813 research outputs found

    Query-Constraint-Based Mining of Association Rules for Exploratory Analysis of Clinical Datasets in the National Sleep Research Resource

    Get PDF
    Background: Association Rule Mining (ARM) has been widely used by biomedical researchers to perform exploratory data analysis and uncover potential relationships among variables in biomedical datasets. However, when biomedical datasets are high-dimensional, performing ARM on such datasets will yield a large number of rules, many of which may be uninteresting. Especially for imbalanced datasets, performing ARM directly would result in uninteresting rules that are dominated by certain variables that capture general characteristics. Methods: We introduce a query-constraint-based ARM (QARM) approach for exploratory analysis of multiple, diverse clinical datasets in the National Sleep Research Resource (NSRR). QARM enables rule mining on a subset of data items satisfying a query constraint. We first perform a series of data-preprocessing steps including variable selection, merging semantically similar variables, combining multiple-visit data, and data transformation. We use Top-k Non-Redundant (TNR) ARM algorithm to generate association rules. Then we remove general and subsumed rules so that unique and non-redundant rules are resulted for a particular query constraint. Results: Applying QARM on five datasets from NSRR obtained a total of 2517 association rules with a minimum confidence of 60% (using top 100 rules for each query constraint). The results show that merging similar variables could avoid uninteresting rules. Also, removing general and subsumed rules resulted in a more concise and interesting set of rules. Conclusions: QARM shows the potential to support exploratory analysis of large biomedical datasets. It is also shown as a useful method to reduce the number of uninteresting association rules generated from imbalanced datasets. A preliminary literature-based analysis showed that some association rules have supporting evidence from biomedical literature, while others without literature-based evidence may serve as the candidates for new hypotheses to explore and investigate. Together with literature-based evidence, the association rules mined over the NSRR clinical datasets may be used to support clinical decisions for sleep-related problems

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Preface

    Get PDF

    Identifying risk patterns for suicide attempts in individuals with diabetes : a data-driven approach using LASSO regression

    Get PDF
    Diabetes is a major health concern in the United States, with 34.2 million Americans affected in 2020. Unfortunately, the risk of suicide is also elevated in individuals with diabetes, with around 90,000 people with diabetes committing suicide each year. People with type 1 diabetes are three to four times more likely to attempt suicide, and those with newly diagnosed type 2 diabetes are twice as likely to attempt suicide compared to the general population. However, poor mental health comorbidity is still neglected, and more recommendations are needed to support for people with diabetes. It is widely acknowledged that the comorbidity of depression with diabetes is considered a higher risk factor for suicide attempts Previous studies have used logistic regression to identify risk factors for suicide attempts in individuals with diabetes. However, this technique can be prone to overfitting when the number of variables is high. To address this issue, we used the LASSO (Least Absolute Shrinkage and Selection Operator), a regularization technique, to reduce overfitting in a logistic regression model. It works by adding a penalty term ([lambda]) to the log-likelihood function, which shrinks the estimates of the coefficients. This process allows LASSO to act as a feature selection method, effectively setting coefficients that contribute most to the error to zero. Because few studies have focused on un derstanding the relationship between suicide attempts and diabetes, we used association rule mining ARM an explainable rule based machine learning technique, for knowledge discovery to reveal previously unknown relationships between suicide attempts and diabetes. This approach has already proved useful in the medical field, where it has been applied to electronic health record (EHR) data to discover associations such as disease co-occurrences, drug-disease associations, and symptomatic patterns of disease. However, no previous studies have used ARM to determine risk factors and predict suicide attempts in people with diabetes. The aim of this dissertation is to identify patterns of risk factors for suicide attempts in individuals with diabetes, with the long term goal of developing a clinical decision support system that can be integrated into EHRs. This system would allow healthcare providers to identify patients with diabetes at high risk of suicide attempts and provide appropriate preventive measures during outpatient clinic visits. To achieve this goal, we have three specific aims: (1) to identify potential risk factors for suicide attempts in individuals with diabetes through a literature review; (2) to investigate risk factors for suicide attempts in individuals with diabetes using LASSO regression; (3) to identify risk patterns for suicide attempts in individuals with diabetes using association rule mining. In this dissertation, we have reviewed the literature and compiled a list of data elements for suicide attempts in people with diabetes. We then retrieved data on patients with diabetes from Cerner Real-World Data [trade mark]. LASSO regression was used for feature selection, and ARM was used for investigating the risk patterns. We discovered risk patterns that are understandable and practical for healthcare providers. The findings of this research can inform suicide prevention efforts for people with diabetes and contribute to improved mental health outcomes.Includes bibliographical references

