

Proceedings of the Fourth International Workshop on

Knowledge Discovery from Sensor Data

(SensorKDD’10)

Held in conjunction with

July 25, 2010

Washington, DC

Workshop Chairs
Dr. Olufemi A. Omitaomu, Oak Ridge National Laboratory, TN, USA

Dr. Varun Chandola, Oak Ridge National Laboratory, TN, USA

Dr. Auroop R. Ganguly, Oak Ridge National Laboratory, TN, USA

Prof. Joao Gama, University of Porto, Portugal

Dr. Ranga Raju Vatsavai, Oak Ridge National Laboratory, TN, USA

Prof. Mohamed Medhat Gaber, University of Portsmouth, UK

Prof. Nitesh V. Chawla, University of Notre Dame, IN, USA

1

Fourth International Workshop on
Knowledge Discovery from Sensor Data

(SensorKDD’10)

Description
Wide-area sensor infrastructures, remote sensors, RFIDs, phasor measurements, and wireless sensor
networks yield massive volumes of disparate, dynamic, and geographically distributed data. As such
sensors are becoming ubiquitous, a set of broad requirements is beginning to emerge across high-priority
applications including adaptability to national or homeland security, critical infrastructures monitoring,
disaster preparedness and management, greenhouse emissions and climate change, and transportation.
The raw data from sensors need to be efficiently managed and transformed to usable information through
data fusion, which in turn must be converted to predictive insights via knowledge discovery, ultimately
facilitating automated or human-induced tactical decisions or strategic policy based on decision sciences
and decision support systems.

The challenges for the knowledge discovery community are expected to be immense. On the one hand are
dynamic data streams or events that require real-time analysis methodologies and systems, while on the
other hand are static data that require high end computing for generating offline predictive insights, which
in turn can facilitate real-time analysis. The online and real-time knowledge discovery imply immediate
opportunities as well as intriguing short- and long-term challenges for practitioners and researchers in
knowledge discovery. The opportunities would be to develop new data mining approaches and adapt
traditional and emerging knowledge discovery methodologies to the requirements of the emerging
problems. In addition, emerging societal problems require knowledge discovery solutions that are
designed to investigate anomalies, rare events, hotspots, changes, extremes and nonlinear processes, and
departures from the normal.

According to the data mining and domain experts present at the NSF-sponsored Next Generation Data
Mining Summit (NGDM ’09) held in October 2009, “finding the next generation of solutions to these
challenges is critical to sustain our world and civilization” [1]. Some of the organizers of the SensorKDD
workshop are part of the summit. The 4th International Workshop on Knowledge Discovery from Sensor
Data (SensorKDD-2010) is the first step in bringing researchers together to address these challenges and
moving toward the development of the next generation data mining solutions require to address these
challenges.

Therefore, the SensorKDD-2010 seeks to bring together researchers from academia, government, and the
industry working in the following areas and applications:

1. Offline Knowledge Discovery
a. Predictive analysis from geographically distributed and heterogeneous data
b. Computationally efficient approaches for mining unusual patterns, specifically,

anomalies, extremes, nonlinear processes and change, from massive and disparate space-
time data

2. Online Knowledge Discovery
a. Real-time analysis of dynamic and distributed data, including streaming and event-based

data
b. Mining from continuous streams of time-changing data and mining from ubiquitous data
c. Efficient algorithms to detect deviations from the normal in real-time
d. Resource-aware algorithms for distributed mining

3. Decision and Policy Aids

2

a. Coordinated offline discovery and online analysis with feedback loops
b. Combination of knowledge discovery and decision scientific processes
c. Facilitation of faster and reliable tactical decisions as well as prudent and insightful

longer term policies
4. Theory

a. Distributed data stream models
b. Theoretical frameworks for distributed stream mining

5. Case Studies
a. Success stories in national or global priority applications
b. Real-world problem design and knowledge discovery requirements

Motivation
The motivation for SensorKDD (http://www.ornl.gov/sci/knowledgediscovery/SensorKDD-Workshop/)
in conjunction with the ACM SIGKDD Conference on Knowledge Discovery and Data Mining stems
from the increasing need for a forum to exchange ideas and recent research results, and to facilitate
collaboration and dialog between academia, government, and industrial stakeholders. The expected
ubiquity of sensors in the future, combined with the critical roles they are expected to play in high priority
application solutions, point to an era of unprecedented growth and opportunities. The requirements
described earlier imply immediate opportunities as well as intriguing short- and long-term challenges for
practitioners and researchers in knowledge discovery. In addition, the knowledge discovery and data
mining (KDD) community would be called upon, again and again, as partners with domain experts to
solve critical application solutions in business and government, as well as in the domain sciences and
engineering.

The first workshop was organized in 2007. Based on the positive feedback from the previous workshop
attendees and our own experiences and interactions with the government agencies such as the United
States Department of Homeland Security, United States Department of Defense, and involvement with
numerous projects on knowledge discovery from sensor data, we strongly believe in the continuation of
this workshop. We believe that the ACM SIGKDD conference is the right forum to organize this
workshop as it brings the KDD community together in this important area to establish a much needed
leadership position in research and practice in the near term, as well as in the long term.

Success of Previous SensorKDD Workshops
The previous three workshops – SensorKDD-2007 [2], SensorKDD-2008 [3], and SensorKDD-2009 [4] –
held in conjunction with the 13th, 14th, and 15th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining respectively attracted several participants as well as many high quality papers and
presentations. The 2007 workshop was attended by more than seventy registered participants. The
workshop program included presentations by authors of six accepted full papers and four invited speakers.
The invited speakers were Prof. Pedro Domingos of the University of Washington, Prof. Joydeep Ghosh
of the University of Texas, Austin, Prof. Hillol Kargupta of the University of Maryland, Baltimore
County, and Dr. Brian Worley of the Oak Ridge National Laboratory (ORNL). There were also poster
presentations by authors of six accepted short papers. The extended versions of papers presented at the
workshop were developed into a book [5], the first book published in this specific discipline. The four top
accepted papers were awarded certificates and cash prize of $500 each. The prize money was donated by
the Computational Sciences and Engineering Division (CSED) of the Oak Ridge National Laboratory and
Information Society Technology Project KDUbiq-WG3 of the European Union. The top papers were also
published in a special issue of the Journal of Intelligent Data Analysis. This workshop was partially
sponsored by the Geographic Information Science and Technology Group of CSED at ORNL.

The SensorKDD-2008 workshop was attended by more than 60 registered participants. There were
presentations by authors of seven accepted full papers and six accepted short papers; the workshop

3

program also included presentations by two invited speakers – Prof. Jiawei Han of the University of
Illinois at Urbana-Champaign and Dr. Kendra Moore of the Defense Advanced Research Projects Agency.
The extended versions of papers presented at the 2008 workshop were recently published as Springer's
LNCS post-proceedings in 2009 [6]. The two top accepted papers were awarded certificates and cash
prize of $500 each; the prizes were donated by the Computational Sciences and Engineering Division of
the Oak Ridge National Laboratory. This workshop was partially sponsored by the Geographic
Information Science and Technology Group of CSED at ORNL.

The 2009 workshop was attended by several registered participants. There were presentations by authors
of eight accepted full papers, eight accepted short papers, two entries for the SensorKDD-2009 cup, and
three invited speakers. The invited speakers were Prof. Carlos Guestrin of Carnegie Mellon University,
Dr. Aurelie Lozano of IBM T.J. Watson Research Center, and Mr. Alessandro Donati of the European
Space Agency. The extended versions of papers presented at the 2009 workshop are scheduled for
publication as Springer's LNCS post-proceedings in 2010. The best paper, two best student papers, and
two SensorKDD-2009 cup entries were awarded certificates and cash prizes. The prizes were donated by
the Computational Sciences and Engineering Division of the Oak Ridge National Laboratory and
Cooperating Objects Network of Excellence of the European Union. The workshop was partially
sponsored by the Geographic Information Science and Technology Group of CSED at ORNL.

Workshop Sponsors
The SensorKDD-2010 workshop is sponsored by the Geographic Information Science and Technology
(GIST) Group at Oak Ridge National Laboratory and the Computational Sciences and Engineering (CSE)
Division at the Oak Ridge National Laboratory.

Appreciation
We would like to thank our sponsors for their kind donations. In addition, we thank the SIGKDD’10
organizers, the authors of the submitted papers, the invited speakers, and the members of the Program
Committee for their respective and collective efforts to make this workshop possible.

The workshop proceedings were compiled by Dr. Olufemi A. Omitaomu of the Computational Sciences
and Engineering Division at Oak Ridge National Laboratory. The workshop proceedings have been co-
authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of
Energy. The United States Government retains, and the publisher by accepting the article for publication,
acknowledges that the United States Government retains, a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes.

References
[1] Bhat, C., Ganguly A.R., Gehrke, J., Giannella, C., McGranaghan, M., and Melby, P. (2009).

National Science Foundation Summit on the Next Generation of Data Mining for Dealing with
Energy, Greenhouse Emissions, and Transportation Challenges (NGDM ’09), Committee Report,
November 2009 – With contributions from Olufemi A. Omitaomu (Unpublished).

[2] Ganguly, A., J. Gama, O. Omitaomu, M. Gaber, R. Vatsavai. Proceedings of the First
International Workshop on Knowledge Discovery from Sensor Data, 13th ACM SIGKDD
Conference, 2007, (Available at http://www.ornl.gov/sci/knowledgediscovery/SensorKDD-2007).

[3] Vatsavai, R. O. Omitaomu, J. Gama, M. Gaber, N. Chawla, A. Ganguly. Proceedings of the
Second International Workshop on Knowledge Discovery from Sensor Data, 14th ACM SIGKDD
Conference, 2008, (Available at http://www.ornl.gov/sci/knowledgediscovery/SensorKDD-2008).

4

[4] Omitaomu, O., A. Ganguly, J. Gama, R. Vatsavai, N. Chawla, M. Gaber. Proceedings of the
Third International Workshop on Knowledge Discovery from Sensor Data, 14th ACM SIGKDD
Conference, 2009, (Available at http://www.ornl.gov/sci/knowledgediscovery/SensorKDD-2009).

[5] Ganguly, Auroop R., Joao Gama, Olufemi A. Omitaomu, Mohamed M. Gaber, and Ranga Raju
Vatsavai (2009). Knowledge Discovery from Sensor Data. New York, NY: CRC Press, January.

[6] Mohamed Medhat Gaber, Ranga raju Vatsavai, Olufemi A. Omitaomu, Joao Gama, Nitesh V.
Chawla, and Auroop R. Ganguly (Editors) (2010). Knowledge Discovery from Sensor Data.
Lecture Notes in Computer Science. Springer.

[7] SensorNet® Program (Program website: http://www.sensornet.gov/).
[8] U.S. Department of Energy - Smart Grid Program (Website:

http://www.oe.energy.gov/smartgrid.htm).
[9] Oak Ridge Climate Change Science Institute (Website: http://climatechangescience.ornl.gov/).

Dr. Olufemi A. Omitaomu (omitaomuoa@ornl.gov; +1-865-241-4310)
Dr. Varun Chandola (chandolav@ornl.gov); +1-865-576-6192)
Dr. Auroop R. Ganguly (gangulyar@ornl.gov; +1-865-241-1305)
Dr. Ranga Raju Vatsavai (vatsavairr@ornl.gov; +1-865-576-3569)
Oak Ridge National Laboratory, 1 Bethel Valley Rd, MS-6017, Oak Ridge, TN, USA.

Prof. Joao Gama (jgama@fep.up.pt; +351-22-339-2094)
LIAAD-INESC Porto LA, University of Porto, Rua de Ceuta, Porto, Portugal.

Prof. Mohamed Medhat Gaber (mohamed.m.gaber@gmail.com; +44 23 92 84 6416)
University of Portsmouth, School of Computing, Hampshire, UK

Prof. Nitesh V. Chawla (nchawla@cse.nd.edu; +1-574-631-8716)
University of Notre Dame, Dept. of Computer Science & Engineering, IN, USA.

5

Organizers

Workshop Chairs:

1. Olufemi A. Omitaomu, Oak Ridge National Laboratory, TN, USA.
2. Varun Chandola, Oak Ridge National Laboratory, TN, USA.
3. Auroop R. Ganguly, Oak Ridge National Laboratory, TN, USA.
4. Joao Gama, University of Porto, Portugal.
5. Ranga Raju Vatsavai, Oak Ridge National Laboratory, TN, USA.
6. Nitesh V. Chawla, University of Notre Dame, IN, USA.
7. Mohamed Medhat Gaber, Monash University, Australia.

Program Committee (In alphabetical order of last name):

1. Adedeji B. Badiru, Air Force Institute of Technology, Dayton, OH, USA.
2. Budhendra L. Bhaduri, Oak Ridge National Laboratory, TN, USA.
3. Eric Auriol, CLIMPACT, Paris, France.
4. Albert Bifet, University Polytechnica, Catalunya, Spain.
5. Michaela Black, University of Ulster, Coleraine, Northern Ireland, UK.
6. Jose del Campo-Avila, Universidad de Malaga, Spain.
7. Andre Carvalho, University of Sao Paulo, Brazil.
8. Sanjay Chawla, University of Sydney, Australia.
9. Diane Cook, Washington State University, Pullman, WA, USA.
10. Alfredo Cuzzocrea, University of Calabria, Italy.
11. Jing (David) Dai, IBM Watson Research Center, USA.
12. Christie Ezeife, University of Windsor, Canada.
13. David J. Erickson III, Oak Ridge National Laboratory, TN, USA.
14. Yi Fang, Purdue University, West Lafayette, IN, USA.
15. Francisco Ferrer, University of Seville, Spain.
16. James H. Garrett, Carnegie Mellon University, Pittsburgh, PA, USA.
17. Joydeep Ghosh, University of Texas, Austin, TX, USA.
18. Bryan L. Gorman, Oak Ridge National Laboratory, TN, USA.
19. Sara Graves, University of Alabama, Huntsville, AL, USA.
20. Ray Hickey, University of Ulster, Coleraine, Northern Ireland, UK.
21. Forrest Hoffman, Oak Ridge National Laboratory, TN, USA.
22. Luke (Jun) Huan, University of Kansas, Lawrence, KS, USA.
23. Volkan Isler, University of Minnesota, Minneapolis, MN, USA.
24. Vandana Janeja, University of Maryland, Baltimore County, MD, USA.
25. Yu (Cathy) Jiao, Oak Ridge National Laboratory, TN, USA.
26. Ralf Klinkenberg, University of Dortmund, Germany.
27. Miroslav Kubat, University Miami, FL, USA.
28. Vipin Kumar, University of Minnesota, Minneapolis, MN, USA.
29. Mark Last, Ben-Gurion University, Israel.
30. Chang-Tien Lu, Virginia Tech., VA, USA.
31. Elaine Parros Machado de Sousa, University of Sao Paulo, Brazil.
32. Sameep Mehta, IBM Research, India.
33. Laurent Mignet, IBM Research, India.

6

34. S. Muthu Muthukrishnan, Rutgers University and AT&T Research, NJ, USA.
35. George Ostrouchov, Oak Ridge National Laboratory, TN, USA.
36. Guangzhi Qu, Oakland University, Rochester, MI, USA.
37. Rahul Ramachandran, University of Alabama, Huntsville, AL, USA.
38. Pedro Rodrigues, University of Porto, Portugal.
39. Josep Roure, Carnegie Mellon University, Pittsburgh, PA, USA.
40. Bernhard Seeger, University Marburg, Germany.
41. Cyrus Shahabi, University of Southern California, USA.
42. Shashi Shekhar, University of Minnesota, Minneapolis, MN, USA.
43. Mallikarjun Shankar, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
44. Lucio Soibelman, Carnegie Mellon University, Pittsburgh, PA, USA.
45. Alexandre Sorokine, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
46. Eduardo J. Spinosa, University of Sao Paulo, Brazil.
47. Karsten Steinhaeuser, University of Notre Dame, IN and Oak Ridge National

Laboratory, TN, USA.
48. Nithya Vijayakumar, Cisco Systems, Inc., USA.
49. Gary Weiss, Fordham University, NY, USA.
50. Peng Xu, ExxonMobil Corporate Strategic Research, NJ, USA.
51. Eiko Yoneki, University of Cambridge, UK.
52. Philip S. Yu, IBM Watson Research Center, Yorktown Heights, NY, USA.

Workshop website: http://www.ornl.gov/sci/knowledgediscovery/SensorKDD-2010

7

Table of Contents

Full Research Papers …….…………..……………………… 9

Activity Recognition using Cell Phone Accelerometers
Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore …………..…..……… 10

A New Algorithm Based on Sequential Pattern Mining for Person Identification in Ubiquitous
Environments
Belkacem Chikhaoui, Shengrui Wang, and Helene Pigot ………………………………... 19

Activity Recognition Using Actigraph Sensor
Raghavendiran Srinivasan, Chao Chen, and Diane Cook ……………………………….. 29

Network Comprehension by Clustering Streaming Sensors
Pedro Pereira Rodrigues, Joao Gama, Joao Araujo, and Luis Lopes ………….…… 35

Energy Prediction Based on Resident’s Activity
Chao Chen, Barnan Das, and Diane Cook ………………………………………….. 45

Short Research Papers …….………………………………………… 52

Multi Home Transfer Learning for Resident Activity Discovery and Recognition
Parisa Rashidi and Diane Cook ……………………………..……………………. 53

Using Semantic Annotation for Knowledge Extraction from Geographically Distributed and
Heterogeneous Sensor Data
Alexandra Moraru, Carolina Fortuna, and Dunja Mladenic …………………………. 63

Random Kernel Perceptron on ATTiny2313 Microcontroller
Nemanja Djuric and Slobodan Vucetic …………………………………………………… 70

Anomalous Thermal Behavior Detection in Data Centers using Hierarchical PCA
Manish Marwah, Ratnesh Sharma, Wilfredo Lugo, and Lola Bautista ………………… 78

Self-Organizing Energy Aware Clustering of Nodes in Sensor Networks using
Relevant Attributes
Marwan Hassani, Emmanuel Muller, Pascal Spaus, Adriola Faqolli,

Themis Palpanas, and Thomas Seidl ……………………………………………………. 87

Anomaly Localization by Joint Sparse PCA in Wireless Sensor Networks
Ruoyi Jiang, Hongliang Fei, and Jun Huan …………………………………………… 97

8

FULL RESEARCH PAPERS

9

Activity Recognition using Cell Phone Accelerometers

Jennifer R. Kwapisz, Gary M. Weiss, Samuel A. Moore

 Department of Computer and Information Science
Fordham University

441 East Fordham Road
Bronx, NY 10458

{kwapisz, gweiss, asammoore}@cis.fordham.edu

ABSTRACT
Mobile devices are becoming increasingly sophisticated and the
latest generation of smart cell phones now incorporates many
diverse and powerful sensors. These sensors include GPS sensors,
vision sensors (i.e., cameras), audio sensors (i.e., microphones),
light sensors, temperature sensors, direction sensors (i.e., mag-
netic compasses), and acceleration sensors (i.e., accelerometers).
The availability of these sensors in mass-marketed communica-
tion devices creates exciting new opportunities for data mining
and data mining applications. In this paper we describe and evalu-
ate a system that uses phone-based accelerometers to perform
activity recognition, a task which involves identifying the physi-
cal activity a user is performing. To implement our system we
collected labeled accelerometer data from twenty-nine users as
they performed daily activities such as walking, jogging, climbing
stairs, sitting, and standing, and then aggregated this time series
data into examples that summarize the user activity over 10-
second intervals. We then used the resulting training data to in-
duce a predictive model for activity recognition. This work is
significant because the activity recognition model permits us to
gain useful knowledge about the habits of millions of users pas-
sively—just by having them carry cell phones in their pockets.
Our work has a wide range of applications, including automatic
customization of the mobile device’s behavior based upon a
user’s activity (e.g., sending calls directly to voicemail if a user is
jogging) and generating a daily/weekly activity profile to deter-
mine if a user (perhaps an obese child) is performing a healthy
amount of exercise.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning-induction

General Terms
Algorithms, Design, Experimentation, Human Factors

Keywords
Sensor mining, activity recognition, induction, cell phone, accel-
erometer, sensors

1. INTRODUCTION
Mobile devices, such as cellular phones and music players, have
recently begun to incorporate diverse and powerful sensors. These
sensors include GPS sensors, audio sensors (i.e., microphones),
image sensors (i.e., cameras), light sensors, temperature sensors,
direction sensors (i.e., compasses) and acceleration sensors (i.e.,
accelerometers). Because of the small size of these “smart” mo-
bile devices, their substantial computing power, their ability to
send and receive data, and their nearly ubiquitous use in our soci-
ety, these devices open up exciting new areas for data mining
research and data mining applications. The goal of our WISDM
(Wireless Sensor Data Mining) project [19] is to explore the re-
search issues related to mining sensor data from these powerful
mobile devices and to build useful applications. In this paper we
explore the use of one of these sensors, the accelerometer, in or-
der to identify the activity that a user is performing—a task we
refer to as activity recognition.

We have chosen Android-based cell phones as the platform for
our WISDM project because the Android operating system is free,
open-source, easy to program, and expected to become a domi-
nant entry in the cell phone marketplace (this is clearly happen-
ing). Our project currently employs several types of Android
phones, including the Nexus One, HTC Hero, and Motorola Back-
flip. These phones utilize different cellular carriers, although this
is irrelevant for our purposes since all of the phones can send data
over the Internet to our server using a standard interface. How-
ever, much of the data in this work was collected directly from
files stored on the phones via a USB connection, but we expect
this mode of data collection to become much less common in
future work.

All of these Android phones, as well as virtually all new smart
phones and smart music players, including the iPhone and iPod
Touch [2], contain tri-axial accelerometers that measure accelera-
tion in all three spatial dimensions. These accelerometers are also
capable of detecting the orientation of the device (helped by the
fact that they can detect the direction of Earth’s gravity), which
can provide useful information for activity recognition. Acceler-
ometers were initially included in these devices to support ad-
vanced game play and to enable automatic screen rotation but
they clearly have many other applications. In fact, there are many
useful applications that can be built if accelerometers can be used
to recognize a user’s activity. For example, we can automatically
monitor a user’s activity level and generate daily, weekly, and
monthly activity reports, which could be automatically emailed to
the user. These reports would indicate an overall activity level,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
SensorKDD ’10, July 25, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0224-1…$10.00.

10

which could be used to gauge if the user is getting an adequate
amount of exercise and estimate the number of daily calories
expended. These reports could be used to encourage healthy prac-
tices and might alert some users to how sedentary they or their
children actually are. The activity information can also be used to
automatically customize the behavior of the mobile phone. For
example, music could automatically be selected to match the ac-
tivity (e.g., “upbeat” music when the user is running) or send calls
directly to voicemail when the user is exercising. There are un-
doubtedly numerous other instances where it would be helpful to
modify the behavior of the phone based on the user activity and
we expect that many such applications will become available over
the next decade.

In order to address the activity recognition task using supervised
learning, we first collected accelerometer data from twenty-nine
users as they performed activities such as walking, jogging, as-
cending stairs, descending stairs, sitting, and standing. We then
aggregated this raw time series accelerometer data into examples,
as described in Section 2.2, where each example is labeled with
the activity that occurred while that data was being collected. We
then built predictive models for activity recognition using three
classification algorithms.

The topic of accelerometer-based activity recognition is not new.
Bao & Intille [3] developed an activity recognition system to
identify twenty activities using bi-axial accelerometers placed in
five locations on the user’s body. Additional studies have simi-
larly focused on how one can use a variety of accelerometer-
based devices to identify a range of user activities [4-7, 9-16, 21].
Other work has focused on the applications that can be built based
on accelerometer-based activity recognition. This work includes
identifying a user’s activity level and predicting their energy con-
sumption [8], detecting a fall and the movements of user after the
fall [12], and monitoring user activity levels in order to promote
health and fitness [1]. Our work differs from most prior work in
that we use a commercial mass-marketed device rather than a
research-only device, we use a single device conveniently kept in
the user’s pocket rather than multiple devices distributed across
the body, and we require no additional actions by the user. Also,
we have generated and tested our models using more users
(twenty-nine) than most previous studies and expect this number
to grow substantially since we are continuing to collect data. The
few studies that have involved commercial devices such as smart
phones have focused either on a very small set of users [21] or
have trained models for particular users [4] rather than creating a
universal model that can be applied to any user.

Our work makes several contributions. One contribution is the
data that we have collected and continue to collect, which we plan
to make public in the future. This data can serve as a resource to
other researchers, since we were unable to find such publically
available data ourselves. We also demonstrate how raw time se-
ries accelerometer data can be transformed into examples that can
be used by conventional classification algorithms. We demon-
strate that it is possible to perform activity recognition with com-
monly available (nearly ubiquitous) equipment and yet achieve
highly accurate results. Finally, we believe that our work will help
bring attention to the opportunities available for mining wireless
sensor data and will stimulate additional work in this area.

The remainder of this paper is structured as follows. Section 2
describes the process for addressing the activity recognition task,

including data collection, data preprocessing, and data transfor-
mation. Section 3 describes our experiments and results. Related
work is described in Section 4 and Section 5 summarizes our
conclusions and discusses areas for future research.

2. THE ACTIVITY RECOGNITION TASK
In this section we describe the activity recognition task and the
process for performing this task. In Section 2.1 we describe our
protocol for collecting the raw accelerometer data, in Section 2.2
we describe how we preprocess and transform the raw data into
examples, and in Section 2.3 we describe the activities that will be
predicted/identified.

2.1 Data Collection
In order to collect data for our supervised learning task, it was
necessary to have a large number of users carry an Android-based
smart phone while performing certain everyday activities. Before
collecting this data, we obtained approval from the Fordham Uni-
versity IRB (Institutional Review Board) since the study involved
“experimenting” on human subjects and there was some risk of
harm (e.g., the subject could trip while jogging or climbing
stairs). We then enlisted the help of twenty-nine volunteer sub-
jects to carry a smart phone while performing a specific set of
activities. These subjects carried the Android phone in their front
pants leg pocket and were asked to walk, jog, ascend stairs, de-
scend stairs, sit, and stand for specific periods of time.

The data collection was controlled by an application we created
that executed on the phone. This application, through a simple
graphical user interface, permitted us to record the user’s name,
start and stop the data collection, and label the activity being per-
formed. The application permitted us to control what sensor data
(e.g., GPS, accelerometer) was collected and how frequently it
was collected. In all cases we collected the accelerometer data
every 50ms, so we had 20 samples per second. The data collection
was supervised by one of the WISDM team members to ensure
the quality of the data.

2.2 Feature Generation & Data Transformation
Standard classification algorithms cannot be directly applied to
raw time-series accelerometer data. Instead, we first must trans-
form the raw time series data into examples [18]. To accomplish
this we divided the data into 10-second segments and then gener-
ated features that were based on the 200 readings contained
within each 10-second segment. We refer to the duration of each
segment as the example duration (ED). We chose a 10-second ED
because we felt that it provided sufficient time to capture several
repetitions of the (repetitive) motions involved in some of the six
activities. Although we have not performed experiments to deter-
mine the optimal example duration value, we did compare the
results for a 10-second and 20-second ED and the 10-second ED
yielded slightly better results (as well as twice as many training
examples).

Next we generated informative features based on the 200 raw
accelerometer readings, where each reading contained an x, y, and
z value corresponding to the three axes/dimensions (see Figure 1).
We generated a total of forty-three summary features, although
these are all variants of just six basic features. The features are

11

described below, with the number of features generated for each
feature-type noted in brackets:

• Average[3]: Average acceleration (for each axis)

• Standard Deviation[3]: Standard deviation (for each axis)

• Average Absolute Difference[3]: Average absolute
difference between the value of each of the 200 readings
within the ED and the mean value over those 200 values
(for each axis)

• Average Resultant Acceleration[1]: Average of the square
roots of the sum of the values of each axis squared
√(xi

2 + yi
2 + zi

2) over the ED

• Time Between Peaks[3]: Time in milliseconds between
peaks in the sinusoidal waves associated with most
activities (for each axis)

• Binned Distribution[30]: We determine the range of values
for each axis (maximum – minimum), divide this range into
10 equal sized bins, and then record what fraction of the
200 values fell within each of the bins.

The “time between peaks” feature requires further explanation.
The repetitive activities, like walking, tend to generate repeating
waves for each axis and this feature tries to measure the time
between successive peaks. To estimate this value, for each
example we first identify all of the peaks in the wave using a
heuristic method and then identify the highest peak for each axis.
We then set a threshold based on a percentage of this value and
find the other peaks that met or exceed this threshold; if no peaks
meet this criterion then the threshold is lowered until we find at
least three peaks. We then measure the time between successive
peaks and calculate the average. For samples where at least three
peaks could not be found, the time between peaks is marked as
unknown. This method was able to accurately find the time
between peaks for the activities that had a clear repetitive pattern,
like walking and jogging. Certainly more sophisticated schemes
will be tried in the future.

The number of examples generated per user for each activity var-
ies. These differences are due to the time limitations that some
users may have or physical limitations that impact the time they
spend on each activity. Our data set is summarized in Section 3.1.

2.3 The Activities
In this study we consider six activities: walking, jogging, ascend-
ing stairs, descending stairs, sitting, and standing. We selected
these activities because they are performed regularly by many
people in their daily routines. The activities also involve motions
that often occur for substantial time periods, thus making them
easier to recognize. Furthermore, most of these activities involve
repetitive motions and we believe this should also make the ac-
tivities easier to recognize. When we record data for each of these
activities, we record acceleration in three axes. For our purposes,
the z-axis captures the forward movement of the leg and the y-
axis captures the upward and downward motion. The x-axis cap-
tures horizontal movement of the user’s leg. Figure 1 demon-
strates these axes relative to a user.

Figure 1: Axes of Motion Relative to User

Figure 2 plots the accelerometer data for a typical user, for all
three axes and for each of the six activities. It is clear that sitting
and standing (Figure 2e,f) do not exhibit periodic behavior but do
have distinctive patterns, based on the relative magnitudes of the
x, y, and z, values, while the four other activities (Figure 2a-d),
which involve repetitive motions, do exhibit periodic behavior.
Note that for most activities the y values have the largest accel-
erations. This is a consequence of Earth’s gravitational pull,
which causes the accelerometer to measure a value of 9.8 m/s2 in
the direction of the Earth’s center. For all activities except sitting
this direction corresponds to the y axis (see Figure 1).
The periodic patterns for walking, jogging, ascending stairs, and
descending stairs (Figure 2a-d) can be described in terms of the
time between peaks and by the relative magnitudes of the
acceleration values. The plot for walking, shown in Figure 2a,
demonstrates a series of high peaks for the y-axis, spaced out at
approximately ½ second intervals. The peaks for the z-axis
acceleration data echo these peaks but with a lower magnitude.
The distance between the peaks of the z-axis and y-axis data
represent the time of one stride. The x-axis values (side to side)
have an even lower magnitude but nonetheless mimic the peaks
associated with the other axes. For jogging, similar trends are
seen for the z-axis and y-axis data, but the time between peaks is
less (~¼ second), as one would expect. As one might expect, the
range of y-axis acceleration values for jogging is greater than for
walking, although the shift is more noticeable in the negative
direction.

For descending stairs, one observes a series of small peaks for y-
axis acceleration that take place every ~½ second. Each small
peak represents movement down a single stair. The z-axis values
show a similar trend with negative acceleration, reflecting the
regular movement down each stair. The x-axis data shows a series
of semi-regular small peaks, with acceleration vacillating again
between positive and negative values. For ascending stairs, there
are a series of regular peaks for the z-axis data and y-axis data as
well; these are spaced approximately ~¾ seconds apart, reflecting
the longer time it takes to climb up stairs.

12

-10

-5

0

5

10

15

20

0 0.5 1 1.5 2 2.5
Time (s)

A
cc

el
er

at
io

n

Y Axis

X Axis Z Axis

(a) Walking

-10

-5

0

5

10

15

20

0 0.5 1 1.5 2 2.5
Time (s)

Ac
ce

le
ra

tio
n

Y Axis

X Axis

Z Axis

(c) Ascending Stairs

-5

0

5

10

0 0.5 1 1.5 2 2.5
Time (s)

Ac
ce

le
ra

tio
n

Y Axis

Z Axis X Axis

(e) Sitting

-10

-5

0

5

10

15

20

0 0.5 1 1.5 2 2.5
Time (s)

A
cc

el
er

at
io

n

Y Axis

Z AxisX Axis

(b) Jogging

-10

-5

0

5

10

15

20

0 0.5 1 1.5 2 2.5

Time (s)

A
cc

el
er

at
io

n

Y Axis
Z Axis

X Axis

(d) Descending Stairs

-5

0

5

10

0 0.5 1 1.5 2 2.5
Time (s)

A
cc

el
er

at
io

n

Z Axis

Y Axis

X Axis

(f) Standing

Figure 2: Acceleration Plots for the Six Activities (a-f)

13

As one would expect, sitting and standing do not exhibit any
regular periodic behavior and all of the acceleration values are
relatively constant. As mentioned earlier, the primary differences
between these activities is the relative magnitudes of values for
each axis, due to the different orientations of the device with
respect to the Earth when the user is sitting and standing Thus it
appears easy to differentiate between sitting and standing, even
though neither involves much movement. Note that because the
accelerometers are themselves able to determine orientation with
respect to the Earth’s gravitational field, it would be relatively
straightforward to compensate/correct for any changes in the cell
phone’s orientation due to the phone shifting position in a user’s
pocket. We plan to implement this correction in future work.

