the raw payload data with the operations. Devices that are allowed to carry out a
delegate operation are those with domain knowledge of how to process and analyze
the collected data. (iv) The split primitive is used to divide a single ATMT messages
into two. If there are different ways (e.g., using different operations) to obtain the same
goal, the current ATMT task can be duplicated by dividing and representing using
two different (sub-)operations graph, which increases the chance of success for this
task. Finally, the delete primitive can be used by a device to drop and thus remove an
ATMT message from the network.

Overall, the set of graph-based primitives as defined allows participating devices to
act autonomously on receiving ATMT messages. In the next section, we will elaborate
on how the autonomous action of each device contributes to the distributed processing
as a whole.

4.4 system model for distributed processing

To utilize ATMT messages for enabling distributed processing, we rely on the au-
tonomous decision and the heterogeneous capabilities of the participating devices. In
a nutshell, the participating devices are able to cooperate with each other in a decentral-
ized self-organizing manner. As such, the distributed coordination and cooperation
among participating devices are realized through four different roles, i.e., sensor, op-
erator, forwarder, and delegator. These roles specify the capabilities of the participating
devices. The capabilities and the descriptions of the roles are summarized in Table 6.

Table 6: Roles and capabilities of participating devices as defined in the distributed
processing model using ATMT messages

Role Capabilities Description

(S)ensor {C} Initiate ATMT messages with raw payload
data attached

(O)perator {UO, UD} Execute one or more operations on the
message’s data, and update the result
within the ATMT payload

(F)orwarder {R} Read and forward ATMT message un-
changed

(D)elegator {UM,UD,US,D} Adjust the content ATMT message, via
merge, delegate, split, delete

A device assuming the sensor role has to be able to obtain data through built-in
sensors. After obtaining data, a sensor device can initiate the distributed processing
work-flow by creating an ATMT message and attaching the obtained data. In a mobile
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Figure 18: Illustration of distributed processing workflow using ATMT concept.

opportunistic network, the communication relies on the store, carry, and forward ap-
proach, in which messages are forwarded from one device to another in order to reach
the destination at a later time. Accordingly, each device with networking capabilities
in our system model can assume the forwarder role. A forwarder role is equipped with
read capability, so that each device can parse and read content of an ATMT message
in order to make further decision such as merge or drop. The participating devices
that decide to contribute computing resource for the distributed processing, assume
the role of operator. Operator devices, upon receiving an ATMT message, can read the
content of the message header and the analysis header to determine whether this device
possesses the operations/services that can be applied on the upcoming operation of
the operations graph. If an operator device decides to perform an operation from an
ATMT message, this operator will replace the raw data input from the payload of the
ATMT message with the output of the executed operation using the update primitive.
Unsolicited payload data can also be completely removed from the ATMT payload.
As a result, after several iterations, in which operations from the operations graph are
executed, the size of the ATMT payload can be decreased thus reducing the gener-
ated network traffic. This mechanism contributes to making the communication of the
distributed processing concept more efficient. Last but not least, the core of the dis-
tributed coordination is the delegator. Delegators are devices with domain knowledge
to construct an operations graph. The delegators lead the distributed coordination for the
processing by adjusting the content of ATMT messages when necessary. As such, a
delegator device can perform all update primitives on ATMT messages, i.e., merge, split,
delegate, or delete. A common workflow of ATMT enabled application, involving every
defined roles, is illustrated in Figure 18.

In our system model, the roles can be assigned or assumed by the participating
devices dynamically based on their available capabilities, on current utilization, or on
events triggered from the applications [163]. As a result, a device might have several
roles at the same time based on its capabilities. With regards to security, the roles with
critical functions such as delegator can be assigned in a static manner. Since a delegator
should also possess the domain knowledge on how to process the data, the devices



70 distributed processing

capable of delegator role normally belong to an authorized organization. For instance,
in emergency response situations, such devices might be devices from authorized first
responders or firefighters. In case, multiple sensors are required, the data need to
be collected and aggregated at a predefined location before being attached with pro-
cessing information by the delegators. Further mechanisms to establish a decentralized
trusted environment for distributed processing such as in [44] can be leveraged.

To match the operations for execution, operators can compare the name or the repre-
sentation indicated within the operations graph. To reduce communication and compu-
tation overhead, there is no need for an operator to employ ontology to derive knowl-
edge of the processing. Since most of the functions and operations on each devices
should be defined during design time, a simple comparison for matching is sufficient.
To represent the names of the operations, Internationalized Resource Identifiers (IRI)
can be used or an application-agnostic naming scheme similar to the NDN paradigm
can be leveraged [59].

In the distributed processing workflow shown in Figure 18, the ATMT message
template is the enabling concept and the forwarding of an ATMT message from one
device to another is the main driver for distributed processing. It is obvious, that a
single device cannot handle the whole workflow, which requires numerous capabilities.
Each device thus operates on a part of the ATMT task and forwards the result after
the operation to other devices via store, carry and forward networking paradigm for
further processing. We define the act of passing a processed ATMT message on to
other devices as task handover. Through task handover, the success rate for completing
a complex computing task can be increased. However, if not designed properly, the
handover can generate much overhead. Instead of increasing the success rate, poorly
designed task handover can even decrease the overall performance. In the next section,
we propose several handover strategies for ATMT messages, aiming to satisfy the QoS
requirements while considering the challenges resulting from mobile opportunistic
networks as discussed in Section 4.1.

4.5 opportunistic task handover

In this section, we present several task handover mechanisms for our proposed ATMT
concept. This section is named opportunistic task handover, due to the fact that the
communication among participating devices mainly depends on opportunistic ad hoc
WiFi. In this environment, two devices can exchange information and handover ATMT
task messages upon each opportunistic contact.

Recapitulating from Section 4.1, we design mechanisms for task handover that aim
to improve the QoS parameters, satisfying both functional and non-functional require-
ments. Consequently, the task handover mechanisms should achieve high success rate,
low completion time, generate minimum overhead, and be able to achieve computa-
tion/load balancing among participating devices. As a basis to derive the handover
mechanisms, we rely on the framework proposed by Alakeel et al [6], which is a gen-
eral guideline to achieve load balancing while also considering other performance
aspects of a distributed system. According to the authors, a decision to assign a task to
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Figure 19: Illustration of ATMT task handover mechanisms.

an entity of a distributed system needs to consider three main aspects, i.e., information
strategy, transfer strategy, and location strategy. Location strategy refers to the set of rules
which determine where to assign the task. With regards to our processing mechanism,
location strategy refers to which destination should we offload/handover an ATMT
message. Transfer strategy refers to the set of rules which determine whether to perform
a task locally on the corresponding entity or to offload the task to others. Information
strategy refers to the set of rules, which determine how to obtain the context informa-
tion in order to generate the rules for location strategy and transfer strategy. As a result,
the information strategy plays a central role for designing handover mechanisms. With



72 distributed processing

regards to mobile opportunistic networks, the context information can be obtained at
different granularities: (i) only local context information of individual devices is con-
sidered, (ii) devices can share their current status with others. Hereby, the granularity
level can be further distinguished between shared context information with one-hop
direct neighbors or shared context information with devices being multiple hops away.
Based on the granularity level of shared context information as observed, we propose
three strategies for ATMT task handover designed for mobile opportunistic networks.
These are named naive, work-stealing, and local optimization. According to the granular-
ity level of shared context information, in naive mechanism, a device only leverages
its own context information and status to make handover decisions. The work-stealing
strategy leverages shared context information of one-hop direct neighbors, while local
optimization utilizes shared context information of multiple-hop away devices. As shar-
ing context information generates communication overhead, each strategy has its pros
and cons. In the following sections, we provide details of the three proposed handover
mechanisms. The proposed handover mechanisms are illustrated in Figure 19.

4.5.1 Naive

The naive mechanism as its name suggests, is a simple handover mechanism, which
is based completely on the context information of a single device. These are available
services/operations, the current processing workload, as well as the resource utiliza-
tion on the corresponding device. We model the resource utilization on each device
through a queue of ATMT task messages. Thus, the total resource which can be made
available and contributed to the distributed processing, is represented by the total
length of the tasks queue, i.e., the maximum number of ATMT task messages, that a
device is willing to take in. Having a task queue and its limited size, two strategies are
conceivable for naive task handover: (i) greedy full-capacity handover, and (ii) limited
capacity handover.

In our considered scenario, a processing goal in an ATMT message is a complex
task, which is divided into multiple operations, that need to be invoked and executed
in a particular order to complete. As a consequence, the longer the operations graph, the
more difficult and challenging it is to successfully carry out the operations, since not
all operations are available on all devices. To counter this issue, the greedy handover
requires all participating operator devices to contribute as much as possible, i.e., the
whole capacity of their task queue should be utilized. After performing the operations
from ATMT tasks, a device will handover all the processed ATMT messages to all
of its direct one-hop neighbors for further processing. Thereby, each ATMT task is
duplicated and carried on multiple devices, which is intended to increase the success
chance for a processing task. The behavior of greedy handover is inspired by the
concept of epidemic flooding in opportunistic networks [200]. Thus, greedy handover
also shares the advantages as well as the disadvantages of epidemic flooding. The greedy
handover strategy makes a trade-off of communication and computation overhead for
higher success rate by generating a high number of duplicated ATMT messages in the
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network. Similar to epidemic flooding, the greedy handover can serve as a baseline for
the performance comparison among the task handover strategies.

Taking into account the main drawback of the greedy handover strategy, in limited
capacity handover, we aim to balance between redundancy overhead and performance
of the naive mechanism. Under the observation, that several mobile devices might
possess similar capabilities to perform an operation in a dense network with high
number of devices, it is possible to limit the resource contributed by the participating
devices while not negatively affecting the overall success rate. The success rate can
be compensated among devices with similar capabilities. Thus, a device following
a limited capacity strategy can put a threshold on its task queue. As soon as the
number of received ATMT message reaches the threshold, a device will reject/drop
further messages. Limiting the task queue might also benefit the overall computation
balancing, since each device ensures that it is not over-utilized. We will assess this
intuition later in the evaluation.

In summary, for the naive task handover mechanism, a device in our system follows
two strategies as previously discussed: (i) full offering of available resources on operator
devices thus resulting in an epidemic flooding of ATMT tasks in the whole network and
(ii) limiting the size of acceptable ATMT tasks in the queue and dropping further
incoming messages.

4.5.2 Work Stealing

Our second handover mechanism is named work-stealing. Work-stealing is a notion
defined in the early age of parallel computing [16] and refers to the act of re-allocating
threads among processors. In parallel computing consisting of multiple processors,
when a processor notices that it is current running only a few threads, indicating that
this process is under-utilized, this under-utilized process can take over threads from
other over-utilized processors. As a result, the over-utilized process is relieved, leading
to improved performance of the whole system. This idea is later generalized in the
context of mobile crowd computing [52], in which work-stealing refers to the act that a
mobile device can take over/steal computation tasks from the other. Compared to the
concept proposed by Fernando et al. in [52], our work-stealing concept differs in the
sense, that we do not rely on centralized coordination of any dedicated devices. Instead,
each mobile device in our system can act autonomously. Accordingly, each operator in
our system is capable of stealing processing jobs from other operators. In work-stealing,
each operator constantly checks on the current number of ATMT messages in its tasks
queue. If this number is smaller than a predefined lower-bound threshold, this operator
considers itself as being under-utilized. Thereafter, an under-utilized operator will send
a work-stealing message to its one-hop direct neighbors to inform the nearby operator,
that it still has available capacity and is willing to take over some ATMT tasks. We
assume a trusted environment, which is established among participating devices [44];
consequently, only trusted devices are allowed to take over ATMT tasks in order to
mitigate security risks in such decentralized environment.
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To regulate the number of ATMT tasks, which the work-stealing operator is able to
accept, we use a parameternws as the maximum work-stealing capacity. A work-stealing
message thus contains the list of operations which can be executed by the work-stealing
operator, and the maximum number of the acceptable capacity nws. Since the capacity
of the ATMT tasks queue on each operator device is limited, the work-stealing capacity
nws should not exceed the maximum size of the tasks queue. Additionally, to account
for computation balancing in general and to govern the behavior of the operators in
order to avoid egoistic handover, we introduce a second parameter nkeep. When an
operator receives a work-stealing message, which indicates the maximum number of
nws that this operator device is allowed to handover, this operator device should always
hold back a minimum number of nkeep messages in its own tasks queue. Overall, the
number of ATMT tasks nw−handover being handed over to a work-stealing device
satisfies the following conditions:

nkeep +nw−handover 6 size(TasksQueue) (9)

nw−handover 6 nws (10)

To determine the number of ATMT tasks nw−handover for handover considering
computation balancing, three strategies for work-stealing are conceivable. (i) Each
device receiving the work-stealing notification tries to exhaust the full capacity as
indicated in the work-stealing message. (ii) The work-stealing device coordinates and
regulates the work-stealing process, i.e., the work-stealing device divides the allowed
capacity equally to the total number of its direct neighbors. (iii) The work-stealing
devices bases the acceptance of task handover on the first come first serve principle.
The neighbor, which replies first to a work-stealing message, is allowed to send first
with its desired number of tasks which needs to satisfy the aforementioned conditions.
As soon as the work-stealing threshold is reached, the work-stealing devices will stop
receiving further messages and notify their neighbors on this decision. Thereafter, the
neighboring devices will also refrain from handing over ATMT tasks.

4.5.3 Local Optimization

In this section, we present the third handover mechanism, which is also our main
contribution to achieve the QoS requirements as discussed in Section 4.1. The name
local optimization refers to the fact, that we let each operator perform an estimation
locally to determine which is the best candidate for the next handover destination.
The handover based on local optimization is inspired by an observation of Eager et
al. [46]. The authors state that, an adaptation to improve the performance of local
components in a distributed system consequently improves the overall performance.
Similar observation is confirmed in mobile opportunistic networks by Sadid et al. [167].
Thereby, the authors show that enabling hop-by-hop services composition in oppor-
tunistic networks can improve the success rate as well as allow for load balancing.
Furthermore, the performance of the hop-by-hop services composition is comparable
to the performance of a centralized coordinated services composition. Following this
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line of thought, we devise our strategies for task handover based on local optimiza-
tion. Thereby, we only leverage local shared context information of the participating
devices to make handover decision. For local optimization, the devices share their
status and context information with both their direct one-hop neighbors as well as
with devices being multiple hops away. Our goal is to extend the search range for a
handover destination, which is beyond the range of the direct neighbors in order to
increase the chance to find (more) suitable candidates.

Handover based on local optimization depends on the quality of context information
shared by participating devices. In general, there are two options to acquire context
information. First, when a device requires information for handover, it sends out
a query and waits for other devices to reply with the requested context information.
Second, two devices upon opportunistic contact can share with each other their context
information in a proactive manner. With respect to mobile opportunistic networks
with uncertainty caused by mobility of participating devices, the later approach with
proactive context sharing offers more advantages. In an opportunistic network, reactive
reply upon a request for context information can return after considerable delay,
adding even more uncertainty for the information strategy. We employ proactive context
sharing for our handover strategy based on local optimization.

Upon any opportunistic contact, devices share and store context information from
each other. As a result of storing context information, each device maintains a list of
devices together with their current status that the corresponding device has discovered.
To enhance the information strategy for task handover, each device not only shares its
own context information but also shares its list of discovered devices. Exchanging
the lists of discovered devices also allows a device to extend or to adjust its own list.
The list of discovered devices contains the information required to make handover
decisions. The required parameters are listed in Table 7 as follows:

Table 7: Parameters used for task handover based on local optimization

Parameter Meaning

(opi..opj) the list of available operations on an operator.

nu the resource capacity which is currently utilized
by an operator, expressed by the number of re-
maining tasks in the queue of this operator.

(locx, locy) the current location of the corresponding device,
expressed by the Cartesian coordinates.

~v the current moving direction of the correspond-
ing device.

tinfo the time stamp generated when the status of the
device is captured.

The local optimization is executed by individual devices, which decide to handover
a processing task. The local optimization is possible, since each device now possesses
a list of discovered candidates, which can be chosen as the handover destination. To
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counter for uncertainty caused by mobility of devices in an opportunistic network,
before triggering the task handover, a device limits the search range for the candidates.
Thereby, a device sorts out the candidates, which have the current distance to the
corresponding device more than a predefined thresholddmax. As a result, only devices
located within a proximity of radiusdmax possessing the next operation required in an
ATMT task are considered. Furthermore, the list of potential candidates can be refined
by omitting devices that stay around the limit of a predefined search range dmax

and their moving direction ~v is outwards from the search zone. This sorting is due
to the fact, that these candidates might not be available anymore when the handover
decision is made. From the eligible candidates, we derive a function to estimate the
cost for handover to each candidate. This cost value allows us to rank the candidates
and to choose the candidate with minimum cost as the handover destination. The cost
function for an operator O selected as a handover destination is calculated based on
the current utilization nu of the tasks queue on the candidate and a corresponding
uncertainty factor µ(NO) as:

c(NA,NO, #OP) = (wl ∗ cl ∗ #OP +wd ∗ cd) ∗ µ(NO) (11)

in which:

µ(NO) = 1+
tcurrent − tinfo

tkeepAlive

cl(NO) =
nmax −nu

nmax

cd(NA,NO) =
d(NA,NO)

dmax

(12)

In Equation 11, NA denotes the handover triggering device. NO is a potential han-
dover destination according to the snapshot network view of deviceNA. #OP indicates
the number of operations that are chosen for handover. wl and wd denote the weights
of cost values for load cl and distance cd parameters of the handover candidate NO.

Equation 12 shows the details on how the uncertainty factor µ(NO), the costs es-
timation cl for distance, and load cd are calculated. We explicitly consider load and
distance for the cost estimation of a handover destination candidate, since these are the
two main factors that affect all other QoS requirements (i.e., success rate, completion
time, load balancing, overhead). The uncertainty factor is calculated based on the time
stamp tinfo, at which the context information of candidate NO is generated and the
current time stamp tcurrent, when the cost function is being calculated. Consequently,
the uncertainty factor depends on the elapsed time between tinfo and tcurrent, since
more elapsed time also means that the context information available at the current
time might get outdated. For instance, the handover destination candidate NO might
possess different state at the current time due to mobility or due to interaction with
other operator devices. In this manner, the cost calculated for outdated information
results in higher cost value, suggesting a negative handover decision. Thus, the han-
dover triggering device can avoid candidates with outdated information based on
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higher cost values. The cost estimation for load component is determined based on
the current utilization of the tasks queue nu on the candidate device and the maxi-
mum size nmax of the tasks queue. cl(NO) thus estimates the available capacity of the
candidate device to accept more ATMT tasks. Accordingly, the handover destination
candidate with highly-utilized task queue will get a higher cost, since choosing such
candidates as handover destination will increase the chance of offloaded tasks being
dropped, when reaching the destination at its full capacity. Last but not least, the dis-
tance component of the cost function is determined as the ratio of the distance between
the triggering devices and the candidate devices, and the search range dmax. The cost
estimation for distance factor is calculated this way to prefer handover destinations
in closer proximity, since a farther handover destination might require more hops to
offload the ATMT tasks, leading to more communication overhead. As a consequence,
the configurable parameter dmax for search range should be chosen carefully to bal-
ance between quality of the handover and generated overheads. Similar to the buffer
zone concept introduced in Chapter 3, an optimum search range in such decentralized
fashion is not possible, however, the search range can be adjusted based on the density
of the network. In the evaluation, we evaluate the effect of the search range on the
handover based on local optimization.

Having the cost function to compare and choose the handover destination candi-
dates among each other, we require a condition to trigger the handover process. We
use the load as the indicator to trigger handover. This is due to the fact that when
an operator device is overloaded, it can potentially decrease the overall performance
of the distributed processing. Further incoming tasks at an overloaded device will be
dropped and currently running tasks cannot be completed on time under over-utilized
situation. As a result, two triggering conditions are possible. (i) Proactive triggering
handover occurs every time the shared context information, i.e., the list of discovered
devices is updated. With new information, the triggering devices might find better
candidates as handover destinations, thus offloading tasks to these candidates can
improve the QoS parameters. (ii) Reactive triggering handover occurs every time an
operator device notices an over-utilized situation (e.g., when the task queue is full
or when a predefined threshold is exceeded). As previously discussed, over-utilized
devices can impact all QoS parameters. Triggering handover based on load is therefore
valid. Using task handover based on local optimization, it is also possible to optimize
the energy consumption on participating operators. For instance, if the delivery time
does not have to be guaranteed, then the operators which do not lie on the optimal
data delivery path can be chosen for task handover; since these devices are in general
not over-utilized for communication.