    ARIANA: Adaptive Robust and Integrative Analysis for finding Novel Associations

    Get PDF
    The effective mining of biological literature can provide a range of services such as hypothesis-generation, semantic-sensitive information retrieval, and knowledge discovery, which can be important to understand the confluence of different diseases, genes, and risk factors. Furthermore, integration of different tools at specific levels could be valuable. The main focus of the dissertation is developing and integrating tools in finding network of semantically related entities. The key contribution is the design and implementation of an Adaptive Robust and Integrative Analysis for finding Novel Associations. ARIANA is a software architecture and a web-based system for efficient and scalable knowledge discovery. It integrates semantic-sensitive analysis of text-data through ontology-mapping with database search technology to ensure the required specificity. ARIANA was prototyped using the Medical Subject Headings ontology and PubMed database and has demonstrated great success as a dynamic-data-driven system. ARIANA has five main components: (i) Data Stratification, (ii) Ontology-Mapping, (iii) Parameter Optimized Latent Semantic Analysis, (iv) Relevance Model and (v) Interface and Visualization. The other contribution is integration of ARIANA with Online Mendelian Inheritance in Man database, and Medical Subject Headings ontology to provide gene-disease associations. Empirical studies produced some exciting knowledge discovery instances. Among them was the connection between the hexamethonium and pulmonary inflammation and fibrosis. In 2001, a research study at John Hopkins used the drug hexamethonium on a healthy volunteer that ended in a tragic death due to pulmonary inflammation and fibrosis. This accident might have been prevented if the researcher knew of published case report. Since the original case report in 1955, there has not been any publications regarding that association. ARIANA extracted this knowledge even though its database contains publications from 1960 to 2012. Out of 2,545 concepts, ARIANA ranked “Scleroderma, Systemic”, “Neoplasms, Fibrous Tissue”, “Pneumonia”, “Fibroma”, and “Pulmonary Fibrosis” as the 13th, 16th, 38th, 174th and 257th ranked concept respectively. The researcher had access to such knowledge this drug would likely not have been used on healthy subjects.In today\u27s world where data and knowledge are moving away from each other, semantic-sensitive tools such as ARIANA can bridge that gap and advance dissemination of knowledge

    Usability analysis of contending electronic health record systems

    Get PDF
    In this paper, we report measured usability of two leading EHR systems during procurement. A total of 18 users participated in paired-usability testing of three scenarios: ordering and managing medications by an outpatient physician, medicine administration by an inpatient nurse and scheduling of appointments by nursing staff. Data for audio, screen capture, satisfaction rating, task success and errors made was collected during testing. We found a clear difference between the systems for percentage of successfully completed tasks, two different satisfaction measures and perceived learnability when looking at the results over all scenarios. We conclude that usability should be evaluated during procurement and the difference in usability between systems could be revealed even with fewer measures than were used in our study. © 2019 American Psychological Association Inc. All rights reserved.Peer reviewe

    AVENTIS - An architecture for event data analysis

    Full text link
    Time-stamped event data is being generated at an exponential rate from various sources (sensor networks, e-markets etc.), which are stored in event logs and made available to researchers. Despite the data deluge and evolution of a plethora of tools and technologies, science behind exploratory analysis and knowledge discovery lags. There are several reasons behind this. In conducting event data analysis, researchers typically detect a pattern or trend in the data through computation of time-series measures and apply the computed measures to several mathematical models to glean information from data. This is a complex and time-consuming process covering a range of activities from data capture (from a broad array of data sources) to interpretation and dissemination of experimental results forming a pipeline of activities. Further, data-analysis is conducted by domain-users, who are typically non-IT experts but data processing tools and applications are largely developed by application developers. End-users not only lack the critical skills to build a structured analysis pipeline, but are also perplexed by the number of different ways available to derive the necessary information. Consequently, this thesis proposes AVENTIS (Architecture for eVENT Data analysIS), a novel framework to guide the design of analytic solutions to facilitate time-series analysis of event data and is tailored to the needs of domain users. The framework comprises three components; a knowledge base, a model-driven analytic methodology and an accompanying software architecture that provides the necessary technical and operational requirements. Specifically, the research contribution lies in the ability of the framework to enable expressing analysis requirements at a level of abstraction consistent with the domain users and readily make available the information sought without the users having to build the analysis process themselves. Secondly, the framework also facilitates an abstract design space for the domain experts to enable them to build conceptual models of their experiment as a sequence of structured tasks in a technology neutral manner and transparently translate these abstract process models to executable implementations. To evaluate the AVENTIS framework, a prototype based on AVENTIS is implemented and tested with case studies taken from the financial research domain
    • …
    corecore