3. EXPERIMENTS
In this section we describe our experiments and then present and
discuss our results for the activity recognition task.

3.1 Description of Experiments
Our experiments first require us to collect the labeled raw accel-
erometer data and then transform that data into examples. This
process was described in Section 2. The resulting examples con-
tain 43 features and cover twenty-nine users. This forms the data
set, described in Table 1, which is subsequently used for training
and testing. The last row in Table 1 shows the percentage of the
total examples associated with each activity.

Table 1: Number of Examples per User and Activity
ID Walk Jog Up Down Sit Stand Total
1 74 15 13 25 17 7 151
2 48 15 30 20 0 0 113
3 62 58 25 23 13 9 190
4 65 57 25 22 6 8 183
5 65 54 25 25 77 27 273
6 62 54 16 19 11 8 170
7 61 55 13 11 9 4 153
8 57 54 12 13 0 0 136
9 31 59 27 23 13 10 163
10 62 52 20 12 16 9 171
11 64 55 13 12 8 9 161
12 36 63 0 0 8 6 113
13 60 62 24 15 0 0 161
14 62 0 7 8 15 10 102
15 61 32 18 18 9 8 146
16 65 61 24 20 0 8 178
17 70 0 15 15 7 7 114
18 66 59 20 20 0 0 165
19 69 66 41 15 0 0 191
20 31 62 16 15 4 3 131
21 54 62 15 16 12 9 168
22 33 61 25 10 0 0 129
23 30 5 8 10 7 0 60
24 62 0 23 21 8 15 129
25 67 64 21 16 8 7 183
26 85 52 0 0 14 17 168
27 84 70 24 21 11 13 223
28 32 19 26 22 8 15 122
29 65 55 19 18 8 14 179

Sum 1683 1321 545 465 289 223 4526
% 37.2 29.2 12.0 10.2 6.4 5.0 100

Note that certain activities contain fewer examples than others,
mainly because the users were not asked to perform strenuous
activities (e.g., jogging, climbing stairs) for very long and because
we thought that the patterns in other activities (e.g., standing)
would become apparent quickly so that there would be no need to
waste the users time literally “standing around.” Furthermore,
certain activities, like standing and sitting, were only added after
the study began, so we have no data for these activities for some
users.

Once the data set was prepared, we used three classification tech-
niques from the WEKA data mining suite [20] to induce models
for predicting the user activities: decision trees (J48), logistic
regression and multilayer neural networks. In each case we used
the default settings. We used ten-fold cross validation for all ex-
periments and all results are based on these ten runs.

3.2 Results
The summary results for our activity recognition experiments are
presented in Table 2. This table specifies the predictive accuracy
associated with each of the activities, for each of the three learn-
ing algorithms and for a simple “straw man” strategy. The straw
man strategy always predicts the specified activity (i.e., walking
for the first row in Table 2 and jogging for the second row of
Table 2) or, when assessing the overall performance of the classi-
fier (i.e., the last row of Table 2), always predicts the most fre-
quently occurring activity, which happens to be walking. The
baseline straw man strategy allows us to consider the degree of
class imbalance when evaluating the performance of the activity
recognition system.

Table 2: Accuracies of Activity Recognition

 % of Records Correctly Predicted
 J48 Logistic

Regression
Multilayer
Perceptron

Straw
Man

Walking 89.9 93.6 91.7 37.2
Jogging 96.5 98.0 98.3 29.2
Upstairs 59.3 27.5 61.5 12.2

Downstairs 55.5 12.3 44.3 10.0
Sitting 95.7 92.2 95.0 6.4

Standing 93.3 87.0 91.9 5.0
Overall 85.1 78.1 91.7 37.2

Table 2 demonstrates that in most cases we can achieve high lev-
els of accuracy. For the two most common activities, walking and
jogging, we generally achieve accuracies above 90%. Jogging
appears easier to identify than walking, which seems to make
sense, since jogging involves more extreme changes in accelera-
tion. It appears much more difficult to identify the two stair
climbing activities, but as we shall see shortly, that is because
those two similar activities are often confused with one another.
Note that although there are very few examples of sitting and
standing, we can still identify these activities quite well, because,
as noted earlier, the two activities cause the device to change
orientation and this is easily detected from the accelerometer data.
Our results indicate that none of the three learning algorithms
consistently performs best, but the multilayer perceptron does
perform best overall. More detailed results are presented in Tables

14

3-5, which show the confusion matrices associated with each of
the three learning algorithms.

Table 3: Confusion Matrix for J48

Predicted Class
Walk Jog Up Down Sit Stand

Walk 1513 14 72 82 2 0
Jog 16 1275 16 12 1 1
Up 88 23 323 107 2 2

Down 99 13 92 258 1 2
Sit 4 0 2 3 270 3 A

ct
ua

l C
la

ss

Stand 4 1 2 7 1 208

Table 4: Confusion Matrix for Logistic Regression

Predicted Class
Walk Jog Up Down Sit Stand

Walk 1575 14 53 36 2 3
Jog 15 1294 6 6 0 0
Up 277 36 150 77 1 4

Down 259 6 136 57 3 4
Sit 1 0 4 11 260 6 A

ct
ua

l C
la

ss

Stand 3 1 7 3 15 194

Table 5: Confusion Matrix for Multilayer Perceptron

Predicted Class
Walk Jog Up Down Sit Stand

Walk 1543 5 73 60 1 1
Jog 3 1299 16 3 0 0
Up 84 24 335 98 2 2

Down 108 10 136 206 2 3
Sit 0 2 4 1 268 7 A

ct
ua

l C
la

ss

Stand 1 0 5 4 8 205

The most important activities to analyze are the climbing-up and
climbing-down stair activities, since these were the only activities
that that were difficult to recognize. The confusion matrices indi-
cate that many of the prediction errors are due to confusion be-
tween these two activities. If we focus on the results for the J48
decision tree model in Table 3, we see that when we are climbing
up stairs the most common incorrect classification occurs when
we predict “downstairs,” which occurs 107 times and accounts for
a decrease in accuracy of 19.6% (107 errors out of 545). When
the actual activity is climbing downstairs, walking slightly out-
paces “upstairs” in terms of the total number of errors (99 vs. 92),
but this is only because walking occurs more than three times as
often as climbing upstairs in our dataset. If we look at Figures 2a,
2c, and 2d, we see that the patterns in acceleration data between
“walking”, “ascending stairs” and “descending stairs” are some-
what similar. To limit the confusion between the ascending and
descending stair activities, we ran another set of experiments
where we combine ascending stairs and descending stairs into one
activity. The resulting confusion matrix for the J48 algorithm is
shown in Table 6 (in the interest of space we do not show them
for the other two algorithms). We see that the results are substan-
tially improved, although stair climbing is still the hardest activity
to recognize.

Table 6: Confusion Matrix for J48 Model (Stairs Combined)

Predicted Class

Walk Jog Stairs Sit Stand
Accur.

(%)

Walk 1524 7 148 2 2 90.6
Jog 10 1280 31 0 0 96.9

Stairs 185 33 784 4 4 77.6
Sit 4 0 2 272 4 96.5

A
ct

ua
l C

la
ss

Stand 3 1 10 0 209 93.7

4. RELATED WORK
Activity recognition has recently gained attention as a research
topic because of the increasing availability of accelerometers in
consumer products, like cell phones, and because of the many
potential applications. Some of the earliest work in accelerometer-
based activity recognition focused on the use of multiple acceler-
ometers placed on several parts of the user’s body. In one of the
earliest studies of this topic, Bao & Intille [3] used five biaxial
accelerometers worn on the user’s right hip, dominant wrist, non-
dominant upper arm, dominant ankle, and non-dominant thigh in
order to collect data from 20 users. Using decision tables, in-
stance-based learning, C4.5 and Naïve Bayes classifiers, they
created models to recognize twenty daily activities. Their results
indicated that the accelerometer placed on the thigh was most
powerful for distinguishing between activities. This finding sup-
ports our decision to have our test subjects carry the phone in the
most convenient location—their pants pocket.

Other researchers have, like Bao & Intille, used multiple acceler-
ometers for activity recognition. Krishnan et. al. [9] collected data
from three users using two accelerometers to recognize five ac-
tivities—walking, sitting, standing, running, and lying down. This
paper claimed that data from a thigh accelerometer was insuffi-
cient for classifying activities such as sitting, lying down, walk-
ing, and running, and thus multiple accelerometers were neces-
sary (a claim our research contradicts). In another paper, Krishnan
et. al. [10] examined seven lower body activities using data col-
lected from ten subjects wearing three accelerometers. This
method was tested in supervised and semi-naturalistic settings.
Tapia et. al. [16] collected data from five accelerometers placed
on various body locations for twenty-one users and used this data
to implement a real-time system to recognize thirty gymnasium
activities. A slight increase in performance was made by incorpo-
rating data from a heart monitor in addition to the accelerometer
data. Mannini and Sabitini [23] used five tri-axial accelerometers
attached to the hip, wrist, arm, ankle, and thigh in order to recog-
nize twenty activities from thirteen users. Various learning meth-
ods were used to recognize three “postures” (lying, sitting, and
standing) and five “movements” (walking, stair climbing, run-
ning, and cycling). Foerster and Fahrenberg [28] used data from
five accelerometers in one set of experiments and from two of
those accelerometers in another for activity recognition. Thirty-
one male subjects participated in the study and a hierarchical
classification model was built in order to distinguish between
postures such as sitting and lying at specific angles, and motions
such as walking and climbing stairs at different speeds.

Researchers have used a combination of accelerometers and other
sensors to achieve activity recognition. Parkka et. al. [27] created

15

a system using twenty different types of sensors (including an
accelerometer worn on the chest and one worn on the wrist) in
order to recognize activities such as lying, standing, walking,
running, football, swinging, croquet, playing ball, and using the
toilet in specific locations. Lee and Mase [25] created a system to
recognize a user’s location and activities, including sitting, stand-
ing, walking on level ground, walking upstairs, and walking
downstairs using a sensor module that consisted of a biaxial ac-
celerometer and an angular velocity sensor worn in the pocket
combined with a digital compass worn at the user’s waist.
Subramayana et. al. [26] addressed similar activities by building a
model using data from a tri-axial accelerometer, two micro-
phones, phototransistors, temperature and barometric pressure
sensors, and GPS to distinguish between a stationary state, walk-
ing, jogging, driving a vehicle, and climbing up and down stairs.

While these systems using multiple accelerometers or a combina-
tion of accelerometers and other sensors were capable of identify-
ing a wide range of activities, they are not very practical because
they involve the user wearing multiple sensors distributed across
their body. This could work for some short term, small scale,
highly specialized applications (e.g., in a hospital setting) but
would certainly not work for the applications that we envision.

Some studies have also focused on combining multiple types of
sensors in addition to accelerometers for activity recognition.
Maurer et al. [13] used “eWatch” devices placed on the belt, shirt
pocket, trouser pocket, backpack, and neck to recognize the same
six activities that we consider in our study. Each “eWatch” con-
sisted of a biaxial accelerometer and a light sensor. Decision
trees, k-Nearest Neighbor, Naïve Bayes, and Bayes Net classifiers
with five-fold cross validation were used for learning. Choudhury
et. al [6] used a multimodal sensor device consisting of seven
different types of sensors (tri-axial accelerometer, microphone,
visible light phototransitor, barometer, visible+IR light sensor,
humidity/temperature reader, and compass) to recognize activities
such as walking, sitting, standing, ascending stairs, descending
stairs, elevator moving up and down, and brushing one’s teeth.
Cho et. al. [5] used a single tri-axial accelerometer, along with an
embedded image sensor worn at the user’s waist, to identify nine
activities. Although these multi-sensor approaches do indicate the
great potential of mobile sensor data as more types of sensors are
being incorporated into devices, our approach shows that only one
type of sensor—an accelerometer—is needed to recognize most
daily activities. Thus our method offers a straightforward and
easily-implementable approach to accomplish this task.

Other studies, like our own, have focused on the use of a single
accelerometer for activity recognition. Long, Yin, and Aarts [22]
collected accelerometer data from twenty-four users using a tri-
axial accelerometer worn without regard for orientation at the
user’s waist. Data was collected naturalistically, and decision
trees as well as a Bayes classifier combined with a Parzen win-
dow estimator were used to recognize walking, jogging, running,
cycling, and sports. Lee et. al. [24] used a single accelerometer
attached to the left waists of five users. Standing, sitting, walking,
lying, and running were all recognized with high accuracies using
fuzzy c-means classification. However unlike these studies, which
use devices specifically made for research purposes, our method
utilizes commercial devices that are widely-available without any
additional specialized equipment. This approach enables make
practical real-world applications for our models.

Several researchers have considered the use of widely-available
mobile devices such as cell phones to address the activity recogni-
tion problem. However the earlier approaches did not take advan-
tage of the sensors incorporated into the mobile devices them-
selves. For example, Gyorbiro et. al. [7] used “MotionBands”
attached to the dominant wrist, hip, and ankle of each subject to
distinguished between six different motion patterns. Each Mo-
tionBand contained a tri-axial accelerometer, magnetometer, and
gyroscope. As the MotionBand collected data, the data was then
transmitted to a smart phone carried by the user to be stored. Ravi
et. al. [15] collected data from two users wearing a single acceler-
ometer-based device and then transmitted this data to the HP
iPAQ mobile device carried by the user. Using this data for activ-
ity recognition, researchers compared the performance of eighteen
different classifiers. Lester et. al. [11] used accelerometer data,
along with audio and barometric sensor data, to recognize eight
daily activities from a small set of users. While these studies
could have used a cell phone to generate the accelerometer data,
they did not do this. Instead, the data was generated using distinct
accelerometer-based devices worn by the user and then sent to a
cell phone for storage.

A few studies, like ours, did use an actual commercial mobile
device to collect data for activity recognition. Such systems offer
an advantage over other accelerometer-based systems because
they are unobtrusive and do not require any additional equipment
for data collection and accurate recognition. Miluzzo et. al. [14]
explored the use of various sensors (such as a microphone, accel-
erometer, GPS, and camera) available on commercial smart
phones for activity recognition and mobile social networking
applications. In order to address the activity recognition task,
they collected accelerometer data from ten users to build an activ-
ity recognition model for walking, running, sitting, and standing
using J48. This model had particular difficulty distinguishing
between the sitting and standing activities, a task that our models
easily achieve. Yang [21] developed an activity recognition sys-
tem using the Nokia N95 phone to distinguish between sitting,
standing, walking, running, driving, and bicycling. This work also
explored the use of an activity recognition model to construct
physical activity diaries for the users. Although the study
achieved relatively high accuracies of prediction, stair climbing
was not considered and the system was trained and tested using
data from only four users. Brezmes et. al. [4] also used the Nokia
N95 phone to develop a real-time system for recognizing six user
activities. In their system, an activity recognition model is trained
for each user, meaning that there is no universal model that can be
applied to new users, for whom no training data exists. Our mod-
els do not have this limitation.

5. CONCLUSIONS AND FUTURE WORK
In this paper we described how a smart phone can be used to per-
form activity recognition, simply by keeping it in ones pocket.
We further showed that activity recognition can be highly accu-
rate, with most activities being recognized correctly over 90% of
the time. In addition, these activities can be recognized quickly,
since each example is generated from only 10 seconds worth of
data. We have several interesting applications in mind for activity
recognition and plan to implement some of these applications in
the near future.

Our work would not have been possible without establishing our
WISDM Android-based data collection platform, and we view

16

this software and hardware architecture, where data is transmitted
by the phone to our Internet-based server, as a key resource pro-
duced as a consequence of this work. By having this in place we
will be able to mine other mobile sensor data much more quickly.
This platform, as well as the data that we collected, will ulti-
mately be made public.

We plan to improve our activity recognition in several ways. The
straightforward improvements involve: 1) learning to recognize
additional activities, such as bicycling and car-riding, 2) obtaining
training data from more users with the expectation that this will
improve our results, 3) generating additional and more sophisti-
cated features when aggregating the raw time-series data, and 4)
evaluating the impact of carrying the cell phone in different loca-
tions, such as on a belt loop. In addition, in the near future we
plan to significantly enhance our WISDM platform so that we can
generate results in real-time, whereas currently our results are
generated off-line and are not reported back to the mobile phone
and the user. We plan to provide real-time results in two ways.
The first way minimizes the intelligence required on the phone by
having the phone transmit the data to the Internet-based sever
over the cellular connection, as usual, with the server applying the
activity recognition model and transmitting the results back to the
phone. In one variant, the phone will send the raw accelerometer
data and in a second variant the phone will perform the data trans-
formation step and only transmit the data when an example is
generated. The second method involves implementing the activity
recognition model directly on the cell phone. Given the computa-
tional power of these devices, this is certainly a feasible option.
One key advantage of this method is that it removes the need for a
server, which makes the solution perfectly scalable, and ensures
the user’s privacy, since the sensor data is kept locally on the
device.

The work described in this paper is part of a larger effort to mine
sensor data from wireless devices. We plan to continue our
WISDM project, applying the accelerometer data to other tasks
besides activity recognition and collecting and mining other sen-
sor data, especially GPS data. We believe that mobile sensor data
provides tremendous opportunities for data mining and we intend
to leverage our Android-based data collection/data mining plat-
form to the fullest extent possible.

6. REFERENCES
[1] Anderson, I., Maitland, J., Sherwood, S., Barkhuus, L.,

Chalmers, M., Hall, M., Brown, B., and Muller, H. 2007.
Shakra: Tracking and sharing daily activity levels with un-
augmented mobile phones. In Mobile Networks and Applica-
tions. 12(2-3).

[2] Apple iPhone and Apple iPod Touch. 2009. Apple Inc.
www.apple.com.

[3] Bao, L. and Intille, S. 2004. Activity Recognition from User-
Annotated Acceleration Data. Lecture Notes Computer Sci-
ence 3001, 1-17.

[4] Brezmes, T., Gorricho, J.L., and Cotrina, J. 2009. Activity
Recognition from accelerometer data on mobile phones.
In IWANN '09: Proceedings of the 10th International Work-
Conference on Artificial Neural Networks, 796-799.

[5] Cho, Y., Nam, Y., Choi, Y-J., and Cho, W-D. 2008. Smart-
Buckle: human activity recognition using a 3-axis acceler-
ometer and a wearable camera. In HealthNet.

[6] Choudhury, T., Consolvo, S., Harrison, B., LaMarca, A.,
LeGrand, L., Rahimi, A., Rea, A., Borriello, G., Hemingway,
B., Klasnja, P., Koscher, K., Landay, J., Lester, J., Wyatt, D.,
and Haehnel, D. 2008. The mobile sensing platform: An
embedded activity recognition system. In IEEE Pervasive
Computing, 7(2), 32-41.

[7] Gyorbiro, N., Fabian, A., and Homanyi, G. 2008. An activity
recognition system for mobile phones. In Mobile Networks
and Applications, 14(1), 82-91.

[8] Inooka, H., Ohtaki, Y. Hayasaka, H. Suzuki, A., and Na-
gatomi, R. 2006. Development of advanced portable device
for daily physical assessment. In SICE-ICASE, International
Joint Conference, 5878-5881.

[9] Krishnan, N., Colbry, D., Juillard, C., and Panchanathan, S.
2008. Real time human activity recognition using tri-Axial
accelerometers. In Sensors, Signals and Information Proc-
essing Workshop.

[10] Krishnan, N. and Panchanathan, S. 2008. Analysis of Low
Resolution Accelerometer Data for Continuous Human Ac-
tivity Recognition. In IEEE International Conference on
Acoustics, Speech and Signal Processing, (ICASSP 2008).
Pages 3337-3340.

[11] Lester, J., Choudhury, T. and Borriello, G. 2006. A practical
approach to recognizing physical activities. Lecture Notes in
Computer Science: Pervasive Computing, 1–16.

[12] Mathie, M., Celler B., Lovell N., and Coster A. 2004. Classi-
fication of basic daily movements using a triaxial acceler-
ometer. In Medical & Biological Engineering and Comput-
ing, 42.

[13] Maurer, U., Smailagic, A., Siewiorek, D., & Deisher, M.
2006. Activity recognition and monitoring using multiple
sensors on different body positions. In IEEE Proceedings on
the International Workshop on Wearable and Implantable
Sensor Networks, 3(5).

[14] Miluzzo, E., Lane, N., Fodor, K., Peterson, R., Lu, H., Mu-
solesi, M., Eisenman, S., Zheng, X. and Campbell, A. 2008.
Sensing meets mobile social networks: The design, imple-
mentation and evaluation of the CenceMe application. In The
6th ACM Conference on Embedded Networked Sensor Sys-
tems, 337-350.

[15] Ravi, N., Dandekar, N. 2005. Activity recognition from ac-
celerometer data. In Proceedings of the Seventeenth Confer-
ence on Innovative Applications of Artificial Intelligence.

[16] Tapia, E.M., Intille, S.S. et al. 2007. Real-Time recognition
of physical activities and their intensities using wireless ac-
celerometers and a heart rate monitor. In Proceedings of the
2007 11th IEEE International Symposium on Wearable
Computers, 1-4.

[17] Unwired View.com. 2009. Google wants to make your
Android phone much smarter with accelerometer and other
sensors. Stasys Bielinis.http://www.unwiredview.com/2009/
05/21/google-wants-to-make-your-android-phone-much-
smarter-with-accelerometer-and-other-sensors/

17

[18] Weiss, G. M., and Hirsh, H. 1998. Learning to predict rare
events in event sequences, In Proceedings of the Fourth In-
ternational Conference on Knowledge Discovery and Data
Mining, AAAI Press, Menlo Park, CA, 359-363.

[19] WISDM (Wireless Sensor Data Mining) Project. Fordham
University, Department of Computer and Information Sci-
ence, http://storm.cis.fordham.edu/~gweiss/ wisdm/

[20] Witten, I. H. and Frank, E. Data Mining: Practical Machine
Learning Tools and Techniques, 2nd ed. Morgan Kaufmann,
June 2005.

[21] Yang, J. 2009. Toward physical activity diary: Motion rec-
ognition using simple acceleration features with mobile
phones, In First International Workshop on Interactive Mul-
timedia for Consumer Electronics at ACM Multimedia.

[22] Long, X., Yin, B., and Aarts, R.M. 2009. Single accelerome-
ter-based daily physical activity classification. In 31st Annual
International Conference of the IEEE EMBS, 6107-6110.

[23] Mannini, A. and Sabatini A.M. 2010. Machine learning
methods for classifying human physical activity from on-
body accelerometers. In Sensors 2010, 10, 1154-1175.

[24] Lee, M., Kim, J., Kim, K., Lee, I., Jee, S.H., and Yoo, S.K.
2009. Physical activity recognition using a single tri-axis ac-
celerometer. In Proceedings of the World Congress on Engi-
neering and Computer Science 2009, 1.

[25] Lee, S.-W. and Mase, K. 2002. Activity and location recog-
nition using wearable sensors. In IEEE Pervasive Comput-
ing, 1(3):24–32.

[26] Subramanya, A., Raj, A., Bilmes, J., and Fox, D. 2006. Rec-
ognizing activities and spatial context using wearable sen-
sors. In Proceedings of the 22nd Conference on Uncertainty
in Artificial Intelligence.

[27] Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola,
J., and Korhonen, I. 2006. Activity classification using real-
istic data from wearable sensors. In IEEE Transactions on
Information Technology in Biomedicine, 10(1), 119-128.

[28] Foerster F. and Fahrenberg J. 2000. Motion pattern and pos-
ture: correctly assessed by calibrated accelerometers. In Be-
havior Research Methods, Instruments, & Computers, 32(3),
450–7.

18

A New Algorithm Based On Sequential Pattern Mining For
Person Identification In Ubiquitous Environments

Belkacem Chikhaoui
Prospectus Laboratory

University of Sherbrooke
Canada

Belkacem.Chikhaoui@
USherbrooke.ca

Shengrui Wang
Prospectus Laboratory

University of Sherbrooke
Canada

Shengrui.Wang@
USherbrooke.ca

Hélène Pigot
Domus Laboratory

University of Sherbrooke
Canada

Helene.Pigot@
USherbrooke.ca

ABSTRACT
This paper presents an approach to person identification in
ubiquitous environments. Our approach uses the sequen-
tial pattern mining principle to extract frequent patterns in
data collected from the different sensors disseminated in the
ubiquitous environment. In contrast with existing, intrusive,
person identification algorithms that have been proposed in
the literature, where the data is basically composed of au-
diovisual or image files recorded during experiments, our ap-
proach is fully non-intrusive and is based on event sequences
collected from heterogeneous sensors. Our approach is di-
vided into three main phases: (1) frequent pattern mining,
(2) assignment of weights to extracted patterns, and (3) clas-
sification. Experiments using data collected in the Domus
and Testbed smart homes demonstrate that our approach
accurately identifies persons and improves classification re-
sults, outperforming two of the approaches reported in the
literature.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; I.2.6 [Artificial Intelligence]: Learning—
Knowledge acquisition

General Terms
Algorithms, Design, Human Factors

Keywords
Smart homes, ubiquitous computing, sequential patterns,
event sequence, episode discovery, person identification.

1. INTRODUCTION
Ubiquitous environments constitute a technological chal-

lenge for contemporary research. These environments are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SensorKDD’10, July 25, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0224-1 ...$10.00.

characterized by an increasing number of sensors, actua-
tors, displays, devices, and computational elements embed-
ded in everyday objects, and connected through a network
[29]. The recent emergence of ubiquitous environments such
as smart homes has allowed the provision of housekeeping,
assistance and monitoring for chronically ill patients, and
enabled persons with special needs and the elderly to re-
ceive services in their own home environments [7, 24]. Using
such technology can help to reduce costs considerably, and
relieve pressure on healthcare systems. However, this tech-
nology poses many challenges, such as person identification,
activity recognition, assistance, monitoring, and adaptation.

Person identification in ubiquitous environments is a sub-
ject of great interest, particularly in smart homes, where
specific individuals must be monitored and assisted accord-
ing to their needs. To deal with this issue, several research
projects have been conducted using video and image process-
ing [31, 6, 4]; some other systems are also discussed in [3].
However, these approaches are intrusive and do not preserve
personal privacy. By ”intrusive”, we mean that individuals
are monitored by cameras which invade their privacy, or by
other body-worn sensors which diminish their sense of au-
tonomy. Little work has been done on using non-intrusive
systems which utilize devices and sensors (for motion, pres-
sure, RFID, etc.) disseminated in the environment [24, 20].
These sensors capture events about the state of the envi-
ronment and any changes that occur in it. These events
constitute a form of sequence. Each sequence of events is
associated with a particular activity performed within the
environment. The same activity can be performed by the
same person in different ways, which means that the same
activity can correspond to different sequences of events. This
change in the person’s behavior leads to the generation of
a set of frequent patterns (episodes)1 that characterize this
person.

Mining event sequences is an important task for the ubiq-
uitous computing community, and for the KDD community
as well. In fact, by discovering frequent patterns, the under-
lying association rules, temporal constraints and progress,
changes over time and expected utilities, it becomes pos-
sible to characterize the behavior of persons (and objects,
such as those most purchased in a supermarket) and auto-
mate tasks such as service adaptation, activity monitoring
and assistance, and many other complex activities and ap-
plications [22].

The general approaches to person identification in ubiq-

1We use the terms “pattern” and “episode” interchangeably

19

uitous environments are either intrusive, or resource- and
time-consuming. In this paper we present a new algorithm
for person identification, based on sequential pattern min-
ing. Our algorithm consists of three main steps. In the first
step, the frequent patterns (episodes) are extracted from the
sequential dataset using the Apriori algorithm [2], one of the
efficient pattern mining algorithms in the literature [9]. The
second step evaluates the extracted episodes. A new scoring
function for weighting the extracted episodes is proposed,
based on the work of Chang-Rong Lin [16], and adapted to
sequential patterns. This step is one of the innovations made
by the method proposed in this paper. The weight assigned
to an episode indicates the importance of the episode in the
event sequence, and these weights improve the classification
accuracy in the third step of our algorithm.

The strengths of our approach are, first, that it is based
on a fully non-intrusive technology, which broadly preserves
personal privacy; and second, that it takes events collected
from sensors in the form of sequences, which means that our
approach is generic and can be applied to any sequential
data. In addition, our approach is infrastructure-independent:
this means that it is applicable to evolving and scalable en-
vironments because the focus is on the generated sequences,
not on the environment itself. We take advantage of the
sequential form of events to extract frequent patterns that
can be used to characterize each person and distinguish him
or her from others living in the same environment. To our
knowledge, no other paper in the literature addresses the
problem of person identification by using sequential pattern
mining with weights assigned to episodes. There is a single
report of a study that assigned weights to sequential pat-
terns to classify sequences [5]. However, this work used a
very simple scoring function based on the pattern length,
and did not take into account patterns of length 1. This
motivates our effort to create a non-intrusive approach for
automatic person identification, based on sequential pattern
mining. We will show, through experiments, how the use
of frequent pattern mining in our approach can significantly
improve the quality of identification, allowing it to achieve
higher classification accuracy than the existing methods.

This paper is organized as follows. Section 2 gives an
overview of related work. In Section 3 we introduce our ap-
proach, presenting the overall architecture and the proposed
algorithm. The experiment is described in Section 4 and the
experimental results are presented in Section 5. Section 6 is
devoted to a discussion of the results, followed by a conclu-
sion in Section 7.

Contribution of this paper
This paper proposes a new algorithm for person identifi-
cation in ubiquitous environments. While the problem of
person identification using non-intrusive technology has re-
cently been studied in a limited way in the literature [20, 33],
this is the first comprehensive study which proposes a fully
non-intrusive approach based on frequent pattern mining. In
addition to the efficient algorithm proposed, our approach is
based on the generation of long episodes which better char-
acterize human behavior. The innovation of the proposed
algorithm is its assignment of weights for frequent episodes,
using a new scoring function that evaluates episodes with
respect to the sequence as well as the class to which they
belong. The episode weights allow us to find significant
episodes in the event sequence, which can be used to char-

acterize the person and distinguish him or her from other
people, improving classification accuracy. Moreover, the as-
signment of weights reduces the dimensionality of the space
by allowing consideration of significant episodes only, which
is helpful in developing real-time applications. Finally, our
approach is validated on real-life data which will be avail-
able on the Web very soon. This will make our experiments
repeatable.

2. RELATED WORK
Several research studies reported in the literature have

been interested in person identification in ubiquitous envi-
ronments. J. Suiutala et al. [24] introduced methods for
footstep-based person identification using a large pressure-
sensitive floor with a sensory system. This approach is re-
lated to the biometric identification domain [14, 13], which
includes physiological (iris, fingerprints, hand shapes, etc.)
and behavioral (handwriting, speech) characteristics. The
behavioral characteristics of a walking person are used to
model the person’s identity [24]. In this approach, the per-
son identification system is based on sensor measurements
derived from a pressure-sensitive floor. The authors used
what they call ElectroMechanical Film (EMFi) [21], which
senses pressure changes affecting its surface and provides
footstep profiles of the walking person as an input to the
identification system.

Much work on person identification has been done us-
ing cameras and machine vision methods. Pfinder [31] is
a real-time system for tracking people and interpreting their
behavior. The Pfinder system uses a multiclass statistical
model of color and shape to obtain a 2D representation of
head and hands in a wide range of viewing conditions. In [6],
the authors propose a real-time face recognition system for
consumer/embedded applications. The system is embedded
in an interconnected home environment and allows intelli-
gent servicing via automatic identification of users. This sys-
tem is based on four principal steps: face detection, model-
based facial feature extraction, face normalization, and face
recognition by discrimination analysis. Bernardin Keni et al.
[4] presented a system for audiovisual multi-person tracking
and identification of persons in smart environments. Infor-
mation from several fixed cameras is fused in a particle filter
framework to simultaneously track multiple occupants. In
[17], the authors introduced a new model for recognizing
people by their gait. This model is based on motion shape,
which varies with the type of moving figure and the type of
motion. The identification process in this system is based
on modeling the walking stride sequence, using consecutive
frames from a side-view camera. Different features are calcu-
lated from the posture and limb positions of the person and
from the frequency and phase presentation of walking [17].
The main drawback of the audiovisual-based approaches re-
mains privacy issues. Indeed, these approaches are intrusive
and do not respect personal privacy.