All in all, the task handover based on local optimization always ensures that the cost
to offload ATMT tasks to a handover destination stays minimum, therefore guarantees
that after each handover decision, the best handover candidate for the next offloaded
operation is chosen, subsequently improving the overall QoS parameters.
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4.6 evaluation

With the concept of the adaptive task-oriented message template—ATMT, we have de-
signed a solution to enable distributed processing in opportunistic networks in general
and to allow for distributed analysis of crowd collected data in particular. Therefore, in
this chapter we evaluate the ATMT concept and the proposed handover mechanisms
from an application-layer perspective, since our concept can be utilized for a wide
range of applications which rely on distributed processing. To this end, we implement
the ATMT concept and the handover mechanisms, using a customized simulator based
on OMNeT++ [201]. We focus on the QoS parameters for distributed processing on
mobile opportunistic ad hoc networks and how the proposed handover mechanisms
effect these QoS parameters. Next, we discuss our evaluation methodology, i.e., the
setup and the evaluation metrics. As the first step of the evaluation, we analyze the
handover mechanisms individually to find out the advantages and disadvantages of
each mechanism. Based on the obtained results of the analysis of individual mecha-
nism, we compare the performance of all proposed handover mechanisms with their
best configurations against each other to find out the trade-off between performance
and overhead.

4.6.1 Evaluation Setup and Evaluation Metrics

Since the main goal of the evaluation is to analyze the concept of ATMT, and the
proposed handover mechanisms with regards to distributed processing from an ap-
plication layer perspective, we implement an OMNeT++ module, that is compatible to
the design of the ATMT template [134], and on the strategy module that realizes the
handover mechanisms [136]. The OMNeT++ simulator provides a complete protocol
stack, that allows users to plugin and use the WiFi ad hoc communication interface
all from the network layer down to the physical layer. However, simulating with the
whole stack generates a lot of overhead and restricts the scalability of the simulation
scenario. Therefore, we abstract the WiFi ad hoc communication module, so that when
two devices are in WiFi range of each other they will be able to communicate and ex-
change messages. We assume, that the congestion control and collision avoidance of
the network layer can be handled using access control mechanisms proposed for the
link layer such as in [104]. Due to our focus on the application layer and handover
strategies, such abstraction does not significantly affect the results of the evaluation.

Since we design ATMT targeting mobile opportunistic networks, we create a simu-
lation scenario which allows us to generate and disseminate ATMT based computing
tasks in such a network. We simulate an area of 500×500 m2, in which mobile devices
as operators can move around. To inject and disseminate the computing tasks into the
simulated area, we use five static delegator nodes, one main delegator, and four helper
delegators, located around the main delegator. This setup can be observed in Figure 20.
The five red points represent the static positions of the delegators. Complex comput-
ing tasks are generated by the main delegator, which first replicates these tasks on the
helper delegators. When a mobile device appears in communication range with one of
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Figure 20: Initial distribution of participating mobile devices and positions of delegators in
the simulation scenario.
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Figure 21: Analysis of contact durations and number of neighbors in the simulated scenario.

the helper delegators, this mobile device will receive the computing tasks. Thereby, the
computing tasks are successfully injected into the opportunistic network. The reason
behind this setup is to allow the generated computing tasks to reach multiple mobile
operators even if the network is sparse as shown in Figure 20a with only 20 devices.
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Table 8: Simulation parameters for evaluation of ATMT handover mechanisms

Parameter Value(s)

Simulated Area 500× 500m2

Simulation Time 1 hour

#Nodes 20, 40, 60, 80

WiFi Range 75 m

Mobility Model LevyWalkMobilityModel

#ATMT-Tasks 100, 1000

Naive full, limited

Work Stealing full, FCFS, equalized

Local Optimization proactive, reactive

Note that, this setup is intended to generate a "fair" starting phase for all simulation
scenarios, in which tasks are successfully injected to multiple operators in the network
regardless of network density. This setup however does not affect the performance
of the handover mechanisms w.r.t. QoS parameters, since the performance of the dis-
tributed processing mainly relies on the mobility, the interaction, and the behavior of
participating devices during the simulation.

To assess the performance of the handover mechanisms with regards to the com-
plexity of the computing tasks, we create two types of tasks: (i) simple tasks which
require between two and three operations to complete the processing goal, and (ii)
complex tasks which always contain five operations. Each operation is represented by
a predefined name and a predefined execution time which is required on the partici-
pating devices, that possess the services to execute this operation. The mobility model
plays an important role in the evaluation, since the QoS parameters for distributed
processing in this case depend on the mobility of participating devices. According
to Rhee et al. [160], the Levy walk mobility model exhibits relevant characteristics of
human mobility in a disaster relief situation. Based on this observation, we use the
Levy walk mobility traces, generated using BonnMotion [10] on all participating de-
vices in the simulation. Figure 21 shows the characteristics of the generated mobility
traces used in our evaluation with regards to average contact time between nodes
and average number of neighbors. Figure 21a shows a large variance for the average
contact time with 20 devices, while the variance gets smaller with increasing number
of devices, suggesting that the connection between devices in a denser scenario is
more stable. Figure 21b shows that the number of the neighbors increases with an
increasing number of devices in the network. All together, these two observations con-
firm that for our evaluation, a simulated scenario with 20 devices represents a sparse
network, while a scenario with 80 devices represents a dense one. With the simulated
scenarios as described, we implement our proposed handover strategies and assess



4.6 evaluation 81

their performance under varying configurations of the simulation parameters. Table 8
summarizes the most important parameters for the evaluation.

According to the QoS requirements defined in Section 4.1, we use five metrics for
the evaluation defined as follows:

1. Success rate: in our simulation, after completing a computing tasks, the operator
devices will deliver the result back to the delegator (for statistics collection).
Hence, the success rate is defined as the ratio between the number computing
tasks that can be successfully completed as well as delivered to the delegator
against the total number of tasks generated in the beginning of the simulation.

2. Communication overhead: we use the total number of ATMT messages which are
generated during the simulation run as the metric for communication overhead.

3. Completion time: we use the elapsed time after the computing tasks are generated
by the delegator until all these tasks are completed and delivered back to the
delegator.

4. Jain’s index: similar to the fairness evaluation of crowd sensing tasks distribution,

we use the Jain’s index calculated as JI(x1, x2, ..., xn) =
(
∑n

i=1 xi)
2

n∗

∑n
i=1 x

2
i

, in which xi

indicates the number of operations executed by node i, as the metric to quantify
the quality of load balancing among the handover mechanisms.

5. Redundancy factor: we use redundancy factor as the metric for computation over-
head. The redundancy factor is determined as the ratio between the total number
of operations, which are executed redundantly and the initial numbers of oper-
ations first generated in the network.

We present the evaluation results for all handover mechanisms and the comparison
of their performances in the next sections. All evaluation results are obtained by
repeating each configuration ten times. All plots are reported with 95% confidence
intervals.

4.6.2 Analysis of individual Handover Mechanisms

In this section, we evaluate and analyze each handover mechanism individually to
study the performance as well as trade-off of these. Based on the individual analyses,
we determine the optimum configuration of each handover mechanism, which is used
for the overall comparison later in the next section.

Naive Handover:

The naive handover mechanism is based on epidemic flooding in opportunistic
networks. As a result, this mechanism can serve well as the baseline for benchmarking
other mechanisms. Similar to the characteristic of epidemic flooding, naive handover
obviously generates much overhead due to duplicates of ATMT tasks in the network.
We thus leave out the measurement of overhead for later overall comparison. Instead,
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(b) Success rate with 80 devices in the network

Figure 22: Success rate of naive handover mechanisms for different types of devices.

we focus on two assessment goals for naive handover. (i) We want to find out the impact
of network density on the success rate of complex computing tasks. (ii) Since a naive
handover can be regulated by limiting the size of the tasks queue, we want to analyze
the effect of limited tasks queues with regards to load balancing and completion time.

To simulate the heterogeneous capabilities of the participating devices, on each
operator we generate a number of predefined services that provide the capabilities
to execute corresponding operations. For the sake of the evaluation, we create three
classes to represent the number of services available on the operators, i.e., high, medium,
low. There are 5 different services in total, i.e., an operator can execute 5 different op-
erations at best. Services available on the simulated devices of each class are normally
distributed. Accordingly, 50% of operators belonging to the high class possess 5 ser-
vices required for executing operations defined in ATMT tasks, while in medium class,
50% of operators possess between 2 and 3 services, and in low class, 50% of operators
possess no service, while the other 50% possess only one single service. Figure 22
presents the results of success rate for a sparse network of 20 devices and a dense net-
work of 80 devices. In both cases, we vary between high and low number of tasks, and
between complex and simple tasks. It can be observed that, in case the operators are
equipped with a high number of capabilities, the flooding based naive handover can
achieve high success rate regardless of network density. However, with low capabili-
ties, the naive handover cannot cope well with a high number of tasks, especially with
complex tasks. In a sparse network with 20 devices, operators with low capabilities
can achieve a success rate of 20%, while the success rate is on average 77% in a dense
network, less than the success rate achieved by operators with more capabilities. This
can be explained by the fact that a complex task requires the execution of several oper-
ations in a predefined order. Therefore, with less capabilities, the operator possessing
the service required for the next operation might not be found in a timely manner.
However, in general for naive handover mechanism, the low services availability can
be compensated by the high number of operators.
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Figure 23: Analysis of naive handover mechanisms with regards to available resource in task
queue.

We vary the number of acceptable tasks, i.e., the available resources in a tasks queue
on each operator to study the effect of limited capacity on naive handover. For this pur-
pose, we determine Jain’s index value and measure the completion time with varying
network density. The results are shown in Figure 23. It can be observed that the size of
the tasks queue does not have any influence on the completion time. A faster comple-
tion can be achieved with a higher number of operators. In Figure 23b, the completion
time of 80 operators lies on average at 150 s, while 60 operators need around 240 s, and
with only 40 operator devices, the network requires more than 350 s to complete all
tasks. With regards to Jain’s fairness index, Figure 23a shows, that the fairness index
values decrease when the available resources in the tasks queue increase. The reason is
the greedy execution of operations. Altogether, the results obtained from the analysis
of the capacity of the task queue imply, that QoS requirements for distributed pro-
cessing can be achieved without exhausting the contributed resources of participating
devices. Thus, it is possible to reduce the size of the tasks queue without affecting the
overall performance, consequently preserving resources of participating devices.

Work-Stealing:

We implement three strategies proposed for the work-stealing mechanism as previ-
ously discussed. These strategies are denoted as WS-Full, WS-Equal, and WS-FCFS. The
WS-Full strategy represents a greedy behavior of participating devices, i.e., when they
receive a work-stealing notification, these devices try to offload the maximum num-
ber of tasks onto the work-stealing devices. WS-Equal strategy lets the work-stealing
devices coordinate their neighbors. Thereby, each work-stealing device divides the
maximum number of acceptable tasks equally to the number of its neighbors. Hence,
the numbers of tasks being handed over locally are regulated by the work-stealing
device. The WS-FCFS strategy is based on the first come first serve principle, in which
the operator that replies first to the work-stealing device, is allowed to handover first.
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Figure 24: Analysis of work-stealing handover mechanisms.

Contrary to the greedy behavior of WS-Full, in WS-FCFS each device only offloads
the difference of the tasks resided in queue, that exceeds the over-utilized threshold.
We compare these three work-stealing strategies against the naive handover with full
capacity (denoted as N-Full) as the baseline.

Figure 24 summarizes the evaluation results for the work-stealing mechanism. It is
obvious, that WS-Full with its greedy behavior performs worst compared to all other
strategies in all performance categories. This is due to the fact that, WS-Full over-
utilizes the resource available on each work-stealing devices, therefore, instead of
alleviating, WS-Full even generates more workload. With regards to completion time,
the other two work-stealing strategies WS-Equal and WS-FCFS perform slightly better.
Work-stealing strategies are also able to reduce the communication overhead in terms
of the total number of exchanged ATMT messages. Interestingly, both work-stealing
strategies WS-Equal and WS-FCFS yield worse Jain’s fairness index values compared to
the naive mechanism, while being able to improve the success rate especially for dense
networks. With 80 operators in the network, the WS-FCFS strategy can achieve up to
97% success rate, while the naive handover mechanism can only achieve around 85%.
The reason is work-stealing mechanism, in general, is designed to alleviate overbur-
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den operators locally, consequently leading to improved success rate as more operators
now have idle capacity left to execute operations from ATMT tasks. However, with the
effective range of work-stealing mechanism only restricts within one hop neighbors
and the chances of work-stealing devices to meet overloaded devices vary as well as
highly depend on the network density, the improvement on computation balancing of
the whole network cannot be always guaranteed.

Local Optimization:

Last, we evaluate and analyze the handover based on local optimization with two
corresponding strategies as previously proposed. The proactive strategy triggers a han-
dover process every time an operator device receives new shared context information,
which implies an updated list of discovered candidates and potentially new better
candidates for task handover. The reactive strategy triggers a handover process when a
predefined condition is met. We use an overload situation as the triggering condition
for the reactive strategy. Due to the fact, that the handover based on local optimization
searches for candidates as the handover destinations within a search radius, the size
of the search radius can effect the overall performance. Accordingly, we measure the
evaluation metrics with varying search radius. The evaluation is conducted in a dense
network with 80 operators.

The evaluation results for local optimization are summarized in Figure 25. Obviously,
increasing the search radius means that the handover of an ATMT task has to traverse
through multiple hops before reaching the destination. This intuition can be confirmed
in Figure 25b. The total number of ATMT messages increases linearly when increasing
the search radius in both proactive and reactive optimization strategies. In the most
cases, the proactive strategy generates more overhead than the reactive strategy, due to
the fact, that the handover in proactive strategy can be triggered whenever an operator
node receives updated shared context information. In a dense network, this can happen
quite often. On the contrary, the reactive strategy only triggers in overload situations.
Regardless of the search radius, both reactive and proactive strategies always reach
100% success rate, which is explained by the fact that all participating devices always
look for the best capable operators for executing the next operation. The completion
time for the proactive strategy is longer, due to the fact that the proactive strategy reacts
to changes to find better handover destinations, which might occur too often in rapidly
changing environments. On the contrary, the completion time of the reactive strategy
remains fast and stable, since the reactive strategy is triggered less often. Furthermore,
the completion time of the proactive strategy increases with larger search radius, but
seems to converge after 125 m search radius. The increasing trend along the search
radius is explained by the fact, that it takes longer to reach a handover destination
that is located farther away. The convergence trend is explained by the fact, that in
a dense network it is highly possible to find the best handover destination within
the proximity. The result for the trade-off of longer completion time and of more
communication overhead is the improvement in computation balancing in the whole
network as visible in Figure 25c. With larger search radius, the fairness index value
of the proactive strategy increases as well. However, similar to the completion time,
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Figure 25: Analysis of local optimization based handover mechanisms.

increasing the search radius more than 125 m does not indicate any more improvement
with regards to load balancing. Overall, the evaluation results and the analysis of
two strategies for local optimization underpins the strength of such mechanism on
completing complex tasks. Moreover, it can be confirmed that there is always a trade-
off to balance among different QoS requirements.

4.6.3 Comparison of Handover Mechanisms

In the previous section, we have analyzed each handover mechanism individually. Our
evaluation goal of this section is to provide an overview comparison among handover
mechanisms. We use the two mechanisms N-Full and N-Limited introduced for the
naive handover as the baselines for our comparison. Among the three work-stealing
strategies, we choose WS-FCFS for the overall comparison, since the individual analy-
sis of work-stealing mechanisms has revealed that WS-FCFS provides the best perfor-
mance compared to other work-stealing strategies. Both local optimization strategies
are able to provide one of the QoS requirements regarding distributed processing,
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Figure 26: Comparison of all proposed handover mechanisms.

therefore, we consider both for the final comparison. In the results shown in Figure 26,
the proactive and reactive strategy are denoted as LOpt-P and LOpt-R respectively.

We conduct the overall comparison among handover mechanisms in both sparse
and dense networks. Furthermore, in a sparse network with 20 or 40 operator devices,
we only use a low workload in which 100 ATMT tasks are generated and injected.
On the contrary, to push for the limit in dense networks, e.g., networks with 60 or
80 devices, we use a high workload in which 1000 ATMT tasks are generated and
injected. For the final comparison among mechanisms, we use four evaluation metrics,
i.e., completion time, operations redundancy factor to measure the overhead and the
efficiency of the handover, success rate, and Jain’s fairness index to measure the quality
of load balancing. The evaluation results with regards to these metrics are presented
in Figure 26.

The completion time observed in sparse networks of 20 nodes is quite high and
fluctuates a lot for all handover mechanisms. With more devices in the network, the
completion time can be reduced. It can be observed from the results shown in Fig-
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ure 26a that the completion time of the flooding-based naive mechanism and the
work-stealing mechanism are faster than mechanisms based on local optimization.
This result is expected, since both flooding based and work-stealing are greedy mech-
anisms, that trade-off time factor for other QoS requirements. This explanation is
confirmed when considering the other evaluation metrics. The operation redundancy
factor presented in Figure 26b shows that the flooding based naive mechanism with
full capacity expectedly executes a single operation multiple times. Other mechanisms,
i.e., N-Limited, WS-FCFS, and both local optimization strategies are able to decrease
the operation redundancy factor, implying, that the computation resources can be
alleviated. With regards to success rate, the results presented in Figure 26c indicate
that while the success rate of naive and work-stealing mechanisms fluctuates, both
proactive and reactive strategies of local optimization ensure the highest success rate
of 100%. The marginal variance in the box plot of the success rate by LOpt-P proactive
strategy and LOpt-R reactive strategy suggests that both strategies are stable and thus
always deliver almost 100% success rate. Lastly, the evaluation results obtained for
Jain’s fairness index are presented in Figure 26d. Evidently, load balancing is difficult
to achieve in sparse opportunistic networks. The fairness index values vary a lot with
20 and 40 devices regardless of which handover mechanisms are employed. On the
contrary, a dense opportunistic network provides an environment which allows for
achieving better load balancing. We can observe, that both strategies based on local
optimization are able to deliver a high fairness index value in a dense network. The
proactive strategy achieves 0.65, while the reactive strategy only achieves around 0.58
with 60 operators. The highest fairness index value can be achieved by the proactive
strategy of the local optimization with 80 operators. In this case, the proactive strategy
is able to achieve a fairness index at around 0.8.

All in all, the evaluation results show that it is possible to satisfy QoS requirements,
using only locally shared context information and distributed coordination.

4.7 discussion

In this chapter, we proposed a concept for distributed processing, specially designed
for mobile opportunistic networks. To this end, we designed the adaptive task-oriented
message template, termed ATMT, as the enabling technique for distributed processing
of complex computing tasks, which require multiple processing stages in a decen-
tralized environment. Based on the construction of the ATMT, we proposed several
handover mechanisms, which let a device offload a processing task to the others, aim-
ing to achieve QoS requirements as specified by the task. Our proposed handover
mechanisms do not rely on any centralized coordination and only leverage the context
information shared by participating devices locally. Overall, using the tasks message
template ATMT with the handover mechanisms allows the participating devices to
make autonomous decisions. In this manner, a decentralized cooperation and dis-
tributed coordination among devices to accomplish a processing task is enabled. The
mechanisms discussed in this chapter provide a basis to create distributed processing
applications, which can be utilized in a disaster relief situation to provide emergency
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response services even when the communication infrastructure is impaired. For in-
stance, Person Finder service provided on Google platform to let a user inquire about
the status of a person, can be realized by face detection technique through distributed
image processing based on ATMT message template as shown in our demonstra-
tion [133, 135]. In general, this sample application demonstrates that information can
be extracted from crowd collected data through distributed processing, leveraging
idle resources available on participating devices. With regards to our research goals,
the distributed processing model presented in this chapter constitutes the second ob-
jective of the information retrieval workflow. With the mechanism to distribute crowd
sensing task and the distributed processing mechanism to process crowd collected
data, the results need to be delivered to the information consumers reliably, despite the
rapid changes and the uncertainty in mobile opportunistic network. In the next chap-
ter, we present our mechanism to deliver results to conclude the information retrieval
workflow.