Little work has been done on non-intrusive systems which
use different types of devices and sensors (motion, pressure,
RFID, etc.) disseminated in the environment. In [20], the
authors used a graph-based data mining system to identify
inhabitants of an intelligent environment. The activity pat-
terns for individual inhabitants are represented as graphs,
which can be used to identify persons. This system is used
to identify inhabitants based on observed interactions with
the home. Each event in a smart home corresponds to in-

20

teraction with a device, such as turning the light on or off
or opening or closing the door. The event is considered as
a device whose state is being changed at a particular time.
The authors use the SubdueCLM [20] tool to find concepts
describing each inhabitant’s activity pattern. These con-
cepts can then be used to classify new activities. In this
way, inhabitants can be identified according to the activity
they perform. S. Zhang et al. [33] present a probabilis-
tic learning approach to characterize behavioral patterns
for multi-inhabitant smart homes. The authors propose a
snowflake schema model to store the smart home activity
data. Then, a supervised learning algorithm is proposed to
learn the behavioral patterns of these activities. The authors
aim to distinguish inhabitants and provide personalized ser-
vices. However, in this study users are asked to indicate
their name, the activity they plan to do and when they will
begin it. This makes the recognition process less credible
and sidesteps many crucial issues in inhabitant and activity
recognition, such as event triggers.

Many of the aforementioned solutions suffer from com-
putational difficulties. For instance, the audiovisual multi-
person tracking approach needs very intensive computing to
process the audiovisual data, in addition to the increasingly
high costs of the equipment employed, such as the cam-
eras needed for recording high-quality videos. The efficiency
of the graph-based approach proposed by [20] depends ba-
sically on the size of the datasets to be processed. The
larger the datasets, the more difficult and time-consuming
the graph processing becomes. The use of sequential pat-
tern mining appears to be a promising solution to overcome
these drawbacks. Indeed, extracting frequent patterns from
sequences can be achieved in a shorter time, as mentioned
in [2, 15], which can significantly aid the development of
real-time applications for identifying persons and activities.

3. OUR APPROACH
In this section we present our approach for person identi-

fication using frequent pattern mining. The overall architec-
ture of our approach is presented in Figure 1. The different
phases of our approach are detailed in the next sections.

Figure 1: Our approach

3.1 Frequent Pattern Mining in Sequential Data
Sets

Pattern mining is applied to sequences of various types,
including protein, weblog, trace, customer purchase history

and event sequences. The sequences most often studied are
the event sequences generated by individuals or objects. The
goal is to explain the behavior of the individuals or objects
in these event sequences and determine how to deal with
them. In our case, events correspond to sensor states. For
each event, some additional information may be available,
such as the sensor name, the sensor state/value, and tem-
poral constraints indicating the event occurrence time. The
events contained in a sequence are listed in timestamp as-
cending order. Table 1 shows an example of events collected
in a smart home. Frequent pattern mining in sequential

Table 1: Example of events collected in a smart
home

Date Time Sensor Name State / value
2009-02-02 12:18:44 MotionSensor16 ON
2009-02-02 12:18:46 MotionSensor17 OFF
2009-02-02 12:28:50 DoorSensor12 OPEN
2009-02-02 12:29:55 ItemSensor03 PRESENT
2009-02-05 08:05:52 HotWaterSensor-B 0.0448835
2009-02-05 12:21:51 DoorSensor09 CLOSE
2009-02-10 17:03:57 ItemSensor03 ABSENT

datasets has been the subject of intensive research efforts in
the past decade, and several algorithms have been proposed.
The first was put forward by Agrawal and Srikant [1], who
also developed a generalized and refined algorithm called
GSP (Generalized Sequential Patterns) [23], based on the
Apriori property [2]. Since then, several sequential pattern
mining algorithms have also been proposed for performance
improvements [32, 8, 27]. Before describing them, we will
introduce some additional notation and some definitions of
frequent pattern mining.

3.2 Problem definition
In [28], the problem of frequent pattern mining is defined

as follows:

Definition 1 (Sequential Pattern Mining). Let I =
{i1, i2, ..., in} be a set of items. A sequence S is an ordered
list of events, denoted by ⟨e1, e2, ..., em⟩, where ei is an item,
that is ei ∈ I for 1 ≤ i ≤ m. A sequence can also be written
as e1, e2, ..., em.

An event ei corresponds to a sensor state. For example, ei =
MotionSensorON , or ei = MotionSensorOFF . From the
definition, an item can occur multiple times in different
events of a sequence. An event is associated with a times-
tamp which indicates the occurrence time of the event. For
example, (e1, 10) means that the event e1 occurs at time
t = 10.

The length of a sequence is determined by the number
of events composing it. A sequence of length l is called an
l−sequence. For example, (e1, 10)(e2, 20)(e3, 30)(e2, 40)(e4, 50)
is a 5-sequence.

A sequence Sa = a1, a2, ..., an is contained in another se-
quence Sb = b1, b2, ..., bm if there exist integers 1 ≤ i1 ≤
i2 ≤ ... ≤ in ≤ m such that a1 = bi1, a2 = bi2, ..., an = bin.
If Sa is contained in Sb, then Sa is called a subsequence
of Sb and Sb a supersequence of Sa, denoted by Sa ⊑ Sb.

An input sequence database D is a set of tuples (sid,S),
where sid is a sequence identifier and S an input sequence.
The number of tuples in D is called the base size of D,
denoted by |D|. A tuple (sid,S) is said to contain a sequence
Sα if S is a supersequence of Sα.

21

The absolute support of a sequence Sα in D is the num-
ber of tuples that contain Sα, denoted by supD(Sα).

Given a specified minimum support called (min-sup), a
sequence Sα is a frequent sequence on D if supD(Sα) ≥
min-sup.

Sequential pattern mining is the process that allows the
discovery of all patterns with a particular significance. In
our case, these patterns are called episodes. An episode
is a collection of events that occur relatively close to each
other in a given partial order [18]. The concept of episode
discovery was first introduced by H. Mannila [18]. Formally,
the episode concept is defined as follows:

Definition 2 (Episode). An episode α is defined by a
triple, (Vα,≤α, gα), where Vα is a collection of nodes, ≤α

is a partial order on Vα and gα : Vα → E is a map that
associates each node with an event type from a finite set of
events E.

The episode α is parallel if the partial order relation ≤
is trivial (or empty). The episode α is serial if the partial
order relation ≤ is a total order.

The measure of how often an episode occurs in an event
sequence is called the episode frequency. Several methods
for defining the episode frequency exist in the literature [19,
18]. An episode is considered interesting if it occurs suf-
ficiently often in the event sequence. In our paper, the
episode frequency is defined as the number of occurrences
of the episode. Figure 2 shows an example of a frequent
episode in an event sequence, where ei is an event and ti is
the occurrence time of the event.

Figure 2: Frequent episode “e1e2e3”

Our goal is to identify the person among the others living
in the same environment and to distinguish him or her from
the others. For this purpose, our approach uses frequent
patterns as a key solution to characterize the person, first,
and then to distinguish him or her from the others.

3.3 Algorithm
This section presents our proposed algorithm for person

identification. Our algorithm is composed of three main
phases. The first phase is episode generation. The second
is the attribution of weights to the frequent episodes gener-
ated in the first phase and the construction of the frequent-
episode weight matrix (FEWM). Finally, in the third phase,
FEWM is provided to a classification algorithm.

Algorithm 1 requires the following inputs: the sequence
database D, the minimum support threshold min-sup de-
fined by the user, and the length N of the episodes to be
generated (for example, N=5 for episodes of length 5). The
output of the algorithm is the FEWM matrix.

The steps of the algorithm 1 are described in detail below.

Step 1:

In this step, we parse all sequences in the sequence database
using the Apriori algorithm, in order to extract frequent

Algorithm 1 Person identification algorithm

Inputs:
- Sequence database D = {S1,S2, ...,Sm};
- Minimum support threshold min-sup;
- Length N of episodes to be generated;
Outputs:
- FEWM matrix;
Steps:
1: Parse the sequence database to extract frequent

episodes using Apriori algorithm;
2: Extract the frequencies of the generated episodes for each

sequence in the database, and build the frequent episodes
frequency matrix (FEFM);

3: Update the FEFM matrix by attributing weights to
frequent episodes, and construct the FEWM matrix;

4: Return FEWM;
5: Classify (FEWM)

episodes. The extracted frequent episodes are used as in-
put for the next step. As mentioned previously, an episode’s
frequency indicates how often the episode occurs in the se-
quence database. There are many ways to define the episode
frequency. For example, in [19], the authors defined the
episode frequency as the number of fixed-width sliding win-
dows over the time where each contains an occurrence of the
episode. [15] proposed a frequency measure based on non-
overlapped occurrences. The standard approach used for
frequent episode discovery is to use an Apriori-style level-
wise procedure. Starting with frequent episodes of size 1
(events), frequent episodes of greater size are then obtained
until no more frequent episodes can be found. Two steps
are involved at each level: a candidate generation step and
a frequency counting step.

For simplicity in the implementation part of this step, we
used the TDMiner tool2, which is a temporal data mining
tool developed in java, based on a frequent episode frame-
work. We used the TDMiner tool to count the episode fre-
quency, based on the Apriori-style level-wise procedure, us-
ing the fast non-overlapped count algorithm mentioned ear-
lier. The TDMiner tool returns frequent episodes of length
1, 2, ..., N (N is specified by the user), with the correspond-
ing frequencies. These results are stored in separate files.

The following example shows how episodes are extracted
from an event sequence. Consider the following event se-
quence:

• {(e1, 10), (e2, 20), (e1, 32), (e3, 35), (e1, 50), (e2, 70)}
Let min-sup = 2 be the minimum support specified by the
user. The episodes of length 1 that will be extracted are e1

and e2, given their respective frequencies, 3 ≥ 2, and 2 ≥ 2.
In the same way, there are a total of four occurrences of the
episode e1e2 of length 2. We list them here:

1. {(e1, 10)(e2, 20)}

2. {(e1, 10)(e2, 70)}

3. {(e1, 32)(e2, 70)}

4. {(e1, 50)(e2, 70)}
The remaining episodes of length 2 and those of greater size
are extracted in the same way. The frequency of an episode
is computed in each sequence in the database.
2http://neural-code.cs.vt.edu/index.html

22

Step 2:

This step uses the episodes extracted in step 1 to build the
FEFM matrix. We implemented an application that parses
the generated episodes, extracts their frequencies, and builds
the FEFM matrix. The columns of this matrix are the
episodes generated in step 1, and the rows correspond to the
sequences in the sequence database. The greater the episode
size, the better the explanation provided by the episode as to
the person’s behavior, and the more helpful it is in discrimi-
nating the person’s behavior from that of others. Therefore,
in our approach we are interested in long episodes, in order
to perfectly characterize the person’s behavior. In generat-
ing episodes, the Apriori algorithm takes into account the
different possibilities for the order relation between events.
The reason for considering all these possibilities is that the
same task performed by a user in the ubiquitous environ-
ment can take several forms (episodes). For example, sev-
eral sequences of events correspond to the action “add sugar
to a cup of coffee”. It could be (take spoon, take sugar,
pour the sugar into the cup of coffee), or (take sugar, take
spoon, pour the sugar into the cup of coffee). This allows
us to study the different behaviors of users when performing
tasks.

Step 3:

This step constitutes the core of our algorithm. The episode
weight computation as such is performed in this step. Af-
ter episode extraction, we have a set of episodes with their
corresponding frequencies in each event sequence. Episodes
associated with a high frequency are not necessarily more
significant than episodes with a low frequency in the event
sequence. It is thus important to identify the significance of
each frequent episode extracted in step 1.

Given the variability of human behavior, the significance
of an episode is based on its significance with respect to the
event sequence as well as the class to which it belongs. The
significance of an episode with respect to the event sequence,
denoted by SES(E, S), can be obtained by dividing the fre-
quency of the episode, denoted by FE,S , by the total sum of
frequencies of all episodes contained in the event sequence.
In the same way, the significance of an episode with respect
to the class, denoted by SEC(E, C), is obtained by sum-
ming up the SES(E, S) in every event sequence. The fol-
lowing formulas show the SES(E, S) and SEC(E, C) com-
putations.

SES(E, S) =
FE,S∑

∀FE∈S FEs,S
(1)

where FE denotes a frequent episode, and FEs,S denotes the
frequency of the episode Es contained in the event sequence
S.

SEC(E, C) =
∑

∀S∈C

SES(E, S) (2)

In our case the class C corresponds to a person. Given the
increased number of sensors disseminated in the environ-
ment, and the difference in the person’s behavior, a frequent
episode with a high SEC in one class is not necessarily more
important than an episode with a low SEC in another class.
Therefore, we should normalize the significance of an episode
with respect to a class in order to obtain the normalized
SEC in a class, denoted by NSEC(E, C). We use the fol-
lowing formula to compute the NSEC, where MaxSEC(C)

and MinSEC(C) correspond respectively to the maximum
and minimum of the SEC of the frequent episodes in the
class C. We add 1 to the numerator and denominator to
avoid the case where MaxSEC(C) − MinSEC(C) = 0.

NSEC(E, C) =
SEC(E, C) − MinSEC(C) + 1

MaxSEC(C) − MinSEC(C) + 1
(3)

Once NSEC is calculated for each frequent episode, we up-
date the frequency of each episode by adding the NSEC
of each episode to its frequency. The new frequency ob-
tained is called the weight of the frequent episode, denoted
by WFE(E). The weight of each frequent episode is calcu-
lated by the following formula, which balances the episode
frequency over the class to which the episode belongs:

WFE(E) = FE,S + NSEC(E, C) (4)

The pseudocode for the implementation of the new scoring
function employed to attribute weights to episodes is given
in Algorithm 2.

Algorithm 2 Pseudocode of the employed scoring function

Initialization: Frequent episode frequency matrix
1: for i = 1, ..., Nc (for each class) {
2: for j = 1, ..., Ns (for each sequence in the class) {
3: for k = 1, ..., Ne (for each frequent episode) {
4: - Compute the NSEC (E, C) (compute the

significance of the episode with respect
to the class C) using formula 3.

5: - Compute the weight using formula 4.
6: - Update the FEFM Matrix.
7: - Return the FEWM Matrix.
8: end
9: end
10: end

The result of this step is the completed FEWM matrix,
which will be provided to a classification algorithm in step 5.
As noted earlier, there is only one study reported in the lit-
erature that assigns weights for frequent patterns to classify
sequences [5]. However, this study employs a very simple
scoring function inspired by the work of [26], that computes
the weight by dividing the pattern length minus 1 by the
number of patterns that describe the corresponding class.
This scoring function does not take into account patterns of
length 1. Moreover, it cannot determine the significant pat-
terns in a given sequence. In contrast to this approach, our
approach can be applied to all episodes, can determine the
significant episodes, and gives good classification results.

An example of the content of the FEWM matrix is shown
in Table 2.

Table 2: Example of the FEWM matrix
Ep 1 Ep 2 Ep 3 Ep 4 Ep 5 Ep 6 User

17.6665 21.0001 1.0004 1.0004 2.3336 0.0001 U1
10.0004 12.6665 1.2225 5.0666 3.0333 3.3333 U2
9.0001 12.1666 4.3190 5.0238 5.6654 5.0048 U3

Step 5:

In this step we apply a classification algorithm such as the
decision tree procedure to the FEWM matrix. Note that
other supervised learning algorithms can be applied at this
stage to perform the classification.

23

4. EXPERIMENTS
In this section, we present the datasets obtained from ex-

periments conducted at the Domus laboratory [11] and the
Testbed smart home [12] to validate our approach.

4.1 Description of the Domus smart home
The Domus smart home is a one-bedroom apartment on

the University of Sherbrooke campus. It includes one bed-
room, one bathroom, a kitchen, a dining room, and a living
room. (See Figure 3.)

In this study, we considered the sensors which are already
mounted in the DOMUS apartment. Six zones are defined
to cover the different apartment areas, as shown in Figure 3.
The number of installed sensors varies depending on the zone
of interest. The Domus smart home apartment is equipped
with the following sensor categories:

• Infrared (IR) movement detectors: These cover a zone
or a part of a zone; for example, in the dining room
and living room there is only one IR detector that cov-
ers the entire zone, whereas three others are installed
in the kitchen, covering the oven, the sink, and the
toaster. These sensors provide the user’s location in a
zone.

• Pressure detector in the form of tactile carpeting: This
sensor, placed in the entrance hall, detects the user
moving between the bedroom and living room. There
are two paths connecting these two zones: through the
kitchen or the entrance hall.

• Light switches: These sensors send an event every time
the occupant turns the lights on or off.

• Door contacts: These sensors are placed on the doors,
and send an event related to the door state (open or
closed).

• Closet contacts: The same as door contacts, these are
placed on the cupboards and fridge. They provide an
event when their state (open or closed) is changed.

• Flow meters: These provide the states of the taps and
the flush toilet. Two are mounted on the cold and hot
water taps of the kitchen sink, one on the washbasin
cold water tap and another in the flush toilet. They
send an event when the tap is opened or closed or the
flush toilet is used.

4.2 Experiments Scenario
Six adults (Master’s and Ph.D. students at the Univer-

sity of Sherbrooke) participated in these experiments, which
evaluated early morning routines (grooming, breakfast), cor-
responding to basic tasks of everyday living. Two series
of experiments were performed in the Domus smart home
apartment. In the first experiments (series 1), the user was
asked to perform the early morning routine as he would nor-
mally do it at home. In the second set (series 2) he was asked
to repeat the same routine, with the introduction of a con-
straint. The constraint involved learning a tea recipe which
takes at most 10 minutes. In series 1, the user came 10 times
to the laboratory over two consecutive weeks. After 2 weeks’
break, the user was asked to come for 5 days in one week to
perform series 2. In both series, the user was free to use any

Figure 3: Domus smart home plan

equipment available in the apartment, and to determine the
order of the activities composing his or her routine. Each
experiment lasted about 45 minutes. Data were recorded for
each user in XML format, using our system recorder frame-
work developed in the Domus laboratory.

5. EXPERIMENTAL RESULTS
We conducted our experiments under the Weka framework

(version 3.7.0) [30]. The purpose of this experiment was to
observe the general performance of our algorithm and its ac-
curacy in practical environments. The dataset is composed
of 55 sequences corresponding to series 1 (5 sequences were
damaged and therefore excluded from the experiments), and
30 sequences corresponding to series 2. The length of se-
quences varies between 100 and 470 events for series 1 and
between 210 and 680 events for series 2. The number of sen-
sors installed in the Domus smart home apartment is 36, cor-
responding to 72 sensor states (ON, OFF, OPEN, CLOSED,
..., etc), in addition to one sensor (pressure detector) with a
single state, for a total of 73 sensor states. We used decision
trees as our classification algorithm. In fact, the decision
tree procedure is one of the most widely used techniques in
event sequence classification [25], and its classification time
is very low. We used different episode lengths (3, 4, and
5) in order to ensure the efficiency of our algorithm and a
reliable evaluation of our approach. The number of episodes
used in our experiments depends on the events contained in
each sequence. Table 3 shows the minimum and maximum
number of episodes extracted in each dataset. In order to
enrich our evaluation, we also used another dataset obtained
from the Testbed smart home at Washington State Univer-
sity [12]. The dataset corresponds to data gathered from
the Testbed smart home, where two participants performed
daily living activities such as those involved in breakfast
and grooming. More than 160 sensor states are involved
when performing these activities. The dataset is composed
of 62 sequences gathered during the breakfast activity, and
84 sequences during the grooming activity. The lengths of
the sequences vary between 25 and 491 and between 36 and

24

Table 3: Minimum and maximum number of episodes extracted in each dataset (k = Kilo)
DataSet Episode Length

N=3 N=4 N=5
Domus Series 1 [0.18 k, 16.533 k] [0.264 k, 69.501 k] [0.337 k, 4.646 k]
Domus Series 2 [1.647 k, 83. 874 k] [0.04 k, 5.035 k] [0.307 k, 26.929 k]
Testbed Breakfast [0.04 k, 1.985 k] [0.036 k, 9.679 k] [0.119 k, 57.031 k]
Testbed Grooming [0.014 k, 1.332 k] [0.023 k, 3.034] [0.031 k, 55.24 k]

432 events per sequence for breakfast and grooming, respec-
tively.

Additional tests using the frequency-based (FB) approach
[10] and the SubDue framework [20] were performed for com-
parison purposes, using the same datasets. In the FB ap-
proach, the frequency of an episode corresponds to the num-
ber of times the episode occurs in the event sequence. There
is no scoring function applied to the episode frequency in the
FB approach. In our experiments, we used a 10-fold cross-
validation strategy to perform the classification.

5.1 SubDue framework
For the SubDue framework, we implemented a program

that generates graphs from the event sequences. The re-
sulting graphs are the input of the SubDue framework. For
example, for the following event sequence composed of three
sensors,

• 2009-05-06 08:40:10 S1 ON

• 2009-05-06 08:42:43 S2 OFF

• 2009-05-06 08:45:33 S3 OPEN

the following graph representation is generated:

Figure 4: Example of graph representation of event
sequence data

In Figure 4, the blue vertices represent sensors (S1, S2, S3,...,
etc.), and the red vertices represent the time when the sen-
sor is activated (08:40, 08:42, 08:45,..., etc.). Edges between
blue and red vertices represent the state of the sensor be-
ing activated, whereas edges between blue vertices represent
consecutive events. More details about the graph represen-
tation in the SubDue framework can be found in [20]. We
employed the one-against-all technique for training and clas-
sification, using 50% of the data for training and 50% for
the test. We applied the SubDue framework on the Domus
dataset for six persons, and on the Testbed dataset for two
persons. The results of the classification using the three
approaches on these datasets are shown in Table 4.

Figures 6(a) and 6(b) show the classification accuracy of
our approach and the FB approach, when episode length is
varied. Figure 5 shows the classification accuracy obtained
in the SubDue framework.

 0

 20

 40

 60

 80

 100

Testbed GroomingTestbed BreakfastDomus Series 2Domus Series 1

A
c
c
u

ra
c
y
 (

%
)

DataSet

Figure 5: Classification accuracy in SubDue frame-
work

As we can see from figures 6(a), 6(b) and 5, the identi-
fication accuracy of our approach is generally between 93
and 100, which is a high accuracy score compared to the
FB approach and the SubDue framework. This is further
confirmation for the effectiveness of our approach.

A comparison of the classification results obtained for each
dataset using the three approaches is shown in figures 7(a),
7(b), 7(c) and 7(d). The SubDue framework performs poorly
in a multi-class problem (Domus dataset with 6 persons),
and relatively well in a bi-class problem (Testbed dataset
with 2 persons).

From figures 7(a), 7(b), 7(c) and 7(d), we observe that
episodes of greater size yield relatively higher accuracy than
those of smaller size. In practice, the larger the episode, the
better it reflects the task being performed, and the more
understanding is provided. The results obtained in our ex-
periments confirm this observation.

6. DISCUSSION
Our approach is aimed at identifying persons in a ubiqui-

tous environment. Given the variability of human behavior,
characterizing a person from sensor states contained in a
sequence is a challenging and intricate task. By using the
frequent episode principle and exploiting its inherent ben-
efits, namely episode discovery and temporal constraints,
identification can be accomplished by considering the fre-
quent episodes extracted from event sequences. However,
using frequent episodes alone, without deep analysis and
study, does not necessarily guarantee good identification, as
shown in figure 6(b). In this context, therefore, additional
processing and analysis of frequent episodes are necessary
and important.

In our approach, the frequent episodes extracted are sup-
ported by an additional piece of information: the weight
of the episode. If an episode is less frequent in a given se-
quence and more frequent in other sequences of the same

25

Table 4: Classification accuracy using our approach, FB approach and SubDue framework
Accuracy (%)

Our approach Frequency Based approach SubDue
Dataset Episode Length Episode Length framework

N=3 N=4 N=5 N=3 N=4 N=5
Domus Series 1 94.11 100 98.11 84.16 82.69 72.72 16.66
Domus Series 2 96.55 93.10 96.29 37.93 44.82 33.33 33.33
Testbed Breakfast 100 100 100 62.50 66.66 60.00 50.00
Testbed Grooming 100 100 100 47.50 55.00 59.00 50.00

 0

 20

 40

 60

 80

 100

 120

3 4 5

A
c
c
u

ra
c
y
 (

%
)

Episode Length

Domus Series 1

Domus Series 2

Testbed Breakfast

Testbed Grooming

(a) Our approach

 0

 20

 40

 60

 80

 100

3 4 5

A
c
c
u

ra
c
y
 (

%
)

Episode Length

Domus Series 1
Domus Series 2

Testbed Breakfast
Testbed Grooming

(b) FB approach

Figure 6: Classification accuracy in our approach and FB approach

 0

 20

 40

 60

 80

 100

3 4 5

A
c
c
u

ra
c
y
 (

%
)

Episode Length

Domus-Series-1-SubDue
Domus-Series-1-FB-approach

Domus-Series-1-Our-approach

(a) Domus Series 1

 0

 20

 40

 60

 80

 100

3 4 5

A
c
c
u

ra
c
y
 (

%
)

Episode Length

Domus-Series-2-SubDue
Domus-Series-2-FB-approach

Domus-Series-2-Our-approach

(b) Domus Series 2

 0

 20

 40

 60

 80

 100

3 4 5

A
c
c
u

ra
c
y
 (

%
)

Episode Length

Testbed-Breakfast-SubDue
Testbed-Breakfast-FB-approach

Testbed-Breakfast-Our-approach

(c) Testbed Breakfast

 0

 20

 40

 60

 80

 100

3 4 5

A
c
c
u

ra
c
y
 (

%
)

Episode Length

Testbed-Grooming-SubDue
Testbed-Grooming-FB-approach

Testbed-Grooming-Our-approach

(d) Testbed Grooming

Figure 7: Comparison of the classification accuracy in our approach, FB approach and SubDue framework

26

class, the assignment of weights allows us to balance the
episode frequency by increasing the lowest frequency, mak-
ing this episode more important. The more important the
episode, the higher its weight, and the more discriminative it
will be. As shown in Figure 6(a), the assignment of weights
significantly improves the classification results.

The other benefit of weighting is the detection of interest-
ing (significant) episodes. By significant episodes, we mean
those that can best characterize the person and have the
most discriminative power. This direction, which was not
exploited in the present study, is the subject of our ongoing
work. Indeed, the assignment of weights to episodes poses
two challenges: detecting significant episodes, and reducing
the dimensionality of the space using only these significant
episodes. The development of real-time applications with a
low dimensionality space thus constitutes a major contribu-
tion to the ubiquitous environment and KDD communities.

Our approach has broad social, economic and academic
impacts. It can be used in ubiquitous environments such as
smart homes and smart hospitals to characterize the inhabi-
tants and adapt a variety of tasks accordingly. Our approach
can also be used to characterize persons and products in su-
permarkets and study the purchase trends for each product.
Finally, our approach contributes to the literature by intro-
ducing new algorithms and methods that can be used by the
scientific community for teaching and/or research purposes.

7. CONCLUSION
In this paper, we presented a new efficient algorithm for

person identification in ubiquitous environments, based on
frequent pattern mining. Specifically, we analyzed data gath-
ered from two ubiquitous environments: the Domus and
Testbed smart homes. In order to identify persons, we first
extracted frequent episodes from the datasets. Next, we as-
signed weights to these episodes. Finally, we applied a classi-
fication algorithm to classify the frequent episodes. We con-
cluded that episode weighting is more appropriate than the
episode frequency-based approach, and achieves high classi-
fication accuracy.

We illustrated the effectiveness and suitability of our ap-
proach on multiple datasets extracted from two smart homes,
Domus and Testbed. The experimental results show that
our approach is able to identify persons with a significantly
higher accuracy than the frequency-based approach or the
SubDue framework. Moreover, we tested our approach on
different episode lengths, and observed that episodes of greater
size yield relatively better accuracy than those of smaller
size. In addition, our algorithm is based on sequential pat-
tern mining, which can be used in various applications in-
volving large amounts of sequential data, such as protein
classification, temporal sequences, and financial sequences.
We used our approach to detect significant episodes in the
event sequences. Indeed, the weights assigned to frequent
episodes are used to distinguish significant episodes from
non-significant ones. Episodes with greater weights are more
significant than those with lower weights. Therefore, a per-
son’s behavior can be characterized using significant episodes
that can distinguish him or her from others.

8. KNOWLEDGEMENT
The authors wish to thank Virginie Charette, a profes-

sor at the Department of Mathematics of the University of

Sherbrooke for her help.

9. REFERENCES
[1] R. Agrawal and R. Srikant. Mining sequential

patterns. In proceedings of the International
Conference on Data Engineering,, pages 3–14, 1995.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast
algorithms for mining association rules in large
databases. In Proceedings of the 20th International
Conference on Very Large Data Bases, pages 487–499,
1994.

[3] M. Kellner B. Ivanov, H. Ruser. Presence detection
and person identification in smart homes. In
proceedings of the International Conference of Sensors
and Systems, pages 80–85, 2002.

[4] Keni Bernardin and Rainer Stiefelhagen. Audio-visual
multi-person tracking and identification for smart
environments. In Proceedings of the 15th international
conference on Multimedia, pages 661–670, 2007.

[5] Themis P. Exarchos, Markos G. Tsipouras, Costas
Papaloukas, and Dimitrios I. Fotiadis. A two-stage
methodology for sequence classification based on
sequential pattern mining and optimization. Data
Knowl. Eng., 66(3):467–487, 2008.

[6] Peter H. N. de With Fei Zuo. Real-time face
recognition for smart home applications. In
proceedings of the International Conference on
Consumer Electronics, pages 183–190, 2005.

[7] Y Guang-Zhong. Body Sensor Networks.
Springer-Verlag, London, 2006.

[8] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Qiming
Chen, Umeshwar Dayal, and Mei-Chun Hsu. Freespan:
frequent pattern-projected sequential pattern mining.
In Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 355–359, 2000.

[9] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao.
Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data
Min. Knowl. Discov., 8(1):53–87, 2004.

[10] Edwin O. Heierman and Diane J. Cook. Improving
home automation by discovering regularly occurring
device usage patterns. In Proceedings of the Third
IEEE International Conference on Data Mining, page
537, 2003.

[11] Bauchet J., Giroux S., Pigot H., Lussier-Desrochers,
and D. Lachapelle. Pervasive assistance for people
with intellectual disabilities in smart homes : A case
study on meal preparation. International Journal of
Assistive Robotics and Mechatronics, 9(4), 2008.

[12] Cook D J and Schmitter-Edgecombe M. Assessing the
quality of activities in a smart environment. Methods
of Information in Medicine, 48(5), 2009.

[13] A.K. Jain, Lin Hong, S. Pankanti, and R. Bolle. An
identity-authentication system using fingerprints.
Proceedings of the IEEE, 85(9):1365–1388, Sep 1997.

[14] Anil Jain, Lin Hong, and Sharath Pankanti. Biometric
identification. Commun. ACM, 43(2):90–98, 2000.

[15] Srivatsan Laxman, P. S. Sastry, and K. P.
Unnikrishnan. A fast algorithm for finding frequent
episodes in event streams. In Proceedings of the KDD,
pages 410–419, 2007.

27

[16] Chang-Rong Lin, Ning-Han Liu, Yi-Hung Wu, and
Arbee L. P. Chen. Music classification using
significant repeating patterns. In Proceedings of
DASFAA, pages 506–518, 2004.

[17] James J. Little and Jeffrey E. Boyd. Recognizing
people by their gait: The shape of motion. Videre:
Journal of Computer Vision Research, 1:1–33, 1998.

[18] Heikki Mannila, Hannu Toivonen, and A. Inkeri
Verkamo. Discovering frequent episodes in sequences.
In KDD, pages 210–215, 1995.

[19] Heikki Mannila, Hannu Toivonen, and A. Inkeri
Verkamo. Discovery of frequent episodes in event
sequences. Data Min. Knowl. Discov., 1(3):259–289,
1997.

[20] Ritesh Mehta, Diane J. Cook, and Lawrence B.
Holder. Identifying inhabitants of an intelligent
environment using a graph-based data mining system.
In Proceedings od FLAIRS Conference, pages 314–318,
2003.

[21] Mika Paajanen, Jukka Lekkala, and Kari Kirjavainen.
Electromechanical film (emfi) – a new multipurpose
electret material. Sensors and Actuators A: Physical,
84(1-2):95 – 102, 2000.

[22] Parisa Rashidi and Diane J. Cook. An adaptive sensor
mining framework for pervasive computing
applications. In Proceedings of the International
Workshop on Knowledge Discovery from Sensor
Data(Sensor-KDD), pages 41–49, 2008.

[23] Ramakrishnan Srikant and Rakesh Agrawal. Mining
sequential patterns: Generalizations and performance
improvements. In Peter M. G. Apers, Mokrane
Bouzeghoub, and Georges Gardarin, editors,
Proceedings of the 5th Int. Conf. Extending Database
Technology, volume 1057, pages 3–17. Springer-Verlag,
1996.

[24] Jaakko Suutala and Juha Röning. Methods for person
identification on a pressure-sensitive floor:

Experiments with multiple classifiers and reject
option. Information Fusion, 9(1):21–40, 2008.

[25] Vincent S. Tseng and Chao-Hui Lee. Effective
temporal data classification by integrating sequential
pattern mining and probabilistic induction. Expert
Syst. Appl., 36(5):9524–9532, 2009.

[26] Vincent Shin-Mu Tseng and Chao-Hui Lee. Cbs: A
new classification method by using sequential
patterns. In Proceedings of SDM, 2005.

[27] J. Wang and J. Han. Bide: efficient mining of frequent
closed sequences. In Proceedings of the 20th
International Conference on Data Engineering, pages
79–90, 2004.

[28] Jianyong Wang, Jiawei Han, and Chun Li. Frequent
closed sequence mining without candidate
maintenance. IEEE Trans. Knowl. Data Eng.,
19(8):1042–1056, 2007.

[29] Mark Weiser. The computer for the 21st century.
SIGMOBILE Mobile Computing and Communications
Review, 3(3):3–11, 1999.

[30] Ian H. Witten and Eibe Frank. Data Mining:
Practical Machine Learning Tools and Techniques with
Java Implementation. Morgan Kaufmann, 2000.

[31] Christopher Richard Wren, Ali Azarbayejani, Trevor
Darrell, and Alex Paul Pentland. Pfinder: Real-time

tracking of the human body. IEEE Transactions on
Pattern Analysis and Machine Intelligence,
19(7):780–785, 1997.

[32] Mohammed J. Zaki. Spade: An efficient algorithm for
mining frequent sequences. Machine Learning,
42(1/2):31–60, 2001.

[33] Shuai Zhang, Sally I. McClean, Bryan W. Scotney,
Xin Hong, Chris D. Nugent, and Maurice D.
Mulvenna. Decision support for alzheimer’s patients in
smart homes. In proceedings of the IEEE international
Symposium on Computer-Based Medical Systems,
pages 236–241, 2008.

28

Activity Recognition using Actigraph Sensor
Raghavendiran Srinivasan

Washington State University

Pullman, WA 99164
USA

rsriniva@eecs.wsu.edu

Chao Chen
Washington State University

Pullman, WA 99164
USA

cchen@eecs.wsu.edu

Diane J. Cook
Washington State University

Pullman, WA 99164
USA

cook@eecs.wsu.edu

ABSTRACT
Numerous accelerometers are being extensively used in the

recognition of simple ambulatory activities. Using wearable

sensors for activity recognition is the latest topic of interest in

smart home research. We use an Actigraph watch with an

embedded accelerometer sensor to recognize real-life activities

done in a home. Real-life activities include the set of Activities

of Daily Living (ADL). ADLs are the crucial activities we

perform everyday in our homes. Actigraph watches have been

profusely used in sleep studies to determine the sleep/wake

cycles and also the quality of sleep. In this paper, we investigate

the possibility of using Actigraph watches to recognize activities.

The data collected from an Actigraph watch was analyzed to

predict ADLs (Activities of Daily Living). We apply machine

learning algorithms to the Actigraph data to predict the ADLs.

Also, a comparative study of activity prediction accuracy

obtained from four machine learning algorithms is discussed.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications – data

mining; I.2.6 [Artificial Intelligent]: Learning – knowledge

acquisition; H.4.m [Information Systems]: Information system

Application – Miscellaneous.

General Terms

Algorithms, Performance, Experimentation, Human Factors.

Keywords
ADL, Activity, Actigraph, Wearable Sensor, Smart Home.

1. INTRODUCTION
As the world's population ages [1], those suffering from diseases

associated with dementia will increase. Smart homes can assist

their residents by acting as a cognitive prosthesis, by handling

various appliances/objects and also by facilitating emergency

communication. Being able to automate activity recognition from

human motion patterns using unobtrusive wearable sensors can

be useful in monitoring older adults in their homes and keeping

track of their Activities of Daily Living (ADL) and behavioral

changes [2]. This could lead to a better understanding of

numerous medical conditions and treatments. Wireless sensors

provide continuous monitoring capability that traditional

methodology lacks. Also in addition, the assessments performed

in the clinical setting may not give the actual representation of

the patient’s behavior. Real life assessments can provide a better

understanding of the patient than assessments performed in a

clinical setting. Health care effectiveness in several situations

has improved significantly using current wireless communication

technologies. Traditionally, the sensors for these instruments are

attached to the patient by wires. This sequentially makes the

patient become bed-bound. In addition, whenever a patient needs

to be moved, all monitoring devices have to be disconnected and

then reconnected later. In current technological advancements, all

of these time-consuming tasks are terminated and patients could

be liberated from instrumentation and bed by wireless

technology. The future aims at the integration of the existing

smart home sensors with pervasive, wireless networks. They will

co-exist with the installed infrastructure, augmenting data

collection and ultimately providing real-time responses. Also,

integrated wireless devices could communicate with a gateway

that connects to the medical center’s network and transmits data

to health data stores for monitoring, control, or evaluating in real

time.

Unobtrusive wearable sensors will allow vast amounts of data to

be collected and mined for next-generation clinical trials. By

using wearable sensors, data will be collected and reported

automatically, reducing the cost and inconvenience of regular

visits to the physician. With the growing technological

advancements, we aim to provide telecare which allows elderly

people to remain living in their own home. Furthermore,

researchers are also aiming at integrating the knowledge gained

from wearable (wireless) sensors with the wired smart home

sensors. This will give a big picture of the physical behavior of

the person. Also, by integrating this knowledge with information

collected by object sensors we can get a picture of the person’s

physical interaction with the surroundings. By collecting this data

for a longer duration, we can predict physical interactions and

provide necessary prompting when the person forgets to do an

activity. Also, wearable sensors could be used to provide accurate

measures of motor abilities in the home and community settings.

Their use could tremendously facilitate the implementation of

tele-rehabilitation protocols. The wearable devices must also be

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SensorKDD’10, July 25, 2010, Washington, DC, USA.

Copyright 2010 ACM 978-1-4503-0224-1…$10.00.

29

lightweight enough to be worn without much inconvenience.

With demographic changes of the aging population and an

increasing number of people living alone, smart homes are set to

play an important role in maintaining the independence and

improving the quality of life for elderly persons at a lower cost.

The present development of the demography of elderly people in

the U.S as well as the other parts of the world will generate a

shortage of caretakers for elderly people in the near future. The

new concept of health monitoring is advanced by which health

parameters are automatically monitored at home without

disturbing daily activities. The recording of sensor data over

extended periods of time is necessary to design and implement

an efficient activity recognition algorithm.

In Section 2, we analyze previous works done in the field of

wireless wearable sensors and activity recognition. Section 3

describes the Actigraph watch which was used in our

experimentation. Section 4 explains the process of feature

extraction from the datasets. Section 5 gives a brief description

of the machine learning algorithms we considered for testing our

dataset. In Section 6, we present the results of our experiments

and compare the accuracy and time performance of activity

prediction by different algorithms.

2. RELATED WORKS
Actigraph watches are used as effective data collection tools in

the study and clinical assessment of sleep disorders [3]. Apart

from Actigraph, various other accelerometer-based sensors have

been used to detect activity behaviors. The eWatch system [4]

proposes a wearable sensor and computing platform for context

aware research for activity recognition and a related health

monitoring system. Assessing sleep disruption is the most

significant contribution that wrist Actigraphy has made.

Previously, Actigraph sensors have been used primarily for sleep

studies. The Actigraph device has also been used in finding

circadian activity rhythms in healthy individuals as well as

people with primary and co-morbid insomnia. Explicit focus on

identifying which location the wearable has to be placed was

concentrated by many researchers. By placing wearable sensors

at different locations, researchers have tried to evaluate the

accuracy of activity recognition [5][6]. Also, predicting the

activity based on the user-annotated data has been carried using

wearable Biaxial accelerometers [7]. Further, the prediction of

complex activities performed inside a woodshop was recognized

by attaching wearable accelerometers and a microphone on the

human body [8].

Today most wearable systems are based on conventional

notebook architectures integrated into some sort of belt or a

device tied around the body that will make the participant to be

easily spotted among the common public. Embedding sensors

into garments is an idea that was first pursued by a research team

at Georgia Tech. Research work by this team eventually led to a

wearable system referred to as the Smart Shirt [9]. This approach

appears to be ideal for very long-term monitoring (i.e. months to

years) of individuals in the home and community settings.

Alarmnet [10] being developed at University of Virginia is also

targeting remote healthcare monitoring [11]. Predicting activities

using tri-axial accelerometers is one of the most commonly used

techniques. To identify activities using tri-axial accelerometers is

done by formulating the activity recognition as a classification

problem [12]. This approach also compares the performance of

base-level and meta-level classifiers. Also, predicting the activity

level from the energy expenditure is an extension of the

application of accelerometers. The activity levels have been

predicted using the energy expenditure data collected from tri-

axial accelerometers [13].

Recognizing activities with wrist-worn watches is the latest area

of focus due to its portability and ease of use. Further these

devices do not draw unwanted attention to the people who wear

them. Wearable health monitoring systems integrated into a

telemedicine system represent novel information technology that

will be able to support early detection of abnormal conditions

and prevention of its serious consequences.

3. ACTIGRAPH SENSOR DESCRIPTION
Actigraphs are wristwatch-like devices with an accelerometer

inside. They are small, portable devices that detect physical

motion, generate an internal signal each time they are moved,

and store that information. Typically, it is used for measuring

general or random motor restlessness in order to evaluate the

rest-activity cycle. Actigraphy is a method in which the user

places accelerometers on different parts of the body to measure

physical acceleration at each location and to estimate the level of

human activity. Actigraphy is a relatively non-invasive method of

monitoring human rest/activity cycles. Actigraphy has been

shown to best estimate sleep duration. In sleep research

applications the periods of low activity are considered as sleep.

Actigraphs are generally worn on the wrist of the non-dominant

arm. They may be worn for weeks at a time. The Actigraph watch

used in our experiments is the Motionlogger Actigraph. This

sensor can collect data for 21 days. Once the data is collected, it

is downloaded to a computer. Actigraph devices are very

practical, because of their low power consumption and the small

size of the electronic components. The accelerometer records

movement that will indicate when someone is active and quiet. It

should be worn for 24-hours regardless of the activity. It is

waterproof and can be worn in the shower, hot tub or when

washing dishes. It can also be worn while swimming which

involves partial submersion.

 Figure 1. Actigraph wrist watch sensor.

The Motionlogger Actigraph monitor shown in Figure 1,

contains a piezoelectric bimorph-cantilevered beam, which

generates a voltage for each movement made. The voltage

generated is passed on to the Analog circuitry, second essential

element of the Motionlogger circuit. Here, the signal received is

modulated and filtered through a 2-3 Hz bandpass filter. This

conditioned analog signal can be processed in two different ways

based on the mode of operation i.e., either Zero Crossing (ZC)

Mode or the Proportional Integral Mode (PIM). Zero Crossing

30

mode logs the number of times that the acceleration value

exceeds a threshold amount, while PIM mode keeps track of

more basic movement values. The derived information obtained

based on the mode of operation is accumulated over the epoch

and is stored in the memory of the device. Our Motionlogger

Actigraph utilizes an epoch which is of 1 minute duration. The

Actigraph watch should be set in the ZC or PIM mode well

before the participant wears it in the wrist. The mode once set

cannot be changed till the data collection stops. After setting the

sensor in one of the two modes of operation, the time we want to

start the data collection can also be defined with the help of the

Actigraph software [14]. After selecting the start time for the

watch, it is given to the participant. The sensor will be collecting

data for next 21 days from the prescribed time of start. When the

memory gets full, the data collection stops. The Actigraph watch

is connected to a data collection system and the data stored in the

memory of the device is extracted using the Actigraph software.

The memory of the device should be refreshed for further usage.

The Actigraph software also has the capability to generate the

sleep and wake cycles just from the raw data. The software was

hard-coded to predict sleep/wake cycles to a better extent and

reduce the false positives generated by the software. The data

finally got from the software is used for manual annotation.

4. FEATURE EXTRACTION
We plotted Actigraph values for various activities used in our

experiments on a time scale to observe the patterns that are

generated by the different activities. In order to generate these

graphs, we apply curve fitting to Actigraph data using least

squares method [15]. With curve fitting, we try to find the best fit

to a series of data points. It can serve as an aid for data

visualization, to approximate the values when no data are

available, and to express the relationships between different data

points. The line generated will be the pattern that corresponds to

the particular ADL.

 a b

 c d

 Figure 2. Curve fitting of ADLs for ZC values.

(X-axis: time in minutes; Y-axis: ZC value; a. Cooking;

b. Eating; c. Hygiene; d. Watching Movie)

From Figure 2, we can observe that each ADL follows a specific

time-varying pattern. As a result, we hypothesize that we can use

selected machine learning algorithms to recognize each pattern.

The raw dataset was not given as input to the machine learning

algorithms. The raw data extracted from the Actigraph watch

contains only numerical information of the participant’s motion

in the form of ZC values. This value cannot be easily used by

themselves in their raw form to predict activities. We have two

more parameters in the dataset which we can integrate with the

ZC value to extract features. The three parameters in the raw

dataset are thus: Date, Time and ZC value. In order to obtain

even more information from the existing dataset we consider that

fact that the clock time of an activity can vary each time it is

being performed in a real-life scenario. Thus, we extract

additional specific information such as the amount of time spent

for an activity, which hour of a day was the activity performed,

what were the previous & next activities, and so forth. We

extract features [16] from the raw dataset to get the processed

data. The features extracted from the dataset were:

Min ZC value – The minimum zero-crossing value of an activity.

This value is calculated for every instant of the activity.

Max ZC value – The maximum zero-crossing value of an activity

for every instant of the activity.

Sleep status – The sleep/awake status of the participant. This

value is generated through the Actigraph software after

extracting the raw data.

Time length – The amount of time taken for the completion of an

activity. This value is calculated for every instant of the activity.

Begin hour – The time of day is split into a 24 parts with each

part denoting an hour. The begin hour of every activity is

calculated for each occurrence of the activity.

Number of events – The total number of actigraph events per

activity calculated for every instance.

Bin – We discretized the raw ZC value data into five interval

sizes by equal width binning [17].

Total ZC value – The total ZC value obtained for each activity

for every instant.

Pre-Activity –We note every activity’s previous activity.

Post-Activity – The following activity of every activity is taken as

the post activity.

The processed dataset with the value of all the extracted features

was used for our testing. By using the data mining and machine

learning concepts, we can perform pattern recognition to predict

the ADLs.

5. PREDICTION ALGORITHMS
Machine learning algorithms have been used exclusively to learn

and recognize complex patterns and classify objects based on

sensor data. Hence, we use these techniques to identify the

appropriate ADLs. The following parts give a brief description

of four machine learning algorithms used in our experiments.

5.1 BayesNet
Bayesian belief networks are based on the work of the

mathematician and theologian Thomas Bayes. Bayesian belief

networks [18] were introduced by Judea Pearl in 1985. BayesNet

31

belongs to the family of probabilistic graphical models which

represent a set of conditional independence assumptions by a

directed acyclic graph. Each of the variables in the Bayesian

belief network is represented by a node in the graph and the

edges represent direct dependence among the variables. Bayesian

belief networks offer consistent semantics for representing

uncertainty and an intuitive graphical representation of the

interactions between various causes and effects, thus they are a

very effective method of predicting uncertain situations that

depend on cause and effect. ADLs of an individual have a great

extent of uncertainty. Hence, we use the BayesNet for predicting

them.

5.2 Artificial Neural Network
Artificial neural networks (ANNs) [19] are composed of

interconnecting artificial neurons. They are abstract

computational models based on the organizational structure of

the human brain. ANNs provide a general and robust method to

learn a target function from input examples. The multilayer

perceptron (MLP), a type of ANN, is a feedforward artificial

neural network that maps the input to appropriate output. In our

experiments we choose, MLP because it is one of the commonly

used algorithms for any supervised-learning pattern recognition

process.

5.3 Sequential Minimal Optimization
In a traditional Support Vector Machine (SVM), the quadratic

programming problem involves a matrix, whose elements are

equal to the number of training examples. If the training set is

large, the SVM algorithm will use a lot of memory. To solve

such a problem, Sequential Minimal Optimization (SMO) [20]

decomposes the overall quadratic programming problem into a

series of smaller quadratic programming problems. During the

training process, SMO picks a pair of Lagrange multipliers for

every iteration and solves each small quadratic programming

problem, then repeats the same process until it converges to a

solution to the overall quadratic programming problem. SMO

significantly improves scaling of training set size and

computation time for SVMs.

5.4 LogitBoost Ensemble
Boosting is another most commonly used supervised learning

algorithm. Boosting algorithms have become very successful in

machine learning. The idea of boosting is to combine many

"weak" classifiers to create a "strong" classifier. LogitBoost [21]

combines the aspect of AdaBoost (Adaptive Boosting) and

Logistic regression. Considering AdaBoost as a generalized

additive model, if we apply the cost functionalities of Logistic

Regression then we arrive at the LogitBoost algorithm.

6. EXPERIMENTS & RESULTS
In our experiment, we have used the Actigraph watch in the ZC

mode. Previously the ZC mode has been used for detecting sleep

studies. Here we explore its use for activity recognition. The

watch was worn for 21 days by one participant. The participant

noted down the activities of only 17 of the days. So, we

considered only those days of the data. The ADLs performed by

the participant was noted down manually. The participant

performed a well-defined set of activities regularly. After the

data collection stops, the data was extracted from the Actigraph

watch and the dataset was manually annotated. The participant

performed the following set of activities for 17 continuous days:

Hygiene, Cooking, WebCam Chat on Laptop, Working on

Laptop, Watching movies on Laptop, Sleeping and Eating.

Recognition results are calculated using 3-fold cross-validation to

generalize the results. We analyzed recognition results using four

Machine Learning algorithms: 1) LogitBoost, 2) BayesNet, 3)

NeuralNet, and 4) SMO. We use graphs to analyze the

performance of the algorithms and also discuss the overall

accuracy obtained in recognizing all the ADLs using the four

algorithms. We also discuss the accuracy obtained for individual

ADLs using the chosen machine learning techniques. Further, we

plot the accuracy of an algorithm with its execution time to find

the algorithm which runs in optimal time when compared to

others. All the three plots are used to support our conclusion as

to which algorithm outperforms the other three.

From Figure 3, we observe that LogitBoost performs better than

the other three algorithms. This is because of the fact that the

LogicBoost classifier estimates the accuracy by combining the

performance of many “weak” classifiers. We also find that the

next best algorithm is SMO and the accuracy rate is the same for

NeuralNet and BayesNet. We cannot conclude that both of the

algorithms have poorer accuracy than the others. This makes it

very difficult to judge which one is better than other on the basis

of accuracy performance alone.

Figure 3. Overall Accuracy predicted by different

algorithms.

Figure 4 shows the accuracy of each individual activity along the

lines of every classifier used. SMO is not considered to be the

best classifier for this task because it could not adequately

differentiate three activities Watching Movie, Using WebCam

chat and Working on Laptop. The activities Watching Movie and

Using WebCam chat were also classified under working in

Laptop. This prevented the algorithm from becoming the overall

best algorithm. Also, we find that all the algorithms were able to

recognize three activities more efficiently than rest: 1) Cooking,

2) Sleeping, and 3) Eating. The activity Working on Laptop had a

few instances misclassified either as Using WebCam chat or as

Watching Movie in Laptop. This led to the lowered performance

of the Working on Laptop. The ADL which was poorly

recognized by all the algorithms is Watching Movie on a Laptop.

This may be due to varied reasons like the lowered activity level

when the participant watches a slow movie and the raised

activity level when the participant watches a thriller or horror

movie.

32

Figure 4. Individual Accuracy of ADLs predicted by

different algorithms.

In Figure 5, we observe that the BayesNet performs the fastest in

terms of the running time of the algorithm. BayesNet was not the

overall best because it was not able to predict even one instance

of the activity of WatchingMovie. The activity of watching movie

didn’t have a noticable uncertainty in its behavior and also the

algorithm was not able to differentiate between the activities

Watching Movie and Using WebCam Chat.

Figure 5. Execution Time of different algorithms.

Also, NeuralNet is not ranked as our overall best algorithm as it

failed to meet the requirement of smaller execution time. The left

out algorithms are LogitBoost and SMO. However, SMO takes a

running time of 0.23 seconds more than LogitBoost. In this

criterion also, LogitBoost outperforms all other algorithms.

Hence LoogitBoost becomes the overall efficient algorithm for

our activity prediction.

7. FUTURE WORK & CONCLUSION
Constant monitoring using wearable sensors will allow patients

to engage in normal ADLs, rather than relying upon specialized

medical services outside their homes. From the viewpoint of the

industrial sector, the addition of constant monitored data into the

medical databases will allow an integrated analysis of all data to

optimize individualized care and provide knowledge discovery

through various data mining approaches. Typically,

accelerometers are used to consider only simple ambulatory

movements like sitting, standing and walking. In this paper we

have considered complex ambulatory movements. The

ambulatory movements considered are functional Activities of

Daily Living (ADL). We were able to achieve an accuracy of

91.39% using the LogitBoost algorithm. Previous works had

concentrated on using multiple sensors in different body

locations to recognize activities. The main advantage over the

previous works is we have used only one sensor placed in one

location of the body (non-dominant wrist). We will try to use few

more sensors like pulse rate detectors and energy sensors to

predict activities. Continuous monitoring has the capability of

pro diagnosis of disease at early stage of occurrence and it likely

has the potential to provide patients with an increased level of

confidence, which in turn may improve quality of life We are

also planning to integrate wearable sensors with wired sensors

used in the CASAS Smart home to predict activities. In the

CASAS Smart Home, we also aim at using object sensor in a

smart home along with the wearable sensors to predict the

physical behavior of a person in that environment of living and

try to use it to predict the behavior of the same person in another

environment.

REFERENCES
[1] http://www.census.gov/population/www/projections/

[2] Cook, D.J., 2006. Health monitoring and assistance to

support aging in place. Journal of Universal Computer

Science. 12(1): p. 15–29.

[3] de Souza, L., et al., 2003. Further validation of

actigraphy for sleep studies. Sleep. 26(1): p. 81–5.

[4] Maurer, U., et al., 2006. eWatch: a wearable sensor

and notification platform, in Wearable and

Implantable Body Sensor Networks, 2006. BSN 2006.

International Workshop on. p. 4.

[5] Maurer, U., et al., 2006. Activity recognition and

monitoring using multiple sensors on different body

positions, in Wearable and Implantable Body Sensor

Networks. BSN 2006. International Workshop on. p. 4.

[6] Lee, S.W. and K. Mase, 2002. Activity and location

recognition using wearable sensors. IEEE Pervasive

Computing: p. 24–32.

[7] L. Bao and S. S. Intille. 2004. Activity Recognition

from User-Annotated Acceleration Data. In A. Ferscha

and F. Mattern, editors, Pervasive, volume 3001 of

Lecture Notes in Computer Science, pages 1–17.

Springer.

[8] Lukowicz, P., et al., 2004. Recognizing workshop

activity using body worn microphones and

accelerometers. Pervasive Computing: p. 18–32.

[9] Park, S. and S. Jayaraman, 2003. Enhancing the

quality of life through wearable technology. IEEE

Engineering in medicine and biology magazine. 22(3):

p. 41–48.

[10] Wood, A., et al., 2006. ALARM-NET: Wireless sensor

networks for assisted-living and residential

monitoring. University of Virginia Computer Science

Department Technical Report.

[11] Nishkam Ravi, Nikhil Dandekar, Preetham Mysore,

and Michael L. Littman, 2005. “Activity recognition

from accelerometer data.,” in Proceedings, The

33

http://www.census.gov/population/www/projections/

Seventeenth Innovative Applications of Artificial

Intelligence Conference. pp. 1541–1546.

[12] X. Long, B. Yin, and R.M. Aarts, 2009. "Single-

Accelerometer-Based Daily Physical Activity

Classification". 31st Annual International IEEE EMBS

Conference, Minneapolis, MN.

[13] Istepanian, R.S.H., E. Jovanov, and Y.T. Zhang, 2004.

Guest editorial introduction to the special section on

M-health: beyond seamless mobility and global

wireless health-care connectivity. IEEE Transactions

on Information Technology in Biomedicine. 8(4): p.

405–414.

[14] Jean-Louis, G., et al., 1997. The actigraph data

analysis software: I. A novel approach to scoring and

interpreting sleep-wake activity. Perceptual and motor

skills. 85(1): p. 207.

[15] Sage, A.P. and G.W. Masters, 1967. Least-Squares

Curve Fitting and Discrete Optimum Fitting. IEEE

Transactions on Education. 10(1): p. 29–36.

[16] Pirttikangas, S., K. Fujinami, and T. Nakajima, 2006.

Feature selection and activity recognition from

wearable sensors. Ubiquitous Computing Systems: p.

516–527.

[17] Liu, H., et al., 2002. Discretization: An enabling

technique. Data Mining and Knowledge Discovery.

6(4): p. 393–423.

[18] Uusitalo, L., 2007. Advantages and challenges of

Bayesian networks in environmental modelling.

Ecological modelling. 203(3-4): p. 312–318.

[19] Zornetzer, S.F., 1995. An introduction to neural and

electronic networks: Morgan Kaufmann.

[20] Platt, J., 1998. Sequential minimal optimization: A fast

algorithm for training support vector machines..

[21] Schapire, R.E., 1990. The strength of weak

learnability. Machine learning. 5(2): p. 197–227.

34

Network Comprehension by Clustering Streaming Sensors

Pedro Pereira Rodrigues
LIAAD - INESC Porto L.A.
SBIM-FMUP & DCC-FCUP
University of Porto, Portugal
pprodrigues@fc.up.pt

João Gama
LIAAD - INESC Porto L.A.

Faculty of Economics
University of Porto, Portugal

jgama@fep.up.pt
João Araújo

DCC - Faculty of Sciences
University of Porto, Portugal

joao.araujo@dcc.fc.up.pt

Luís Lopes
CRACS - INESC Porto L.A.
DCC - Faculty of Sciences

University of Porto, Portugal
lblopes@dcc.fc.up.pt

ABSTRACT
Sensor network comprehension tries to extract information
about global interaction between sensors by looking at the
data they produce. When no other information is avail-
able to extract, usual knowledge discovery approaches are
based on unsupervised techniques. However, if these tech-
niques require data to be gathered centrally, communication
and storage requirements are often unbounded. The goal of
this paper is to discuss sensor network comprehension tech-
niques, presenting a local algorithm to compute clustering
of sensors at each node, using only neighbors’ centroids, as
an approximation of the global clustering of streaming sen-
sors computed by a centralized process. The clustering al-
gorithm is based on the moving average of each node’s data
over time: the moving average of each node is approximated
using memoryless fading average; clustering is based on the
furthest point algorithm applied to the centroids computed
by the node’s direct neighbors. The algorithm was evaluated
on a state-of-the-art sensor network simulator, measuring
the agreement bewteen local and global clustering. Results
show a high level of agreement between each node’s clus-
tering definitions and the global clustering definition, with
special emphasis on separability agreement. Overall, local
approaches are able to keep a good approximation of the
global clustering, improving the ability to keep global net-
work comprehension at each sensor node, with increased pri-
vacy, and decreased communication and computation load
in the network.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—Algorithms; C.2.4
[Distributed Systems]: Distributed Applications

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SensorKDD’10, July 25, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0224-1 ...$10.00.

General Terms
Algorithms

1. RATIONALE
Sensor networks can include a variable number of small

sensors, with dynamic network topologies and evolvable con-
cepts producing data. In real-world applications, data flows
at huge rates, with information being usually forwarded
throughout the network into a common sink node, being
afterwards available for analysis [7]. However, common ap-
plications usually inspect behaviors of single sensors, look-
ing for threshold-breaking values or failures. To increase
the ability to understand the inner dynamics of the entire
network, deeper knowledge should be extracted.

Knowledge discovery is a wide area of research where
machine learning, data mining and data warehousing tech-
niques converge to the common goal of describing and under-
standing the world. Sensor network comprehension tries to
extract information about global interaction between sen-
sors by looking at the data they produce [32]. When no
other information is available, usual knowledge discovery ap-
proaches are based on unsupervised techniques (e.g. cluster-
ing). However, two different clustering problems exist: clus-
tering data streams and clustering streaming sensors. This
paper addresses clustering of streaming sensors, but the for-
mer problem is nonetheless relevant to discuss in terms of
sensor network comprehension.

In this work we explore different characteristics of sen-
sor networks which define new requirements for knowledge
discovery, with the common goal of extracting some kind of
comprehension about sensor data and sensor networks. This
network comprehension ability is related with both sensor
data clustering and clustering of streaming sensors. A wide
range of techniques already exists to assess these interactions
in centralized scenarios, but the seizable processing abilities
of sensors in distributed algorithms present several benefits
that shall be considered in future designs [31].

Clustering is probably the most frequently used data min-
ing algorithm [19], used in exploratory data analysis. It con-
sists on the process of partitioning data into groups, where
elements in the same group are more similar than elements in
different groups. The main problem in applying clustering
to data streams is that systems should consider data evo-
lution, being able to compress old information and adapt

35

to new concepts. The range of clustering algorithms that
operate online over data streams is wide, including parti-
tional [6, 27] or hierarchical [1, 41], density-based [14] and
grid-based methods [30, 36]. A common connecting feature
is the definition of unit cells or representative points, from
which clustering can be obtained with less computational
costs [1].

Clustering data streams is the task of clustering data flow-
ing from a continuous stream, based on data points similar-
ity [1], aiming to discover structures in data over time [4].
Algorithms usually search for dense regions of the data space,
identifying hot-spots where streaming data sources tend to
produce data [32]. For example, in a sensor network, sen-
sor 1 is at high values when sensor 2 is in mid-range values,
and this happens more often than any other combination.
Clustering streaming sensors is the task of clustering differ-
ent sources of data streams, based on the data series sim-
ilarity [33]. Algorithms aim to find groups of sensors that
behave similarly through time. For example, in the same
sensor network, sensors 1 and 2 are highly correlated in the
sense that when one’s values are increasing the other’s are
also increasing. This is highly related with clustering time
series. Although a lot of research has been done on clustering
subsequences of time series (which raised some controversy
in the data mining community [21,24]), clustering streaming
data sources approaches whole clustering instead, so most of
the existent techniques can be successfully applied, but only
if incremental versions are possible.

From the previous two procedures additional knowledge
can be exploited. Consider mobile sensor networks where
each sensor produces a stream with its current GPS loca-
tion. Clustering the examples would give an indication of
usual dispersion patterns, while clustering the sensors could
give indication of physical binding between sensors, forc-
ing them to move with similar paths. Another application
could rise from temperature/pressure sensors placed around
geographical sites such as volcanoes or seismic faults. Fur-
thermore, the evolution of these clustering definitions is also
relevant. If each sensor’s stream consists of IDs of the sensors
for which this sensor is forwarding messages, changes in the
clustering structure would indicate changes in the physical
topology of the network, as dynamic routing strategies are
commonly encountered in current sensor network applica-
tions. Overall, the main goal of sensor network comprehen-
sion is to apply automatic unsupervised procedures in order
to discover interactions between sensors, trying to exploit
dynamism and robustness of the network being deployed in
the objective site.

2. CLUSTERING FOR COMPREHENSION
Clustering streaming data from sensors has been far more

addressed in literature than clustering streaming sensors.
This way, we shall just point out some approaches to the
former task, giving more emphasis to the later. In the fol-
lowing, we address scenarios where each sensor produces one
stream of data, being afterwards combined in such way with
the remaining network streams to achieve a global clustering
definition. This process tries to extract knowledge about the
similarity between data series produced by different sensors.

2.1 Comprehension by Clustering Data
This section of sensor network comprehension tries to ex-

tract knowledge in order to define dense regions of the sensor

data space. Clustering streaming examples is widely spread
in the data mining community as a technique used to dis-
cover structures in data over time [1]. This task also requires
high-speed processing of examples and compact representa-
tion of clusters, yielding adaptivity issues. In this topic we
study the problem of continuously maintain a cluster struc-
ture over the data points generated by the entire network. A
wide range of techniques already exists to assess this charac-
teristic in centralized scenarios, but distributed algorithms
seem more adaptable and reliable as data and processing is
distributed across sensors in the network. Usual techniques
operate by forwarding and concentrating the entire data in
a central server, processing it as a multivariate stream. The
seizable processing abilities of sensors present several bene-
fits that must be considered in the design of clustering algo-
rithms. If data streams are being produced separately (each
variable in each sensor) in distributed sites, and although
each site should process its own univariate stream locally
before any clustering procedure, a coordinator site must ex-
ecute some kind of processing (actually it should execute the
clustering procedure) on the whole gathered data, possibly
feeding the remote sites with the current clustering model.

Since current applications generate many pervasive distri-
buted computing environments, data mining systems must
nowadays be designed to work not as a monolithic central-
ized application but as a distributed collaborative process.
The centralization of information yields problems not only
with resources such as communication and memory, but also
with privacy of sensitive information. Instead of centralizing
relevant data in a single server and afterwards perform the
data mining operations, the entire process should be distri-
buted and, therefore, paralleled throughout the entire net-
work of processing units. A good example of collaborative
work that can be done to achieve clustering on sensor net-
works was developed by Kargupta et. al. , who presented
a collective principal component analysis, and its applica-
tion to distributed cluster analysis [23]. Other approaches
include Klusch et. al. proposal, a kernel density based clus-
tering method over homogeneous distributed data [25] and
a distributed majority vote algorithm which can be seen as
a primitive to monitor a k-means clustering over peer-to-
peer networks [11]. These techniques present a good fea-
ture as they perform only a few rounds of data transmission
through the network. Cormode et al. [9] proposed different
strategies to achieve the same goal, with local and global
computations, in order to balance the communication costs.
They considered techniques based on the furthest point algo-
rithm [18], which gives an approximation for the radius and
diameter of clusters with guaranteed cost of two times the
cost of the optimal clustering. They also present the paral-
lel guessing strategy, which gives a slightly worse approxi-
mation but requires only a single pass over the data. They
conclude that, in actual distributed settings, it is frequently
preferable to track each site locally and combine the results
at the coordinator site. Moreover, the recent development
of global frameworks that are capable of mining data on dis-
tributed sources is rising. Taking into account the lack of
resources usually encountered on sensor networks, Resource-
Aware Clustering [15] was proposed as a stream clustering
algorithm that can adapt to the changing availability of dif-
ferent resources. The system is integrated in a generic frame-
work that enables resource-awareness in streaming compu-
tation, monitoring main resources like memory, battery and

36

CPU usage, in order to achieve scalability to distributed
sensor networks, by means of adaptation of algorithm’s pa-
rameters. Data arrival rate, sampling and number of clus-
ters are examples of parameters that are controlled by this
monitoring process.