5
R E S U LT S D E L I V E RY F O R M O B I L E I N F O R M AT I O N CO N S U M E R S

Rsults delivery is the last step of information retrieval. In the first step, crowd
sensing tasks are distributed to appropriate information producers where they

trigger the data collection. Depending on the request of information consumers, data
can be sent back either in raw measurements or being processed during the forward-
ing phase. Consequently, we refer to both processed data and raw measurements as
results of sensing tasks. In an emergency response scenario, requested data can either
be relevant for the requestor only or it can be relevant for a larger group of users, e.g.,
within a given area. Whether the results of the sensing tasks should be disseminated
to many information consumers or should be delivered to individual information
consumers, depends on the requirements of the crowd sensing applications and re-
quests. Despite the fact that NDN-based networks provide a built-in feature for data
dissemination through in-network caching [4, 203], the support for results delivery
to individual information consumers is limited. Since results delivery is a subclass
of data dissemination, NDN-based forwarding approaches achieve results delivery in
the same way as data dissemination.Thereby, NDN-based approaches cache requested
data on devices participating in the data forwarding phase. The results are delivered
to a mobile information consumer by having this consumer send out the same sensing
task. If the results are only relevant for a single information consumer, then caching
data on many devices becomes redundant for in-network storage and consumes re-
sources, which are scarce considering NDN-based mobile opportunistic networks and
disaster situations.

In this chapter, we tackle the problem of results delivery for mobile consumers as the
final step to complete information retrieval. In Section 5.1, we discuss the challenges and
requirements of results delivery for mobile consumers. We introduce our mechanism
to deliver results in Section 5.2. Thereby, we present the constructions of both interest
and data packets to support results delivery. We rely on mobility prediction of mobile
consumers for results delivery. In Section 5.3, we elaborate on our approach to integrate
distributed data processing into the data forwarding phase. Finally, we present the
evaluation in Section 5.4, which consolidates all three aspects of information retrieval.

5.1 requirements and challenges

We consider two aspects: a data forwarding mechanism to deliver results as being re-
quested by information consumers and the integration of distributed data processing
during the forwarding. The requirements and challenges for decentralized crowd sens-
ing tasks distribution in Section 3.1 and for distributed data processing in Section 4.1
also apply for results delivery. The consolidated requirements are:
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Quality requirements: The objective of results delivery, in contrast to data dissemi-
nation [19], is to forward the results to particular information consumers. In Chapter 3,
we introduced our mechanism to distribute crowd sensing tasks. Thereby, we ensure
that the sensing tasks reach capable information producers, which provide the data
that satisfies the quality requirements for the tasks. Thereupon, the results of crowd
collected data need to be delivered to the consumers in a timely manner. In emergency
response scenarios, fast delivery of collected data is particularly important, since such
data are used by first responders to react to the current situation.

Cost for results delivery: Careful utilization of resources in terms of residual en-
ergy is important to maintain communication networks formed by mobile devices
and to prolong services which support relief work of the first responders in disaster
situations [94]. To enable data dissemination in information-centric networks in gen-
eral, and in NDN-based networks in particular, in-network caching is leveraged which
allows a mobile consumer to retrieve results from caches on participating devices. As
discussed in Chapter 3, communication on NDN-based opportunistic networks relies
on broadcast. As a result, many devices can obtain a copy of the data and store the
data in their local storage by default. On the one hand this characteristic is beneficial
for dissemination if the data is relevant for multiple consumers. On the other hand
for results delivery to individual information consumers, redundant in-network stor-
age introduces significant overhead. A directed data forwarding for results delivery is,
thus, more beneficial to reduce resources consumption and communication overhead
compared to broadcast based approach for dissemination [191].

Incentive for participants: In Section 3.1, we elaborate on the incentive for partici-
pants to contribute their resources to forwarding. Providing services and applications
which benefit community or a group of users can be considered as a form of incen-
tive [218]. In an emergency response scenario, both data dissemination and results
delivery are beneficial for many people. While data dissemination can be used for
notifications of the authorities, results delivery ensures the delivery of sensing mea-
surements for the authorities, so that they can assess the current situations and plan
their relief operations more efficiently, which in turn benefits all people. Thus, with
regards to emergency situations we assume that the participants are fully collaborative
and willing to contribute their resources for both results delivery as well as distributed
processing.

The following challenges for results delivery are inherent in mobile opportunistic
networks:

Decentralized Communication: The communication in mobile opportunistic net-
work is decentralized. Consequently, results delivery cannot rely on central coordi-
nation entity to track the movement of mobile information consumers. Thereby, a
distributed scheme to track and share the mobility of mobile information consumers
for targeted result delivery is required.

Heterogeneity: Results delivery is a combination of data forwarding and distributed
data processing during the forwarding. Consequently, we have to consider the hetero-
geneity of participating devices with regards to their resources, residual energy, and
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their capabilities. Data forwarding consumes resources and energy of participating
devices regarding communication overhead and in-network storage. Thus, forward-
ing devices have to be chosen considering their heterogeneous resources carefully.
Additionally, the goal of the distributed data processing while forwarding data might
require multiple and special operations to complete. Therefore, the utilization of het-
erogeneous capabilities available on forwarding devices to accomplish a complex
processing task is desired.

Uncertainty: The mobility of devices in an opportunistic network leads to uncer-
tainty when designing a forwarding approach for results delivery, since the status of
mobile consumers can change over time. Therefore, a distributed scheme to deliver
results to mobile consumer needs to be adaptive to the changes of the respective
consumers. Accordingly, participating devices need to be able to make autonomous
forwarding decisions to cope with the changes of mobile consumers as well as the
rapid changes in their surrounding environment.

5.2 data delivery for mobile consumers

In the overall workflow of our NDN based information retrieval elaborated in Sec-
tion 3.3, we considered static information consumers. In this chapter, we consider
results delivery for mobile consumers, i.e., a consumer moves away from the starting
position after sending out crowd sensing tasks. With the current data forwarding
mechanism as discussed in Section 3.3, a mobile consumer can propagate new crowd
sensing tasks, requesting for the same data. Thereby, the new crowd sensing tasks do
not necessarily have to be forwarded to the information producers again, since data
can be served by devices that already cached the results. However, the default data for-
warding mechanism relies on flooding; as a result, data forwarding leaves many copies
of the data in an NDN-based opportunistic network. This does not scale and generates
significant overhead since the requested data is only relevant for individual mobile
information consumers. In [191, 192], the authors consider a similar problem for ve-
hicular networks and rely on breadcrumb messages to allow the response to track and
to follow the mobile information consumers. However, their breadcrumb based rout-
ing is not designed for NDN-based networks. Furthermore, breadcrumb based routing
still generates much overhead for keeping breadcrumb messages available. State of the
art for data forwarding in NDN-based V2V network [4] only focuses on pushing data
packets to mobile consumers as fast as possible. The communication overhead in terms
of data packets is reduced by restricting the number of allowed hops. However, this
approach still relies on flooding and therefore generates much redundant overhead
for in-network caching.

Focusing on results delivery for individual mobile information consumers, we uti-
lize mobility prediction to estimate future locations of mobile information consumers
in order to guide data forwarding directly towards the respective consumers. Based
on predicted locations, the information producers can restrict the data forwarding
towards the direction of mobile information consumers. With such directed data for-
warding, we aim to reduce communication overhead while achieving timely delivery
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for mobile consumers. Similar to the interest forwarding phase, we also rely on dis-
tributed coordination to make forwarding decisions during the data forwarding phase.
Thereby, we again embed context information as attribute fields in both interest and
data packets, which let participating devices share their status and make autonomous
decisions benefitting results delivery.

5.2.1 Interest and Data Packets Construction

To enable results delivery for data forwarding, we need to embed context information
in both interest and data packets. The reason is, mobile consumers need to share
their context information through interest packets to allow for mobility prediction and
forwarding devices need to use context information in data packet to make autonomous
forwarding decision to deliver results. The constructions of interest and data packets
required for results delivery are illustrated in Figure 27.
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Figure 27: Extended interest and data packets with attribute fields required for results
delivery based on mobility prediction and for distributed data processing. The

white fields are additional attribute tags used in this chapter.

The modified interest and data packets contain default fields as defined for NDN-
based network, attribute fields required for interest forwarding in crowd sensing tasks
distribution as proposed in Chapter 3, and further additional fields required for both
results delivery and distributed data processing (white fields in Figure 27). We embed
past locations of mobile consumers into interest packets, which are used as inputs to
predict future location of mobile consumers for data forwarding. To allow for mobility
prediction, at least two past locations with time stamps are required. In general, the
prediction for future location might be more accurate with more past locations. For
instance, in [40], the authors use a Markov predictor with 100 past location records
to predict future connections of nodes for routing in a MANET. However, exhausting
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interest packets with too many additional attribute fields obviously generates much
overhead on opportunistic networks. Consequently, we decide to trade-off the accuracy
for mobility prediction for less communication overhead. We use two additional fields
to contain two past locations of mobile information consumers. Each interest packet
is extended with two additional attribute fields containing two Cartesian coordinates
transformed by Mercator formula [113] from the longitude, latitude coordinates of
mobile consumers at two time points t1 and t2. The uncertainty and possible dynamic
changes over time will be handled by the forwarding strategy, which we discuss in the
following section.

In data packets, we include three attribute fields to facilitate the data forwarding
phase for results delivery as well as to allow for distributed data processing. These
attributes are: (i) predicted location of mobile information consumers, which is repre-
sented through the predicted coordinates, (ii) the distance from the previous data
forwarding device towards the predicted location of consumers, and (iii) an offset
OffT required to track processing state which is required for computation handover of
complex processing tasks as proposed in Chapter 4.

5.2.2 Data Forwarding based on Mobility Prediction

In this section, we elaborate on (i) how mobility prediction can be integrated in NDN-
based opportunistic networks and (ii) how to use mobility prediction to guide the data
forwarding phase for results delivery.

According to our model to distribute crowd sensing tasks to retrieve information
(cf. Chapter 3), mobile information consumers that want to retrieve data from an AoI,
propagate interest packets in an NDN-based opportunistic network to search for infor-
mation producers. For results delivery, in addition to the context information required
for two-phase interest forwarding mobile information consumers also need to share
their past locations with the information producers. Accordingly, after obtaining the
requested data information producers can use the embedded past locations of mobile
consumers to predict their future locations and to trigger the data forwarding phase
to deliver the results. Thus, before propagating interest packets, mobile consumers
determine their two most recent locations. We assume that devices in our system
are able to determine their locations e.g. via GPS, and these devices can store past
locations locally for later use. We utilize only the two most recent locations of mobile
consumers in order not to generate much overhead through embedded shared context
information as previously discussed. As a result, the interest packets propagated by
mobile consumers contain additional attribute fields as shown in Figure 27.

The parameters used for results delivery based on mobility prediction as well as
for distributed data processing during forwarding are summarized in Table 9. To
avoid collision of interest and data packets defer timers are again required in the data
forwarding phase. Here, the parameters required for determining defer timer were
introduced in Table 2 in Section 3.3. These parameters are used again for calculating
the defer timer for data forwarding. However, instead of considering the coordinates
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of the AoI as the destination, in the data forwarding phase the coordinates of the
predicted locations for mobile consumers are used.

Table 9: Parameters for the data forwarding based on mobility prediction and distributed
data processing.

Parameters Meaning

(locxti
, locyti

) the Cartesian coordinates of a mobile consumer at time ti

(locxtp
, locytp

) the Cartesian coordinates of predicted location for a mobile
consumer C at time tp, used as the destination for data
forwarding

vC average velocity of a mobile consumer C

dNi→Lp(C)
distance between the device Ni and the predicted location
of a mobile consumer C

OffT offset used to track the processing state of distributed data
processing

When information producers receive an interest packet, they can extract the two
past locations of the respective mobile consumer (locxt1

, locyt1
) and (locxt2

, locyt2
),

sampled at two time points t1 and t2 (with t1 < t2) respectively. Based on these two
past locations and their corresponding timestamps, the future location represented by
coordinates (locxtp

, locytp
) of mobile consumer C at time tp is estimated using the

formula proposed by Shah et al. [174] as follows:

locxtp
= locxt2

+
vc(tp − t2)(locxt2

− locxt1
)

√

(locxt2
− locxt1

)2 + (locyt2
− locyt1

)2
(13)

locytp
= locyt1

+
(locxtp

− locxt1
)(locyt2

− locyt1
)

locxt2
− locxt1

(14)

In the above equation, vC represents the average velocity of mobile consumer. To
obtain vC at information producers, two options are possible. (i) The velocity can
be determined by a mobile consumer itself and is embedded as another attribute
field in the interest packets. (ii) The velocity can be estimated using the two past
locations shared in an interest packet. Thereby, the distance between two locations are
considered as the travel distance, and the elapsed time between two timestamps is the
travel time. As such, vC is estimated as follows:

vC =

√

(locxt2
− locxt1

)2 + (locyt2
− locyt1

)2

t2 − t1
(15)

The embedded attribute fields received by the information producers also reveal
whether the requested data are meant for dissemination or for results delivery. In
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our system, if information producers cannot find any embedded past locations of
information consumers in interest packets, then the requested data is disseminated to
all devices. This can be utilized for example by the authorities in emergency situations
to send a request assessing the danger level of an AoI. The results of this request are
disseminated directly during the data forwarding phase to as many people as possible,
to notify them to avoid the danger present in the AoI. Thereby, data packets are
propagated to the information consumers without any restriction. On the contrary, if
past locations of an information consumers are found in an interest packet, information
producers determine that, the the respective information consumer is mobile and the
data should be delivered only to this consumer.

In case the data forwarding occurs in the results delivery phase, information produc-
ers extract the two past locations from an interest packet, and predict the mobility
of the respective mobile consumer according to Equation 13, and 14. As devices, in-
cluding the mobile consumers, are highly mobile, we need to handle the uncertainty
for mobility prediction during the data forwarding phase. Thereby, the first cause for
uncertainty is the deviation from the predicted location when choosing the time pa-
rameter tp. In an opportunistic network, it is impossible to estimate the exact time tp
when data packets can reach the mobile consumers. The second cause for uncertainty
are changes in movement of the respective mobile consumers, e.g., velocity change,
or moving direction change. Accordingly, to handle the uncertainty of mobility pre-
diction for consumers, we propose several strategies which can be combined together
as follows: (i) naive estimation of tp, (ii) breadcrumb based correction through reissu-
ing interest packets with updated shared context information, and (iii) utilization of
the buffer-zone concept proposed for our two-phase interest forwarding as a tolerant
threshold for the predicted destination. The first and second strategies which have
the goal to counter uncertainty are based on [174]; the concept in [174] however is
designed focusing on MANETs with established routes.

For the first strategy, we assume that mobile consumers always sample the latest
location before propagating interest packets. Accordingly, the timestamp t2 extracted
from an interest packet can be used as the begin of interests transmission from mobile
consumers. We determine the elapsed time since a mobile consumer sends out interest
packets until these packets are received by information producers at time tcurrent as
tcurrent − t2. Despite the fact, that the transmission time of the interest forwarding
phase does not equal to the transmission time of the data forwarding phase in an
opportunistic network, the calculated time can still be used as a naive estimation.
Consequently, tp is estimated as: tp = tcurrent + (tcurrent − t2) = 2× tcurrent − t2.
Predicting the future location of a mobile consumer and forwarding the data towards
the direction of the predicted location reduce the communication overhead compared
to general breadcrumb based routing such as [191] or to default data forwarding such
as [4].

In the second strategy, we leverage the built-in breadcrumb feature of NDN-based
opportunistic networks, enabled by the Content Storage of participating devices. By
monitoring its own location, a mobile consumer defines a threshold, when its current
location deviates too much from the predicted location (due to changes in velocity
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or moving direction). If the deviation exceeds a predefined threshold, the respective
mobile consumer propagates interest packets containing the same name of previous
sensing tasks and embeds new past locations into the interest packet to update its
new moving pattern. When the new interest packet arrives at a forwarder device
that already caches the results, the respective forwarding device uses the name of
the interest packet and an embedded ID value to determine that the respective mobile
consumer has changed its moving direction. As a result, this forwarding device extracts
the updated past locations from the newly received interest packet and predicts the
new location of mobile consumer to adjust the data forwarding accordingly.

For the third and last strategy, we use the buffer-zone concept to define a region
around the predicted location for mobile consumers as a geo-destination. The size of
the buffer-zone can vary based on the density of the network, which can be estimated
by overhearing broadcast transmission of neighbors [211].

With the predicted location of mobile consumer Lp(C), we base the data forwarding
on our proposed two-phase interest forwarding concept introduced in Chapter 3. To
deliver the results we again rely on the broadcast and rebroadcast primitives of NDN-
based opportunistic networks. Thereby, the forwarding devices make autonomous
forwarding decisions, aiming to carry the data packets closer to the predicted location
of mobile consumers. To this end, we include two attribute fields in the data packets,
i.e., (i) the coordinates of the predicted location for a mobile consumer and (ii) the
distance of the current forwarding device towards the predicted location. In default
NDN networks, if the name of a data packet cannot be found in the Pending Interest
Table (PIT), the packet is dropped. However, in NDN-based opportunistic networks,
there is no end-to-end path between information consumers and producers. In sparse
opportunistic networks, the chance to meet another forwarding device is also very low.
Therefore, to increase the chances for results delivery we adapt the default behavior for
content store. In our system, a forwarding device also caches unsolicited data temporar-
ily in its content store. During the data forwarding phase, upon receiving a data packet
a forwarding device extracts the predicted location of the respective mobile consumer
and the distance from the previous forwarding device towards the predicted location.
A forwarding device decides to rebroadcast, if it determines itself to be an eligible data
forwarder, which holds true if all of the following conditions are met. (i) The current
distance from the corresponding device towards the predicted location is less than the
distance from the previous forwarding device, which indicates the current forwarding
device is closer to the predicted location. (ii) The corresponding device is moving to-
wards the direction of the predicted location, which is characterized through an angle
threshold similar to Equation 4 in Chapter 3. (iii) The current velocity and residual
energy level of the corresponding device exceed a defined threshold. Similar to our
interest forwarding approach, we use distance, moving characteristic, and residual
energy to make sure that only the best forwarders are chosen to rebroadcast data
packets. Our aim for data forwarding based on mobility prediction is to deliver the
results fast and to reduce communication overhead. To avoid collision of data packets,
we determine a defer timer for data forwarding. The defer timer is calculated in the
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similar manner as for defer timer used in our two-phase interest forwarding approach
as:

DTData = TimeDeferSlot ∗ (Td + Te + Ts + Tmd) + TRandom (16)

in which, Td, Te, Ts, Tmd are defined similarly as in Equation 6. The distance com-

ponent Td for results delivery is calculated as
dmax−dNi→Lp(C)

dmax
. Thereby, dmax is the

distance from the information producer towards the prediction location of the tar-
geted mobile consumer and dNi→Lp(C)

is the current distance from the corresponding
device Ni towards the predicted location Lp(C). With regards to the moving direction,
the component Tmd for results delivery is calculated based on the current movement
characteristic of the forwarding devices and buffer-zone threshold set for the predicted
location accordingly. Determining the defer timer for data packet in this way ensures,
that if a forwarding device is closer to the predicted location of mobile consumers, the
corresponding device broadcasts faster, thus reducing the results delivery time and
increasing the chance that the data packets can be delivered to mobile consumers at
the predicted location.