Clustering examples in sensor networks can be used to
search for hot-spots where sensors tend to produce data. In
this settings, grid-based clustering represents a major asset
as regions can be, strictly or loosely, defined by both the
user and the adaptive process. The application of cluster-
ing to grid cells enhances the abstraction of cells as interval
regions which are better interpreted by humans. Moreover,
comparing intervals or grids is usually easier than compar-
ing exact points, as an external scale is not required: in-
tervals have intrinsic scaling. For example, when querying
for the top hot-spot of a given sensor network, instead of
achieving results such as “usually, sensor 1 is around 100.2
when sensor 2 is around 10.5”, we would get “usually, sensor
1 is between 95 and 105 when sensor 2 is within 10.4 and
10.6”. The comprehension of how sensors are interacting in
the network is greatly improved by using grid-based cluster-
ing techniques for the data examples produced by sensors.
This strategy was used in DGClust, a recent approach which
combines both grid-based approximations and point-based
clustering [30].

2.2 Comprehension by Clustering Sensors
Sensor network comprehension is also highly related with

the interaction between sensors, in terms of similar behav-
iors or readings. Clustering streaming sensors is the task
of clustering streaming data series produced by sensors on a
wide sensor network. This process tries to extract knowledge
about the similarity between data produced by different sen-
sors. Most works on clustering analysis for sensor networks
actually concentrate on clustering the sensors by their ge-
ographical position [7] and connectivity, mainly for power
management [39] and network routing purposes [20]. How-
ever, in this topic, we are interested in clustering techniques
for data produced by the sensors, instead. Considering the
dynamic behavior usually enclosed in streaming data, clus-
tering streaming sensors should be addressed as an online
and incremental procedure, in order to enable faster adap-
tation to new concepts and produce better models through
time. However, centralized clustering strategies tend to be
inapplicable as usual techniques have quadratic complexity
on the number of sensors, and sensor networks grow un-
bounded [31].

Clustering streaming data sources is an emerging area of
research which has been already studied in various fields of
real world applications [5, 10, 33]. However, algorithms pre-
viously proposed tend to deal with data as a centralized mul-
tivariate stream [32]. They are designed as a single process
of analysis, without taking into account the locality of data
produced by sources on a distributed scenario, the transmis-
sion and processing resources of the network, and the breach
in the transmitted data quality. In fact, many motivating
domains could benefit from (and some of them even require)
a distributed approach, given their objective application or
specialized setting [31]. Most works on clustering analysis
for distributed sources (e.g. sensor networks) actually con-
centrate on clustering the sources by their geographical posi-
tion [7] and connectivity, mainly for power management [39]
and network routing purposes [20]. However, in this topic,

we are interested in clustering techniques using the data pro-
duced by the sources, instead. Many algorithms have been
developed for distributed clustering in peer-to-peer environ-
ments and sensor networks settings. However, they do not
target our problem, as they might operate with a central
server [9, 23], are directed towards data clustering (and not
data sources) [11,15], address homogeneous distributed clus-
tering [3,25] (each node has a sample of the same data), or if
they target clustering of streaming data sources, they take
into account the network infrastructure in the process of
finding a clustering definition [38].

The basic requirements usually presented for clustering
data streams are that the system must possess a compact
representation of clusters, must process data in a fast and
incremental way and should clearly identify changes in the
clustering structure [4]. Nevertheless, there are some con-
ceptual differences when addressing multiple streaming sour-
ces. This way, systems that aim to cluster streaming data
sources should [31]: process with constant update time and
memory, enable an anytime compact representation, include
techniques for structural drift detection, enable the incorpo-
ration of new relevant sources, and operate with adaptable
configuration.

This section focus on clustering of the streams produced
by sensors, which tries to extract knowledge about the sim-
ilarity between data series produced by different sensors.
This task relates with sensor network comprehension as clus-
tering sensors finds groups of sensors that behave similarly
through time. The distributed setup proposed in this sec-
tion enables a transient user to query a local node for its
position in the overall clustering structure of sensors, with-
out asking the centralized server. For example, a query for
a given sensor could be answered by “this sensor and sensors
2 and 3 are highly correlated”, in the sense that when one’s
values are increasing the others’ are also increasing, or “the
answering sensor is included in a group of sensors that has
the following profile or prototype of behavior”. Hence, the
comprehension of how sensors are related in the network is
also greatly improved by using distributed sensor clustering
techniques.

The aim of a distributed clustering algorithm should be to
be able to answer queries for the global clustering definition
of the entire system. If data sources are distributed, with
local sites being accessible from transient devices, queries
could be issued at each local site, enabling fast answers to
be sent to the querying device. However, the setup of for-
warding data to a central server, forces not only the data
but also the queries to be transmitted across the network
into a sink. Several issues emerge in the development of
new techniques to efficiently and effectively perform clus-
tering of distributed streaming data sources. In previous
work [31], the requirements of clustering distributed stream-
ing data sources have been discussed and enumerated: a)
the requirements for clustering streaming data sources must
be considered, with more emphasis on the adaptability of
the whole system; b) processing must be distributed and
synchronized on local neighborhoods or querying nodes; c)
The main focus should be on finding similar data sources
irrespectively to their physical location; d) processes should
minimize different resources (mainly energy) consumption
in order to achieve high uptime; and e) operation should
consider a compact representation of both the data and the
generated models, enabling fast and efficient transmission

37

and access from mobile and embedded devices. The final
goal is to infer a global clustering structure of all relevant
data sources. Hence, approximate algorithms should be con-
sidered to prevent global data transmission.

Advantages of distributed procedures for clustering stream-
ing data sources are multidimensional, having different im-
pacts on specific domains of applications. For example, pre-
venting dimensionality burden in clustering electrical load
profiles [29], or having the hability to operate on ad-hoc sen-
sor networks created for natural phenomena monitoring [35].
Also embedding GPS mobile devices with context informa-
tion [40] or identifying similar signals in patients [34] while
keeping sensitive data decentralized, and in sensor network
management. This last topic appears as extremely relevant
as distributed clustering of streaming sensors enables the im-
provement of sensor deployment, might reduce message for-
warding, preserves privacy of observed data, and improves
network comprehension, in the sense that each sensor is able
to tell where in the sensor data domain it is located [32].

3. LOCAL-TO-GLOBAL CLUSTERING
The basic idea behind clustering streaming data sources

is to find groups of sources that behave similarly through
time, which is usually measured in terms of the distance
between the data series or the data distribution. Let X be
a sensor node producing observations xi at each timestep i.
The goal of an incremental clustering system for streaming
data sources is to find (and make available at any time i) a
partition C(i) of d sources, where data sources in the same
cluster tend to be more alike than data sources in different
clusters [28].

A local algorithm is proposed to perform clustering of
sensors on ubiquitous sensor networks, based on the mov-
ing average of each node’s data over time. There are two
main characteristics. On one hand, each sensor node keeps
a sketch of its own data. On the other hand, communica-
tion is limited to direct neighbors, so clustering is computed
at each node. The moving average of each node is approxi-
mated using memoryless fading average, while clustering is
based on the furthest point algorithm applied to the cen-
troids computed by the node’s direct neighbors. This way,
each sensor acts as data stream source but also as a process-
ing node, keeping a sketch of its own data, and a definition of
the clustering structure of the entire network of data sour-
ces. In this work we search for a definition of k clusters
of sensor nodes, with k previously known by the system.
Although this simple example lacks some of the common
characteristics of real-world scenarios (e.g. unknown num-
ber or clusters or unbalanced data), its extension is straight-
forward. If the number of clusters to find is unknown, each
node could search for a clustering with different number of
clusters. As only centroids are transmitted, and used as
single points (as if operating with emsembles of clusters),
there’s no need to know how many points come from each
node; all centroids that are received are included in the clus-
tering as single points. For unbalanced data (in terms of the
assignment of nodes to clusters) we believe that the conver-
gence would take longer, but deeper analysis is required in
future work.

3.1 Fading-Average Sketching of Sensor Data
We want to define a clustering structure for the sensors,

where sensors producing streams which are alike are clus-

tered together. Overall, we should consider techniques that
project each sensor’s data stream into a reduced set of di-
mensions which suffice to extract similarity with other sen-
sors. These estimates can be seen as the sensor’s current
overview of its own data, giving an indication of where in
the data-space this sensor is included [32]. One way to sum-
marize a data stream x is by computing its sample mean µ̂x
and standard deviation σ̂x. More complex strategies could
include distribution distances based on the histograms of
each sensor’s data (e.g. relative entropy [26]), where each
sensor would have to transmit the frequency of each data
interval to its neighbors, or using approximations of the orig-
inal data [5]. Our approach is to keep track of the moving
average of each sensor, as the sample mean of most recent
data. We assume the dissimilarity between two sensors to
be the absolute distance between their sample means. Al-
though in several real-world scenarios this is not true, we
should assume the sample mean of each sensor to be un-
correlated with its physical location and connectivity (see
Fig. 2), as the matching between data clusters and physical
clusters is a promising strategy for sensor network compre-
hension, so we should not bias the clustering solution.

Each sensor produces data continuously. Given this, each
sensor s is responsible of keeping its own estimate of the
sample mean (µ̂s) in an online fashion. Moving averages are
usually easy to compute, if we can keep a small buffer of data
points [16]. However, in such resource-demanding scenarios,
this is seldom the case. Sum-based statistics computed on
sliding windows can be approximated by weighting the sums
using fading factors [17]. The fading sum Sx,α(i) of obser-
vations from a stream x is computed at time i, as:

Sα(i) = xi + α× Sα(i− 1)

where Sα(1) = x1 and α (0 � α < 1) is a constant deter-
mining the forgetting factor of the sum. Each value of α,
which should be close to 1 (e.g. 0.999), will converge to slid-
ing windows of different sizes. This way, the fading average
at observation i is then computed as:

Mα(i) =
Sα(i)

Nα(i)

where Nα(i) = 1 +α×Nα(i−1) is the corresponding fading
increment, with Nα(1) = 1. An important feature of the
fading increment is that:

lim
i→+∞

Nα<1(i) =
1

1− α

This way, at each observation i, Nα(i) gives an approximated
value for the weight given to recent observations used in the
fading sum. Due to space restrictions, we do not present
the entire theoretical proof for fading averages, but Figure 1
presents an illustrative comparison between moving aver-
ages and fading averages for a data stream with concept
drift, empirically showing the applicability of such approxi-
mations. Moreover, the fading statistics are memoryless, an
important property in streaming scenarios.

Given the exposed benefits of using memoryless summaries,
we propose to use the fading average Mx,α(i) as sketching
structure for each sensor node x. This way, each sensor is
responsible to keep a unique value: the fading average com-
puted so far. Sensors produce readings asynchronously, so
sketch update needs to be triggered with the arrival of a new
data point, irrespectively of the time elapsed since the pre-

38

Fading Average vs Moving Average on Sliding Windows

Observation

V
al

ue

0 2000 4000 6000 8000

40
00

60
00

80
00

10
00

0
12

00
0 MA (w=1000)

FA (alpha=0.997)

Figure 1: Comparison of the evolution of the moving average (thick black line, window size w = 1000) and the
fading average (thin black line, forgetting factor α = 0.997) for a drifting data stream (thin grey line).

vious point. Future developments should take time into ac-
count, if more complex sketches are to be computed. At each
new observation xi, the node performs a simple update of
its sketch with Mx,α(i) being an approximation of the mean
of the most recent observations of x, i.e. µ̂x = Mx,α(i).

3.2 Approximations of the Global Clustering
The goal is to have at each local site a global cluster-

ing structure of the entire sensor network. Each sensor
should include incremental clustering techniques which op-
erate with distance metrics developed for the dimensionally-
reduced sketches of the data streams. Given the simple
sketch definition, the distance between two sensors x and
y can be defined as d(x, y) = |µ̂x − µ̂y|. As each sensor x is
able to sketch its own data in a dimensionally-reduced def-
inition (the fading average Mx,α), it is also able to interact
with its neighboring nodes ηx, in order to assess a local clus-
tering of sensors. The main characteristic of our approach
is that, at each new observation i produced by sensor x, in-
stead of sendind its own sketch Mx,α to its neighbors ηx, the
node sends its own estimate of the global clustering Cx(i),
i.e. the centroids gathered by clustering its neighbors’ cen-
troids. Note that with this approach, each sensor keeps an
approximate estimate of the global cluster centers. This es-
timate can be seen as the sensor’s current view of the entire
network which, together with its own sketch, gives an indi-
cation of where in the entire network data-space this sensor
is included.

At first, each sensor node x has only access to its own
sketch Mx,α(i). While producing data, node x also receives
estimates of the global cluster centers computed by their
neighbors ηx. Let Px(i) be the complete set of clustering
definitions {Cj(i) | j ∈ ηx} received by node x before obser-
vation xi. The idea behind this step is to aggregate all the
locally defined centers and apply a clustering procedure on
these centers, considering them as points for the clustering.
Therefore, Cx(i) is computed by clustering the set of points
{Mx,α(i)}∪Cx(i−1)∪Px(i). This way, next time this sensor
uses or transmits its estimate Cx(i) of the global clustering

structure, it is already updated with its most recent sketch
and neighbors’ information. In the general task of finding k
centers given m points, there are two major objectives: min-
imize the radius (maximum distance between a point and
its closest cluster center) or minimize the diameter (maxi-
mum distance between two points assigned to the same clus-
ter) [9]. The Furthest Point clustering algorithm [18] is ap-
plied to the set of points {Mx,α(i)}∪Cx(i−1)∪Px(i), which
gives a guaranteed 2-approximation for both the radius and
diameter measures. It begins by picking an arbitrary point
as the first center, c1, then finding the remaining centers ci
iteratively as the point that maximizes its distance from the
previously chosen centers {c1, ..., ci−1}. After k iterations,
one can show that the chosen centers {c1, c2, ..., ck} repre-
sent a factor 2 approximation to the optimal clustering [18].
See [9] for a proof. This strategy gives a good initialization
of the cluster centers, computed by finding the center ki of
each cluster after attracting remaining points to the closest
center ci. Since we are applying clustering to cluster cen-
troids, we are in fact merging clustering definitions, a known
technique which as been argued to give good results [9].

To prevent clustering using unstable fading averages, and
to prevent excessive communication, nodes only send their
estimate Cx to direct neighbors from time to time. Specifi-
cally, in our setup, nodes only perform clustering and trans-
mission after 1

NC(1−α)
, whereNC is the number of clustering

processes executed within the time frame of a recent fading
window (e.g. for α = .999, the considered recent fading
window is w = 1000; for NC = 10, clustering is performed
every 100 examples).

4. EVALUATION STRATEGY
The global aim of this work is to assess the feasibility

of computing local approximations of the global clustering
structure of a ubiquitous network of streaming data sour-
ces. A first evaluation was designed, simulating sensor net-
works, in order to validate that possibility. UC Berkeley’s
project Ptolemy [13] produced an open-source, Java-based,
software framework called Ptolemy II, with tools for the

39

Figure 2: Example of a mote sensor network (left), with links of possible transmission represented by straight
lines and physical subnetworks (represented by IDs) separated by dashed lines, and a possible clustering def-
inition of the series produced by each sensor (center plot). This illustrative example shows the orthogonality
that is expected to exist between network topology and the sensors’ data clustering structure. Right plot
presents a VisualSense simulation environment with 128 sensors; circles denote the range of transmission,
hence defining links between nodes.

modeling, simulation and design of concurrent, real-time,
embedded systems. The main underlying software abstrac-
tion is the actor, software components that execute concur-
rently and communicate through messages sent via intercon-
nected ports. Application specific models can then be repre-
sented as hierarchical interconnections of actors coordinated
by special components called directors. VisualSense [2] was
developed under this common framework specifically to al-
low the modeling of wireless sensor networks. In particular,
each sensor can be implemented as one or more actors that
communicate with each other. The tool allows very sophis-
ticated modeling of features like communication channels,
hardware sensor devices, networking protocols, MAC proto-
cols and energy consumption in sensor nodes. Right plot of
Figure 2 presents a screen shot of a simulation for one net-
work with 128 sensors. All experiments in this paper were
implemented using the VisualSense sensor network simula-
tion environment.

Although in real world data is seldomly random or nor-
mally distributed, a first validity check was designed with
a synthetic sample of such data. In this experiment we fol-
low the scenario design used in [12], where data is gener-
ated in the unit hypercube. Each scenario was produced
according to three parameters: the number of clusters K,
the number of sensor nodes D, and the standard deviation
σ used to generate random data. The cluster centers µk
are generated one at a time, by sampling uniformly from
the [2σ, 1− 2σ] interval. This ensures that most data points
lie within the unit hypercube. Any µk that was less than
σ/K away from a previously generated center was rejected
and regenerated to avoid too close centers which are un-
likely to be separated by clustering procedures. Each sensor
x produces a stream X of 100K random data points with
distribution X ∼ N(µx, σ). To determine the µx param-
eter, each sensor is uniformly assigned to one of the clus-
ters, let’s say µcx . Each sensor’s mean µx is then randomly
sampled from N(µcx , σ). Each data scenario is applied to
several network configurations. These differ on network size
and network deployment. Each network is generated by a
cascade procedure within the Visual Sense 1000x1000 pixel
square: first, a random point is selected for the first sen-
sor node; then, each sensor node is placed at a time in the
network geographical space by uniformly sampling a previ-
ous sensor node and randomly choosing a point within the
predefined range of that chosen sensor node (in our experi-

ments, range = 300). Sensors which are placed closer than
150 from any previously place node are relocated. For each
network size, 3 different configurations are generated. To
determine the sensitivity of our approach to the random ef-
fects produced by the evaluation setting, the analysis is done
in three dimensions: network size d = {8, 16, 32, 64, 128},
number of clusters K = {2, 3, 4, 5, 6, 7}, standard deviation
σ = {0.01, 0.05, 0.1}. For each data scenario, network con-
figuration, and parameters choice, 10 different experiments
were run. Fading averages are computed with α = .999,
representing a fading window of 1000 examples, while NC
was fixed to 10.

Our goal is to assess the feasibility of computing local ap-
proximations of the global clustering structure. This way, we
will compare the clustering definitions of each sensor node
Cx with the global clustering definition Cg that a centralized
server would compute having access to all data being gener-
ated in the network. Since the focus of analysis is the locality
of computations, the global clustering Cg is computed ex-
actly as the local clusterings Cx, except for the fact that Cg
uses all the sensors sketches Mx,α directly in the clustering
step. When dealing with clustering algorithms, several va-
lidity measures exist that can fulfill any researcher’s desire.
See [19] for a comprehensive study on this topic. More than
computing a loss function or a validity index for each sen-
sor’s clustering definition, the goal of our work is to achieve
a local clustering definition at each sensor that would agree
with the global clustering definition, if queried to assign each
pair of sensors in the network to the same or to different
cluster centers. Several external validity indices are based
on the agreement of clustering assignments (e.g. the Jac-
card coefficient [22]), but they are biased towards a strict
comparison. In this work, we propose to use the agreement
theory directly, as different agreement proportions give dif-
ferent insights of clustering comparisons. To compute agree-
ment between clustering definitions Cx and Cg, we need to
compute four quantities: nxg, number of sensor pairs clus-
tered together by both Cx and Cg; nxḡ, number of sensor
pairs clustered together by Cx but not by Cg; nx̄g, number
of sensor pairs clustered together by Cg but not by Cx; nx̄ḡ,
number of sensor pairs clustered separatedly by both Cx and
Cg. Note that nxg + nxḡ + nx̄g + nx̄ḡ = N = d(d − 1)/2,
where d is the number of sensors in the network.

The statistic κ̂ = (P (A)− P (e)) / (1− P (e)) gives a sim-
ple sanity check, where P (A) = (nxg + nx̄ḡ) /N is the ob-

40

served proportion of agreement, and P (e) is the expected
proportion of agreement that would be observed if cluster-
ings agreed only by chance [8]1. For values higher than zero,
Cx and Cg agree more than just by chance (κ̂ = 1 represents
total agreement). However, comparing clustering definitions
according to improvement from agreeing only by chance is
rather poor and is only used as sanity check. More inter-
esting than κ̂ are the agreement proportions. The global
agreement proportion P (A) gives a clear assessment of the
agreement of Cx and Cg, hence serving as validity index
for Cx. The goal is to have P (A) = 1. However, when
total agreement is not achieved, there are two directions
where clustering definitions might agree: positive and nega-
tive agreement. In our problem, a test is considered positive
when the pair of sensors are assigned to the same cluster,
and negative otherwise. Positive agreement is then defined
as P (A+) = 2nxg/(2nxg + nxḡ + nx̄g), being interpreted
as the conditional probability of agreement considering that
one of the clustering definitions has already stated that the
pair of sensors should be clustered together. From our point
of view, this clearly relates to the proportion of agreement
on compactness of the clustering structure, focusing on the
pair of points that both clustering definitions state should be
together. On the other hand, negative agreement is defined
as P (A−) = 2nx̄ḡ/(2nx̄ḡ + nxḡ + nx̄g), being interpreted as
the conditional probability of agreement considering that
one of the clustering definitions has already stated that the
pair of sensors should be separated. From our point of view,
this clearly relates to the proportion of agreement on sepa-
rability of the clustering structure, focusing on the pair of
points that both clustering definitions state should be sepa-
rated.

Each network’s quality is assessed using the mean (over all
sensors) of the indices: κ̂ statistic, a better-than-chance san-
ity check; P (A), the global proportion of agreement, inter-
preted as validity; P (A+), the positive proportion of agree-
ment, as compactness; and P (A−), the negative proportion
of agreement, as separability. The percentage of sensors with
P (A) = 1 is also evaluated (interpreted as perfectness).

5. RESULTS
Each experimental run results in a learning curve for each

index. Upper plot of Fig. 3 presents the evolution of the
average P (A) index (over all sensors), for one network with
{k = 7, σ = .01, d = 128}. Following the strategy pro-
posed in [17], the curve should be smoothed by applying
the fading average to the computed value (bottom plot of
Fig. 3). The main point to stress is that the network con-
verges, besides some small oscillation due to randomness of
data being produced. Since for each data scenario (k, σ
and d) 10 runs are executed for each of the 3 configurations
of the sensor network, results are presented as mean values
(and the corresponding 95% confidence interval) over the 30
runs. Given the convergence empirical observation (different
scenarios converge at different number of node interactions),
we compare the means (over all runs) for the fading average
of each measure at the last time point of each run. Table 1
presents the complete set of results.

The first result to extract is that all scenarios passed
the sanity check, as κ̂ statistic is always positive (in fact,

1This statistic has been shown to be equivalent to the Ad-
justed Rand Index [37].

Figure 3: Evolution of the average proportion of
agreement between sensors and the global clustering
definition (one experimental run with k = 7, d =
128, σ = .01). Top plot presents the actual average
proportion of agreement (over all sensors). Bottom
plot presents the fading average (over time) of the
average proportion of agreement.

higher than .58). After confirming the sanity of our ap-
proach, we can stress that a high level of average agreement
(P (A) > 90%) is achieved for most of the scenarios. More-
over, for the theoretically hardest scenario presented here
({k = 7, σ = .10, d = 128}) the lower limit of the confidence
interval is P (A) = 0.86, meaning that, on average, a sensor
node would agree with the global clustering on over 86% of
the total pairs of sensors. Regarding the direction of agree-
ment, we should stress that our approach clearly gives more
relevance to separability. In all scenarios where the average
proportion of positive agreement (compactness) is different
(under the 95% confidence level) from the average propor-
tion of negative agreement (separability), the separability
index is always higher than the compactness index. More-
over, even for scenarios with lower average proportion of
agreement, separability tends to stay high, meaning that in
our approach, each single node will have a high level of agree-
ment on answer queries for which pairs of nodes should be
clustered separately than on queries for which pairs of nodes
should be clustered together. Finally, it became clear that,
at least for harder scenarios, it is very difficult to achieve
networks where all nodes agree with central clustering on
100% of pairs of nodes. From our observation, this might
result from different node connectivity (nodes placed on the
outer ribbon of the network could have more difficult to
converge to global clustering). Nevertheless, results put the
agreement level at a high level, stating that local clustering
gives a good approximation of the global clustering. Due to
space restrictions, we postpone the presentation of a more
detailed analysis on sensitivity to network configuration. On
the other hand, we can argue that agreement levels are ro-

41

Table 1: Clustering validity results, in terms of κ̂ statistic (sanity), global agreement (assessment), positive
agreement (compactness), negative agreement (separability) and the percentage of nodes presenting total
agreement (perfectness): mean and the 95% confidence interval are presented for each combination of {k, σ, d}
parameters, averaging results over 10 random datasets for each of the 3 different network configurations (30
runs).

κ̂ P (A) P (A+) P (A−) P (A) = 1
Mean (95%CI) Mean (95%CI) Mean (95%CI) Mean (95%CI) Mean (95%CI)

d = 8 0.99 (0.98;1.00) 0.99 (0.99;1.00) 0.99 (0.99;1.00) 1.00 (0.99;1.00) 0.98 (0.96;1.00)
d = 16 0.99 (0.97;1.00) 0.99 (0.99;1.00) 0.99 (0.99;1.00) 0.99 (0.99;1.00) 0.98 (0.95;1.00)

σ = .01 d = 32 0.99 (0.98;1.00) 1.00 (0.99;1.00) 1.00 (0.99;1.00) 0.99 (0.99;1.00) 0.99 (0.98;1.00)
d = 64 1.00 (1.00;1.00) 1.00 (1.00;1.00) 1.00 (1.00;1.00) 1.00 (1.00;1.00) 1.00 (1.00;1.00)
d = 128 0.86 (0.78;0.94) 0.93 (0.89;0.97) 0.94 (0.90;0.97) 0.92 (0.88;0.97) 0.71 (0.55;0.87)
d = 8 0.94 (0.89;0.99) 0.97 (0.94;0.99) 0.97 (0.94;0.99) 0.97 (0.95;1.00) 0.92 (0.85;0.98)
d = 16 0.94 (0.89;0.99) 0.97 (0.95;0.99) 0.97 (0.95;0.99) 0.97 (0.95;0.99) 0.88 (0.79;0.97)

k = 2 σ = .05 d = 32 0.88 (0.80;0.96) 0.94 (0.91;0.98) 0.95 (0.92;0.98) 0.91 (0.86;0.97) 0.80 (0.68;0.91)
d = 64 0.88 (0.81;0.94) 0.94 (0.91;0.97) 0.94 (0.91;0.97) 0.94 (0.90;0.97) 0.64 (0.49;0.79)
d = 128 0.71 (0.64;0.79) 0.86 (0.82;0.89) 0.86 (0.83;0.90) 0.85 (0.80;0.89) 0.32 (0.16;0.48)
d = 8 0.81 (0.73;0.88) 0.91 (0.87;0.94) 0.91 (0.88;0.95) 0.89 (0.85;0.93) 0.73 (0.63;0.83)
d = 16 0.86 (0.82;0.91) 0.93 (0.91;0.95) 0.93 (0.91;0.95) 0.93 (0.91;0.95) 0.63 (0.51;0.74)

σ = .10 d = 32 0.73 (0.66;0.80) 0.87 (0.83;0.90) 0.88 (0.84;0.91) 0.85 (0.81;0.90) 0.35 (0.25;0.46)
d = 64 0.67 (0.59;0.75) 0.84 (0.80;0.88) 0.85 (0.82;0.88) 0.82 (0.77;0.87) 0.20 (0.11;0.29)
d = 128 0.55 (0.49;0.60) 0.77 (0.75;0.80) 0.79 (0.77;0.81) 0.75 (0.72;0.78) 0.02 (0.02;0.03)
d = 8 0.91 (0.85;0.97) 0.96 (0.93;0.99) 0.94 (0.90;0.98) 0.97 (0.95;0.99) 0.82 (0.70;0.95)
d = 16 0.97 (0.95;1.00) 0.99 (0.98;1.00) 0.98 (0.97;1.00) 0.99 (0.98;1.00) 0.92 (0.84;1.00)

σ = .01 d = 32 0.95 (0.91;0.99) 0.98 (0.96;1.00) 0.97 (0.95;0.99) 0.98 (0.96;1.00) 0.82 (0.70;0.93)
d = 64 1.00 (1.00;1.00) 1.00 (1.00;1.00) 1.00 (1.00;1.00) 1.00 (1.00;1.00) 1.00 (1.00;1.00)
d = 128 0.90 (0.84;0.95) 0.95 (0.92;0.98) 0.94 (0.90;0.97) 0.96 (0.93;0.98) 0.71 (0.54;0.87)
d = 8 0.95 (0.91;0.99) 0.98 (0.96;1.00) 0.97 (0.94;0.99) 0.98 (0.97;1.00) 0.93 (0.87;0.98)
d = 16 0.86 (0.81;0.91) 0.94 (0.91;0.96) 0.91 (0.87;0.94) 0.95 (0.93;0.97) 0.59 (0.47;0.70)

k = 3 σ = .05 d = 32 0.75 (0.71;0.78) 0.88 (0.86;0.90) 0.84 (0.82;0.87) 0.90 (0.88;0.92) 0.21 (0.10;0.32)
d = 64 0.80 (0.76;0.85) 0.91 (0.89;0.93) 0.88 (0.85;0.90) 0.93 (0.91;0.94) 0.27 (0.15;0.38)
d = 128 0.76 (0.70;0.82) 0.89 (0.86;0.91) 0.85 (0.82;0.89) 0.91 (0.88;0.93) 0.09 (0.05;0.13)
d = 8 0.95 (0.93;0.97) 0.98 (0.97;0.99) 0.97 (0.95;0.98) 0.99 (0.98;0.99) 0.90 (0.86;0.94)
d = 16 0.74 (0.69;0.79) 0.88 (0.86;0.90) 0.83 (0.80;0.87) 0.91 (0.89;0.92) 0.46 (0.38;0.54)

σ = .10 d = 32 0.63 (0.58;0.68) 0.83 (0.80;0.85) 0.77 (0.74;0.80) 0.86 (0.84;0.88) 0.09 (0.04;0.14)
d = 64 0.59 (0.57;0.62) 0.81 (0.79;0.82) 0.75 (0.73;0.76) 0.84 (0.83;0.86) 0.04 (0.02;0.06)
d = 128 0.56 (0.54;0.58) 0.79 (0.78;0.80) 0.74 (0.73;0.75) 0.82 (0.81;0.83) 0.01 (0.00;0.01)
d = 8 0.95 (0.91;0.99) 0.98 (0.97;1.00) 0.96 (0.93;0.99) 0.99 (0.98;1.00) 0.89 (0.80;0.97)
d = 16 0.97 (0.95;0.99) 0.99 (0.98;1.00) 0.98 (0.96;0.99) 0.99 (0.99;1.00) 0.86 (0.77;0.96)

σ = .01 d = 32 0.94 (0.91;0.98) 0.98 (0.96;0.99) 0.96 (0.94;0.99) 0.98 (0.97;0.99) 0.79 (0.66;0.92)
d = 64 0.95 (0.91;0.98) 0.98 (0.96;0.99) 0.96 (0.94;0.99) 0.98 (0.97;0.99) 0.71 (0.55;0.87)
d = 128 0.91 (0.87;0.96) 0.96 (0.94;0.98) 0.94 (0.90;0.97) 0.97 (0.96;0.99) 0.54 (0.39;0.69)
d = 8 0.88 (0.84;0.93) 0.96 (0.94;0.98) 0.91 (0.87;0.95) 0.98 (0.96;0.99) 0.71 (0.59;0.84)
d = 16 0.82 (0.78;0.86) 0.93 (0.92;0.95) 0.86 (0.83;0.90) 0.96 (0.95;0.97) 0.47 (0.36;0.59)

k = 4 σ = .05 d = 32 0.78 (0.73;0.82) 0.91 (0.89;0.92) 0.84 (0.81;0.87) 0.93 (0.92;0.94) 0.18 (0.09;0.28)
d = 64 0.73 (0.69;0.76) 0.89 (0.87;0.90) 0.81 (0.78;0.83) 0.92 (0.91;0.93) 0.04 (0.02;0.06)
d = 128 0.66 (0.64;0.68) 0.86 (0.85;0.87) 0.76 (0.75;0.78) 0.90 (0.89;0.90) 0.00 (0.00;0.00)
d = 8 0.93 (0.88;0.98) 0.98 (0.96;0.99) 0.94 (0.90;0.98) 0.99 (0.98;1.00) 0.85 (0.76;0.94)
d = 16 0.81 (0.77;0.85) 0.93 (0.91;0.94) 0.85 (0.82;0.89) 0.95 (0.94;0.96) 0.40 (0.28;0.52)

σ = .10 d = 32 0.69 (0.65;0.73) 0.87 (0.85;0.89) 0.78 (0.75;0.81) 0.91 (0.89;0.92) 0.06 (0.04;0.08)
d = 64 0.67 (0.63;0.72) 0.86 (0.85;0.88) 0.77 (0.74;0.80) 0.90 (0.89;0.91) 0.01 (0.01;0.02)
d = 128 0.59 (0.56;0.61) 0.82 (0.81;0.83) 0.72 (0.70;0.74) 0.87 (0.86;0.88) 0.00 (0.00;0.00)
d = 8 0.94 (0.90;0.98) 0.99 (0.98;1.00) 0.95 (0.91;0.98) 0.99 (0.99;1.00) 0.85 (0.75;0.95)
d = 16 0.95 (0.92;0.97) 0.98 (0.97;0.99) 0.96 (0.94;0.98) 0.99 (0.98;0.99) 0.83 (0.73;0.92)

σ = .01 d = 32 0.95 (0.93;0.97) 0.98 (0.98;0.99) 0.96 (0.94;0.98) 0.99 (0.98;0.99) 0.66 (0.52;0.80)
d = 64 0.93 (0.91;0.96) 0.98 (0.97;0.98) 0.95 (0.93;0.97) 0.98 (0.98;0.99) 0.44 (0.29;0.60)
d = 128 0.87 (0.83;0.91) 0.95 (0.94;0.97) 0.90 (0.87;0.93) 0.97 (0.96;0.98) 0.29 (0.15;0.43)
d = 8 0.86 (0.81;0.90) 0.97 (0.95;0.98) 0.88 (0.83;0.92) 0.98 (0.97;0.99) 0.72 (0.63;0.81)
d = 16 0.84 (0.79;0.88) 0.94 (0.92;0.96) 0.87 (0.84;0.91) 0.96 (0.95;0.97) 0.46 (0.33;0.59)

k = 5 σ = .05 d = 32 0.76 (0.73;0.79) 0.92 (0.91;0.93) 0.82 (0.80;0.84) 0.95 (0.94;0.95) 0.10 (0.04;0.15)
d = 64 0.70 (0.67;0.73) 0.89 (0.88;0.90) 0.77 (0.75;0.80) 0.93 (0.92;0.93) 0.01 (0.00;0.02)
d = 128 0.67 (0.65;0.69) 0.88 (0.87;0.89) 0.75 (0.74;0.77) 0.92 (0.91;0.92) 0.00 (0.00;0.00)
d = 8 0.91 (0.86;0.95) 0.98 (0.97;0.99) 0.92 (0.88;0.96) 0.99 (0.98;0.99) 0.74 (0.60;0.88)
d = 16 0.83 (0.81;0.86) 0.94 (0.93;0.95) 0.87 (0.85;0.89) 0.96 (0.96;0.97) 0.35 (0.25;0.46)

σ = .10 d = 32 0.69 (0.65;0.73) 0.89 (0.87;0.90) 0.76 (0.73;0.79) 0.93 (0.92;0.94) 0.12 (0.05;0.20)
d = 64 0.67 (0.64;0.70) 0.87 (0.86;0.88) 0.76 (0.74;0.78) 0.91 (0.90;0.92) 0.01 (0.00;0.02)
d = 128 0.59 (0.58;0.61) 0.84 (0.84;0.85) 0.70 (0.69;0.71) 0.89 (0.89;0.90) 0.00 (0.00;0.00)
d = 8 0.97 (0.94;1.00) 1.00 (0.99;1.00) 0.97 (0.95;1.00) 1.00 (1.00;1.00) 0.95 (0.89;1.00)
d = 16 0.95 (0.92;0.98) 0.99 (0.98;0.99) 0.96 (0.93;0.98) 0.99 (0.99;1.00) 0.78 (0.66;0.90)

σ = .01 d = 32 0.92 (0.89;0.95) 0.97 (0.96;0.98) 0.93 (0.91;0.96) 0.98 (0.98;0.99) 0.54 (0.37;0.70)
d = 64 0.88 (0.84;0.92) 0.96 (0.95;0.98) 0.90 (0.87;0.94) 0.98 (0.97;0.99) 0.40 (0.26;0.54)
d = 128 0.88 (0.86;0.90) 0.96 (0.96;0.97) 0.91 (0.89;0.92) 0.98 (0.97;0.98) 0.16 (0.04;0.28)
d = 8 0.90 (0.84;0.96) 0.99 (0.98;1.00) 0.91 (0.85;0.97) 0.99 (0.99;1.00) 0.83 (0.73;0.94)
d = 16 0.84 (0.80;0.87) 0.95 (0.94;0.96) 0.86 (0.83;0.89) 0.97 (0.97;0.98) 0.45 (0.36;0.55)

k = 6 σ = .05 d = 32 0.81 (0.76;0.85) 0.94 (0.93;0.96) 0.84 (0.81;0.88) 0.97 (0.96;0.97) 0.24 (0.13;0.35)
d = 64 0.72 (0.69;0.75) 0.90 (0.89;0.92) 0.78 (0.76;0.81) 0.94 (0.93;0.95) 0.02 (0.01;0.02)
d = 128 0.63 (0.62;0.65) 0.88 (0.87;0.89) 0.71 (0.70;0.72) 0.93 (0.92;0.93) 0.00 (0.00;0.00)
d = 8 0.92 (0.87;0.97) 0.99 (0.98;0.99) 0.92 (0.88;0.97) 0.99 (0.99;1.00) 0.86 (0.77;0.94)
d = 16 0.76 (0.73;0.80) 0.94 (0.92;0.95) 0.80 (0.77;0.83) 0.96 (0.95;0.97) 0.20 (0.13;0.27)

σ = .10 d = 32 0.72 (0.69;0.76) 0.91 (0.90;0.92) 0.78 (0.75;0.81) 0.95 (0.94;0.95) 0.11 (0.06;0.16)
d = 64 0.65 (0.63;0.68) 0.89 (0.88;0.90) 0.73 (0.71;0.75) 0.93 (0.92;0.93) 0.01 (0.01;0.02)
d = 128 0.61 (0.60;0.63) 0.86 (0.86;0.87) 0.70 (0.69;0.71) 0.91 (0.91;0.92) 0.00 (0.00;0.00)
d = 8 0.83 (0.71;0.94) 0.99 (0.98;0.99) 0.83 (0.72;0.95) 0.99 (0.99;1.00) 0.70 (0.53;0.87)
d = 16 0.96 (0.94;0.98) 0.99 (0.99;1.00) 0.96 (0.94;0.98) 0.99 (0.99;1.00) 0.80 (0.70;0.91)

σ = .01 d = 32 0.92 (0.89;0.95) 0.98 (0.97;0.99) 0.93 (0.90;0.96) 0.99 (0.98;0.99) 0.59 (0.44;0.74)
d = 64 0.87 (0.85;0.90) 0.97 (0.96;0.97) 0.89 (0.87;0.91) 0.98 (0.98;0.98) 0.17 (0.07;0.27)
d = 128 0.85 (0.82;0.87) 0.96 (0.95;0.96) 0.87 (0.85;0.89) 0.98 (0.97;0.98) 0.07 (0.01;0.12)
d = 8 1.00 (1.00;1.00) 1.00 (1.00;1.00) 1.00 (1.00;1.00) 1.00 (1.00;1.00) 1.00 (0.99;1.00)
d = 16 0.85 (0.82;0.89) 0.97 (0.96;0.97) 0.87 (0.84;0.90) 0.98 (0.98;0.98) 0.43 (0.30;0.55)

k = 7 σ = .05 d = 32 0.77 (0.74;0.80) 0.94 (0.92;0.95) 0.81 (0.78;0.84) 0.96 (0.95;0.97) 0.09 (0.04;0.14)
d = 64 0.70 (0.67;0.72) 0.91 (0.90;0.92) 0.75 (0.73;0.77) 0.95 (0.94;0.95) 0.00 (0.00;0.00)
d = 128 0.66 (0.64;0.67) 0.89 (0.89;0.90) 0.72 (0.71;0.74) 0.93 (0.93;0.94) 0.00 (0.00;0.00)
d = 8 0.93 (0.88;0.97) 0.99 (0.99;1.00) 0.93 (0.89;0.97) 1.00 (0.99;1.00) 0.84 (0.72;0.96)
d = 16 0.83 (0.80;0.87) 0.96 (0.96;0.97) 0.85 (0.82;0.88) 0.98 (0.97;0.98) 0.41 (0.31;0.51)

σ = .10 d = 32 0.74 (0.71;0.77) 0.93 (0.93;0.94) 0.78 (0.76;0.81) 0.96 (0.96;0.97) 0.05 (0.03;0.08)
d = 64 0.65 (0.63;0.67) 0.90 (0.89;0.90) 0.72 (0.70;0.73) 0.94 (0.93;0.94) 0.00 (0.00;0.01)
d = 128 0.59 (0.58;0.60) 0.87 (0.86;0.87) 0.67 (0.67;0.68) 0.92 (0.91;0.92) 0.00 (0.00;0.00)

42

bust to an increase on the number of clusters, being, how-
ever, a bit more sensitive with respect to network size (P (A)
decreases when d increases) and cluster overlapping (P (A)
decreases when σ increases). This effect is observed also for
the other indices. Given the comparison between P (A+)
and P (A−), we can conclude that it is the extra sensitivity
of the compactness agreement that decreases the quality of
the overall agreement, enhancing its sensitivity to the afore
mentioned parameters.

6. CONCLUDING REMARKS
In this work a local algorithm was proposed to perform

clustering of sensors on ubiquitous sensor networks, based
on the moving average of each node’s data over time. We can
argue that performing local clustering at each node, without
a centralized server, is a valuable approximation of the global
clustering, hence increasing the level of comprehension that
each sensor node can have about the entire network. Lo-
cal algorithms present an extremely high level of agreement
with the global clustering, especially in terms of separabil-
ity agreement, so each node is able to tell to which cluster it
is assigned, and especially when queried with other node’s
data, tell if they should be separated or not.

Future work is focused on communication, as this is one
of the most resource-consuming procedures of sensor net-
works [7]. If the concept of the data being produced in the
network is stable, then the clustering estimates will con-
verge, and transmissions will become redundant. We should
include mechanisms to allow each sensor to decide to which
neighbors it is still valuable to send information. However,
the world is not static. It is possible that, with time, the
sketches of each sensor will change, adapting to new con-
cepts of data. On a long run, the communication manage-
ment strategy could prevent the system from adapting to
new data. Methods should include change detection [16]
mechanisms that would trigger if the data changes, either
univariatedly at each sensor, or in the global interaction of
sensor data. From another point of view, since each node
clusters its neighbors’ centroids as single points, the node
could fit a clustering definition with different number of clus-
ters. Moreover, it could several clustering definitions and
test which of them is better, using, for example, the Davies-
Bouldin index [19] which has the positive characteristic of
not depending on the number of clusters, hence enabling the
comparison of clusterings with different k. The application
to real data is also being performed, using data from real
load demand sensor networks used in electricity distribution
networks [29].

Sensor network comprehension is a wider concept than
the two clustering task that were inspected in this paper.
Other tasks may yield additional elements for a global sen-
sor network comprehension: the extraction of rules for cer-
tain network events, which may reveal breaches of security
in the current network topology; inspection of predictive
errors across the network, which may reveal interactions be-
tween sensors not observed in unsupervised results; or the
definition of a ranking of sensor activity, which may reveal
unused or overloaded sensors in the network. The main fo-
cus of any sensor network comprehension process should be
on using distributed processing of data and queries, and dis-
tributed data mining procedures, enabling fast answers and
access from transient mobile devices.

7. ACKNOWLEDGMENTS
The work of P.P. Rodrigues is supported by the Portuguese

Foundation for Science and Technology (FCT) under the PhD

Grant SFRH/BD/ 29219/2006. The authors thank FCT’s Pluri-

anual financial support attributed to LIAAD and CRACS. This

work was done under the joint scope of FCT projects KDUDS

(PTDC/EIA-EIA/98355/2008) and CALLAS (PTDC/EIA/71462

/2006). The first author also thanks the help of Cristina Santos

on fruitful discussions on agreement theory.

8. REFERENCES
[1] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A

framework for clustering evolving data streams. In
VLDB 2003, Proceedings of 29th International
Conference on Very Large Data Bases, pages 81–92.
Morgan Kaufmann, September 2003.

[2] P. Baldwin, S. Kohli, E. A. Lee, X. Liu, and Y. Zhao.
Modelling of Sensor Nets in Ptolemy II. In Proceedings
of the Third International Symposium on Information
Processing in Sensor Networks (IPSN’04), pages
359–368. ACM Press, 2004.

[3] S. Bandyopadhyay, C. Giannella, U. Maulik,
H. Kargupta, K. Liu, and S. Datta. Clustering
distributed data streams in peer-to-peer environments.
Information Sciences, 176(14):1952–1985, 2006.

[4] D. Barbará. Requirements for clustering data streams.
SIGKDD Explorations (Special Issue on Online,
Interactive, and Anytime Data Mining), 3(2):23–27,
January 2002.

[5] J. Beringer and E. Hüllermeier. Online clustering of
parallel data streams. Data and Knowledge
Engineering, 58(2):180–204, August 2006.

[6] P. Bradley, U. Fayyad, and C. Reina. Scaling
clustering algorithms to large databases. In
Proceedings of the Fourth International Conference on
Knowledge Discovery and Data Mining, pages 9–15.
AAAI Press, 1998.

[7] H. Chan, M. Luk, and A. Perrig. Using clustering
information for sensor network localization. In First
IEEE International Conference on Distributed
Computing in Sensor Systems, pages 109–125, 2005.

[8] J. Cohen. A coefficient of agreement for nominal
scales. Educational and Psychological Measurement,
20:37–46, 1960.

[9] G. Cormode, S. Muthukrishnan, and W. Zhuang.
Conquering the divide: Continuous clustering of
distributed data streams. In Proceedings of the 23rd
International Conference on Data Engineering (ICDE
2007), pages 1036–1045, 2007.

[10] B.-R. Dai, J.-W. Huang, M.-Y. Yeh, and M.-S. Chen.
Adaptive clustering for multiple evolving streams.
IEEE Transactions on Knowledge and Data
Engineering, 18(9):1166–1180, September 2006.

[11] S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and
H. Kargupta. Distributed data mining in peer-to-peer
networks. IEEE Internet Computing, 10(4):18–26,
2006.

[12] P. Domingos and G. Hulten. A general method for
scaling up machine learning algorithms and its
application to clustering. In Proceedings of the
Eighteenth International Conference on Machine
Learning (ICML 2001), pages 106–113, 2001.

43

[13] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu,
J. Ludvig, S. Sachs, and Y. Xiong. Taming
heterogeneity - the Ptolemy approach. Proceedings of
the IEEE, 91(1):127–144, 2003.

[14] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Second Int Conf
on Knowledge Discovery and Data Mining, pages
226–231, Portland, Oregon, 1996. AAAI Press.

[15] M. M. Gaber and P. S. Yu. A framework for
resource-aware knowledge discovery in data streams: a
holistic approach with its application to clustering. In
Proceedings of the ACM Symposium on Applied
Computing, pages 649–656, 2006.

[16] J. Gama and P. P. Rodrigues. Data stream processing.
In Learning from Data Streams - Processing
Techniques in Sensor Networks, chapter 3, pages
25–39. Springer Verlag, 2007.

[17] J. Gama, R. Sebastião, and P. P. Rodrigues. Issues in
evaluation of stream learning windows. In Proceedings
of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD
2009), pages 329–337, Paris, France, 2009. ACM Press.

[18] T. F. Gonzalez. Clustering to minimize the maximum
inter-cluster distance. Theoretical Computer Science,
38:293–306, 1985.

[19] M. Halkidi, Y. Batistakis, and M. Varzirgiannis. On
clustering validation techniques. Journal of Intelligent
Information Systems, 17(2-3):107–145, 2001.

[20] J. Ibriq and I. Mahgoub. Cluster-based routing in
wireless sensor networks: Issues and challenges. In
International Symposium on Performance Evaluation
of Computer and Telecommunication Systems, pages
759–766, 2004.

[21] T. Idé. Why does subsequence time-series clustering
produce sine waves. In Proceedings of the 10th
European Conference on Principles and Practice of
Knowledge Discovery from Databases (PKDD 2006),
volume 4213 of LNAI, pages 211–222, Berlin,
Germany, September 2006. Springer Verlag.

[22] A. K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice-Hall, 1988.

[23] H. Kargupta, W. Huang, K. Sivakumar, and E. L.
Johnson. Distributed clustering using collective
principal component analysis. Knowledge and
Information Systems, 3(4):422–448, 2001.

[24] E. J. Keogh, J. Lin, and W. Truppel. Clustering of
time series subsequences is meaningless: Implications
for previous and future research. In Proceedings of the
IEEE International Conference on Data Mining, pages
115–122. IEEE Computer Society Press, 2003.

[25] M. Klusch, S. Lodi, and G. Moro. Distributed
clustering based on sampling local density estimates.
In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 485–490, 2003.

[26] S. Muthukrishnan. Data Streams: Algorithms and
Applications. Now Publishers Inc, New York, NY,
2005.

[27] L. O’Callaghan, A. Meyerson, R. Motwani, N. Mishra,
and S. Guha. Streaming-data algorithms for
high-quality clustering. In Proceedings of the
Eighteenth Annual IEEE International Conference on

Data Engineering, pages 685–696. IEEE Computer
Society, 2002.

[28] P. P. Rodrigues and J. Gama. Clustering techniques in
sensor networks. In Learning from Data Streams,
chapter 9, pages 125–142. Springer Verlag, 2007.

[29] P. P. Rodrigues and J. Gama. A system for analysis
and prediction of electricity load streams. Intelligent
Data Analysis, 13(3):477–496, June 2009.

[30] P. P. Rodrigues, J. Gama, and L. Lopes. Clustering
distributed sensor data streams. In Proceedings of the
European Conference on Machine Learning and
Knowledge Discovery in Databases (ECMLPKDD
2008), volume 5212 of Lecture Notes in Artificial
Intelligence, pages 282–297, Antwerpen, Belgium,
September 2008. Springer Verlag.

[31] P. P. Rodrigues, J. Gama, and L. Lopes. Requirements
for clustering streaming sensors. In Knowledge
Discovery from Sensor Data, chapter 4, pages 33–51.
CRC Press, 2008.

[32] P. P. Rodrigues, J. Gama, and L. Lopes. Knowledge
discovery for sensor network comprehension. In
Intelligent Techniques for Warehousing and Mining
Sensor Network Data, chapter 6, pages 118–135. IGI
Global, 2010.

[33] P. P. Rodrigues, J. Gama, and J. P. Pedroso.
Hierarchical clustering of time-series data streams.
IEEE Transactions on Knowledge and Data
Engineering, 20(5):615–627, May 2008.

[34] D. M. Sherrill, M. L. Moy, J. J. Reilly, and P. Bonato.
Using hierarchical clustering methods to classify
motor activities of copd patients from wearable sensor
data. Journal of Neuroengineering and Rehabilitation,
2(16), 2005.

[35] J.-Z. Sun and J. Sauvola. Towards advanced modeling
techniques for wireless sensor networks. In Procs of 1st
Int Symp on Pervasive Computing and Applications,
pages 133–138. IEEE Computer Society, 2006.

[36] W. Wang, J. Yang, and R. R. Muntz. STING: A
statistical information grid approach to spatial data
mining. In 23rd Int Conf on Very Large Data Bases,
pages 186–195, Greece, 1997. Morgan Kaufmann.

[37] M. J. Warrens. On the equivalence of cohen’s kappa
and the hubert-arabie adjusted rand index. Journal of
Classification, 25(2):177–183, November 2008.

[38] J. Yin and M. M. Gaber. Clustering distributed time
series in sensor networks. Icdm 2008: Eighth Ieee
International Conference On Data Mining,
Proceedings, pages 678–687, 2008.

[39] O. Younis and S. Fahmy. HEED: A hybrid,
energy-efficient, distributed clustering approach for ad
hoc sensor networks. IEEE Transactions on Mobile
Computing, 3(4):366–379, 2004.

[40] K. Zhang, K. Torkkola, H. Li, C. Schreiner, H. Zhang,
M. Gardner, and Z. Zhao. A context aware automatic
traffic notification system for cell phones. In 27th
International Conference on Distributed Computing
Systems Workshops (ICDCSW ’07), pages 48–50.
IEEE Computer Society, 2007.

[41] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: A
new data clustering algorithm and its applications.
Data Mining and Knowledge Discovery, 1(2):141–182,
1997.

44

Energy Prediction Based on Resident's Activity
Chao Chen

Washington State University

Pullman, WA 99164
USA

cchen@eecs.wsu.edu

Barnan Das
Washington State University

Pullman, WA 99164
USA

barnandas@wsu.edu

Diane J. Cook
Washington State University

Pullman, WA 99164
USA

cook@eecs.wsu.edu

ABSTRACT
In smart home environment research, little attention has been
given to monitoring, analyzing, and predicting energy usage,
despite the fact that electricity consumption in homes has grown
dramatically in the last few decades. We envision that a potential
application of this smart environment technology is predicting the
energy would be used to support specific daily activities. The
purpose of this paper is thus to validate our hypothesis that energy
usage can be predicted based on sensor data that can be collected
and generated by the residents in a smart home environment,
including recognized activities, resident movement in the space,
and frequency of classes of sensor. In this paper, we extract useful
features from sensor data collected in a smart home environment
and utilize several machine learning algorithms to predict energy
usage given these features. To validate these algorithms, we use
real sensor data collected in our CASAS smart apartment testbed.
We also compare the performance between different learning
algorithms and analyze the prediction results for two different
experiments performed in the smart home.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – data
mining; I.2.6 [Artificial Intelligent]: Learning – knowledge
acquisition; H.4.m [Information Systems]: Information system
Application – Miscellaneous.

General Terms
Algorithms, Performance, Experimentation, Human Factors.

Keywords
Energy Prediction, Smart Environments, Machine Learning.

1. INTRODUCTION
Recently, smart home environments have become a very popular
topic, due to a convergence of technologies in machine learning
and data mining as well as the development of robust sensors and
actuators. In this research, attention has been directed toward the
area of health monitoring and activity recognition. Georgia Tech
Aware Home [2] identifies people based on the pressure sensors

embedded into the smart floor in strategic locations. This sensor
system can be used for tracking inhabitant and identifying user’s
location. The Neural Network House [3] designs an ACHE system,
which provides an Adaptive Control of Home Environment, in
which the home is proactive to program itself with the lifestyle
and desires of the inhabitant. The smart hospital project [4]
develops a robust approach for recognizing user’s activities and
estimating hospital-staff activities using a hidden Markov model
with contextual information in the smart hospital environment.
MIT researchers [5] recognize user' s activities by using a set of
small and simple state-change sensors, which are easy and quick
to install in the home environment. Unlike one resident system,
this system is employed in multiple inhabitant environments and
can be used to recognize Activities of Daily Living (ADL).
CASAS Smart Home Project [6] builds probabilistic models of
activities and used them to recognize activities in complex
situations where multiple residents are performing activities in
parallel in the same environment.

Based on a recent report [7], buildings are responsible for at
least 40% of energy use in most countries. As an important part of
buildings, household consumption of electricity has been growing
dramatically. Thus, the need to develop technologies that improve
energy efficiency and monitor the energy usage of the devices in
household is emerging as a critical research area. The BeAware
project [8] makes use of an iPhone application to give users alerts
and to provide information on the energy consumption of the
entire house. This mobile application can detect the electricity
consumption of different devices and notify the user if the devices
use more energy than expected. The PowerLine Positioning (PLP)
indoor location system [9] is able to localize to sub-room level
precision by using fingerprinting of the amplitude of tones
produced by two modules installed in extreme locations of the
home. Later work of this system [10] records and analyzes
electrical noise on the power line caused by the switching of
significant electrical loads by a single, plug-in module, which can
connect to a personal computer, then uses machine learning
techniques to identify unique occurrences of switching events by
tracking the patterns of electrical noise. The MITes platform [11]
monitors the changes of various appliances in current electricity
flow for the appliance, such as a switch from on to off by
installing the current sensors for each appliance. Other similar
work [12] also proposes several approaches to recognize the
energy usage of electrical devices by the analysis of power line
current. It can detect whether the appliance is used and how it is
used.

In our study, we extend smart home research to consider the
resident's energy usage. We envision three applications of smart
environments technologies for environmental energy efficiency:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SensorKDD’10, July 25, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0224-1…$10.00.

45

1) analyzing electricity usage to identify trends and anomalies, 2)
predicting the energy that will be used to support specific daily
activities, and 3) automating activity support in a more energy
efficient manner. In this paper, we focus on the second task.
purpose of this paper is thus to validate our hypothesis that
usage can be predicted based on sensor data that can be collected
and generated by the residents in a smart home environment,
including automatically-recognized activities,
in the space, and frequency of classes of sensor events.
of this work can be used to give residents feedback on energy
consumption as it relates to various activities
information can also be used to suggest or automate activities in a
more energy-efficient way.

In section 2, we introduce our CASAS smart environment
architecture and describe our data collection
modules. Section 3 presents the relationship between the energy
data and the activities and describes machine learning methods to
predict energy usage. Section 4 summarizes
experiments and compares the performance between different
learning methods and different experimental

2. CASAS SMART ENVIRONMENT
The smart home environment testbed that we are using to predict
energy usage is a three bedroom apartment located
Washington State University campus.

Figure 1. Three-bedroom smart apartment used for our data
collection (motion (M), temperature (T), water (W), burner
(B), telephone (P), and item (I)).

As shown in Figure 1, the smart home apartment testbed consists
of three bedrooms, one bathroom, a kitchen, and a living/dining
room. To track people’s mobility, we use motion sensors placed
on the ceilings. The circles in the figure stand for the positions of
motion sensors. They facilitate tracking the
moving through the space. In addition, the testbed also includes
temperature sensors as well as custom-built analog sensors to
provide temperature readings and hot water, cold water and stove
burner use. A power meter records the amount of instantaneous
power usage and the total amount of power which
house sensor network captures all sensor events and stores them in
a SQL database. The sensor data gathered for our study is
expressed by several features, summarized in Table 1. These four

1) analyzing electricity usage to identify trends and anomalies, 2)
dicting the energy that will be used to support specific daily

activities, and 3) automating activity support in a more energy-
efficient manner. In this paper, we focus on the second task. The

to validate our hypothesis that energy
usage can be predicted based on sensor data that can be collected
and generated by the residents in a smart home environment,

activities, resident movement
sensor events. The results

of this work can be used to give residents feedback on energy
consumption as it relates to various activities. Ultimately this
information can also be used to suggest or automate activities in a

CASAS smart environment
data collection and annotation

the relationship between the energy
data and the activities and describes machine learning methods to

summarizes the results of our
experiments and compares the performance between different

 parameters.

MART ENVIRONMENT
The smart home environment testbed that we are using to predict
energy usage is a three bedroom apartment located on the

bedroom smart apartment used for our data
collection (motion (M), temperature (T), water (W), burner

, the smart home apartment testbed consists
of three bedrooms, one bathroom, a kitchen, and a living/dining
room. To track people’s mobility, we use motion sensors placed
on the ceilings. The circles in the figure stand for the positions of

tracking the residents who are
the space. In addition, the testbed also includes

built analog sensors to
provide temperature readings and hot water, cold water and stove

wer meter records the amount of instantaneous
power usage and the total amount of power which is used. An in-
house sensor network captures all sensor events and stores them in
a SQL database. The sensor data gathered for our study is

summarized in Table 1. These four

fields (Date, Time, Sensor, ID and Message) are generated by the
CASAS data collection system automatically.

Table 1. Sample of sensor events
two events correspond to motion sensor

messages. The third event is an ambient temperature reading,
and the last two events represent current electricity usage.

Date Time

2009-02-06 17:17:36

2009-02-06 17:17:40

2009-02-06 11:13:26

2009-02-05 11:18:37

2009-02-09 21:15:28

To provide real training data for
algorithms, we collect data while two students in good health
were living in the smart apartment. Our training data was gathered
over a period of several months and more than 100,000 sensor
events were generated for our dataset. Each student had a separate
bedroom and shared the downstairs living areas in the smart
apartment. All of our experiment
students’ normal lives, which guarantee that the results of this
analysis are real and useful.

After collecting data from
annotated the sensor events with the corresponding activities that
were being performed while the sensor event
Because the annotated data is
algorithms, the quality of the annotated data is very important for
the performance of the learning algorithms.
sensor data events are generated in a sm
becomes difficult for researchers and users to interpret raw data
into residents' activities [13] without the use of visualization tools.

To improve the quality of the annotated data, we built
open source Python Visualizer, called PyViz, to visua
sensor events. Figure 2 shows the user interface of PyViz for the
CASAS project. PyViz can display events in real
playback mode from a captured file of sensor event readings.
Furthermore, we also built an Annotation Visualizer to visualize
the resident’s activities as shown in

Figure 2. Py

fields (Date, Time, Sensor, ID and Message) are generated by the
CASAS data collection system automatically.

Sample of sensor events used for our study. The first
two events correspond to motion sensor ON and OFF

messages. The third event is an ambient temperature reading,
and the last two events represent current electricity usage.

Sensor ID Message

 M45 ON

 M45 OFF

 T004 21.5

 P001 747W

 P001 1.929kWh

To provide real training data for our machine learning
, we collect data while two students in good health

were living in the smart apartment. Our training data was gathered
a period of several months and more than 100,000 sensor

events were generated for our dataset. Each student had a separate
bedroom and shared the downstairs living areas in the smart
apartment. All of our experimental data are produced by these two

s’ normal lives, which guarantee that the results of this

After collecting data from the CASAS smart apartment, we
the sensor events with the corresponding activities that

were being performed while the sensor events were generated.
 used to train the machine learning

algorithms, the quality of the annotated data is very important for
the performance of the learning algorithms. As a large number of
sensor data events are generated in a smart home environment, it

difficult for researchers and users to interpret raw data
without the use of visualization tools.

of the annotated data, we built an
open source Python Visualizer, called PyViz, to visualize the

shows the user interface of PyViz for the
PyViz can display events in real-time or in

playback mode from a captured file of sensor event readings.
Furthermore, we also built an Annotation Visualizer to visualize

shown in Figure 3.

PyViz visualizer.

46

Figure 3. Visualizing activities in a smart

With the help of PyViz, activity labels are optionally added to
each sensor event, providing a label for the current activity. For
our experiment, we selected six activities that the two volunt
participants regularly perform in the smart apartment to predict
energy use. These activities are as follows:

1. Work at computer

2. Sleep

3. Cook

4. Watch TV

5. Shower

6. Groom

All of the activities that the participants perform have some
relationship with measurable features such as the time of day, the
participants’ movement patterns throughout the space, and the
on/off status of various electrical appliances.
either directly or indirectly associated with a number of
appliances and thus have a unique pattern of power consumption.
Table 2 gives a list of appliances associated with
should be noted that, there are some appliances which are in
“always on” mode, such as the heater (in winter), refrigerator,
phone charger, etc. Thus, we postulate that the activities will have
a measurable relationship with the energy usage of these
appliances as well.

Table 2.Electricical appliances associated with each activity

Activity

Appliances
Directly

Associated
Work at computer Computer, printer

Sleep None
Cook Microwave, oven,

stove
Watch TV TV, DVD player

Shower Water heater
Groom Blow drier

mart home environment.

With the help of PyViz, activity labels are optionally added to
each sensor event, providing a label for the current activity. For
our experiment, we selected six activities that the two volunteer
participants regularly perform in the smart apartment to predict

All of the activities that the participants perform have some
measurable features such as the time of day, the

participants’ movement patterns throughout the space, and the
on/off status of various electrical appliances. These activities are
either directly or indirectly associated with a number of electrical

of power consumption.
Table 2 gives a list of appliances associated with each activity. It
should be noted that, there are some appliances which are in

heater (in winter), refrigerator,
charger, etc. Thus, we postulate that the activities will have

energy usage of these

Electricical appliances associated with each activity.

Appliances
Indirectly
Associated

 Localized lights
None

Kitchen lights

Localized lights
Localized lights
Localized lights

3. ENERGY ANALYSIS

Figure 4. Energy usage for

Figure 4 shows the energy f
single day on June 2nd, 2009.
represented by red arrows. The length
duration of time (not to scale)
there are a number of peaks in the graph even though
do not always directly correspond to a known activity
peaks are due to the water heate
consumption among all appliances, even though it was not used
directly. The water heater starts heating by itself whenever the
temperature of water falls below a certain threshold.