5.3 integration of distributed data processing

In this section, we present the integration of distributed data processing as introduced
in Chapter 4 into results delivery. Accordingly, crowd collected data can be processed
during data forwarding. Thereby, information can be extracted directly within oppor-
tunistic networks before reaching information consumers. As discussed in Section 4.1,
to facilitate distributed data processing in opportunistic networks we rely on dis-
tributed coordination and autonomous decision of participating devices. The essence
of the task message template proposed in Chapter 4 is to bundle meta-information and
payload data into a single message, so that each device is able to deduce the current
state of the processing tasks and to execute operations on data without centralized
coordination. Therefore to realize distributed data processing, the data packets of
NDN-based networks are adjusted to encapsulate processing information addition-
ally to payload data.

5.3.1 Naming Scheme and Data Packets for Processing

To facilitate the complete information retrieval workflow consisting of sensing tasks dis-
tribution, distributed data processing, and results delivery, we define the following
naming scheme as an extension for the naming scheme proposed in Definition 3.1 as
follows:
Definition 5.1: Naming Scheme for Data Processing Intergration

<Crowd-Sensing-Tasks>/operation-x/operation-y/operation-z
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In the above definition, "<Crowd-Sensing-Tasks>" contains the same naming scheme
defined in Definition 3.1 which expresses which type of data are collected, while
"operation-x/operation-y/operation-z" implies the operations required for a complex pro-
cessing task. The names of the operations can be chosen from a standard set to ensure
interoperability among participating devices. Combining the definition of crowd sens-
ing tasks and the definition of processing tasks into a single naming scheme allows us
to specify information retrieval as a single task. The information retrieval task is accom-
plished by the participating devices collaboratively.

Since a processing task such as in-network data analysis is in general complex
and might require several operations, the hierarchical naming scheme is suitable to
describe such complex processing task. Based on the Named Function Networking
(NFN) proposed by [193], we use "/" to separate functions/operations in the naming
scheme from each other. The combination "operation-x/operation-y/operation-z" consti-
tutes a single complex processing task, which is completed by executing operations
x, y, z in the specified order given by the naming scheme. As an example, an im-
age processing pipeline to detect victim in a disaster situation can be expressed as
"edge-detection/object-detection/victim-detection" as shown in [134]. A hierarchical nam-
ing scheme for distributed data processing allows us to specify the granularity re-
quirements on the processed results. A longer naming scheme for distributed pro-
cessing implies more operations, suggesting more fine-granular requirements on the
processed results.

To enable computation handover of partially processed tasks during data forward-
ing, we require a mechanism to share the state of the processing task. In this context,
the processing state is defined as how many operations from the processing task have
been executed on the corresponding data. In the task-message template in Chapter 4,
this can be achieved by the checksum field and by traversing the operations graph to look
for the next unexecuted operation. To embed the processing state into data packets,
we introduce an offset OffT attribute field (cf. Figure 27). As suggested by its name,
this attribute field holds the offset of the next unexecuted operation from the end of
the naming scheme of the processing task. A zero offset implies that the processing
task is completed.

Altogether, the proposed naming scheme and the offset attribute tag in data pack-
ets allow us to integrate our distributed data processing mechanism based on self-
encapsulated task message into the data forwarding phase in NDN-based opportunis-
tic networks.

5.3.2 Processing Model

In this section, we elaborate on the distributed processing model based on the naming
scheme and data packets during the data forwarding phase.

Figure 28 shows the integration of a processing module into the data forwarding
phase in NDN-based opportunistic networks. By default, upon receiving a data packet,
a forwarding device checks if the data is matched to any interest stored in the PIT table.
A forwarding device drops a data packet, if this data is not associated with any cached
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Figure 28: Integration of distributed data processing in NDN-enabled forwarding devices for
in-network processing

interest in the PIT table. To integrate distributed data processing into results delivery, a
device which wants to contribute to distributed data processing does not always hold
a matched interest inside its PIT table. Furthermore, high mobility makes it difficult
to find capable devices to execute an operation. As a result, we do not route the data
through PIT table on forwarding devices as in default NDN. Instead, we introduce
a processing module, which receives data packets directly from the communication
interface and executes the operations defined in the processing task specified in each
data packet if necessary. The execution of operations is based on the processing model
as proposed in Chapter 4. The results of data packets obtained by executing the
operations are routed to content store for caching and also to strategies module to forward
the processed data packets further.

Based on the name of the operations specified in the data packet, the processing
module determines how to proceed with the data packet. Thereby, if a forwarding
device wants to contribute to distributed data processing and still has computing
capacity, this device searches for the next unexecuted operation and check if can
execute the respective operation. This process is repeated until the corresponding
device cannot execute the processing task further or when the resources available on
this device are at low level. The processed data are stored in the content store before
being forwarded. Thereby, the data packets contain the offset OffT corresponding
to the state of the processing task, so that the next forwarding devices can continue
on the respective processing task. To satisfy the quality requirements of distributed
data processing during the forwarding, we refer to our processing handover strategies
elaborated in Section 4.5.

Since the content store on an NDN-enabled device removes all additional attribute
fields before caching the data packets, additionally to the content store we introduce
a new data structure—processing states table—to store the offset associated with the
name of a data packet and its respective processing task. The processing states table
is required to remember the states of different processing tasks associated with the
names of stored data on each device. As an example, an entry in the processing states
table which contains the name "op-1/../op-n" with an offset one indicates that, the data
associated with the given name has been processed up to the final operation op-n;
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consequently, to continue as well as to complete the processing task, op-n will need to
be executed next.

This data structure also facilitates replacing outdated processed data, dropping or
merging data packets with similar naming schemes or similar processing tasks when
necessary. Thereby, our goal is to reduce redundant data packets in the network. We
merge processing tasks and replace outdated data based on two factors: (i) the naming
scheme of the operations sequence defined in each data packet, (ii) the processing state
extracted from the operations offset embedded in each data packet. If the specifications
for the crowd sensing tasks in the naming scheme of two data packets are not matched,
then these are two different requested data types and thus cannot be merged. In case
two data packets contain the same naming scheme, we preserve the data packets with
smaller processing offset, since such data packets indicate a better processing state
near to completion. Similarly, if the results delivery time needs to be low, data packets
with shorter name prefix are preserved, since these contain less operations. However,
the participating devices can also agree on a common merging strategy to ensure a
particular goal, e.g., preserving longer names to favor more fine-granular processing
task. Overall, merging data packets can be beneficial towards ensuring and improving
the quality requirements specified by the information consumers.

5.4 evaluation

In this section, we present a consolidated evaluation, considering all three aspects of
information retrieval workflow, namely, crowd sensing tasks distribution, distributed
data processing, and results delivery. The evaluation discussed in this chapter extends
the evaluation presented in Section 3.4. Back in Section 3.4, our main goal was to as-
sess the performance and the limit of decentralized crowd sensing tasks distribution,
especially, in case of chaotic, highly mobile devices. For the consolidated evaluation,
we consider a mobility model, which resembles human like mobility patterns, repre-
senting mobile devices in emergency response situations.

5.4.1 Evaluation Setup

We rely on NDNSim network simulator [1] for the consolidated evaluation. Thereby, we
extend our simulation presented in Section 3.4 with the following components: (i) we
use truncated Levy walk mobility model, which is reported by Lee at al. [160] to resemble
human mobility, (ii) we implement our results delivery approach based on mobility for
mobile consumers as introduced in this chapter, (iii) we implement distributed data
processing during the data forwarding phase as previously discussed. Furthermore,
we augment the simulation scenario with mobility for information consumers for the
sake of evaluation with results delivery. The structure of the extended simulation
scenario is illustrated in Figure 29.

Most of the simulation parameters remain the same from the setup of crowd sensing
tasks distribution in Section 3.4. We use the simulation area with 800×800 m2, the AoI
with radius size of 50 m, 12 information consumers, 25 information producers, and
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Figure 29: Illustration of the simulation scenario for consolidated evaluation. Information
consumers are mobile.

several forwarding devices (ranging from 20 to 100 nodes). We create three movement
spots to control the movement range of the information consumers. The movement spots
are positioned as dashed circles within the movement range of information consumers
shown in Figure 29. At the beginning of the simulation, each mobile consumer starts
near the top of the simulation area. Thereafter, each mobile consumer chooses one
movement spot randomly but different from its current position as its next target
destination, while propagating interest packets as crowd sensing tasks. After reaching
a destination, a mobile consumer does not stop and continues its movement in the same
manner. The mobile consumers move between two movement spots with a random
velocity between 15 and 20 m/s. We choose such high velocity for mobile consumers to
challenge and to assess the performance of results delivery based on mobility prediction.
In this scenario, the mobile consumers represent the authorities such as firefighters
with firetrucks in emergency response scenario, that need to move around quickly to
coordinate relief operations.

As previously mentioned, we use the truncated Levy walk mobility model for the
forwarding devices. We rely on BonnMotion [10] to generate 20 traces according
to this model in order to simulate the appropriate mobility of pedestrians. For the
evaluation of fast forwarding devices, we refer to the results presented in Section 3.4.
The traces are installed on the forwarding devices in the simulation and define the
characteristics of their movements. In Section 4.6, we analyzed the characteristics of
mobility traces generated by Levy walk model. To recapitulate from the measurements
shown in Section 4.6 and Figure 21, the forwarding devices with the Levy walk traces
are distributed equally on the simulation area. The devices have more neighbors and
the contact duration is more stable with increasing number of devices. Furthermore,
we measured the movement speed of devices with Levy walk and observe that several
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Table 10: Simulation parameters for consolidated evaluation

Parameter Value

Simulated area 800× 800m2

Number of forwarding nodes 20, 40, 60, 80, 100

AoI radius 50 m

Transmission range 100 m

Energy capacity 3000− 19000 Joules

Energy model WifiRadioEnergyModel,
BasicEnergySource

Mobility model of forwarding
nodes

TruncatedLevyWalkModel

#Operations in a processing task 5

#Operations available on each de-
vice

1, 2, 3, 4, 5

Simulation time 7-8 hours

devices in the traces make a long pause during the movement, such that their average
speed is around 0.05 m/s. Without considering the pause time, the average moving
speed of the simulated device is on average 0.15 m/s. Some outliers in the trace reach up
to 6 m/s. Therefore, the devices with high speed can serve as mobile message ferries
to bring the interest and data packets faster to the destination. However, since the
Levy walk mobility traces are much less mobile compared to the mobility model used
in Section 3.4, we expect slower time performance to all interest and data forwarding
approaches overall.

For the evaluation of distributed data processing, we assume a full-collaborative en-
vironment among devices, such that each device always executes as many operations
in the processing task of a data packet as possible if it possesses matching capabilities.
Each data packet consists of 5 operations, which are set up in a random order. Accord-
ing to the definition of a complex task in distributed data processing, the operations
have to be executed in the exact order which is specified in the naming scheme. We
vary the number of available operations on each device from 1 to 5 operations.

The most important parameters used for the consolidated evaluation are summa-
rized in Table 10. The parameters relevant for the newly added components in the
simulation are highlighted.

In the following, we present the evaluation results for all three steps of informa-
tion retrieval workflow. Note that, unsuccessful delivery in the measurements with
"not assigned" values are omitted. We implemented and compared four forwarding
approaches. These are (i) two-phase interest forwarding in combination with results
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Figure 30: Time to find producer with Levy walk mobility model

delivery based on mobility prediction as introduced in this chapter (abbr. as 2PF-P),
(ii) two-phase interest forwarding in combination with controlled data flooding for
results delivery as introduced in Chapter 3 (abbr. as 2PF), (iii) distance-based geo-
forwarding (abbr. as GF), and (iv) controlled flooding (abbr. as CF). GF and CF were
introduced in Section 3.4. All results are reported with 95% confidence interval.

5.4.2 Interest Forwarding Revisited

In this section, we reevaluate the performance of interest forwarding using the Levy
walk mobility model to assess the limitation of our proposed concepts. For this evalu-
ation, we reuse two performance metrics that primarily characterize the performance
of interest forwarding phase, i.e., time to find producer and overhead measured by the
total number of interest packets. Additionally, since the Levy walk mobility model
resembles human mobility patterns, we also introduce the accuracy metric for interest
forwarding. The accuracy for the interest forwarding phase is calculated as the ratio
between the number interest packets that are received by the information producers
and the number of interest packets that are received by all devices in the system.
Accordingly, the accuracy metric for interest forwarding augments the overhead mea-
surement. More accurate interest forwarding implies that more interest packets as
produced from the communication overhead are "goodput" for the transmissions,
since they can reach information producers to trigger (new) data collection.

The results with regards to time to find producers and interest packets overhead are
shown in Figure 30 and Figure 31, respectively. In both figures, we present the results
measured for all network densities (from 20 to 100) and the same results focusing
on dense networks (with 60, 80, 100 devices) with downscaled values to compare the
performances among forwarding approaches more precisely. With regards to time to
find producer the results in Figure 30 show that a sparse network yields a very slow
time to find producer. With 20 forwarding devices, all forwarding approaches take on
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Figure 31: Number of packets overhead generated during the interest forwarding phase with
Levy walk mobility model

average 20 s to find the first mobile producer. With 40 forwarding devices, the time
to find producer is down to an average of 5 s for all forwarding approaches. In a
sparse network, the time to find producer fluctuates a lot regardless of the forwarding
approaches, since only very few devices move fast enough to bring the interest packets
to their destination. In a dense network having 60 to 100 forwarding devices, the time
to find producer is improved drastically, down to less than 1 s for all approaches. The
aforementioned results confirm, that the mobility model does affect the performance
of crowd sensing tasks distribution. The low performance of slowly moving devices is
compensated through a high number of devices in a dense opportunistic network. The
downscaled results in Figure 30b show that our two-phase forwarding approach and
geo-forwarding outperform controlled flooding in dense networks. Both two-phase
forwarding and geo-forwarding require less than 25 ms to find mobile producers,
while a controlled flooding takes up to average 500 ms. Thereby, the performances
of two-phase forwarding and geo-forwarding are quite similar, since the devices in
the simulation move considerably slower compared to the evaluation in Section 3.4.
Slowly moving devices result in a higher chance to reach mobile producers within the
AoI, since the interests can stay longer near the AoI. This observation hints at more
suitability of our approach for a highly mobile scenario, while for slowly moving
devices geo-forwarding without replication inside the buffer zone is sufficient and
can save overhead generated by replicated rebroadcasting.

With regards to interest packet overhead, forwarding devices in a sparse network
generates a lot of interest packets. This is due to the fact, that slowly moving devices
in a sparse network can result into more packet loss; consequently leading to more
retransmission. In contrast, this overhead is reduced in a dense network, since interest
forwarding in a dense network requires less time to reach mobile producers. While the
interest packets overhead generated by our two-phase forwarding approach and geo-
forwarding are quite stable on average 10000 interest packets with 60, 80, 100 devices,
the interest packets overhead generated by controlled flooding increases linearly. With
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Figure 32: Accuracy of interest forwarding phase

100 forwarding devices, controlled flooding generates on average 15000 packets with
several outliers even up to 20000 packets. Altogether, even in a simulation scenario
with slowly moving devices the two-phase forwarding approach and geo-forwarding
achieve much less time to find producer, while generating far less interest packets
overhead.

The results for accuracy measure with regards to interest packets received by in-
formation producers are shown in Figure 32. Per our definition, the accuracy charac-
terizes the "goodput" of interest packets transmission. We observe that the accuracy
for a sparse network with 20 and 40 devices is on average lower than 20% for all for-
warding approaches. However, several outliers show that our two-phase forwarding
approach can still reach up to 80% accuracy depending on the movement traces. It is
evident in Figure 32, that the accuracy for interest forwarding using our proposed two-
phase forwarding approach increases for denser networks. In a dense network, our
two-phase forwarding approach is much more accurate compared to geo-forwarding
and controlled flooding. With 100 forwarding devices, the accuracy of two-phase for-
warding lies on average near 80%, implying that 80% of the interest packets broadcast
in the network can reach mobile information producers inside the AoI successfully.
The accuracy of geo-forwarding only reaches on average 50% and of the accuracy of
controlled flooding lies very low, less than 20%. This result shows that in order to
reach mobile information producers, geo-forwarding and controlled flooding have to
trade-off much communication overhead. Overall, the advantage of our two-phase
forwarding approach to distribute crowd sensing tasks to the appropriate mobile infor-
mation producers is confirmed.

5.4.3 Data Forwarding

In this section, we present the evaluation results of data forwarding as results delivery.
We compare the performance of four data forwarding approaches 2PF-P, 2PF, GC, CF
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with regards to end to end delay as results delivery time, communication overhead in
terms of generated data packets, and accuracy of the data forwarding phase.
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Figure 33: End to end delay with Levy Walk mobility model

Results delivery time is determined as the elapsed time after a mobile information
consumer propagates the first interest packet until it receives the data packet. The
results for end to end delay measures are shown in Figure 33. The results for number
of data packets as overhead are shown in Figure 34. With regards to delivery time,
we observe similar degrading time performance with the Levy walk mobility model
compared to the evaluation with faster moving devices in Section 3.4. All forwarding
approaches in sparse network with 20 and 40 devices take on average long time to
deliver the results to mobile consumers. Regardless of data forwarding approaches,
the results delivery is only successful with 60% of test runs for 20 forwarding devices
and around 80% of test runs for 40 forwarding devices. In dense networks with more
than 60 forwarding devices, the results delivery always succeeds. Consequently, the
average deliver time measured in sparse networks with 20, 40 forwarding devices are
meant to demonstrate the huge performance gap between sparse and dense networks.
The main reason for this gap is due to slowly moving forwarding devices in the
simulation scenario, therefore the performance can only be compensated with a high
number of forwarding devices. In a dense network with 100 forwarding devices,
our data forwarding approach based on mobility prediction for mobile consumers
(2PF-P) achieves on average 750 ms, comparable to flooding-based broadcast which
is utilized by other approaches. Thereby, controlled flooding is shown to provide
more stable results delivery time with the highest density at 100 forwarding devices.
However, flooding-based broadcast of data packets has to generate much (redundant)
communication overhead in order to achieve results delivery.

We can observe from Figure 34, that the overhead generated by results delivery
based on mobility prediction is much less compared to other approaches. With a dense
network, the number of data packets generated by 2PF-P increases from around 2500
packets at 60 devices up to 5000 packets at 100 devices. On the contrary, the number
of generated data packets from 2PF and GF increase from around 5000 at 60 devices
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Figure 34: Number of packets as overhead generated during the data forwarding phase with
Levy walk mobility model

up to 7500 at 100 devices. Controlled flooding generates the most overhead, around
6200 at 60 devices, up to around 9000 packets at 100 devices. The measurements
confirm, that results delivery with mobility prediction can reduce overhead when
delivering results to mobile consumers, assuming a dense opportunistic network. 2PF-
P generates the least communication overhead, since in our data forwarding approach
we only forward data packets into the direction of the predicted location. Thereby,
the generated data packets are restricted. Overall, the results confirm the advantage
of results delivery based on mobility prediction to achieve comparable delivery time
compared to flooding-based data dissemination while generating much less overhead.
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Figure 35: Accuracy of the data forwarding phase

We measure the accuracy for the data forwarding phase, defined similarly to the ac-
curacy metric of interest forwarding. For data forwarding, the accuracy is determined
as the ratio between the number of data packets that are received by the mobile infor-
mation consumers and the number of data packets that are received by all devices in
the network. The results for accuracy measurements are presented in Figure 35. The
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accuracy of 2PF-P fluctuates a lot in sparse networks, since in sparse networks less
devices are located on the forwarding path leading to the predicted location. This
can be improved in dense networks, showing less variance in the accuracy for results
delivery with mobility prediction. On average, our proposed data forwarding based
on mobility prediction achieves the best accuracy among all approaches. Regardless of
network densities, the mobility prediction based approach can reach on average 50%
accuracy, meaning 50% data packets of our data forwarding approach are "goodput".
In contrast, all other approaches can achieve on average only around 20% accuracy.
Together with the results for data packets overhead shown in Figure 34, the results
show that our mobility prediction based approach is much more efficient than the
others with regards to communication overhead reduction.