Figure 5. Energy data curve

(X-axis: wattage; Y-axis: second;
Work on computer; D: Groom;

Figure 5 plots typical energy data for each activity
the result of applying curve fitting to the data
the process of building a mathematical function model that can

A

C

E

NERGY ANALYSIS

usage for a single day.

shows the energy fluctuation that occurred during a
June 2nd, 2009. The activities have been

The length of the arrows indicates the
(not to scale) for different activities. Note that

there are a number of peaks in the graph even though these peaks
correspond to a known activity. These

heater, which has the highest energy
ption among all appliances, even though it was not used
. The water heater starts heating by itself whenever the

temperature of water falls below a certain threshold.

. Energy data curve fitting for each activity.

second; A: Shower; B: Cook; C:
: Groom; E: Sleep; F: Watch TV)

energy data for each activity together with
the result of applying curve fitting to the data. Curve fitting [14] is
the process of building a mathematical function model that can

B

D

F

47

best fit to a series of data points. It serves as an aid for data
visualization, to approximate the values when no data are
available, and to express the relationships between different data
points. From the figure, we see that each resident's activity
generates different energy patterns. The "cook" activity consumes
the highest energy because the participants may open the
refrigerator and use the stove or microwave oven, which need a
relatively high power. Meantime, when the participants were
sleeping, the energy consumption was the lowest because most
appliances were idle.

3.1 Feature Extraction
Data mining and machine learning techniques use enormous
volumes of data to make appropriate predictions. Before making
use of these learning algorithms, another important step is to
extract useful features or attributes from the raw annotated data.
We have considered some features that would be helpful in energy
prediction. These features have been generated from the raw
sensor data by our feature extraction module. The following is a
listing of the resulting features that we used in our energy
prediction experiments.

1. Activity label

2. Activity length (in seconds)

3. Previous activity

4. Next activity

5. Number of kinds of motion sensors involved

6. Total number of times of motion sensor events triggered

7. Motion sensor M1…M51 (On/Off)

Target Feature: Total energy consumption range for an activity
(in watts)

Activity label gives the name of the activity performed. Activity
length is the duration of time a particular activity takes from
beginning to the end. Features 3 and 4 represent the preceding and
the succeeding activities to the current activity. Feature 5 takes
into account the total number of different unique sensors used.
Features 6 keeps a record of total number of sensor events
associated with an activity. Feature 7 is not just one feature, but a
collection of 51 features each representing a single motion sensor.
Each of these sensor data records the total number of times a
motion sensor was fired.

The input to the learning algorithm is a list of these seven features
as computed for a particular activity that was performed. The
output of the learning algorithm is the amount of electricity that is
predicted to be consumed while performing the activity. To
address the goal of predicting energy usage, we discretize the
energy readings using equal width binning. Equal width binning
[15] is also widely used in data exploration, preparation, and
mining. Both of these binning techniques have been used to
preprocess continuous-valued attributes by creating a specified
number of bins, or numeric ranges. These benchmarks can be used
to evaluate other machine learning classifiers we use in our
experiments. In this paper, we discretize the target average energy
data into several interval sizes (two classes, three classes, four
classes and five classes, six classes) to assess the performance of
our experiments.

3.2 Feature Selection
During feature extraction, our algorithm generates a large number
of features to describe a particular situation. However, some of
these features are redundant or irrelevant, resulting in a drastic
raise of computational complexity and classification errors [16].
Features are selected by a method called attribute subset selection
which finds a minimum set of attributes such that the resulting
probability distribution of the data classes is as close as possible
to the original distribution obtained using all attributes. In this
paper, we have used information gain [17] to create a
classification model, which can measure how well a given
attribute separate the training examples according to their target
classification. The performance of each attribute is measured in
terms of a parameter known as information gain. It is a measure
based on entropy, a parameter used in information theory to
characterize the purity of an arbitrary collection of examples. It is
measured as:

−−++ −−≡ ppppSEntropy 22 loglog)(
where, � is the set of data points, �� is number of data points that
belong to one class (the positive class) and �� is the number of
data points that belong to the negative class. We adapt this
measure to handle more than two classes for our experiments.

∑
∈

−≡
)(

)(
||

||
)(),(

AValuesv
v

v SEntropy
S

S
SEntropyASGain

where, Values (A) is the set of all possible values for attribute A.
Gain(S, A) measures how well a given attribute separates the
training examples according to their target classification. By using
information gain, we can determine which features are
comparatively more important than others for the task of target
classification.

3.3 Energy Prediction
Machine learning [18] algorithms are capable to learn and
recognize complex patterns and classify objects based on sensor
data. In our study, we make use of four popular machine learning
methods to represent and predict energy usage based on the
features we selected: a Naïve Bayes Classifier, a Bayes Net
Classifier, a Neural Network Classifier, and a Support Vector
Machine. We test these four algorithms on the data collected in
the CASAS smart home apartment testbed.

3.3.1 Naïve Bayes Classifier
A naïve Bayes Classifier [19] is a simple probabilistic classifier
that assumes the presence of a particular feature of a class is
unrelated to any other features. It applies Bayes’ theorem to learn
a mapping from the features to a classification label.

argmax��∈�P�e�|F� = P�F|e��P�e��
P�F�

In this equation, E represents the energy class label and F stands
for the features values we describe above. P�e�� is estimated by
counting the frequency with which each target value e� occurs in
the training data. Based on the simplifying assumption that feature
values are independent given the target values, the probabilities of
observing the features is the product of the probabilities for the
individual features:

P�F�e�� = � P�f�|e��
�

48

Despite its naïve design and over-simplified assumptions, the
naïve Bayes classifier often works more effectively in many
complex real world situations than other classifiers. It only
requires a small amount of training data to estimate the parameters
needed for classification.

3.3.2 Bayes Net
Bayes belief networks [20] belong to the family of probabilistic
graphical models. They represent a set of conditional
independence assumptions by a directed acyclic graph, whose
nodes represent random variables and edges represent direct
dependence among the variables and are drawn by arrows by the
variable name. Unlike the naïve Bayes classifier, which assumes
that the values of all the attributes are conditionally independent
given the target value, Bayesian belief networks apply conditional
independence assumptions only to the subset of the variables.
They can be suitable for small and incomplete data sets and they
incorporate knowledge from different sources. After the model is
built, they can also provide fast responses to queries.

3.3.3 Artificial Neural Network
Arti ficial Neural Networks (ANNs) [21] are abstract
computational models based on the organizational structure of the
human brain. ANNs provide a general and robust method to learn
a target function from input examples. The most common learning
method for ANNs, called Backpropagation, which performs a
gradient descent within the solution’s vector space to attempt to
minimize the squared error between the network output values
and the target values for these outputs. Although there is no
guarantee that an ANN will find the global minimum and the
learning procedure may be quite slow, ANNs can be applied to
problems where the relationships are dynamic or non- linear and
capture many kinds of relationships that may be difficult to model
by other machine learning methods. In our experiment, we choose
the Multilayer-Perceptron algorithm with Backpropagation to
predict electricity usage.

3.3.4 Support Vector Machine
Super Vector Machines (SVMs) were first introduced in 1992
[22]. This is a training algorithm for data classification, which
maximizes the margin between the training examples and the
class boundary. The SVM learns a hyperplane which separates
instances from multiple activity classes with maximum margin.
Each training data instance should contain one class label and
several features. The goal of a SVM is to generate a hyperplane
which provides a class label for each data point described by a set
of feature values.

4. EXPERIMENT RESULTS
We performed two series of experiments. The first experiment
uses the sensor data collected during two summer months in the
testbed. In the second experiment, we collected data of three
winter months in the testbed. The biggest difference between
these two groups of data is that some high energy consuming
devices like room heaters were only used during the winter, which
are not directly controlled by the residents and are therefore
difficult to monitor and predict. The test tool we use, called Weka
[23], provides an implementation of learning algorithms that we
can easily apply to our own dataset. Using Weka, we assessed the
classification accuracy of our four selected machine learning
algorithms using 3-fold cross validation.

Figure 6. Comparison of the accuracy for summer dataset.

Figure 7. Comparison of the accuracy for winter dataset.

Figures 6 and 7 plot the accuracies of the two different group
experiments, respectively. As shown in these two figures, the
highest accuracy is around 90% for both datasets to predict the
two-class energy usage and the lowest accuracy is around 60% for
the six-class case in both datasets. These results also show that the
higher accuracy will be found when the precision was lower
because the accuracy of all four methods will drop from about 90%
to around 60% with an increase in the number of energy class
labels.

From the figures we see that the Naïve Bayes Classifier performs
worse than the other three classifiers. This is because it is based
on the simplified assumption that the feature values are
conditionally independent given the target value. On the contrary,
the features that we use, are not conditionally independent. For
example, the motion sensors associated with an activity is used to
find the total number of times motion sensor events were triggered
and also the kinds of motion sensors involved.

To analyze the effectiveness of decision tree feature selection, we
apply the ANN algorithm to both datasets with and without
feature selection. From Figure 8, we can see the time efficiency
has been improved greatly using feature selection. The time for
building the training model drops from around 13 seconds to 4
seconds after selecting the features with high information gain.
However, as seen in Figure 9, the classification accuracy is almost
the same or a slight better than the performance without feature
selection. The use of feature selection can improve the time

49

performance without reducing the accuracy performance in the
original data set.

Figure 8. Comparison of time efficiency.

(1:2-class; 2:3-class; 3:4-class; 4:5-class; 5:6-class; Y-axis:
second; Red: with feature selection; Blue: without feature

selection). Time is plotted in seconds.

Figure 9. Comparison of prediction accuracy.

(1:2-class; 2:3-class; 3:4-class; 4:5-class; 5:6-class; Red: with
feature selection; Blue: without feature selection).

Figure 10 compares the performance of the ANN applied to the
winter and summer data sets. From the graph, we see that the
performance for the summer data set is shade better than the
performance for the winter dataset. This is likely due to the fact
that the room and floor heater appliances are used during winter,
which consumes a large amount of energy and are less predictable
than the control of other electrical devices in the apartment.

Figure 10 Comparison of the accuracy between two datasets.

5. DISCUSSIONS
Analyzing these results, we see that machine learning methods
can be used as a tool to predict energy usage in smart home
environments based on the human's activity and mobility.
However, the accuracy of these methods is not as high as we
anticipated when the energy data is divided into more than three
classes. There are several reasons that lead to low performance of
these algorithms. One reason is that some of the major devices are
difficult to monitor and predict, such as the floor heater, which
may rely on the outdoor temperature of the house. Another reason
is that there is no obvious cycle of people’s activities. An
additional factor we can't ignore is that there is some noise and
perturbation motion when the sensors record data and transfer
them into the database. Finally, the sensor data we collect is not
enough to predict energy precisely. As a result, we intend to
collect more kinds of sensor data to improve the prediction
performance.

6. CONCLUSIONS
In this work, we introduced a method of predicting energy usage
using an integrated system of collecting sensor data and applied
machine learning in a smart home environment. To predict energy
precisely, we extracted features from real sensor data in a smart
home environment and selected the most important features based
on information gain, then used an equal width binning method to
discretize the value of the features. To assess the performance of
the four machine learning methods, we performed two group
experiments during two different periods, analyzed the results of
the experiments and provided the explanation of those results.

In our ongoing work, we plan to further investigate new and
pertinent features to predict the energy more accurately. To
improve the accuracy of energy prediction, we intend to install
more sensitive sensors to capture more useful information in the
smart home environment. We are also planning to apply different
machine learning methods to different environments in which
different residents perform similar activities. This will allow us to
analyze whether the same pattern exists across residents and
environments. In our next step we will analyze the energy usage
data itself to find trends and cycles in the data viewed as a time
series. The results of our work can be used to give residents
feedback on energy consumption as it relates to various activities
and be also treated as a reference to research human's life style in
their homes. In addition, predicted electricity use can form the
basis for automating the activities in a manner that consumes
fewer resources including electricity.

7. REFERENCES
[1] Brumitt, B., et al. 2000. Multi-Camera Multi-Person

Tracking for EasyLiving. In Conf. Proc. 3rd IEEE Intl.
Workshop on Visual Surveillance.

[2] Orr, R. J. and Abowd, G. D. 2000. The smart floor: A
mechanism for natural user identification and tracking. In
Conference on Human Factors in Computing Systems. 275–
276.

[3] Mozer, M. C. 1998. The Neural Network House: An
Environment hat Adapts to its Inhabitants. In Proc. AAAI
Spring Symp. Intelligent Environments.

[4] Sánchez, D., Tentori, M. and Favela, J. 2008. Activity
recognition for the smart hospital. IEEE Intelligent Systems.
23, 2 , 50–57.

0

5

10

15

1 2 3 4 5

Summer Dataset

0

5

10

15

1 2 3 4 5

Winter Dataset

0%

20%

40%

60%

80%

100%

1 2 3 4 5

Summer Dataset

0%

20%

40%

60%

80%

100%

1 2 3 4 5

Winter Dataset

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2-class 3-class 4-class 5-class 6-class

Summer Data

Winter Data

50

[5] Tapia, E. M., Intille, S. S. and Larson, K. 2004. Activity
recognition in the home using simple and ubiquitous sensors.
Pervasive Computing. 158–175.

[6] Singla, G., Cook, D. J. and Schmitter-Edgecombe, M. 2010.
Recognizing independent and joint activities among multiple
residents in smart environments. Journal of Ambient
Intelligence and Humanized Computing. 1–7.

[7] Energy Efficiency in Buildings. 2009. DOI= www.wbcsd.org.

[8] BeAware. 2010. DOI= www.energyawareness.eu/beaware.

[9] Patel, S.N., Truong, K.N. and Abowd, G. D. 2006.
PowerLine Positioning: A Practical Sub-Room-Level Indoor
Location System for Domestic Use. In proceedings of
UbiComp 2006: 8th international conference. Springer
Berlin / Heidelberg, 441-458.

[10] Patel, S.N., et al. 2007. At the flick of a switch: Detecting
and classifying unique electrical events on the residential
power line, In proceedings of UbiComp 2007: 9th
international conference. Innsbruck, Austria, 271.

[11] Tapia, E., et al. 2006. The design of a portable kit of wireless
sensors for naturalistic data collection. Pervasive Computing.
117–134.

[12] Bauer, G., Stockinger, K. and Lukowicz, P. 2009.
Recognizing the Use-Mode of Kitchen Appliances from
Their Current Consumption. Smart Sensing and Context.
163–176.

[13] Szewcyzk, S., et al. 2009. Annotating smart environment
sensor data for activity learning. Technol. Health Care. 17, 3,
161-169.

[14] Coope, I. D. 1993. Circle fitting by linear and nonlinear least
squares. Journal of Optimization Theory and Applications.
76, 2, 381–388.

[15] Liu, H., et al. 2002. Discretization: An enabling technique.
Data Mining and Knowledge Discovery. 6, 4, 393–423.

[16] Bellman, R. E. 1961. Adaptive control processes - A guided
tour. Princeton, New Jersey, U.S.A.: Princeton University
Press. 255.

[17] Quinlan, J. R. 1986. Induction of Decision Trees. Mach.
Learn., 1, 1, 81-106.

[18] Mitchell, T. 1997. Machine Learning, New York，
AMcGraw Hill.

[19] Rish, I. 2001. An empirical study of the naive Bayes
classifier. In IJCAI-01 workshop on "Empirical Methods in
AI".

[20] Pearl, J. 1988. Probabilistic reasoning in intelligent systems:
networks of plausible inference, Morgan Kaufmann.

[21] Zornetzer, S. F. 1955. An introduction to neural and
electronic networks, Morgan Kaufmann.

[22] Boser, B. E., Guyon, I. M. and Vapnik, V. N. 1992. A
training algorithm for optimal margin classifiers. In
Proceedings of the fifth annual workshop on Computational
learning theory, Pittsburgh, Pennsylvania, United States,
144-152.

[23] Witten, I. H. and Frank, E. 1999. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations (The Morgan Kaufmann Series in Data
Management Systems), Morgan Kaufmann.

51

SHORT RESEARCH PAPERS

52

Multi Home Transfer Learning for Resident Activity
Discovery and Recognition

Parisa Rashidi
Washington State University

Pullman, Washington
prashidi@eecs.wsu.edu

Diane J. Cook
Washington State University

Pullman, Washington
cook@eecs.wsu.edu

ABSTRACT
Activity discovery and recognition can provide unprecedented
opportunities for health monitoring, automation, energy ef-
ficiency and security. Despite all the potential benefits, in
practice we are faced with the main challenge of collect-
ing huge amounts of data for each new physical space in
order to carry out the conventional activity discovery algo-
rithms. This results in a prolonged installation in the real
world. More importantly, if we ignore what has been learned
in previous spaces, we face redundant computational effort
and time investment and we miss the insights gained from
past experience that can improve the recognition accuracy.
To overcome this problem, we propose a method of transfer-
ring the knowledge of learned activities from multiple source
physical spaces, e.g. home A and B, to a target physical
space, e.g. home C. Our method called Multi Home Trans-
fer Learning (MHTL) is based on a location mining method
for target activity discovery, a semi-Em framework for activ-
ity mapping, and an ensemble method for label assignment.
In this paper we introduce the MHTL methodology. To val-
idate our algorithms, we use the data collected in several
smart apartments with different physical layouts.

Categories and Subject Descriptors
H.2.8 [Information Systems]: DATABASE MANAGE-
MENT—Data mining ; I.2.6 [Computing Methodologies]:
ARTIFICIAL INTELLIGENCE—Learning

General Terms
Activity Discovery, Transfer Learning, Smart Environments

1. INTRODUCTION
With remarkable recent progress in computing power, net-

working, and sensor technology, we are steadily moving into
the world of ubiquitous computing where technology recedes
into the background of our lives. Using sensor technology

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SensorKDD’10 July 25, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0224-1 ...$10.00.

combined with the power of data mining and machine learn-
ing, many researchers are now working on smart environ-
ments which can discover and recognize residents’ activities
and respond to the needs of the residents in a context aware
way [5]. Some of these efforts have been demonstrated in ac-
tual physical testbeds such as the CASAS project [21], the
MavHome project [6], the Gator Tech Smart House [12], the
iDorm [9], and the Georgia Tech Aware Home [1]. A smart
environment typically contains many sensors such as motion
sensors that provide us with unprecedented opportunities for
health monitoring, automation, energy efficiency and secu-
rity via activity discovery and recognition [26]. For example
researchers are recognizing that smart environments can as-
sist with valuable functions in the area of remote health
monitoring and intervention by monitoring the daily activ-
ities of elderly adults with memory deficiencies and helping
them via timely prompts [23].

In response to this recognized need, researchers have de-
signed a variety of approaches for discovering, modeling and
recognizing activities. Those methods exploit naive Bayes
[2], decision trees [16], Markov models [15], dynamic Bayes
networks [13], conditional random fields [18], frequent se-
quence mining [10] and mixed frequent-periodic sequence
mining [20]. The problem with all those approaches is that
they do not exploit the knowledge learned in previous spaces
in order to discover and recognize activities in a new space.
Therefore, for each new space a huge amount of data needs
to be collected in order to carry out the conventional un-
supervised activity discovery methods such as frequent or
periodic data mining methods. Even if supervised meth-
ods are used, a greater burden is placed on the user of the
smart environment, who must annotate sufficient data in or-
der to train the recognition algorithms. Our testbeds have
required at least one hour of an expert’s time to annotate a
single day’s worth of sensor data. This particularly becomes
problematic if we are targeting a deployment in the home
of an older adult. Also, learning the model of each environ-
ment separately and ignoring what has been learned in other
physical settings leads to redundant computational effort,
excessive time investment, and loss of beneficial information
that can improve the recognition accuracy. Therefore it is
beneficial to develop models that can exploit the knowledge
of learned activities by employing them in new spaces. This
transfer concept results in reducing the need for data collec-
tion, reducing or eliminating the need for data annotation
and besides achieving an accelerated learning pace. Using
multiple sources and fusing their data together can leverage
this learning process even more by using a more diverse set of

53

activity models that can help in discovering and recognizing
the target activities.

The process of exploiting the knowledge gained in one
problem and applying the learned knowledge to a different
but related problem is called transfer learning [4][19]. It is a
hallmark of human intelligence, and has been vastly studied
in the literature [17], but it has been applied to activity
discovery and recognition in very few cases.

Our goal is to transfer the knowledge of learned activities
from multiple physical source spaces, e.g. home A and B,
to a target physical space, e.g. home C. Previously we have
shown a method for transferring learned activities from one
resident to another [22]. Zhang et al. [27] have developed
a model for mapping different types of activities to each
other (e.g. sweeping to cleaning) by learning a similarity
function via a Web search. Kasteren et. al [25] describe a
simple method for transferring the transition probabilities of
Markov models for two different spaces. They only transfer
the transition probabilities, and most other activity features
such as the activity’s structure and related temporal features
is ignored, as they assume the structure of HMMs is given
and pre-defined.

In our approach, the activity model includes much more
information based on using structural, temporal and spa-
tial features of the activities. Also, unlike the approach of
Kasteren et al.[25], we do not manually map the sensor net-
works. Instead, we learn sensor mappings based on the avail-
able data and activity models. It should be noted that in
order to exploit the knowledge learned in different spaces, we
transfer the activities from multiple physical source spaces
to a target physical space. First we use a location based data
mining method to find target activities in the target data.
Then the activities from both source and target spaces are
represented in a canonical form called an“activity template”
in order to allow for a more efficient mapping process. Next
we use a semi-EM framework to map source activities from
each single source to the target activities. Finally by using
an ensemble learning method based on a weighted majority
voting [8] and fusing multiple data sources we assign activity
labels to the target activities.

The remainder of the paper is organized as follows. First
we describe our approach in more detail, including its three
main stages. The first stage discovers activities by mining
data and extracting activity models, while the second stage
maps source activities to the target activities, and the third
stage assigns labels to the target activities. We then show
the results of our experiments on data obtained from five
different smart apartments. Finally we end the paper with
our conclusions and discussion of future work.

2. MODEL DESCRIPTION
Our objective is to develop a method that can transfer

learned activities across different physical spaces. We as-
sume that labeled activity data is available in the source
space S consisting of N individual sources S1, ..SN , and lim-
ited unlabeled data is available in the target space T . Our
goal is to use the source space knowledge to learn the ac-
tivity labels in the target space where the physical aspects
of the space and the sensors may be different. We assume
that the nature of the problem is “inductive transfer learn-
ing” or “self taught” [17], i.e. we have labeled data in the
source domain, and none or few data labels are available in
the target domain. This allows us to reduce several weeks

Timestamp (ts) Sensor ID (s) Label (l)

7/17/2009 09:52:25 M004 Personal Hygiene

7/17/2009 09:56:55 M030 Personal Hygiene

7/17/2009 14:12:20 M015 None

Table 1: Example sensor data. Here M004, M030
and M015 denote sensor IDs.

or months of data collection and annotation in the target
space to only a few days’ worth of data collection. We also
assume that the number of available sources (N) is limited
and computationally manageable, as reducing the number
of sources and source selection is outside the scope of this
paper. Our ultimate objective is to be able to correctly
recognize the activities in the target space. By using our
method, labeled target activity data becomes available that
can be consumed by conventional learning algorithms to per-
form activity recognition, or it can be used as a baseline for
other techniques such as active learning techniques. In the
remainder of this section we describe our notations and also
we will provide a high level description of the algorithm.

The input data is a sequence of sensor events e in the
form e = 〈ts, s, l〉 where ts denotes a timestamp, s denotes
a sensor ID, and l is the activity label, if available. An
example showing several sensor events can be seen in Table
1. As depicted in Table 1, each sensor event can be part of
a labeled activity such as the first and second sensor events,
or it can have no activity labels such as the third sensor
event. Each sensor ID is associated with its room name
(e.g. kitchen) which we will refer to as a location tag L.
A standard set of location tags is used across all different
sources. We define an activity as a = 〈E , l, t, d,L〉 where E
is a sequence of n sensor events 〈e1, e2, ..en〉, l is its label
(if available), t and d are the start time and duration of the
activity, and L represents the set of location tags where a
has occurred.

We denote the set of activities in each individual source
space Sk as ASk . The set of all source activities is denoted
by AS which is the union of activities from all individual
sources, i.e. AS =

⋃
k ASk . The set of target activities is

denoted by AT . The set of source sensors and the set of
target sensors is denoted by SS and ST . In order to be able
to map activities from the source space to a target space,
we need to find a way to map the source sensor network to
the target sensor network i.e. we’re looking for the map-
ping F ′(SS) = ST , as the source sensors will have different
locations and properties than the target sensors. Based on
using activity features and also the sensor mappings F ′, we
will find the activity mapping function F(AS) = AT . Note
that for the individual mappings from Sk to T the above
mapping functions are written as Fk(ASk), and F ′k(SSk).

The extent to which an activity ai ∈ ASk maps to activity
aj ∈ AT is reflected in matrix Mk, where Mk[i, j] ∈ [0..1]
shows the probability that activity ai and aj have the same
label. Similarly, a second matrix mk[p, q] ∈ [0..1] shows the
probability that sensor sp ∈ SSk maps to sensor sq ∈ ST

based on their location and their role in activity models.
Note that the mappings need not to be one to one, due
to the differences in the number of sensors and number of
activities in the source and target spaces.

Our multi home transfer learning algorithm (MHTL) per-

54

forms activity discovery and transfer in several stages (see
Figure 1). The first step involves processing labeled data
from the source space and mining available unlabeled data
from the target space in order to extract the activity mod-
els in each space. In the source space, for each individual
source Sk we extract the activities ASk by converting each
contiguous sequence of sensor events with the same label to
an activity. To reduce the number of activities and to find
a canonical mapping, similar activities in ASk are consoli-
dated together to represent an “activity template”. To avoid
mapping irrelevant sensors, a filter feature selection method
based on mutual information [11] is used to remove the ir-
relevant sensors for each activity template. In the target
space the data is mined to find unlabeled activity patterns
based on using location closure. Target activities are then
consolidated using an incremental clustering method [3]. If
any labeled data is available in the target space, it can be
used to refine the target activity models.

Figure 1: Main components of MHTL for transfer-
ring activities from multiple source spaces to a tar-
get space.

Next, source activity templates are mapped to the target
activity templates. First the activity templates’ initial map-
ping probabilities are computed based on structural, tem-
poral and spatial similarities. The sensors’ initial mapping
probabilities are assigned based on a spatial similarity mea-
sure. After initialization, the algorithm starts an Expecta-
tion Maximization like framework [7] called semi-EM in an
iterative manner. First, the sensor mapping probabilities are
adjusted based on the activity mapping probabilities, next
the activity mapping probabilities are adjusted based on the
updated sensor mapping probabilities. This continues until
no more changes are perceived or until a user defined number
of iterations is reached.

Finally, we assign an activity label to each target activity
aj based on the obtained activity mapping probabilities M .
To map activity labels we use an ensemble method based
on a weighted majority voting. For each space Sk a vote

for the label of the target activity aj is casted. The voted
label is selected the same as the label of a source activity ai

that maximizes the mapping probability Mk for aj . Each
vote is weighted by the overall similarity between the source
space Sk and the target space T , as will be described later.
At the end, the label with the maximum weighted votes
is considered as the label of the activity aj . Note that in
this method all the sources contribute to the label mapping
process in order to generate a final activity label for each
target activity. We provide a more detailed description of
these three steps in the following discussion.

2.1 Activity Extraction
The first step of the multi-stage MHTL algorithm is to

extract the activity models from input data in both source
and target spaces. For each single source space Sk we con-
vert each contiguous sequence of sensor events with the same
label to an activity a. This results in finding the set of ac-
tivities ASk for each one of the individual source spaces Sk.
The start time of the activity is the timestamp of its first
sensor event, while its duration is the difference between
its last and first timestamps. Due to the prohibitively large
number of extracted activities and possible similarity among
them, we combine similar activities together as an “activity
template”. Representing a set of similar activities as an ac-
tivity template allows for a more efficient canonical mapping
from source to target, as only a few activity templates will
be mapped from source to target instead of mapping a large
number of similar activities with only minor differences. The
activity template for a set of activities is itself an activity,
formed by merging activities’ sensors, durations, and start
times where the merged start times and durations form a
mixture normal distribution. The temporal mixture model
allows us to capture and model variations of the same activ-
ity that occur at different times. For example consider the
“eating” activity which usually happens three times a day,
once in the morning as breakfast, once at noon as lunch,
and once at night as dinner. Using a mixture model for the
start time we are able to capture all the three variations
by using a single activity model. During activity consolida-
tion, all the source activities that have the same label will
be merged into one single activity template. Note that as
each activity template is itself an activity, we use the terms
activity and activity template interchangeably.

The next step after similar activities are consolidated is to
perform sensor selection for each activity template a by pre-
serving only relevant sensors. Performing sensor selection
on each activity template allows for even a more compact
representation and a more accurate mapping, as it allows us
to map only the relevant sensors and to avoid mapping the
irrelevant sensors as noise. Our sensor selection method is
a filter feature selection method based on mutual informa-
tion [11]. For each activity template a and each sensor s
we define their mutual information MI(s, a) as in Equation
1. This value measures their mutual dependence and shows
how relevant sensor s is in predicting the activity’s label.
Here P (s, a) is the joint probability distribution of s and a,
while P (s) and P (a) are the marginal probability distribu-
tions, all computed from the sensor and activity occurrences
in the data. A high mutual information value indicates the
sensor is relevant for the activity template. We simply con-
sider sensors with a mutual information above the midpoint
(0.5) as relevant, otherwise they will be discarded.

55

MI(s, a) = P (s, a) ∗ log
P (s, a)

P (s)P (a)
(1)

To find activity patterns in unlabeled target data, we per-
form a data mining step on the input data. First we par-
tition the input data into activities. A sensor event e1 =
〈ts1, s1, l1〉 and a successor sensor event e2 = 〈ts2, s2, l2〉 are
part of the same activity if Ls1 = Ls2 , i.e. if both sensors
are in the same location. Such a local partitioning allows
us to have a baseline for finding individual activities. This
approach is based on the intuition that occurrences of the
same activity usually happen within the same location (such
as preparing meal in the kitchen, grooming in the bathroom,
etc), and more complex activities occurring in different lo-
cations can be composed of those basic activities. Notice
that as we only have access to limited input data (perhaps
a few days or even a few hours), we cannot use conventional
activity discovery methods such as frequent or periodic se-
quence mining methods [20] to find activity patterns in the
data. Therefore exploiting the spatial closure can be a way
to overcome this problem. After partitioning data into the
initial activities, we consolidate those activities by group-
ing together similar activities into an activity template. To
combine activities together, we use an incremental cluster-
ing method [3], such that each activity is assigned to the
most similar centroid if their similarity is above threshold ς,
and then the centroid is recomputed. Otherwise the activity
forms a separate cluster. The centroid is itself represented
as an activity template. At the end all the activities in one
cluster are consolidated together and the sensor selection is
carried out. For two activities ai and aj , their similarity
Υ(i, j) is defined as in Equation 2.

Υ(i, j) = Υt[i, j] + Υd[i, j] + ΥL[i, j] + ΥS [i, j] (2)

In above equation, Υt refers to start time mapping (if the
two activities happen at similar times, e.g. both around
noon), Υd refers to duration mapping (if the two activities
have similar durations), ΥL refers to location mapping (if
the two activities happen in similar locations, e.g. both in
the kitchen), and ΥS refers to structure mapping (if the two
activities have similar structure in terms of sensors). We
normalize Υ(i, j) to fall within the range [0..1]. For sim-
plicity, we have chosen the mappings to have equal effects,
however it’s possible to define Υ(i, j) as a weighted average.

As mentioned, the start times are in form of a mixture
normal distribution with means Θ = 〈θ1..θr〉. We repre-
sent start time θ in an angular form Φ measured in radians
instead of a linear representation. This allows for time dif-
ferences to be represented correctly (2:00 am will be closer to
12:00 pm than to 5:00 am). The similarity between the two
start time distributions is thus calculated using Equation 3.

Υt[i, j] = max
θ1∈Θi
θ2∈Θj

(1− |Φθ2 − Φθ1 |
2π

) (3)

Duration mapping is calculated as in Equation 4 where
durations are in form of a mixture normal distribution with
means Γ = 〈γ1..γr〉.

Υd[i, j] = max
γ1∈Γi
γ2∈Γj

(1− |γ2 − γ1|
max(γ2, γ1)

) (4)

To compute ΥL we use Equation 5 which is the Jaccard
similarity coefficient [24] for the sets of locations of the two
activities. A similar Jaccard similarity coefficient based on
similar sensors is defined for the structure mapping ΥS in
Equation 6.

ΥL[i, j] =
| Li

⋂Lj |
| Li

⋃Lj | (5)

ΥS [i, j] =
| Ei

⋂ Ej |
| Ei

⋃ Ej | (6)

2.2 Mapping Activities
The next step after the activity models for the source and

target space have been identified is to map the source ac-
tivity templates to the target activity template. First we
initialize the sensor and activity mapping matrixes, mk and
Mk for each pair of source Sk and target T . The initial val-
ues of the sensor mapping matrix mk[p, q] for two sensors
sp ∈ Sk and sq ∈ T is defined as 1.0 if they have the same
location tag, and as 0 if they have different location tags.
The initial value of Mk[i, j] for two activities ai ∈ ASk and
aj ∈ AT is obtained based on exploiting related spatial and
temporal information and also prior activity label informa-
tion (if available), as in Equation 7. Note that in Equation
7 the first case applies to the few labeled target activities,
while for the majority of the target activities the second case
is applied.