5.4.4 Distributed In-Network Processing

In this section, we present the evaluation results, when distributed data processing is
integrated into the data forwarding phase. Thereby, the data packets are forwarded
to the information consumers and are processed along the way by the forwarding
devices which possess the matching capabilities. For this evaluation, each sensing
task is attached with a processing task containing 5 operations in a random order.
Each operation if being executed takes between 3 and 5 ms. Each forwarding device
in the simulation executes as many operations as it can according to the available
capabilities on the respective device. We use two evaluation metrics, i.e., the success rate
of completing all processing tasks and the delivery time captured when the completely
processed data is delivered. We integrate distributed data processing in controlled data
flooding approach and our results delivery approach based on mobility prediction.
The results are shown in Figure 36 and Figure 37.
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Figure 36: Distributed data processing integrated in results delivery using controlled flooding
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Figure 37: Distributed data processing integrated in results delivery based on mobility
prediction

The success rate of distributed data processing obtained in both flooding based data
forwarding and mobility prediction based data forwarding show a similar trend. The
success rate of the data processing is improved in two dimensions: (i) each forwarding
device possesses more capabilities or (ii) the network has more forwarding devices.
This trend is similar to the observation obtained in the evaluation of distributed pro-
cessing using the task message template shown in Section 4.6. The success rate in a
dense network having more than 60 forwarding devices, in which each device can ex-
ecute at least 3 operations always reaches 100%. Comparing the results for the success
rate in networks with 20 and 40 devices shown in Figure 36a and 37a, we can observe on
average a better success rate when integrating distributed processing with controlled
flooding. In such sparse networks distributed processing with controlled flooding
achieves around 5% better success rate than distributed processing with results de-
livery based on mobility prediction. This effect is due to the fact that results delivery
based on mobility prediction restricts the data forwarding region. Consequently, this
approach restricts the chances to find capable operator devices likewise. However, as
discussed previously the success rate can be compensated in dense networks and with
a high number of capabilities available on each forwarding device.

With regards to the delivery time, the results show a monotonic decreasing trend
regardless of the density for networks in which each forwarding device is capable
of executing more than 3 operations. Thereby, as shown in Figure 36b the results
delivery time when integrating distributed data processing with controlled flooding
is comparable (almost identical) to the delivery time obtained by controlled flooding
without processing. With results delivery based on mobility prediction, the delivery
time with distributed data processing with more capable forwarding devices also
decreases as shown in Figure 37b. The impact of dense networks on delivery time
(with and without distributed processing) can be observed and confirmed in both
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controlled flooding and results delivery based on mobility prediction. When each
forwarding device in networks provides more than 3 operations, the delivery time
is improved manifold. Here, the delivery time reduces from around 40 s in a sparse
network with 20 devices, down to less than 1 s in a dense network with 100 devices.

It can be observed that the capabilities of the forwarding devices affect not only the
success rate, but also the results delivery time. In networks, in which each forwarding
device can only execute up to 2 operations, the results delivery time first decreases
with more forwarding devices in sparse networks (20, 40, and 60 devices). However
in this case, the results delivery time rises again in denser networks (with 80 and
100 devices). Figure 36b shows, that the results delivery time rises again starting at
80 devices, especially in case each forwarding device can execute only 1 operation.
Similar results are shown in Figure 37b. This effect is explained by the fact that the
success rate for network with only 1 operation available on each forwarding device
is very low. Consequently, a lot of packets remain in the network during the whole
simulation, potentially leading to packet drops when the packets queue is full or to
collisions despite an avoidance scheme.

Overall, the results and discussions show that integrating distributed data pro-
cessing during the forwarding phase is possible. Furthermore, the performance with
regards to results delivery time can be preserved with a dense, highly capable, and
collaborative network.

5.5 discussion

In this chapter, we conclude the information retrieval workflow by considering the
results delivery problem. Results delivery is different from information dissemination
in the sense, that results delivery targets individual information consumers. Conse-
quently, the support from the state-of-the-art flooding-based approaches for dissemi-
nation is insufficient for results delivery. Furthermore, mobile consumers and uncer-
tainty of opportunistic networks make it more challenging to deliver results. To this
end, we utilize mobility prediction in results delivery. Thereby, we rely on distributed
shared context information and on autonomous decision of participating devices to
make autonomous forwarding decisions. We show that results delivery based on mo-
bility prediction reduces communication overhead immensely, while not scarifying
much delivery time. Furthermore, we also demonstrate the successful integration of
distributed processing in data forwarding phase for results delivery. All in all, the dis-
tributed processing should be integrated in data forwarding phase in a dense, highly
capable, and collaborative network to leverage the benefits of both results delivery
and distributed in-network processing.



6
S U M M A RY, CO NC LU S I O N S , A N D O U T L O O K

In this thesis, we have proposed a tasking concept that utilizes resources of mobile
devices in an opportunistic network to retrieve and process information. As a result,

our tasking concept enables providing and ensuring QoS for applications and services
which are built upon this type of network. We conclude our work by first summarizing
the contents discussed throughout the thesis and highlighting the core contributions.
Based on our contributions, we can draw conclusions and point out open issues as
well as potential future work.

6.1 summary of the thesis

In Chapter 1 we gave an overview of the potential for mobile computing, which
finds its use in several application domains, such as in emergency response scenario
and information centric (vehicular) networks. Thereby, we motivated opportunistic
resource utilization as the basis to develop and provide QoS for applications/services
on opportunistic networks and elaborated on the challenges for ensuring QoS. We
discussed background information and related work on opportunistic resource utilization
in Chapter 2. We divided our tasking concept in three core contributions (i) creation and
assignment of information tasks, (ii) distributed in-network processing of information,
and (iii) delivery of processed results. Accordingly, we also reviewed the state of the art
for location-based forwarding in opportunistic networks, as well as NDN-based mobile
networks, for distributed in-network processing, and for information dissemination,
which are relevant for the research contributions. Based on the discussion and on the
identified research gap, we presented the following contributions in our work.

6.1.1 Contributions

As the first step of the information retrieval workflow, we proposed and presented a
decentralized tasking concept [131] for crowd sensing task distribution in Chapter 3.
Thereby, the crowd sensing tasks are injected, disseminated in opportunistic networks,
and assigned to the appropriate mobile sensors, without having to rely on any cen-
tralized coordination/management. We based the tasking model for crowd sensing
on the NDN paradigm, which focuses on addressing information/data, instead of
addressing hosts. Within our NDN-based tasking model for crowd sensing request
distribution, we proposed a naming scheme, that allows the information consumers to
specify the granularity for quality of requested information. Based on the proposed
naming scheme, we designed the two-phase interest forwarding approach, utilizing self-
organizing patterns to guide the crowd sensing request in form of NDN interest packets
towards appropriate information producers. To achieve distributed coordination, we
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embedded context information as attribute tags in each interest packet broadcast in
the network. Extracting context information from attribute tags of an interest packet
allows each device to make forwarding decisions autonomously. The context informa-
tion used for interest forwarding is utilized not only to fulfill the quality requirements
for crowd sensing requests, but also to reduce communication overhead and to balance
resource consumption for forwarding. Existing approaches to location-based forward-
ing are designed with focus in messages delivery, ignoring the quality requirements
of sensing task. Additionally, opportunistic network based crowd sensing application
assume a rather homogenous setup. State of the art in interest forwarding in NDN-
based network still has not fully addressed the heterogeneity of mobile information
producers. In contrast, our two-phase forwarding approach, in combination with the
proposed naming scheme allowed us to incorporate heterogeneity of devices, while
fulfilling the quality requirements.

In the second step of the information retrieval workflow, having the (raw) data col-
lected through crowd-based sensors, we investigated on the next tasking concept,
that leverages idle resource of participating mobile devices opportunistically for dis-
tributed data processing in Chapter 4. Considering the challenges of opportunistic
networks, and in order to achieve fully decentralized-tasking concept, we also aimed
at self-organizing and autonomous decision for processing, while we still allowed
for distributed coordination. As a result, we generalized and designed a technique
to enable distributed processing, named adaptive task-oriented message template [134].
This task message template is self-encapsulated, allows to define and divide complex
processing goals in several operations, together with the corresponding payload data
attached. We achieved distributed processing on opportunistic network by passing the
task messages from one device to another. During this task handover process, each
device can make autonomous decision on how to contribute to the processing tasks.
Thereby, we were able to not only utilize the idle resource, but also be able to leverage
heterogeneous capabilities of the participating devices. The tasking concept based on
tasks message template also allows us to derive handover strategies [136], using only
local context information, to fulfill quality requirements for the processing tasks. Ex-
isting approaches in opportunistic computing still does not fully enable autonomous
decision of participating devices in distributed processing.

Finally, in the last step of the information retrieval workflow, we proposed the inte-
grated form of distributed processing in opportunistic networks, and results delivery,
considering the mobility of the information requesters as the main driver in Chapter 5.
Thereby, we first showed the integration of the processing task template concept into
a NDN based data forwarding phase. Data packets are essential for a NDN based re-
sults delivery mechanism, since the measurements obtained as the results of interest
forwarding will be encapsulated in this type of packet and broadcast in the whole
network. Hence, we integrated a complex processing task into each data packet, so
that the data in the packets can be processed by the forwarder devices on its way
back to information consumers. Furthermore, to deliver the processed result to a mo-
bile consumer, current approaches in NDN based mobile networks still mainly rely
on broadcasting. However, broadcasting data in the whole opportunistic network, es-
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pecially in resource-constraint scenarios such as in emergency situations, consumes
storage and resource on participating devices. Therefore, we proposed to integrate mo-
bility prediction for mobile information consumers, that allow the forwarder devices
to focus the data forwarding in the predicted location of the consumers, thus saving
resource for opportunistic network. We achieved distributed processing, and mobility
prediction for information consumers, by again embedding context information into
each interest as well as data packet.

As a result, we completed the whole information retrieval workflow on opportunistic
networks, relying completely on distributed coordination and autonomous decision
of participating devices.

6.1.2 Conclusions

We conducted evaluations for each step of the information retrieval workflow, which
allowed us to analyze the performance, the ability to satisfy quality requirements
in decentralized fashion, as well as to assess the overhead trade-off required for dis-
tributed coordination and autonomous decision of participating devices.

First, with regards to crowd sensing task distribution, we compared our two-phase
forwarding approach against state of the art broadcasting in NDN-based mobile net-
work, and geo-forwarding. We showed that our forwarding concept is able to find
a mobile information producer faster, indicating the ability to find relevant data in a
timely manner. However, to achieve timely search for the information producer, our
two-phase forwarding approach had to rely on replicated interest broadcasting in the
second phase, thus generated more overhead compared to geo-forwarding. Despite
of that, due to the directive forwarding, and to the autonomous decision of forwarder
devices to drop interest if the forwarder device cannot bring the interest closer to
the requested region, the two-phase forwarding approach was still able to reduce the
communication overhead manifold, compared to state of the art interest broadcasting
in NDN-based mobile networks. Furthermore, we also showed that our approach was
able to leverage context information embedded in interest packets to self-regulate the
broadcasting rate, thus achieving fairer resource consumption among participating
devices, with respect to forwarding contribution.

Second, with regards to distributed in-network processing concept for opportunistic
networks, we compared the performance of our proposed tasks handover strategies,
which rely only on local information and distributed coordination. With the results,
we confirmed that local task handover mechanisms are able to achieve high success
rate and high computation load balancing, low completion time, which are the main
quality requirements for distributed processing. Again, we had to trade-off communi-
cation overhead for distributed coordination, in order to fulfill quality requirements.
We could observe another finding from the evaluation results, that a single task han-
dover strategy cannot cover all dimensions of quality for distributed processing. This
observation serves as a motivation for adaptive transitions, to switch among different
strategies during runtime as discussed in our future work.
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Finally, to complete the information retrieval workflow, we conducted a consolidated
evaluation for sensing task distribution, for the integration of tasks message template
into the data packets of NDN based networks, and for the integration of mobility
prediction for data forwarding as results delivery. We showed that, aligned with the
observation of the generalization of our distributed processing concept, the data can
be processed in decentralized fashion during the data forwarding phase. The success
rate of this process could be improved when having more capabilities of devices
available in the opportunistic networks. We also showed the time trade-off for having
completely processed data at the information consumers, compared to normal data
broadcasting. Last but not least, we showed a massive reduction of communication
overhead, when leveraging mobility prediction for results delivery. The results of the
consolidated evaluation also revealed and confirmed that mobility characteristics and
network density have great impact on the performance of all decentralized concepts.

All in all, we showed that we were able to (i) allow distributed coordination by
embedding context information in broadcast packets, (ii) leverage heterogeneity both
in resource and capabilities for all steps of information retrieval, and (iii) fulfill fine-
granular QoS requirements, relying only on distributed coordination.

6.2 outlook

To ensure the quality requirements of a task, we leverage the heterogeneous capabil-
ities and resources provided by the devices in an opportunistic network. Therefore,
we need to rely on the collaboration and cooperation of participating devices. We
considered the emergency response as the motivating scenario, in which a trusted
collaboration among devices can be assumed, since all devices share a common goal
of conducting relief operations, hence benefit from the results. For generic applica-
tions of opportunistic networks, our contributions should be augmented by incentive
mechanisms to motivate participating devices to donate computation and networking
resources, as well as by security mechanisms to counter related issues which are in-
herent in opportunistic networks [95]. With regards to the incentive for participating
devices, decentralized resource reservation scheme such as [94] can be utilized to al-
low devices that contribute more resources to reserve for more energy recharging in
emergency communication networks. The monetary incentive can also be provided
in a decentralized manner based on the performance and contribution of a device
towards the completion of the task; to this end, a contract-based mechanism for a
device-to-device communication such as [220] is worth being studied. With regards to
security in opportunistic networks, Lilien et al. [95] pointed out several issues, which
are also relevant for our work, e.g., providing false information/results which affects
the quality of task execution, intentionally dropping packets/messages which worsens
the communication quality. One approach to address these issues is to generate redun-
dant messages/packets to circumvent behaviors of malicious devices. However, as a
consequence, redundancy can negatively affect other quality requirements. We believe
decentralized mechanisms to establish a trusted environment among devices [44] and
to attest to the integrity of participating devices/software [81] are promising as future
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research directions. Furthermore, to protect the privacy of the participating devices in
opportunistic networks, only information which is required to facilitate completing a
task needs to be provided in our mechanisms. To enhance the privacy protection, the
concept of approximate computing [65] can be utilized, in which task can be assigned
to a group/a cluster of devices based on geographical location instead of targeting
individual devices, thus be able to hide the identity of the devices.

The concepts developed in this thesis are designed with a focus on opportunistic net-
works, but are not only restricted within the application domain for mobile devices.
In the automotive sector, research on autonomous driving cars has attracted much
attention. To support autonomous driving, the participating cars should be able to
acquire relevant information [126] to decide on driving maneuvers. Especially, acquir-
ing and sharing information through VANET communication allow the cars to adjust
local driving behavior collaboratively and timely. Our information retrieval concepts
can be well applied in this scenario. With more precise positioning systems, and the
ability to determine the most probable path through a cloud-based horizon system [25],
the application in automotive scenario will empower our information searching and
results delivery concepts with more accuracy, making them more efficient.

Mobility of human carriers for the devices in opportunistic networks is the enabler
for communication, and applications/services built upon this type of network. At
the same time, mobility is also one of the biggest challenges to ensure quality. The
results obtained from this thesis also revealed and confirmed the varying performance
of the concepts, depending on evaluated mobility models. As such, more realistic
mobility models are required for future research of mobile communication systems in
general. For instance, projects SMARTER1 and NICER2 have developed solutions for
maintaining communication using mobile devices in emergency situations. Thereby,
to evaluate their contributions, they have organized field tests and testbed with test
persons, robots, consequently, realistic mobility traces can be extracted from these tests.
Simulative evaluation using realistic mobility traces in turn can reveal the potential
weak link of the concepts when being deployed in practice for a particular application
domain, such as in emergency response. The insight of such study can be used as input
for planning in crowd steering [149], or in placement of Unmanned Aerial Vehicle
(UAV) between partitioned opportunistic networks [110], to improve the performance
of the deployed systems.

Last but not least, decentralized concepts relying on distributed coordination and
autonomous decision can cope with uncertainty of the opportunistic networks, as
shown in our thesis. However, it is also evident, that a single strategy cannot fulfill
all QoS requirements, as these sometimes contradict each other. To deal with this, the
concept of transition has been extensively researched within the collaborative center
MAKI—Multi-Mechanisms Adaptation for the Future Internet3 and can potentially be
integrated. With regards to information retrieval in emergency response, local strategies
for distributed processing can be switched among several options, to ensure that in the

1 http://smarter-projekt.de
2 http://nicer.network/
3 https://www.maki.tu-darmstadt.de
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worst case scenario, the information consumers can always receive some information
to facilitate the planing of relief operations. Hereby, the final goals of achieving com-
pleteness and timeliness, consequently the corresponding local decision strategies, can
be switched between each other to adapt the system with respect to how critical the
emergency situation develops.

Our contributions for tasking concepts in order to retrieve and process information
while ensuring QoS requirements form a solid foundation for the development and
creation of applications/services on mobile opportunistic networks.

acknowledgments

This work has been funded by the LOEWE initiative (Hessen, Germany) within the
"NICER–Networked Infrastructureless Cooperation for Emergency Response" project
and by the German Federal Ministry of Education and Research (BMBF) Software
Campus project ”OppEPM–Opportunistic Exploiting the Power of Mobile Devices”
[01IS12054]



B I B L I O G R A P H Y

[1] Alexander Afanasyev, Ilya Moiseenko, Lixia Zhang, et al. “ndnSIM: NDN
simulator for NS-3.” In: University of California, Los Angeles, Tech. Rep 4 (2012).

[2] Vikas Agarwal, Nilanjan Banerjee, Dipanjan Chakraborty, and Sumit Mittal.
“USense–A Smartphone Middleware for Community Sensing.” In: IEEE Mobile
Data Management (MDM). Vol. 1. 2013, pp. 56–65.

[3] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher, and
Borje Ohlman. “A survey of information-centric networking.” In: IEEE Commu-
nications Magazine 50.7 (2012).

[4] Syed Hassan Ahmed, Safdar Hussain Bouk, Muhammad Azfar Yaqub, Dongkyun
Kim, Houbing Song, and Jaime Lloret. “CODIE: Controlled Data and Interest
Evaluation in Vehicular Named Data Networks.” In: IEEE Transactions on Vehic-
ular Technology 65.6 (2016), pp. 3954–3963.

[5] Ian F Akyildiz, Özgür B Akan, Chao Chen, Jian Fang, and Weilian Su. “In-
terPlaNetary Internet: state-of-the-art and research challenges.” In: Computer
Networks 43.2 (2003), pp. 75–112.

[6] Ali M Alakeel. “A Guide to Dynamic Load Balancing in Distributed Computer
Systems.” In: International Journal of Computer Science and Information Security
10.6 (2010), pp. 153–160.

[7] Daniele Alessandrelli, Matteo Petraccay, and Paolo Pagano. “T-RES: Enabling
Reconfigurable In-network Processing in IoT-based WSNs.” In: 9th International
Conference on Distributed Computing in Sensor Systems (DCOSS). IEEE. 2013,
pp. 337–344.

[8] Marica Amadeo, Claudia Campolo, and Antonella Molinaro. “Forwarding
strategies in named data wireless ad hoc networks: Design and evaluation.” In:
Journal of Network and Computer Applications 50 (2015), pp. 148–158.

[9] Marica Amadeo, Antonella Molinaro, and Giuseppe Ruggeri. “E-CHANET:
Routing, forwarding and transport in Information-Centric Multihop Wireless
Networks.” In: Computer communications 36.7 (2013), pp. 792–803.

[10] Nils Aschenbruck, Raphael Ernst, Elmar G.-Padilla, and Matthias Schwamborn.
“BonnMotion: A Mobility Scenario Generation and Analysis Tool.” In: SIMU-
Tools. 2010.

[11] Priyanka Asrani. “Mobile cloud computing.” In: International Journal of Engi-
neering and Advanced Technology 2.4 (2013), pp. 606–609.

[12] Paolo Baronti, Prashant Pillai, Vince WC Chook, Stefano Chessa, Alberto Gotta,
and Y Fun Hu. “Wireless sensor networks: A survey on the state of the art and
the 802.15.4 and ZigBee standards.” In: Computer communications 30.7 (2007),
pp. 1655–1695.

119



120 bibliography

[13] Lars Baumgärtner, Pablo Graubner, Jonas Höchst, Anja Klein, and Bernd Freisleben.
“Speak less, hear enough: On dynamic announcement intervals in wireless
on-demand networks.” In: Wireless On-demand Network Systems and Services
(WONS). 2017, pp. 33–40.

[14] Divyashri Bhat, Cong Wang, Amr Rizk, and Michael Zink. “A load balancing
approach for adaptive bitrate streaming in information centric networks.” In:
IEEE Multimedia & Expo Workshops (ICMEW). 2015, pp. 1–6.

[15] Giuseppe Bianchi. “Performance analysis of the IEEE 802.11 distributed coordi-
nation function.” In: IEEE Journal on selected areas in communications 18.3 (2000),
pp. 535–547.

[16] Robert D Blumofe and Charles E Leiserson. “Scheduling Multithreaded Com-
putations by Work Stealing.” In: Journal of the ACM (JACM) 46.5 (1999), pp. 720–
748.

[17] Chiara Boldrini, Marco Conti, Jacopo Jacopini, and Andrea Passarella. “Hibop:
a history based routing protocol for opportunistic networks.” In: IEEE World of
Wireless, Mobile and Multimedia Networks (WoWMoM). 2007, pp. 1–12.

[18] Chiara Boldrini, Marco Conti, and Andrea Passarella. “ContentPlace: social-
aware data dissemination in opportunistic networks.” In: Proceedings of the 11th
international symposium on Modeling, analysis and simulation of wireless and mobile
systems. ACM. 2008, pp. 203–210.

[19] Chiara Boldrini and Andrea Passarella. “Data dissemination in opportunistic
networks.” In: Mobile Ad Hoc Networking: Cutting Edge Directions (2013), pp. 453–
490.

[20] Boris Jan Bonfils and Philippe Bonnet. “Adaptive and decentralized operator
placement for in-network query processing.” In: Telecommunication Systems 26.2-
4 (2004), pp. 389–409.

[21] Safdar Hussain Bouk, Syed Hassan Ahmed, Dongkyun Kim, and Houbing
Song. “Named-data-networking-based ITS for smart cities.” In: IEEE Commu-
nications Magazine 55.1 (2017), pp. 105–111.

[22] Michael I Brownfield, Kaveh Mehrjoo, Almohonad S Fayez, and Nathaniel J
Davis Iv. “Wireless sensor network energy-adaptive MAC protocol.” In: (2006).

[23] Per Nikolaj D Bukh and Raj Jain. The Art of Computer Systems Performance Anal-
ysis, Techniques for experimental Design, Measurement, Simulation and Modeling.
1992.

[24] John Burgess, Brian Gallagher, David Jensen, and Brian Neil Levine. “Max-
prop: Routing for vehicle-based disruption-tolerant networks.” In: 25th IEEE
International Conference on Computer Communications (INFOCOM). 2006, pp. 1–
11.

[25] Daniel Burgstahler, Athiona Xhoga, Christoph Peusens, Martin Moebus, Doreen
Boehnstedt, and Ralf Steinmetz. “RemoteHorizon.KOM: Dynamic Cloud-based
eHorizon.” In: Automotive meets Electronics (AME). 2016, pp. 1–6.



bibliography 121

[26] Andrew T Campbell, Shane B Eisenman, Nicholas D Lane, Emiliano Miluzzo,
and Ronald A Peterson. “People-centric Urban Sensing.” In: Proceedings of the
2nd annual international workshop on Wireless internet. 2006.

[27] Yue Cao, Zhili Sun, Haitham Cruickshank, and Fang Yao. “Approach-and-
Roam (AaR): A geographic Routing Scheme for Delay/Disruption Tolerant
Networks.” In: IEEE transactions on Vehicular Technology 63.1 (2014), pp. 266–
281.

[28] Yue Cao, Zhili Sun, Ning Wang, Maryam Riaz, Haitham Cruickshank, and
Xiulei Liu. “Geographic-based spray-and-relay (GSaR): an efficient routing
scheme for DTNs.” In: IEEE Transactions on Vehicular Technology 64.4 (2015),
pp. 1548–1564.

[29] Valeria Cardellini, Mirko D’Angelo, Vincenzo Grassi, Moreno Marzolla, and
Raffaela Mirandola. “A decentralized approach to network-aware service com-
position.” In: European Conference on Service-Oriented and Cloud Computing. 2015,
pp. 34–48.

[30] Valeria Cardellini, Vincenzo Grassi, Francesco Lo Presti, and Matteo Nardelli.
“Optimal operator placement for distributed stream processing applications.”
In: Proceedings of the 10th ACM International Conference on Distributed and Event-
based Systems. ACM. 2016, pp. 69–80.

[31] Gilbert Cassar, Payam Barnaghi, and Klaus Moessner. “Probabilistic matchmak-
ing methods for automated service discovery.” In: IEEE Transactions on Services
Computing 7.4 (2014), pp. 654–666.

[32] Georgios Chatzimilioudis, Nikos Mamoulis, and Dimitrios Gunopulos. “A dis-
tributed technique for dynamic operator placement in wireless sensor net-
works.” In: IEEE Mobile Data Management (MDM). 2010, pp. 167–176.

[33] Nanxi Chen, Nicolás Cardozo, and Siobhán Clarke. “Goal-driven service com-
position in mobile and pervasive computing.” In: IEEE Transactions on Services
Computing (2016).

[34] Marco Conti, Chiara Boldrini, Salil S Kanhere, Enzo Mingozzi, Elena Pagani, Pe-
dro M Ruiz, and Mohamed Younis. “From MANET to People-centric Network-
ing: Milestones and open Research Challenges.” In: Computer Communications
71 (2015).

[35] Marco Conti and Mohan Kumar. “Opportunities in opportunistic computing.”
In: Computer 43.1 (2010).

[36] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. “MAUI: making smartphones
last longer with code offload.” In: Proceedings of the 8th international conference
on Mobile systems, applications, and services. 2010, pp. 49–62.

[37] Tom De Wolf and Tom Holvoet. “Design patterns for decentralised coordination
in self-organising emergent systems.” In: International Workshop on Engineering
Self-Organising Applications. 2006, pp. 28–49.



122 bibliography

[38] Gang Deng, Xiaoming Xie, Li Shi, and Rere Li. “Hybrid Information Forward-
ing in VANETs through Named Data Networking.” In: Personal, Indoor, and
Mobile Radio Communications (PIMRC). IEEE. 2015.

[39] Sanjay K Dhurandher, Deepak K Sharma, Sahil Gupta, Isaac Woungang, and
Mohammad S Obaidat. “Integration of fixed and mobile infrastructure for
message passing in opportunistic networks.” In: Journal of networks 10.12 (2015),
pp. 642–657.

[40] Sanjay K Dhurandher, Deepak Kumar Sharma, Isaac Woungang, and Shruti
Bhati. “HBPR: history based prediction for routing in infrastructure-less oppor-
tunistic networks.” In: Advanced Information Networking and Applications (AINA).
IEEE. 2013, pp. 931–936.

[41] Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. “A survey of mo-
bile cloud computing: architecture, applications, and approaches.” In: Wireless
communications and mobile computing 13.18 (2013), pp. 1587–1611.

[42] Milica Pejanovic Djurivsic, Zhilbert Tafa, Goran Dimic, and Veljko Milutinovic.
“A survey of military applications of wireless sensor networks.” In: Mediter-
ranean Conference on Embedded Computing (MECO). IEEE. 2012, pp. 196–199.

[43] Michael Doering, Sven Lahde, Johannes Morgenroth, and Lars Wolf. “IBR-DTN:
an efficient implementation for embedded systems.” In: Proceedings of the third
ACM workshop on Challenged networks. 2008, pp. 117–120.

[44] Rahul Dwarakanath, Boris Koldehofe, Yashas Bharadwaj, The An Binh Nguyen,
David Eyers, and Ralf Steinmetz. “TrustCEP: Adopting a Trust-Based Approach
for Distributed Complex Event Processing.” In: IEEE International Conference on
Mobile Data Management (MDM). 2017, pp. 30–39.

[45] Rahul Dwarakanath, Boris Koldehofe, and Ralf Steinmetz. “Operator Migra-
tion for Distributed Complex Event Processing in Device-to-Device Based Net-
works.” In: Proceedings of the 3rd Workshop on Middleware for Context-Aware Ap-
plications in the IoT. 2016, pp. 13–18.

[46] Derek L Eager, Edward D Lazowska, and John Zahorjan. “Adaptive Load
Sharing in homogeneous Distributed Systems.” In: IEEE transactions on software
engineering 5 (1986), pp. 662–675.

[47] Philip Harrison Enslow. “What is a" distributed" data processing system?” In:
Computer 11.1 (1978), pp. 13–21.

[48] Kevin Fall. “A delay-tolerant network architecture for challenged internets.”
In: Conference on applications, technologies, architectures, and protocols for computer
communications. 2003, pp. 27–34.

[49] Kevin Fall, Keith L Scott, Scott C Burleigh, Leigh Torgerson, Adrian J Hooke,
Howard S Weiss, Robert C Durst, and Vint Cerf. “Delay-tolerant networking
architecture.” In: RFC. 2007.



bibliography 123

[50] Jialu Fan, Jiming Chen, Yuan Du, Ping Wang, and Youxian Sun. “Delque: A
socially aware delegation query scheme in delay-tolerant networks.” In: IEEE
Transactions on Vehicular Technology 60.5 (2011), pp. 2181–2193.

[51] Karoly Farkas and Imre Lendak. “Simulation environment for investigating
crowd-sensing based urban parking.” In: Models and Technologies for Intelligent
Transportation Systems (MT-ITS). IEEE. 2015, pp. 320–327.

[52] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. “Mobile Crowd Com-
puting with Work Stealing.” In: IEEE NBiS. 2012.

[53] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. “Mobile cloud com-
puting: A survey.” In: Future generation computer systems 29.1 (2013), pp. 84–
106.

[54] Raghu K Ganti, Nam Pham, Hossein Ahmadi, Saurabh Nangia, and Tarek F
Abdelzaher. “GreenGPS: a participatory sensing fuel-efficient maps applica-
tion.” In: Proceedings of the international conference on Mobile systems, applications,
and services. ACM. 2010, pp. 151–164.

[55] Raghu K Ganti, Fan Ye, and Hui Lei. “Mobile crowdsensing: current state and
future challenges.” In: IEEE Communications Magazine 49.11 (2011).

[56] Shuai Gao, Hongke Zhang, and Beichuan Zhang. “Energy efficient interest
forwarding in NDN-based wireless sensor networks.” In: Mobile Information
Systems 2016 (2016).

[57] Paul Gardner-Stephen, Romana Challans, Jeremy Lakeman, Andrew Bettison,
Dione Gardner-Stephen, and Matthew Lloyd. “The serval mesh: A platform
for resilient communications in disaster & crisis.” In: IEEE Global Humanitarian
Technology Conference (GHTC). 2013, pp. 162–166.

[58] Giulio Grassi, Davide Pesavento, Giovanni Pau, Lixia Zhang, and Serge Fdida.
“Navigo: Interest forwarding by geolocations in vehicular named data network-
ing.” In: IEEE World of Wireless, Mobile and Multimedia Networks (WoWMoM).
2015, pp. 1–10.

[59] Pablo Graubner, Patrick Lampe, Jonas Höchst, Lars Baumgärtner, Mira Mezini,
and Bernd Freisleben. “Opportunistic Named Functions in Disruption-tolerant
Emergency Networks.” In: ACM International Conference on Computing Frontiers
(CF). 2018.

[60] Christin Groba and Siobhan Clarke. “Opportunistic composition of sequentially-
connected services in mobile computing environments.” In: IEEE Web Services
(ICWS). 2011, pp. 17–24.

[61] Christin Groba and Siobhán Clarke. “Opportunistic service composition in
dynamic ad hoc environments.” In: IEEE Transactions on Services Computing 7.4
(2014), pp. 642–653.



124 bibliography

[62] Bin Guo, Zhu Wang, Zhiwen Yu, Yu Wang, Neil Y Yen, Runhe Huang, and Xing-
she Zhou. “Mobile crowd sensing and computing: The review of an emerging
human-powered sensing paradigm.” In: ACM Computing Surveys (CSUR) 48.1
(2015), p. 7.

[63] Bin Guo, Zhiwen Yu, Xingshe Zhou, and Daqing Zhang. “From participatory
sensing to mobile crowd sensing.” In: IEEE Pervasive Computing and Communi-
cations Workshops (PERCOM Workshops). 2014, pp. 593–598.

[64] Karim Habak, Mostafa Ammar, Khaled A Harras, and Ellen Zegura. “Femto
clouds: Leveraging mobile devices to provide cloud service at the edge.” In:
IEEE Cloud Computing (CLOUD). 2015, pp. 9–16.

[65] Jie Han and Michael Orshansky. “Approximate computing: An emerging paradigm
for energy-efficient design.” In: Test Symposium (ETS), 2013 18th IEEE European.
IEEE. 2013, pp. 1–6.

[66] Ronny Hans, Daniel Burgstahler, Alexander Mueller, Manuel Zahn, and Do-
minik Stingl. “Knowledge for a longer life: development impetus for energy-
efficient smartphone applications.” In: IEEE Mobile Services (MS). 2015, pp. 128–
133.

[67] Daojing He, Sammy Chan, and Mohsen Guizani. “User privacy and data trust-
worthiness in mobile crowd sensing.” In: IEEE Wireless Communications 22.1
(2015), pp. 28–34.

[68] Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell, and
Joseph Kopena. “Network simulations with the ns-3 simulator.” In: SIGCOMM
demonstration 14.14 (2008), p. 527.

[69] Ivan Howitt and Jore A Gutierrez. “IEEE 802.15. 4 low rate-wireless personal
area network coexistence issues.” In: IEEE Wireless Communications and Network-
ing (WCNC). Vol. 3. 2003, pp. 1481–1486.

[70] Wei-Jen Hsu, Debojyoti Dutta, and Ahmed Helmy. “CSI: A paradigm for
behavior-oriented profile-cast services in mobile networks.” In: Ad Hoc Net-
works 10.8 (2012), pp. 1586–1602.

[71] Wei-jen Hsu, Debojyoti Dutta, and Ahmed Helmy. “Profile-cast: Behavior-
aware mobile networking.” In: IEEE Wireless Communications and Networking
Conference (WCNC). 2008, pp. 3033–3038.

[72] Haiming Jin, Lu Su, Danyang Chen, Klara Nahrstedt, and Jinhui Xu. “Quality of
information aware incentive mechanisms for mobile crowd sensing systems.”
In: Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Net-
working and Computing. ACM. 2015, pp. 167–176.

[73] Hao Jin, Shidong Yan, Chenglin Zhao, and Dong Liang. “PMC2O: Mobile
cloudlet networking and performance analysis based on computation offload-
ing.” In: Ad Hoc Networks 58 (2017), pp. 86–98.



bibliography 125

[74] Salil S Kanhere. “Participatory sensing: Crowdsourcing data from mobile
smartphones in urban spaces.” In: IEEE Mobile Data Management (MDM). Vol. 2.
2011, pp. 3–6.

[75] Merkouris Karaliopoulos, Orestis Telelis, and Iordanis Koutsopoulos. “User re-
cruitment for mobile crowdsensing over opportunistic networks.” In: IEEE In-
ternational Conference on Computer Communications (INFOCOM). 2015, pp. 2254–
2262.

[76] Bhanu Kaushik, Honggang Zhang, Xinwen Fu, Benyuan Liu, and Jie Wang.
“Smartparcel: A collaborative data sharing framework for mobile operating
systems.” In: IEEE Distributed Computing Systems Workshops (ICDCSW). 2013,
pp. 290–295.

[77] Ryoma Kawajiri, Masamichi Shimosaka, and Hisashi Kashima. “Steered crowd-
sensing: Incentive design towards quality-oriented place-centric crowdsens-
ing.” In: ACM International Joint Conference on Pervasive and Ubiquitous Comput-
ing. 2014, pp. 691–701.

[78] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal. “Cuckoo: a
computation offloading framework for smartphones.” In: International Confer-
ence on Mobile Computing, Applications, and Services. Springer. 2010, pp. 59–79.

[79] Maurice J Khabbaz, Chadi M Assi, and Wissam F Fawaz. “Disruption-tolerant
networking: A comprehensive survey on recent developments and persisting
challenges.” In: IEEE Communications Surveys & Tutorials 14.2 (2012), pp. 607–
640.

[80] Young-Bae Ko and Nitin H Vaidya. “Location-Aided Routing (LAR) in mobile
ad hoc networks.” In: Wireless networks 6.4 (2000), pp. 307–321.

[81] Florian Kohnhäuser, Niklas Büscher, and Stefan Katzenbeisser. “SALAD: Se-
cure and Lightweight Attestation of Highly Dynamic and Disruptive Net-
works.” In: Proceedings of the Asia Conference on Computer and Communications
Security. ASIACCS. 2018.

[82] Meng Kuai, Xiaoyan Hong, and Qiangyuan Yu. “Density-Aware Delay-Tolerant
Interest Forwarding in Vehicular Named Data Networking.” In: Vehicular Tech-
nology Conference (VTC). 2016.

[83] Karthik Kumar and Yung-Hsiang Lu. “Cloud computing for mobile users: Can
offloading computation save energy?” In: Computer 43.4 (2010), pp. 51–56.

[84] Patrick Lampe, Lars Baumgärtner, Ralf Steinmetz, and Bernd Freisleben. “Smart-
Face: Efficient face detection on smartphones for wireless on-demand emer-
gency networks.” In: IEEE Telecommunications (ICT). 2017, pp. 1–7.

[85] Nicholas D Lane, Shane B Eisenman, Mirco Musolesi, Emiliano Miluzzo, and
Andrew T Campbell. “Urban sensing systems: opportunistic or participatory?”
In: Proceedings of the 9th workshop on Mobile computing systems and applications.
ACM. 2008, pp. 11–16.



126 bibliography

[86] Ray R Larson. “Introduction to information retrieval.” In: Journal of the American
Society for Information Science and Technology 61.4 (2010), pp. 852–853.

[87] Jason LeBrun, Chen-Nee Chuah, Dipak Ghosal, and Michael Zhang. “Knowledge-
based opportunistic forwarding in vehicular wireless ad hoc networks.” In:
IEEE Vehicular technology conference (VTC). Vol. 4. 2005, pp. 2289–2293.

[88] Uichin Lee, Jiyeon Lee, Joon-Sang Park, and Mario Gerla. “FleaNet: A virtual
market place on vehicular networks.” In: IEEE Transactions on Vehicular Technol-
ogy 59.1 (2010), pp. 344–355.

[89] Hanshang Li, Ting Li, and Yu Wang. “Dynamic participant recruitment of
mobile crowd sensing for heterogeneous sensing tasks.” In: IEEE Mobile Ad
Hoc and Sensor Systems (MASS). 2015, pp. 136–144.

[90] Peng Li, Tao Zhang, Chuanhe Huang, Xi Chen, and Bin Fu. “RSU-Assisted
Geocast in Vehicular Ad Hoc Networks.” In: IEEE Wireless Communications 24.1
(2017), pp. 53–59.

[91] Qingyu Li, Panlong Yang, Yubo Yan, and Yue Tao. “Your friends are more
powerful than you: Efficient task offloading through social contacts.” In: IEEE
Communications (ICC). 2014, pp. 88–93.

[92] Yong Li, Yurong Jiang, Depeng Jin, Li Su, Lieguang Zeng, and Dapeng Wu.
“Energy-efficient optimal opportunistic forwarding for delay-tolerant networks.”
In: IEEE Transactions on Vehicular Technology 59.9 (2010), pp. 4500–4512.

[93] Patrick Lieser, Flor Alvarez, Paul Gardner-Stephen, Matthias Hollick, and
Doreen Boehnstedt. “Architecture for Responsive Emergency Communications
Networks.” In: Global Humanitarian Technology Conference (GHTC). IEEE. 2017.

[94] Patrick Lieser, Nils Richerzhagen, Tim Feuerbach, Leonhard Nobach, Doreen
Böhnstedt, and Ralf Steinmetz. “Take it or Leave it: Decentralized Resource
Allocation in Mobile Networks.” In: 42nd IEEE Conference on Local Computer
Networks (LCN). 2017.

[95] Leszek Lilien, Zille Huma Kamal, Vĳay Bhuse, and Ajay Gupta. “Opportunistic
Networks: The Concept and Research Challenges in Privacy and Security.” In:
Proc. of the WSPWN (2006), pp. 134–147.

[96] Leszek Lilien, Ajay Gupta, Zĳiang Yang, et al. “Opportunistic resource utiliza-
tion networks—a new paradigm for specialized ad hoc networks.” In: Computers
& electrical engineering 36.2 (2010), pp. 328–340.

[97] Yujin Lim, Sanghyun Ahn, and Kwon-Hee Cho. “Abiding geocast for com-
mercial ad dissemination in the vehicular ad hoc network.” In: IEEE Consumer
Electronics (ICCE). 2011, pp. 115–116.

[98] Anders Lindgren, Avri Doria, and Olov Schelen. “Probabilistic Routing in Inter-
mittently Connected Cetworks.” In: Service assurance with partial and intermittent
resources. 2004, pp. 239–254.



bibliography 127

[99] Anders Lindgren and Pan Hui. “The Quest for a Killer App for opportunis-
tic and Delay Tolerant Networks.” In: Proceedings of the 4th ACM workshop on
Challenged networks. ACM. 2009.

[100] Chi Harold Liu, Bo Zhang, Xin Su, Jian Ma, Wendong Wang, and Kin K
Leung. “Energy-aware participant selection for smartphone-enabled mobile
crowd sensing.” In: IEEE Systems Journal 11.3 (2017), pp. 1435–1446.

[101] Xuan Liu, Zhuo Li, Peng Yang, and Yongqiang Dong. “Information-centric
mobile ad hoc networks and content routing: a survey.” In: Ad Hoc Networks 58
(2017), pp. 255–268.

[102] Yan Liu, Bin Guo, Yang Wang, Wenle Wu, Zhiwen Yu, and Daqing Zhang.
“TaskMe: multi-task allocation in mobile crowd sensing.” In: ACM International
Joint Conference on Pervasive and Ubiquitous Computing. 2016, pp. 403–414.

[103] Yang Liu, Zhipeng Yang, Ting Ning, and Hongyi Wu. “Efficient quality-of-
service (QoS) support in mobile opportunistic networks.” In: IEEE Transactions
on Vehicular Technology 63.9 (2014), pp. 4574–4584.

[104] Christian Lochert, Björn Scheuermann, and Martin Mauve. “A Survey on Con-
gestion Control for Mobile Ad Hoc Networks.” In: Wireless communications and
mobile computing 7.5 (2007), pp. 655–676.

[105] Konrad Lorincz, David J Malan, Thaddeus RF Fulford-Jones, Alan Nawoj,
Antony Clavel, Victor Shnayder, Geoffrey Mainland, Matt Welsh, and Steve
Moulton. “Sensor networks for emergency response: challenges and opportu-
nities.” In: IEEE Pervasive Computing 3.4 (2004), pp. 16–23.

[106] Hong Lu, Nicholas D Lane, Shane B Eisenman, and Andrew T Campbell.
“Bubble-sensing: Binding sensing tasks to the physical world.” In: Pervasive
and Mobile Computing 6.1 (2010), pp. 58–71.

[107] Shanshan Lu and Yonghe Liu. “Geoopp: Geocasting for opportunistic Net-
works.” In: IEEE Wireless Communications and Networking Conference (WCNC).
2014, pp. 2582–2587.

[108] Thomas Ludwig, Christian Reuter, Tim Siebigteroth, and Volkmar Pipek. “Crowd-
Monitor: Mobile crowd sensing for assessing physical and digital activities of
citizens during emergencies.” In: Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems. ACM. 2015, pp. 4083–4092.

[109] Manisha Luthra, Boris Koldehofe, Pascal Weisenburger, Guido Salvaneschi, and
Raheel Arif. “TCEP: Adapting to Dynamic User Environments by Enabling
Transitions between Operator Placement Mechanisms (accepted for publica-
tion).” In: Proceedings of the 12th ACM International Conference on Distributed and
Event-based Systems (DEBS). June 2018.

[110] Jiangbin Lyu, Yong Zeng, Rui Zhang, and Teng Joon Lim. “Placement optimiza-
tion of UAV-mounted mobile base stations.” In: IEEE Communications Letters
21.3 (2017), pp. 604–607.



128 bibliography

[111] Huadong Ma, Dong Zhao, and Peiyan Yuan. “Opportunities in mobile crowd
sensing.” In: IEEE Communications Magazine 52.8 (2014), pp. 29–35.

[112] Yaozhou Ma and Abbas Jamalipour. “Opportunistic geocast in disruption-
tolerant networks.” In: IEEE Global Telecommunications Conference (GLOBECOM).
2011, pp. 1–5.

[113] Derek Hylton Maling. Coordinate systems and map projections. Elsevier, 2013.

[114] Yuyi Mao, Jun Zhang, and Khaled B Letaief. “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices.” In: IEEE Journal
on Selected Areas in Communications 34.12 (2016), pp. 3590–3605.

[115] Abraham Martin-Campillo, Jon Crowcroft, Eiko Yoneki, and Ramon Martin.
“Evaluating Opportunistic Networks in Disaster Scenarios.” In: Journal of Net-
work and computer applications 36.2 (2013), pp. 870–880.

[116] Davide Mascitti, Marco Conti, Andrea Passarella, and Laura Ricci. “Service
provisioning through opportunistic computing in mobile clouds.” In: Procedia
Computer Science 40 (2014), pp. 143–150.

[117] Yasser Mawad and Stefan Fischer. “Infrastructure-based delay tolerant network
communication.” In: International Conference on Information Networking (ICOIN).
2016, pp. 161–165.

[118] Michael Meisel, Vasileios Pappas, and Lixia Zhang. “Listen first, broadcast later:
Topology-agnostic forwarding under high dynamics.” In: Annual conference of
international technology alliance in network and information science. 2010, p. 8.

[119] C. Meurisch, J. Gedeon, T. A. B. Nguyen, F. Kaup, and M. Muhlhauser. “De-
cision Support for Computational Offloading by Probing Unknown Services.”
In: International Conference on Computer Communication and Networks (ICCCN).
2017, pp. 1–9.

[120] Christian Meurisch, Julien Gedeon, Artur Gogel, The An Binh Nguyen, Fabian
Kaup, Florian Kohnhaeuser, Lars Baumgaertner, Milan Schmittner, and Max
Muehlhaeuser. “Temporal Coverage Analysis of Router-Based Cloudlets Using
Human Mobility Patterns.” In: IEEE Global Communications Conference (GLOBE-
COM). Dec. 2017, pp. 1–6.

[121] Christian Meurisch, The An Binh Nguyen, Julien Gedeon, Florian Konhauser,
Milan Schmittner, Stefan Niemczyk, Stefan Wullkotte, and Max Muhlhauser.
“Upgrading Wireless Home Routers as Emergency Cloudlet and Secure DTN
Communication Bridge.” In: International Conference on Computer Communica-
tion and Networks (ICCCN). July 2017, pp. 1–2.

[122] Christian Meurisch, Alexander Seeliger, Benedikt Schmidt, Immanuel Schweizer,
Fabian Kaup, and Max Mühlhäuser. “Upgrading wireless home routers for
enabling large-scale deployment of cloudlets.” In: International Conference on
Mobile Computing, Applications, and Services. 2015, pp. 12–29.



bibliography 129

[123] Christian Meurisch, Ashwinkumar Yakkundimath, Benedikt Schmidt, and
Max Mühlhäuser. “Upgrading Wireless Home Routers as Emergency Cloudlet:
A Runtime Measurement.” In: Mobile Computing, Applications, and Services
(2015), p. 338.

[124] Tobias Meuser, Patrick Lieser, The An Binh Nguyen, Doreen Böhnstedt, and
Ralf Steinmetz. “Adaptive Information Aggregation for Application-specific
Demands.” In: Proceedings of the 1st International Balkan Conference on Communi-
cations and Networking. May 2017.

[125] Tobias Meuser, Björn Richerzhagen, Ioannis Stavrakakis, The An Binh Nguyen,
and Ralf Steinmetz. “Relevance-Aware Information Dissemination in Vehicular
Networks.” In: Proceedings of IEEE WoWMoM. 2018.

[126] Tobias Meuser, Martin Wende, Patrick Lieser, Björn Richerzhagen, and Ralf
Steinmetz. “Adaptive Decision Making Based on Temporal Information Dy-
namics.” In: Vehicle Technology and Intelligent Transport Systems (VEHITS). 2018.

[127] Waldir Moreira and Paulo Mendes. “Pervasive data sharing as an enabler for
mobile citizen sensing systems.” In: IEEE Communications Magazine 53.10 (2015),
pp. 164–170.

[128] Abderrahmen Mtibaa, Afnan Fahim, Khaled A Harras, and Mostafa H Ammar.
“Towards resource sharing in mobile device clouds: Power balancing across
mobile devices.” In: ACM SIGCOMM Computer Communication Review. Vol. 43.
4. ACM. 2013, pp. 51–56.

[129] Min Mun, Sasank Reddy, Katie Shilton, Nathan Yau, Jeff Burke, Deborah Estrin,
Mark Hansen, Eric Howard, Ruth West, and Peter Boda. “PEIR, the personal
environmental impact report, as a platform for participatory sensing systems
research.” In: Proceedings of the 7th international conference on Mobile systems,
applications, and services. ACM. 2009, pp. 55–68.

[130] Mirco Musolesi and Cecilia Mascolo. “CAR: Context-aware adaptive routing
for delay-tolerant mobile networks.” In: IEEE Transactions on Mobile Computing
8.2 (2009), pp. 246–260.

[131] The An Binh Nguyen, Pratyush Agnihotri, Christian Meurisch, Manisha Luthra,
Rahul Dwarakanath, Jeremias Blendin, Doreen Böhnstedt, Michael Zink, and
Ralf Steinmetz. “Efficient Crowd Sensing Task Distribution Through Context-
aware NDN-based Geocast.” In: 42nd Conference on Local Computer Networks
(LCN). Oct. 2017, pp. 52–60.

[132] The An Binh Nguyen, Frank Englert, Simon Farr, Christian Gottron, Doreen
Böhnstedt, and Ralf Steinmetz. “Hybrid Communication Architecture for Emer-
gency Response - An Implementation in Firefighter’s Use Case.” In: Proceedings
of the fifth International Workshop on Pervasive Networks for Emergency Management
(PerNEM). Mar. 2015, pp. 528–533.



130 bibliography

[133] The An Binh Nguyen, Christian Klos, Christian Meurisch, Patrick Lampe, Björn
Richerzhagen, and Ralf Steinmetz. “Demo: Enabling In-Network Processing
utilizing Nearby Device-to-Device Communication.” In: IFIP Networking. May
2018, A7–A8.

[134] The An Binh Nguyen, Christian Meurisch, Stefan Niemczyk, Doreen Böhnstedt,
Kurt Geihs, Max Mühlhäuser, and Ralf Steinmetz. “Adaptive Task-Oriented
Message Template for In-Network Processing.” In: Proc. International Conference
on Networked Systems (NetSys). Mar. 2017, pp. 1–8.

[135] The An Binh Nguyen, Christian Meurisch, Stefan Niemczyk, Christian Klos,
Doreen Böhnstedt, and Ralf Steinmetz. “Demo: Facilitating Volunteer Com-
puting Resources for In-Network Processing through Message Template.” In:
International Conference on Networked Systems (NetSys). Mar. 2017, pp. 1–2.

[136] The An Binh Nguyen, Marius Rettberg-Päplow, Christian Meurisch, Tobias
Meuser, Björn Richerzhagen, and Ralf Steinmetz. “Complex Services Offload-
ing in Opportunistic Networks.” In: IFIP Networking. May 2018, pp. 532–540.

[137] The An Binh Nguyen, Melanie Siebenhaar, Ronny Hans, and Ralf Steinmetz.
“Role-based Templates for Cloud Monitoring.” In: IEEE/ACM 7th International
Conference on Utility and Cloud Computing (UCC). Dec. 2014, pp. 242–250.

[138] Ory Okolloh. “Ushahidi, or ‘testimony’: Web 2.0 tools for crowdsourcing crisis
information.” In: Participatory learning and action 59 (2009), pp. 65–70.

[139] Ott, Jörg and Hyytiä, Esa and Lassila, Pasi and Vaegs, Tobias and Kangasharju,
Jussi. “Floating content: Information sharing in urban areas.” In: Pervasive Com-
puting and Communications (PerCom). IEEE. 2011.

[140] Beate Ottenwälder, Boris Koldehofe, Kurt Rothermel, Kirak Hong, David Lil-
lethun, and Umakishore Ramachandran. “MCEP: a mobility-aware complex
event processing system.” In: ACM Transactions on Internet Technology (TOIT)
14.1 (2014), p. 6.

[141] Beate Ottenwälder, Boris Koldehofe, Kurt Rothermel, and Umakishore Ra-
machandran. “MigCEP: operator migration for mobility driven distributed
complex event processing.” In: Proceedings of the 7th ACM international confer-
ence on Distributed event-based systems. ACM. 2013, pp. 183–194.

[142] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. “Uncovering the
overlapping community structure of complex networks in nature and society.”
In: Nature 435.7043 (2005), p. 814.

[143] Bei Pan, Yu Zheng, David Wilkie, and Cyrus Shahabi. “Crowd sensing of traffic
anomalies based on human mobility and social media.” In: ACM International
Conference on Advances in Geographic Information Systems (SIGSPATIAL). 2013,
pp. 344–353.

[144] Xiaoshan Pan, Charles S Han, Ken Dauber, and Kincho H Law. “A multi-agent
based framework for the simulation of human and social behaviors during
emergency evacuations.” In: Ai & Society 22.2 (2007), pp. 113–132.



bibliography 131

[145] Sooksan Panichpapiboon and Wasan Pattara-Atikom. “A review of Information
Dissemination protocols for Vehicular Ad Hoc Networks.” In: IEEE Communi-
cations Surveys & Tutorials 14.3 (2012), pp. 784–798.

[146] Andrea Passarella, Mohan Kumar, Marco Conti, and Elenora Borgia. “Minimum-
delay service provisioning in opportunistic networks.” In: IEEE Transactions on
Parallel and Distributed Systems 22.8 (2011), pp. 1267–1275.

[147] Luciana Pelusi, Andrea Passarella, and Marco Conti. “Opportunistic Network-
ing: Data Forwarding in Disconnected Mobile Ad Hoc Networks.” In: IEEE
communications Magazine 44.11 (2006).

[148] Davide Pesavento, Giulio Grassi, Claudio E Palazzi, and Giovanni Pau. “A
naming scheme to represent geographic areas in NDN.” In: IFIP Wireless Days
(WD). 2013, pp. 1–3.

[149] Danilo Pianini, Mirko Viroli, Franco Zambonelli, and Alois Ferscha. “HPC from
a self-organisation perspective: the case of crowd steering at the urban scale.”
In: IEEE High Performance Computing & Simulation (HPCS). 2014, pp. 460–467.

[150] Mikko Pitkänen, Teemu Kärkkäinen, Jörg Ott, Marco Conti, Andrea Passarella,
Silvia Giordano, Daniele Puccinelli, Franck Legendre, Sacha Trifunovic, Karin
Hummel, et al. “SCAMPI: service platform for social aware mobile and perva-
sive computing.” In: Workshop on Mobile Cloud Computing (MCC). ACM. 2012,
pp. 7–12.

[151] Layla Pournajaf, Li Xiong, Vaidy Sunderam, and Slawomir Goryczka. “Spatial
task assignment for crowd sensing with cloaked locations.” In: IEEE Mobile
Data Management (MDM). Vol. 1. 2014, pp. 73–82.

[152] Rüdiger Pryss, Manfred Reichert, Jochen Herrmann, Berthold Langguth, and
Winfried Schlee. “Mobile Crowd Sensing in Clinical and Psychological Trials–A
Case Study.” In: IEEE Computer-Based Medical Systems (CBMS). 2015, pp. 23–24.

[153] Rüdiger Pryss, Manfred Reichert, Berthold Langguth, and Winfried Schlee.
“Mobile crowd sensing services for tinnitus assessment, therapy, and research.”
In: Mobile Services (MS). IEEE. 2015, pp. 352–359.

[154] Ioannis Psaras, Lorenzo Saino, Mayutan Arumaithurai, KK Ramakrishnan, and
George Pavlou. “Name-based replication priorities in disaster cases.” In: IEEE
Computer Communications Workshops (INFOCOM Workshop). IEEE. 2014, pp. 434–
439.

[155] Moo-Ryong Ra, Bin Liu, Tom F La Porta, and Ramesh Govindan. “Medusa: A
programming framework for crowd-sensing applications.” In: ACM Proceedings
of the 10th international conference on Mobile systems, applications, and services. 2012,
pp. 337–350.

[156] Aydin Rajaei, Dan Chalmers, Ian Wakeman, and George Parisis. “GSAF: Effi-
cient and Flexible Geocasting for Opportunistic Networks.” In: World of Wireless,
Mobile and Multimedia Networks (WoWMoM). IEEE. 2016, pp. 1–9.



132 bibliography

[157] Sasank Reddy, Deborah Estrin, and Mani Srivastava. “Recruitment framework
for participatory sensing data collections.” In: International Conference on Perva-
sive Computing. Springer. 2010, pp. 138–155.

[158] Rana Asif Rehman and KIM Byung-Seo. “Location-Aware Forwarding and
Caching in CCN-Based Mobile Ad Hoc Networks.” In: IEICE Transaction on
Information and Systems 99.5 (2016), pp. 1388–1391.

[159] Rana Asif Rehman, Tran Dinh Hieu, Hong-Min Bae, Sung-Hoon Mah, and
Byung-Seo Kim. “Robust and efficient multipath Interest forwarding for NDN-
based MANETs.” In: IEEE Wireless and Mobile Networking Conference (WMNC).
2016, pp. 187–192.

[160] Injong Rhee, Minsu Shin, Seongik Hong, Kyunghan Lee, Seong Joon Kim, and
Song Chong. “On the Levy-Walk Nature of Human Mobility.” In: IEEE/ACM
transactions on networking (TON) 19.3 (2011), pp. 630–643.

[161] Björn Richerzhagen, Nils Richerzhagen, Sophie Schonherr, Rhaban Hark, and
Ralf Steinmetz. “Stateless Gateways-Reducing Cellular Traffic for Event Distri-
bution in Mobile Social Applications.” In: IEEE Computer Communication and
Networks (ICCCN). 2016, pp. 1–9.

[162] Nils Richerzhagen, Roland Kluge, Björn Richerzhagen, Patrick Lieser, Boris
Koldehofe, Ioannis Stavrakakis, and Ralf Steinmetz. “Better Together: Collabo-
rative Monitoring for Location-based Services.” In: International Symposium on
a World of Wireless, Mobile and Multimedia Networks (WoWMoM). 2018, pp. 1–9.

[163] Nils Richerzhagen, Björn Richerzhagen, Boris Koldehofe, and Ralf Steinmetz.
“Towards Transitions Between Role Assignment Schemes: Enabling Adaptive
Offloading in Challenged Networks.” In: Proceedings of the 12th Workshop on
Challenged Networks. 2017, pp. 63–68.

[164] Nils Richerzhagen, Björn Richerzhagen, Michael Walter, Dominik Stingl, and
Ralf Steinmetz. “Buddies, not enemies: Fairness and performance in cellular
offloading.” In: World of Wireless, Mobile and Multimedia Networks (WoWMoM).
2016, pp. 1–9.

[165] D Robins. “Complex event processing.” In: Second International Workshop on
Education Technology and Computer Science. Wuhan. Citeseer. 2010, pp. 1–10.

[166] Umair Sadiq, Mohan Kumar, Andrea Passarella, and Marco Conti. “Modeling
and simulation of service composition in opportunistic networks.” In: ACM
international conference on Modeling, analysis and simulation of wireless and mobile
systems. 2011, pp. 159–168.

[167] Umair Sadiq, Mohan Kumar, Andrea Passarella, and Marco Conti. “Service
composition in opportunistic networks: A load and mobility aware solution.”
In: IEEE Transactions on Computers 64.8 (2015), pp. 2308–2322.

[168] Ozgur Sanli, Ibrahim Korpeoglu, and Adnan Yazici. “Rule-based Inference
and Decomposition for Distributed In-network Processing in Wireless Sensor
Networks.” In: Knowledge and Information Systems (2016), pp. 1–34.



bibliography 133

[169] Paolo Santi. “Topology control in wireless ad hoc and sensor networks.” In:
ACM computing surveys (CSUR) 37.2 (2005), pp. 164–194.

[170] Mahadev Satyanarayanan. “Mobile Computing: the next decade.” In: ACM
workshop on mobile cloud computing & services: social networks and beyond. 2010.

[171] Gregor Schiele, Christian Becker, and Kurt Rothermel. “Energy-efficient cluster-
based service discovery for ubiquitous computing.” In: ACM SIGOPS European
workshop. 2004, p. 14.

[172] Immanuel Schweizer, Roman Bärtl, Benedikt Schmidt, Fabian Kaup, and Max
Mühlhäuser. “Kraken.me mobile: the energy footprint of mobile tracking.” In:
IEEE Mobile Computing, Applications and Services (MobiCASE). 2014, pp. 82–89.

[173] Keith L Scott and Scott Burleigh. “Bundle protocol specification.” In: RFC. 2007.

[174] Samarth H Shah and Klara Nahrstedt. “Predictive location-based QoS routing
in mobile ad hoc networks.” In: IEEE International Conference on Communications
(ICC). Vol. 2. 2002, pp. 1022–1027.

[175] Jian Shen, Sangman Moh, and Ilyong Chung. “Routing protocols in delay tol-
erant networks: A comparative survey.” In: International Technical Conference on
Circuits/Systems, Computers and Communications (ITC-CSCC). 2008, pp. 6–9.

[176] Manolis Sifalakis, Basil Kohler, Christopher Scherb, and Christian Tschudin.
“An information centric network for computing the distribution of computa-
tions.” In: Conference on Information-Centric Networking. ACM. 2014, pp. 137–
146.

[177] Bernard Sklar. “Rayleigh fading channels in mobile digital communication
systems. I. Characterization.” In: IEEE Communications magazine 35.9 (1997),
pp. 136–146.

[178] Vasco NGJ Soares, Joel JPC Rodrigues, and Farid Farahmand. “GeoSpray: A
geographic Routing Protocol for Vehicular Delay-tolerant Networks.” In: Infor-
mation Fusion 15 (2014), pp. 102–113.

[179] John Soldatos, Nikos Kefalakis, Manfred Hauswirth, Martin Serrano, Jean-Paul
Calbimonte, Mehdi Riahi, Karl Aberer, Prem Prakash Jayaraman, Arkady Za-
slavsky, Ivana Podnar Žarko, et al. “Openiot: Open source internet-of-things in
the cloud.” In: Interoperability and open-source solutions for the internet of things.
Springer, 2015, pp. 13–25.

[180] Zheng Song, Chi Harold Liu, Jie Wu, Jian Ma, and Wendong Wang. “Qoi-aware
multitask-oriented dynamic participant selection with budget constraints.” In:
IEEE Transactions on Vehicular Technology 63.9 (2014), pp. 4618–4632.

[181] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S Raghavendra.
“Spray and wait: an efficient routing scheme for intermittently connected mo-
bile networks.” In: ACM SIGCOMM workshop on Delay-tolerant networking. 2005,
pp. 252–259.



134 bibliography

[182] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S Raghavendra.
“Spray and focus: Efficient mobility-assisted routing for heterogeneous and cor-
related mobility.” In: IEEE Pervasive Computing and Communications Workshops
(PerCom Workshops). 2007, pp. 79–85.

[183] Utkarsh Srivastava, Kamesh Munagala, and Jennifer Widom. “Operator place-
ment for in-network stream query processing.” In: ACM symposium on principles
of database systems. 2005, pp. 250–258.

[184] Fabrice Starks and Thomas Peter Plagemann. “Operator placement for efficient
distributed complex event processing in manets.” In: IEEE Wireless and Mobile
Computing, Networking and Communications (WiMob). 2015, pp. 83–90.

[185] Ralf Steinmetz and Lars Wolf. “Quality of Service: Where are We?” In: IFIP
Workshop on Quality of Service (IWQOS). 1997, pp. 210–221.

[186] Artur Sterz, Lars Baumgärtner, Ragnar Mogk, Mira Mezini, and Bernd Freisleben.
“DTN-RPC: Remote procedure calls for disruption-tolerant networking.” In:
IFIP Networking. 2017, pp. 1–9.

[187] Sagar A Tamhane, Mohan Kumar, Andrea Passarella, and Marco Conti. “Ser-
vice composition in opportunistic networks.” In: IEEE Green Computing and
Communications (GreenCom). 2012, pp. 285–292.

[188] Sunil Taneja and Ashwani Kush. “A survey of routing protocols in mobile ad
hoc networks.” In: International Journal of innovation, Management and technology
1.3 (2010), p. 279.

[189] Cristiano Tapparello, Colin Funai, Shurouq Hĳazi, Abner Aquino, Bora Karaoglu,
He Ba, Jiye Shi, and Wendi Heinzelman. “Volunteer Computing on Mobile De-
vices: State of the Art and Future Research Directions.” In: Mobile Computing and
Wireless Networks: Concepts, Methodologies, Tools, and Applications. 2016, pp. 2171–
2198.

[190] Thiago Teixeira and Michael Zink. “Evaluating Information-Centric Networks
in Disconnected, Intermittent, and Low-Bandwidth Environments.” In: ACM
Symposium on Architectures for Networking and Communications Systems. 2016,
pp. 135–136.

[191] Julian Timpner and Lars Wolf. “Query-response geocast for vehicular crowd
sensing.” In: Ad Hoc Networks 36 (2016), pp. 435–449.

[192] Julian Timpner, Mario Wozenilek, and Lars Wolf. “Breadcrumb routing: Query-
response geocast for mobile originators in vehicular networks.” In: IEEE Vehic-
ular Networking Conference (VNC). 2014, pp. 45–52.

[193] Christian Tschudin and Manolis Sifalakis. “Named functions and cached com-
putations.” In: IEEE Consumer Communications and Networking Conference (CCNC).
2014, pp. 851–857.

[194] Guliz S Tuncay, Giacomo Benincasa, and Ahmed Helmy. “Participant recruit-
ment and data collection framework for opportunistic sensing: a comparative
analysis.” In: ACM MobiCom workshop on challenged networks. 2013, pp. 25–30.



bibliography 135

[195] Güliz Seray Tuncay, Giacomo Benincasa, and Ahmed Helmy. “Autonomous
and distributed Recruitment and Data Collection Framework for Opportunistic
Sensing.” In: ACM SIGMOBILE Mobile Computing and Communications Review
16.4 (2013), pp. 50–53.

[196] Gareth Tyson, John Bigham, and Eliane Bodanese. “Towards an information-
centric delay-tolerant network.” In: IEEE Computer Communications Workshops
(INFOCOM workshops). 2013, pp. 387–392.

[197] Gareth Tyson, Nishanth Sastry, Ruben Cuevas, Ivica Rimac, and Andreas Mau-
the. “A survey of mobility in information-centric networks.” In: ACM Commu-
nications 56.12 (2013), pp. 90–98.

[198] Gareth Tyson, Nishanth Sastry, Ivica Rimac, Ruben Cuevas, and Andreas Mau-
the. “A survey of mobility in information-centric networks: challenges and
research directions.” In: ACM workshop on Emerging Name-Oriented Mobile Net-
working Design-Architecture, Algorithms, and Applications. 2012, pp. 1–6.

[199] Gabriel Urzaiz, David Villa, Felix Villanueva, and Juan Carlos Lopez. “Process-
in-Network: a comprehensive network processing approach.” In: Sensors 12.6
(2012), pp. 8112–8134.

[200] Amin Vahdat and David Becker. Epidemic Routing for partially connected Ad Hoc
Networks. Tech. rep. Duke University, 2000.

[201] Andras Varga and Rudolf Hornig. “An overview of the OMNeT++ simulation
environment.” In: International conference on Simulation tools and techniques for
communications, networks and systems & workshops. 2008, p. 60.

[202] Leye Wang, Daqing Zhang, Yasha Wang, Chao Chen, Xiao Han, and Abdallah
M’hamed. “Sparse mobile crowdsensing: challenges and opportunities.” In:
IEEE Communications Magazine 54.7 (2016), pp. 161–167.

[203] Lucas Wang, Alexander Afanasyev, Romain Kuntz, Rama Vuyyuru, Ryuji
Wakikawa, and Lixia Zhang. “Rapid traffic information dissemination using
named data.” In: ACM workshop on emerging name-oriented mobile networking
design-architecture, algorithms, and applications. 2012, pp. 7–12.

[204] Qi Wang and John E Taylor. “Quantifying human mobility perturbation and
resilience in Hurricane Sandy.” In: PLoS one 9.11 (2014).

[205] Thomas Watteyne, Antonella Molinaro, Maria Grazia Richichi, and Mischa
Dohler. “From manet to ietf roll standardization: A paradigm shift in wsn
routing protocols.” In: IEEE Communications Surveys & Tutorials 13.4 (2011),
pp. 688–707.

[206] Haoyi Xiong, Daqing Zhang, Guanling Chen, Leye Wang, and Vincent Gauthier.
“Crowdtasker: Maximizing coverage quality in piggyback crowdsensing under
budget constraint.” In: IEEE Pervasive Computing and Communications (PerCom).
2015, pp. 55–62.



136 bibliography

[207] Dianlei Xu, Yong Li, Xinlei Chen, Jianbo Li, Pan Hui, Sheng Chen, and Jon
Crowcroft. “A Survey of Opportunistic Offloading.” In: IEEE Communications
Surveys & Tutorials (2018).

[208] Yong Yao, Johannes Gehrke, et al. “Query Processing in Sensor Networks.” In:
Cidr. 2003, pp. 233–244.

[209] Eiko Yoneki, Pan Hui, ShuYan Chan, and Jon Crowcroft. “A socio-aware overlay
for publish/subscribe communication in delay tolerant networks.” In: ACM
symposium on modeling, analysis, and simulation of wireless and mobile systems.
2007, pp. 225–234.

[210] Yu-Ting Yu, Raheleh B Dilmaghani, Seraphin Calo, MY Sanadidi, and Mario
Gerla. “Interest propagation in named data manets.” In: IEEE Computing, Net-
working and Communications (ICNC). 2013, pp. 1118–1122.

[211] Xiangshen Yu, Rodolfo WL Coutinho, Azzedine Boukerche, and Antonio AF
Loureirol. “A distance-based interest forwarding protocol for vehicular information-
centric networks.” In: IEEE Personal, Indoor, and Mobile Radio Communications
(PIMRC). 2017, pp. 1–5.

[212] Weiwei Yuan, Donghai Guan, Eui-Nam Huh, and Sungyoung Lee. “Harness
human sensor networks for situational awareness in disaster reliefs: a survey.”
In: IETE Technical Review 30.3 (2013), pp. 240–247.

[213] Arkady Zaslavsky, Prem Prakash Jayaraman, and Shonali Krishnaswamy. “Share-
likescrowd: Mobile analytics for participatory sensing and crowd-sourcing ap-
plications.” In: IEEE Data Engineering Workshops (ICDEW). 2013, pp. 128–135.

[214] Deze Zeng, Song Guo, Ivan Stojmenovic, and Shui Yu. “Stochastic modeling
and analysis of opportunistic computing in intermittent mobile cloud.” In: IEEE
Industrial Electronics and Applications (ICIEA). 2013, pp. 1902–1907.

[215] Daqing Zhang, Leye Wang, Haoyi Xiong, and Bin Guo. “4W1H in Mobile
Crowd Sensing.” In: IEEE Communications Magazine 52.8 (2014), pp. 42–48.

[216] Ke Zhang, Yuming Mao, Supeng Leng, Quanxin Zhao, Longjiang Li, Xin Peng,
Li Pan, Sabita Maharjan, and Yan Zhang. “Energy-efficient offloading for mo-
bile edge computing in 5G heterogeneous networks.” In: IEEE Access 4 (2016),
pp. 5896–5907.

[217] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick Crow-
ley, Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al. “Named data
networking.” In: ACM SIGCOMM Computer Communication Review 44.3 (2014),
pp. 66–73.

[218] Xinglin Zhang, Zheng Yang, Wei Sun, Yunhao Liu, Shaohua Tang, Kai Xing,
and Xufei Mao. “Incentives for mobile crowd sensing: A survey.” In: IEEE
Communications Surveys & Tutorials 18.1 (2016), pp. 54–67.

[219] Yang Zhang, Dusit Niyato, and Ping Wang. “Offloading in mobile cloudlet sys-
tems with intermittent connectivity.” In: IEEE Transactions on Mobile Computing
14.12 (2015), pp. 2516–2529.



bibliography 137

[220] Yanru Zhang, Lingyang Song, Walid Saad, Zaher Dawy, and Zhu Han. “Contract-
based incentive mechanisms for device-to-device communications in cellu-
lar networks.” In: IEEE Journal on Selected Areas in Communications 33 (2015),
pp. 2144–2155.

[221] Dong Zhao, Huadong Ma, and Liang Liu. “Energy-efficient opportunistic cover-
age for people-centric urban sensing.” In: Wireless networks 20.6 (2014), pp. 1461–
1476.

[222] Dong Zhao, Huadong Ma, Shaojie Tang, and Xiang-Yang Li. “COUPON: A
cooperative framework for building sensing maps in mobile opportunistic
networks.” In: IEEE transactions on parallel and distributed systems 26.2 (2015),
pp. 392–402.

[223] Xuejun Zhuo, Wei Gao, Guohong Cao, and Yiqi Dai. “Win-Coupon: An incen-
tive framework for 3G traffic offloading.” In: IEEE International Conference on
Network Protocols (ICNP). 2011, pp. 206–215.

[224] Jakub Zkebala, Piotr Cikepka, and Adam RezA. “Pedestrian acceleration and
speeds.” In: Probl. Forensic Sci. 91 (2012), pp. 227–234.

All web pages cited in this work have been checked in July 2018. However, due to the dynamic
nature of the World Wide Web, their long-term availability cannot be guaranteed.





A
A P P E N D I X

a.1 testbed evaluation with adaptive task-oriented message template

We implemented the adaptive task-oriented message template—ATMT concept as
introduced in Chapter 4 using Java, to demonstrate that distributed processing concept
with ATMT can be utilized for generic applications [3–5]. Java is a cross-platform
programming language, allowing us to port the implementation to run on Raspberry
Pis and on Android-based smartphones, which are the intended devices for the testbed.
Overall, our developed testbed comprises a mix of hardware devices, and a testbed
controller. The testbed controller does not take part in the processing of ATMT; its only
purpose is to setup and manage the deployment of the devices. When a participating
device is started, it can choose a role, registers itself, and maintains a socket connection
with the testbed controller to wait for further commands. Four roles are implemented
in the testbed: sensor nodes, which provide sensing data, delegator nodes which
have the domain knowledge of how to process the sensing data and constructs the
complete ATMT message with operations graph, operator nodes with one or more
available services to take part in the processing, and end nodes that expect to receive
the end result of the task execution. Using the interface of the testbed controller, a
direct Transmission Control Protocol (TCP) connection can be set up among devices
by drawing a line between two nodes. Thereby, the testbed controller allows us to
flexibly set up arbitrary topologies for test-cases. Further features serving the purpose
of simplifying the deployment include, for example, saving a created topology as
preset for reuse or resetting links of all nodes. A test case for ATMT processing is
triggered as soon as the sensor node sends data to its neighbors; accordingly, the
ATMT will be further forwarded for the operator nodes to process, until it reaches the
end node. Each node logs for itself the statistics desired for evaluation, such as the
number of received ATMT packets and the number of sent/processed ATMT packets,
network traffic.

Forwarder rfSensor rs Operator ro Delegator rd

#1 #2 #3 #4 #5 #6 #7 #8

Figure 38: Raspberry Pis in the testbed are connected to form a daisy chain topology.

We used 8 Raspberry Pi devices for the testbed, which are connected in a daisy
chain topology as shown in Figure 38. Several ATMT messages are sent through this
topology. Each node uses the CPU load as an indicator for overload to handover
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Figure 39: Completion time of ATMT tasks measured with the testbed

upcoming ATMT messages. We compare the distributed processing approach with
varying thresholds for CPU (50%, 75%, 100%), against two baselines—(B1) processing
all data at the first node and forwarding the total results, and (B2) forwarding the whole
data and let the last node process all. The results shown in Figure 39 confirm that a
distributed processing using ATMT concept can reduce the completion time, with
the higher number of tasks, and that if devices are willing to share more computing
resource, the overall performance can be improved, since the processing tasks will be
distributed among devices.
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Figure 40: CPU measured of graph-based primitives with a Raspberry Pi during test

In Chapter 4, we have defined seven graph-based primitives, which enable the
modification of ATMT messages directly in the network. These are create, read, merge,
operate, delegate, split, and delete. In the evaluation with the testbed, we measured the
CPU load, caused by each graph-based primitive individually on a Raspberry Pi
device. The results are shown in Figure 40. We can observe, that the CPU load for
all operations on the device utilize less than 0.25%. Given that Raspberry Pi device
is considered as a low-power commodity hardware, the measured values are nearly
negligible in modern mobile devices, such as smart phones, tablets.
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Figure 41: Network traffic measurement when executing ATMT tasks

We also evaluated the network traffic flowing through the participating devices in
the testbed to assess study the effect of distributed in-network processing. We sent
20 ATMT messages in burst through the topology shown in Figure 38. Each message
contains a processing task, that required the devices to perform a clustering algorithm
on attached payload data. The network traffic is measured as outgoing traffic at each
participating device. The results are shown in Figure 41. Again, we used the two
baselines B1, B2, and the CPU utilization (50%, 75%, 100%) as metric for local strategies
to handover ATMT tasks. Baseline B1 generates very low network traffic since all tasks
are performed in the beginning and only the results will be forwarded, Thus B1 can
serve as the lower bound. Baseline B2 generates the highest network traffic, since the
whole unprocessed payload data will be forwarded through the network. Thus B2 can
serve as the upper bound. In contrast, our ATMT concept allows for self-organizing
distributed processing, in which, each device can perform part of the processing task
thus the processing is distributed among participating devices. If each device offers
up to 50% of its CPU utilization, the network traffic can be decreased at device #5
indicating that the first three operators execute most of the tasks. With 75%, and 100%,
the first device can take over most of the processing tasks, thus the network traffic
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can be decreased already starting at device #4. Overall, the evaluation results confirm
the need for designing local handover strategies to balance between computation and
network traffic among devices.
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a.2 list of acronyms

AoI Area Of Interest

API Application Programming Interface

CEP Complex Event Processing

CPU Central Processing Unit

CS Content Store

DAG Directed Acylic Graph

DIFS Distributed Inter-Frame Space

DTN Delay-tolerant Networking

FIB Forwarding Information Base

ICN Information-centric Networking

IoT Internet Of Things

IRI Internationalized Resource Identifiers

MAC Medium Access Control

MANET Mobile Ad Hoc Network

NDN Named Data Networking

NFN Named Function Networking

PIT Pending Interest Table

QoI Quality Of Information

QoS Quality Of Service

REST Representational State Transfer

RPC Remote Procedure Call

RSU Road Size Units

TCP Transmission Control Protocol

UAV Unmanned Aerial Vehicle

UUID Universally Unique Identifier

V2V Vehicle-to-vehicle

VANET Vehicular Ad Hoc Network

WSN Wireless Sensor Network
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