Mk[i, j] =

{
1.0 if li = lj

Υ(i, j) otherwise
(7)

For computing subsequent mapping probabilities, we use
an Expectation Maximization (EM) like framework [7] by es-
timating the mapping probabilities in an iterative manner.
First, the sensor mapping probabilities are computed; and
in the next step the activity mapping probabilities are maxi-
mized based on the sensor probabilities. Though this model
doesn’t exactly reflect an EM algorithm, however due to its
iterative manner and likelihood estimation in two steps, we
refer to it as a semi-EM framework.

To compute sensor mapping probabilities mk[p, q] for sen-
sors sp ∈ SSk and sq ∈ ST , we rely on activities in which
sp and sq appear in, as in Equation 8. The learning rate
α refers to how fast we want to converge on the new val-
ues, while mn

k [p, q] and mn+1
k [p, q] refer to the current and

updated values of mk[p, q] in iteration n and n + 1, respec-
tively.

mn+1
k [p, q] = mn

k [p, q]− α ∗∆mk[p, q] (8)

∆mk[p, q] = mn
k [p, q]− 1

|Xp||Yq|
∑

ai∈Xp

∑
aj∈Yq

Mk[i, j] (9)

Xp = {ai ∈ ASk |sp ∈ Ei}
Yq = {aj ∈ AT |sq ∈ Ej} (10)

In Equation 9, Xp and Yq give us all the activities in which
sensors p and q appear. This means that those activities
which do not include a given sensor will not contribute to
that sensor’s mapping probability.

56

In the next step, to adjust the mapping probability be-
tween each two activities, we use Equation 11 to account for
the updated sensor mappings. Here Mn

k [i, j] and Mn+1
k [i, j]

refer to the current and updated values of Mk[i, j] in itera-
tion n and n + 1, respectively.

Mn+1
k [i, j] = Mn

k [i, j]− α ∗∆Mk[i, j] (11)

∆Mk[i, j] = Mn
k [i, j]− 1

|Ei|
∑

sp∈Ei

max
q

sq∈Ej

mk[p, q] (12)

The above procedure for computing sensor mapping and
activity mapping probabilities is repeated until no more changes
are perceived or until a pre-defined number of iterations is
reached. Next, the labels are assigned to the target activities
based on the obtained probability mapping matrices.

2.3 Mapping Labels
In order to assign labels to the target activities, we use

a voting ensemble method [8] based on the activity mod-
els ASk for each space Sk. Combining data from different
sources to improve the accuracy and to have access to com-
plimentary information is known as data fusion or as a form
of ensemble learning [14]. Ensemble learning is a strategic
way to combine multiple models, such as different classi-
fiers or hypotheses to solve a computational problem. In
our problem, using multiple sources allows us to fuse data
from different sources and to form different activity mod-
els, therefore being able to map target activities based on
a more diverse set of source activities. In order to be able
to successfully apply the ensemble learning technique, an
ensemble system needs classifiers whose decision boundaries
are adequately different from each other. The most popular
method is to use different training datasets to train individ-
ual classifiers. The diversity condition of ensemble learning
in our problem is achieved by using different training sets
from N different physical source spaces, resulting in N dif-
ferent hypotheses. We build a classifier based on each indi-
vidual hypothesis hk and then by combining the predicted
labels of all classifiers for a certain target activity we are
able to make a decision about the activity’s final label.

Each hypothesis hk is constructed based on using the ac-
tivity templates ASk for space Sk plus the activity and sen-
sor mapping probabilities Mk and mk. We represent each
hypothesis as hk = {Fk,F ′k} where F and F ′ denote the
activity and sensor mapping functions. For a single space
Sk, Equations 13, 14 and 15 provide us with the activity
mapping function F , sensor mapping function F ′ and the
assigned label laj for each activity aj ∈ T . As can be seen
in Equation 15, the target activity’s label is selected to be
the same as the label of a source activity ai ∈ Sk that max-
imizes the mapping probability Mk for aj .

Fk(ai) = max
aj

(Mk[i, j]) (13)

F ′k(sp) = max
sq

(mk[p, q]) (14)

laj = lai s.t. Mk[i, j] = max
z

(Mk[z, j]) (15)

In order to combine the assigned labels for each aj using
different hypotheses, we use the weighted majority voting

Figure 2: The weighted majority voting schema for
label assignment.

algorithm as in Figure 2.3. The input of this algorithm is
the source activities AS, the activity mapping probabilities
M , the sensor mapping probabilities m, and activity aj . The
output of the algorithm is the label of aj as laj . For each
source space Sk we find the label of aj by using Equation
15. Each predicted label l is associated with a weight W [l],
which is the total similarity between the source Sk and T .
The total similarity between Sk and T is calculated as in
Equation 16 by summing over the best mapping from Sk

to T for each ai ∈ Sk. Obviously a label can be voted for
by different hypotheses and its weight will be increased as a
result.

Sim(Sk, T) =
∑

ax∈ASk

Mk[x,Fk(ax)] (16)

At the end, the label with the greatest number of weighted
votes is considered as the label of the activity aj . After
obtaining the labels of all target activities, we can use the
obtained labels to train a conventional activity recognition
algorithm. We also can use the labels in conjunction with
other techniques such as active learning in order to further
improve the results.

3. EXPERIMENTS
We evaluated the performance of our MHTL algorithm us-

ing the data collected from five different smart apartments.
The layout of the apartments including sensor placement
and location tags are shown in Figure 3. We will refer to
apartments in Figures 3(a) through 3(e) as apartments 1 to
5. The data was collected during a three month period for
apartments 1, 2, and 3, and during a two month period for
apartments 4 and 5. Each apartment is equipped with mo-
tion sensors, and most of the apartments are also equipped
with contact sensors which monitor the open/closed status
of doors and cabinets. Apartment 5 is also equipped with
light sensors and some item sensors to sense the presence of
key items. As can be seen in Figure 3 the apartments have
different layouts. For example, apartments 3 and 4 have two
bedrooms, while apartments 1 and 2 have one bedroom. In
addition, some functional spaces might not be available in

57

(a) Apartment 1. (b) Apartment 2. (c) Apartment 3.

(d) Apartment 4. (e) Apartment 5.

Figure 3: Figures (a-e) show sensor map and location tags for each apartment. On the map, circles show
motion sensors while triangles show switch contact sensors. The hollow-shaped motion sensors (as in Figure
d) are the area motion sensor. The stars in Figure (e) show the light sensors.

58

all five apartments, such as the workspace, laundry room or
the music room.

The residents also have quite different schedules, as can
be seen from the activity distribution diagrams shown in
Figure 4. For example, in the first apartment housekeeping
is performed each Friday, while in the second apartment this
is performed once a month, and in the third apartment the
housekeeping activity is replaced by a work activity. Also
the activity level in each apartment is different, as can be
seen clearly by comparing activity distribution diagrams for
apartment 4 versus other apartments. The activity level is
dependent on the activity level of the residents as well as the
number of sensors that monitor the activities. The three first
apartments were single resident apartments, while for the
fourth apartment the residents included a man, a woman,
and a cat. The fifth apartment included two undergraduate
student residents. All the data was collected while residents
were performing their normal daily activities during a 2-3
month period.

Each of the datasets was annotated with activities of in-
terest for the corresponding resident and apartment. A to-
tal of 11 activities were noted for apartments 1, 2 and 3.
Those activities included bathing, bed-toilet transition, eat-
ing, enter home, housekeeping (for the third apartment this
is replaced by “work”), leave home, meal preparation, per-
sonal hygiene, sleeping in bed, sleeping not in bed (relaxing)
and taking medicine. For the fourth apartment, 7 activities
were noted including bed-toilet transition, taking medicine,
eating, leaving home, laundry, sleeping in bed and work-
ing. The fifth apartment included 7 activities as working,
sleeping in bed, bed-toilet transition, personal hygiene, meal
preparation, housekeeping, sleeping not in bed (relaxing).

We ran our algorithm for each one of the apartments as
the target space, resulting in five different transfer learning
problems. In each setting, all the apartments except for the
target apartment were used as the source apartments. In
each setting, we used all the available source labeled data, 1
to 7 days of target unlabeled data, and 0 to 1 days of target
labeled data.

The first step, activity extraction, resulted in a consider-
able reduction in the number of source activities. In partic-
ular 3384, 2602, 1032, 428, and 492 activity instances from
the first, second, third, fourth and fifth apartments were rep-
resented by as few as 11, 10, 9, 7, and 7 activity templates.
The reason that we have obtained less templates than the
11 predefined activities in the second and third apartment
is that the “eating” activity was done rather in an erratic
way and in different locations, therefore our sensor selection
algorithm didn’t choose any specific sensor for that activity,
and as a result the activity was eliminated. The same ap-
plied for “taking medicines” in third apartment. This shows
how our algorithm can avoid mapping very irregular activi-
ties. It also shows how the algorithm condensed the activity
instances into a compressed representation, as we approx-
imately obtained the 11 predefined activities for the first
three apartments and exactly 7 activities for the last two
apartments. During activity extraction, also the number
of sensors for each activity template was reduced from an
average of 69.32 sensors to 3.73 sensors, as the algorithm re-
moved the irrelevant sensors and preserved only the relevant
sensors. This shows that for each activity a few key sensors
can be used to identify the activity, e.g. taking medicine can
be identified by the cabinet sensor where the medicines are

kept.
In the target space, data was mined to extract the activity

templates. For example, using three days of unlabeled target
data and no labeled target data, we discovered 8, 7, 7, 5
and 5 activity templates for apartments 1 through 5. The
similarity threshold ς in those experiments was set to the
midpoint 0.5. The reason that fewer activity templates are
discovered compared to the predefined activities, is because
some similar activities might be merged into one activity,
such as relaxing and eating which happen at similar times
and similar places. In addition, some activities cannot be
easily discovered based only on a few days of data. One
example is the housekeeping activity which happens quite
rarely compared to other activities; and even if it happens
to be in the data, because of its erratic nature and occurring
all over the home, it is not very easy to discover

In the next step the source activities were mapped to the
target activities. In order to be able to evaluate the mapping
accuracy of our algorithm, we embedded the actual labels of
target activities in data. This label is not used during train-
ing, rather it’s only used at the end to verify the correctness
of the results. Mapping accuracy is defined as the num-
ber of activities in the target space whose transferred label
matches the correct expert-supplied label. Figure 6 shows
the mapping accuracy for different amounts of unlabeled
target data and no labeled target data, in several different
settings. Figure 6 also shows a comparison between mapping
accuracy based on using multiple sources vs. average map-
ping accuracy using a single source, based on using 3 days
of unlabeled target data. The mapping accuracies vary from
space to space, depending on the consistency of activities in
target space, as well as the similarity between the source and
target spaces. It should be noted that some activities might
not be present in all spaces, such as working or housekeep-
ing. The same applies for lack of certain spaces in different
apartments, such as laundry room or workspace. We noted
that transfer between apartments that have a more similar
layout and functional structure is more satisfactory.

00.20.40.60.81
1 2 3 4 7Mapping Accuracy Number of unlabeled target data days

Mapping Accuracy
Target = Apt 2 Target = Apt 3 Target = Apt 4

Figure 5: Mapping accuracy in several different set-
tings.

We tested two of our own activity recognition algorithms
on the transferred labeled data. The first algorithm is a
nearest neighborhood (1NN) algorithm based on the similar-
ity measure in Equation 2. The second algorithm represents
activities and sensor events with a hidden Markov model
and learns the activities using the Viterbi algorithm. The
models performed almost the same with the nearest neigh-

59

3
M
on

th
s o

f D
at
a

(a) Apartment 1.

3
M
on

th
s o

f D
at
a

(b) Apartment 2.

3
M
on

th
s o

f D
at
a

(c) Apartment 3.

2
M
on

th
s o

f D
at
a

(d) Apartment 4.

2
M
on

th
s o

f D
at
a

(e) Apartment 5.

Figure 4: Figures (a-e) show residents’ activity distribution per 24 hour (horizontal axis) for 2-3 of month
data (vertical axis).

0.00 0.20 0.40 0.60 0.80 1.0012345 Mapping AccuracyApartments Mapping Accuracy
Ensemble Single

Figure 6: Mapping accuracy in several different set-
tings.

borhood algorithm sometimes slightly outperforming HMM
due to its use of temporal and spatial features. Using the
embedded labels we define the recognition rate as the per-
centage of sensor events predicted with the correct label.
Figure 7 shows 1NN’s recognition rate for apartment 1 as
the target apartment using 0 and 1 day of labeled target
data. Figure 8 shows both 1NN and HMM recognition rate
for apartment 1 as the target apartment. Our results show
that despite using little to no labeled target data, and hav-
ing different layouts, schedules and different activities, both
algorithms still perform recognition well in a target space
using data from a source space.

4. CONCLUSIONS AND FUTURE WORK

6065707580 1 2 3 4 7Recognition rate Number of unlabeled target data days
Recognition Rate(Target = Apartment 1)

No labeled data 1 day of labeled data
Figure 7: Nearest neighborhood’s recognition rate
based on mapping to apartment 1 using 0 and 1 day
of labeled target data.

This paper introduces a method of transferring learned
activities from several different physical spaces to a target
physical space. Transferring activities to a target space al-
lows us to avoid the time consuming task of data annotation
for each new physical space and to achieve a more acceler-
ated deployment process. Using data from multiple source
spaces allows us to be able to map from a more diverse set
of activities to a target space by using an ensemble method.
Our experiment results show that it is possible to recognize
activities using no labeled data from the target space, and
despite the fact that the apartment layouts and residents
schedules are different. In the future, we intend to combine
this method with adaptive and active learning methods in

60

6065707580 1 2 3 4 7Recognition rate Number of unlabeled days of data
Recognition Rate(Target = Apartment 1)

Nearest Neighborhood Method Hidden Markov Model
Figure 8: Recognition rate based on mapping to
apartment 1 for nearest neighborhood and HMM.

order to be able to enhance the results over time. We also
want to develop algorithms that can map activities from
environments with totally different functionalities, such as
from a workplace to a residential space. We also intend to
find methods for selecting the best subset of physical source
spaces among a large set of source spaces, in order to im-
prove the system’s efficiency.

5. ACKNOWLEDGEMENT
The authors would like to thank Brian Thomas for de-

veloping the visualizer software and making available the
activity distribution diagrams.

6. REFERENCES
[1] G. Abowd and E. Mynatt. Smart Environments:

Technology, Protocols, and Applications, chapter
Designing for the human experience in smart
environments., pages 153–174. Wiley, 2004.

[2] O. Brdiczka, J. Maisonnasse, and P. Reignier.
Automatic detection of interaction groups. In
Proceedings of the 7th international conference on
Multimodal interfaces, pages 32–36, 2005.

[3] F. Can. Incremental clustering for dynamic
information processing. ACM Transactions on
Information Systems, 11(2):143–164, 1993.

[4] R. Caruana. Multitask learning. Machine Learning,
28(1):41–75, 1997.

[5] D. Cook and S. Das. Smart Environments:
Technology, Protocols and Applications. Wiley Series
on Parallel and Distributed Computing.
Wiley-Interscience, 2004.

[6] D. Cook, M. Youngblood, I. Heierman, E.O.,
K. Gopalratnam, S. Rao, A. Litvin, and F. Khawaja.
Mavhome: an agent-based smart home. In Proceedings
of the First IEEE International Conference on
Pervasive Computing and Communications, pages
521–524, March 2003.

[7] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the em
algorithm. The Royal Statistical Society, 39(1):1–38,
1977.

[8] T. G. Dietterich. Ensemble methods in machine
learning. In MCS ’00: Proceedings of the First

International Workshop on Multiple Classifier
Systems, pages 1–15, 2000.

[9] F. Doctor, H. Hagras, and V. Callaghan. A fuzzy
embedded agent-based approach for realizing ambient
intelligence in intelligent inhabited environments.
IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans, 35(1):55–65, Jan. 2005.

[10] T. Gu, Z. Wu, X. Tao, H. Pung, , and J. Lu. epsicar:
An emerging patterns based approach to sequential,
interleaved and concurrent activity recognition. In
Proceedings of the IEEE International Conference on
Pervasive Computing and Communication, 2009.

[11] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. Machine Learning Research,
3:1157–1182, 2003.

[12] S. Helal, W. Mann, H. El-Zabadani, J. King,
Y. Kaddoura, and E. Jansen. The gator tech smart
house: A programmable pervasive space. Computer,
38(3):50–60, 2005.

[13] T. Inomata, F. Naya, N. Kuwahara, F. Hattori, and
K. Kogure. Activity recognition from interactions with
objects using dynamic bayesian network. In Casemans
’09: Proceedings of the 3rd ACM International
Workshop on Context-Awareness for Self-Managing
Systems, pages 39–42, 2009.

[14] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E.
Hinton. Adaptive mixtures of local experts. Neural
Computation, 3(1):79–87, 1991.

[15] L. Liao, D. Fox, and H. Kautz. Location-based
activity recognition using relational markov networks.
In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 773–778, 2005.

[16] U. Maurer, A. Smailagic, D. P. Siewiorek, and
M. Deisher. Activity recognition and monitoring using
multiple sensors on different body positions. In BSN
’06: Proceedings of the International Workshop on
Wearable and Implantable Body Sensor Networks,
pages 113–116, 2006.

[17] S. J. Pan and Q. Yang. A survey on transfer learning.
Technical Report HKUST-CS08-08, Department of
Computer Science and Engineering, Hong Kong
University of Science and Technology, Hong Kong,
China, November 2008.

[18] M. Philipose, K. Fishkin, M. Perkowitz, D. Patterson,
D. Fox, H. Kautz, and D. Hahnel. Inferring activities
from interactions with objects. IEEE Pervasive
Computing, 3(4):50–57, Oct.-Dec. 2004.

[19] R. Raina, A. Y. Ng, and D. Koller. Constructing
informative priors using transfer learning. In ICML
’06: Proceedings of the 23rd international conference
on Machine learning, pages 713–720, 2006.

[20] P. Rashidi and D. J. Cook. An adaptive sensor mining
framework for pervasive computing applications. In
International Workshop on Knowledge Discovery from
Sensor Data(Sensor-KDD 2008), pages 41–49, 2008.

[21] P. Rashidi and D. J. Cook. the resident in the loop:
Adapting the smart home to the user. IEEE
Transactions on Systems, Man, and Cybernetics
journal, Part A, 39(5):949–959, September 2009.

[22] P. Rashidi and D. J. Cook. Transferring learned
activities in smart environments. In 5th International
Conference on Intelligent Environments, volume 2 of

61

Ambient Intelligence and Smart Environments, pages
185–192, 2009.

[23] V. Rialle, C. Ollivet, C. Guigui, and C. Hervé. What
do family caregivers of alzheimer’s disease patients
desire in smart home technologies? contrasted results
of a wide survey. Methods of Information in Medicine,
47:63–9, 2008.

[24] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction
to Data Mining. Adison Wesley, 2005.

[25] T. van Kasteren, G. Englebienne, and B. Krose.
Recognizing activities in multiple contexts using
transfer learning. In AAAI AI in Eldercare
Symposium, 2008.

[26] C. Wren and E. Munguia-Tapia. Toward scalable
activity recognition for sensor networks. In
Proceedings of the Workshop on Location and
Context-Awareness, pages 218–235, 2006.

[27] V. W. Zheng, D. H. Hu, and Q. Yang. Cross-domain
activity recognition. In Ubicomp ’09: Proceedings of
the 11th international conference on Ubiquitous
computing, pages 61–70, 2009.

62

Using Semantic Annotation for Knowledge Extraction from
Geographically Distributed and Heterogeneous

Sensor Data
Alexandra Moraru, Carolina Fortuna, Dunja Mladenić

Jozef Stefan Institute
39 Jamova, 1000 Ljubljana

Slovenia
+38614773144

firstname.lastname@ijs.si

ABSTRACT

Using semantic technologies for enriching sensor data description

in scalable and heterogeneous sensor network are intended as a

solution for better interoperability and easier maintainability.

Through semantic annotations it is possible to provide context for

sensor networks, which will improve knowledge extractions from

sensor data streams and will facilitate reasoning capabilities. We

propose an architecture for a system able to automatically

annotate sensors descriptions, as provided by the publishers, with

semantic concepts. The annotated sensor data become more

meaningful and machine understandable, enabling better analysis

and processing from heterogeneous streams of data. Based on the

system proposed, we provide illustrative examples for

demonstrating the improvements that semantic context brings and

we discuss a real-world scenario of Participatory Sensing.

Categories and Subject Descriptors

I.2.4 [Artificial Inteligence]: Knowledge Representation

Formalisms and Methods – Semantic networks

H.3.4 [Information and Storage Retrieval]: Systems and

Software - Question-answering (fact retrieval) systems, User

profiles and alert services

General Terms

Algorithms, Experimentation, Human Factors.

Keywords

Sensor Web, semantic annotations, real-world data, Participatory

Sensing, Semantic Sensor Web, Knowledge Extraction, reasoning.

1. INTRODUCTION
The development of the Internet towards a network of

interconnected objects, ranging from cars and transportation

cargos to electrical appliances to any type of sensing devices, is

leading to the Internet of Things. This development will provide

new services and will enable new kinds of communications (i.e.

―things-to-persons‖ or ―thing-to-thing‖). Furthermore, Internet of

Things relies on scalable networks, mobility of wirelessly

connected objects and offering interoperability for heterogeneous

and complex networks [1].

Sensor Webs (or Networks) play a major role in the development

of Internet of Things. In the Open Geospatial Consortium (OGC)

acceptance, a Sensor Web represents a ―web accessible sensor

networks and archived sensor data that can be discovered and

accessed using standard protocols and application program

interfaces‖ [2], while a sensor network interconnects only sensor

devices in a computer accessible network with the intention of

monitoring and recording conditions at diverse location. One of

the important characteristics of the Sensor Web is that its

components share and use the information gathered [3].

Derived from Sensor Webs, the concept of Participatory Sensing

as defined by the authors of [4], is ―data collection and

interpretation‖ and it includes mainly mobile devices that can be

used to build a sensor network for capturing and sharing local

data. The range of applications for this field can vary from urban

planning, to public health or to natural resource management.

Although the common devices that are considered to be used in

Participatory Sensing are the mobile phones, the field is open to

other types of sensing objects. For instance, Pachube1, one of the

existing platforms for storing and sharing real-time sensor data, is

enabling people to interact with sensors, from physical or virtual

environments, which are connected to the internet. It registers data

for over 37002 sensor nodes, with over 9400 data streams, varying

from temperature, to air quality monitoring, to power

consumption or to users’ Skype status. Similar projects are

SensorMap3 and Sesorpedia4 also aiming at providing a ―social-

network‖ for sensors.

The principle of Participatory Sensing brings the advantage of

providing access to various types of data which can be used in

monitoring, studying and analyzing large scale natural and

artificial systems. However, it relies on the involvement of

participants or community groups for documenting the data they

send. Due to the large and diverse communities that are

participating at building such networks, problems may appear in

1 http://www.pachube.com/
2 reported on 30 April 2010
3 http://atom.research.microsoft.com/sensewebv3/sensormap/
4 http://www.sensorpedia.com/

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SensorKDD’10, July 25, 2010, Washington, DC, USA.

Copyright 2010 ACM 978-1-4503-0224-1...$10.00.

63

http://www.pachube.com/

searching and finding sensors published by different participants.

These problems are caused by using different vocabularies in

describing the sensors and by the large and increasing number of

heterogeneous sensors. Therefore, extracting knowledge from

sensor description for understanding the data that it sends can be

difficult, but it is also very important for maximizing the power of

participatory sensing.

The documentation provided in a natural language by the

participants who publish their data is not enough for a machine to

understand it. A solution for improving knowledge extraction

from sensor data streams is to provide semantic context. Enriching

sensor description with semantic concepts leads to the

development of Semantic Sensor Web (SSW), increasing

interoperability and enabling complex reasoning with the

contextual knowledge resulted from the semantic concepts [5].

In this paper, we propose a system architecture for semantically

annotating sensor descriptions with concepts from an ontology, in

order to offer a common vocabulary and a representation model

which will enable better sensor discovery and will provide

reasoning capabilities. Afterwards, we demonstrate with

illustrative examples how the semantic context can help in

complex searching of sensors and how reasoning can be applied

for inferring new knowledge from the sensor descriptions. We

also show the results of annotating descriptions of sensors from a

real-world sensor web with semantic concepts and we discuss

what improvements are required on the semantic level, without

changing the design of the sensor web. To the best of our

knowledge this is the first effort of annotating such a large amount

of sensor data streams.

The rest of the paper is organized as follows. In Section 2 we

present related work. Section 3 discusses the technologies used in

semantic annotation of sensor webs and describes the system

architecture that we suggest for building the SSW. Section 4

outlines the case study of participatory sensing on the Pachube

platform, while conclusions and future work are included in

Section 5.

2. RELATED WORK
Previous works in the Sensor Web domain have proposed and

discussed different possibilities of combining Sensor Web and

semantic technologies [6][7][8][9]. Through illustrative examples

they explained the advantages that semantics would bring, how

the resulted SSW would ease the path on using sensor data in

different studies and how it will enable better communication

between parties involved in building and maintaining a

heterogeneous Sensor Web. In this paper we try to apply similar

scenarios on a real Sensor Web, from a collaborative environment

of over 3700 sensor nodes.

In [6], the authors discuss the design of the SSW, suggesting

existing data on the semantic web to be used for annotations. They

present some illustrative examples for using Linked Data for

annotating sensor data, exploiting the data already published. The

assumption is that one is annotating sensor data directly with

semantic concepts, which implies that all publishers will have to

adopt a common ontology and annotate their sensor data with

concepts from that ontology. An example of reasoning on

semantically annotated sensor data is given, using DBpedia

geographical data and then formulating a complex query in

SPARQL. Our work differs in the sense that we assume that the

publisher can describe the sensor data using simple tags or natural

language and, afterwards, we automatically annotate those

descriptions with semantic concepts.

The problem of geographical information retrieval is approached

in [7]. The authors propose the use of semantic rules for adding

additional processing capabilities for ontologies represented in

Web Ontology Language (OWL). These rules will overtake the

lack of mathematical calculus of OWL and will enable context-

aware geographical information retrieval. To demonstrate the

applicability of semantic rules in solving the problem, the authors

developed an application ontology for the scenario of finding surf

spots with respect to the users preferences. One of their

achievements is that of integrating numerical data from Sensor

Web with nominal data for Semantic Web, while in our work we

propose a system that already incorporates this type of integration.

3. SEMANTIC ANNOTATION FOR

SENSOR DATA
Extending sensor webs with semantics implies finding a suitable

representation of the the afferent knowledge in such a way as to

enable interoperability and reasoning mechanisms. One of the

advantages that semantic technologies bring in knowledge

representation are better scalability and interoperability, since

adding or changing new information to a set of programs that use

the same model resumes at changing the external model, while the

design of those programs can remain the same, without the need

of human involvement [10].

The complexity of SSW technology is derived both from the

semantic and the sensor network point of view. Ontologies used in

knowledge representation play a key role in usefulness of

combing semantics with sensor networks. Depending on how

general is the knowledge represented by an ontology they can be

categorized in domain ontologies and upper ontologies. The first

category represents models of specific domains (e.g. sensors) and

the particular meaning of concepts related to that domain, while

the second category is used to model general concepts applicable

on a large set of domain ontologies. The authors of [7] are

mentioning about an even more specified type of ontologies,

referred to as application ontologies which ―specify the

conceptualization that underlie specific applications‖.

Three of the existing sensor network ontologies developed are

presented in [11][12][13] and have a set of common concepts

related to the taxonomy of different types of sensors, physical

properties of sensor devices, data acquisition and sensed domain.

However, the features of the sensed domain may vary depending

on the application where the sensor network is used and further

development of these set of concepts is required. A detailed

survey of semantic specification of sensor networks is provided in

[14], where eleven sensor network ontologies are analyzed.

Such ontologies can be used for semantic annotation of sensor

descriptions. Figure 1 presents the system architecture that we

propose for building the SSW. We start form a sensor web

composed of heterogeneous sensors which are described by their

publishers. The sensor descriptions provide information about

data streams, such as the type of measurements that the sensor

performs (e.g. temperature, humidity, power consumption, etc.) or

its physical location.

Further, there are two assumptions on which we base the rest of

the system:

64

Figure 1. Suggested System Architecture

 the publishers provide at least a tag word for describing

sensor measurements and/or location;

 the ontology concepts used for annotation are provided with

a description, more exactly a string term is associated.

The next component is represented by an ontology that contains

the sensor web concepts needed for annotation. These concepts

are used to automatically annotate the sensor descriptions, based

on the string terms associated. For demonstration purposes we

utilize the Cyc [15] technology for this component and we

describe it in detail in Section 3.1. Apart from the ontology, there

are also the logic rules that are applied on the ontology

relationships and concepts, and together with the ontology they

form a knowledge base. Applying the semantic concepts on the

sensor web leads to the SSW which will provide more meaningful

descriptions of sensors.

The last component that we mention for our system is the

inference engine, which plays an important role. The annotated

sensor descriptions can be understood by such inference engines

and used for solving complex queries and deriving new

information. A query formulated by a user will be solved by the

inference engine, which will first look into the knowledge base for

the information needed for processing the query and then it will

be able to search the sensors or data streams that are requested by

that query, based on their annotations.

3.1 Cyc
Cyc [15] is an artificial intelligence project that aims at building a

general ontology and a knowledge base for representing common

sense knowledge. The Cyc technology components that present

interest in this work are the knowledge base, the representation

language (CycL) and the inference engine. The Cyc knowledge

base is a formalized representation of fundamental human

knowledge: facts, rules, and heuristics for reasoning about the

objects and events of everyday life. Cyc’s knowledge is

represented in CycL, while its inference engine performs general

logical deduction. One of the advantages that Cyc is bringing is

the very broad knowledge base covering common sense

knowledge, as well as domain specific knowledge for a number of

domains, which can support description of the domain of sensing

for various sensor networks and also provide context for different

applications. Another advantage is that of the specialized

inference engine which performs modular search in the proof

space enabling reasoning at large scale.

The Cyc knowledge base is organized into "microtheories", which

are focused on providing context for particular domains at

different level of details or different time intervals. The

microtheory structure allows Cyc to independently maintain

knowledge which can be contradictory for particular domains,

enabling also a better performance of the system, by giving the

possibility of controlling the inference process. In our work, we

used the Cyc ontology without bringing any major modifications,

except for introducing some simple predicates meant for

illustration purposes. However, Cyc knowledge base can be

modified and extended to meet the requirements of very specific

domains, like the sensor web. In future work we take into

consideration creating a specific microtheory that will provide the

semantic context needed for building SSW.

In the rest of the paper we use CycL for formulating rules and

queries, as it is an intuitive language that can be easily

understood. A detailed description of CycL is beyond the scope of

this paper, and it can be found in [16]. Note mentioning that Cyc

concepts are represented with the #$ symbols as prefix.

Sensors Publishers

Sensor Data Streams

and Descriptions

 Knowledge Base

Ontology

Logic Rules

Inference Engine

Sensor

Descriptions

Sensor

Data

Semantic

Annotations Sensor Web

Semantic Sensor Web

Extracting relevant semantic

concepts INPUT: queries, rules

OUTPUT: answers,

new inferred knowledge

Searching sensors

for answers

65

3.2 Reasoning with Sensor Data
One of the most important arguments for semantically annotating

sensor data is that of providing a support for performing reasoning

on top of it. This will enable the possibility of applying logic rules

through which new information can be inferred from the data

available.

Figure 2 CycL rule for detection of anomalous measurements

An example of such new information is regarding detection of

anomalous data measurements. For instance, let’s assume the

following scenario:

 a large number of data stream measuring temperature in a

Mediterranean region are available for summer time;

 for proper analysis of data we want to eliminate any

anomalous measurements, which could have been caused by

devices malfunctions or transmission errors.

Considering that there is summer season, any temperature

measurements below a minimal value (e.g. 10 °C for our

illustrative example) are considered anomalous for an outdoor

exposure of the sensing device. The representation of such a rule

in CycL can be represented as depicted in Figure 2.

A rule in CycL, begins with #$implies and has two parts, called its

antecedent and consequent, or left-hand side and right-hand side.

In our example the antecedent part is represented by all the

conditions that make a data stream measurement into an anomaly.

The consequent part is the assertion of a predicated which

identifies the anomaly. The representation of the logic formula in

natural language is:

 For every sensor S, which is performing measurements in the

temporal bounds of summer season and is located in region

with a Mediterranean climate, with an outdoor exposure and a

data stream measuring temperature, if the measured

temperature is less than 10 °C then, the sensor S is sending

anomalous measurements.

When executing such a rule, inference is used also for detecting

the geographical region of the sensor location based on the

geographical coordinates. Similar rules can be applied for other

type of measurements, such us humidity, light. Detecting an

anomaly is it important not only for eliminating corrupted data

before any further analysis, but also for detecting alarms,

depending on the context of the problem.

4. CASE STUDY: PARTICIPATORY

SENSING
An example scenario covered by the proposed system architecture

is that of Participatory Sensing, which relies on publishers’

descriptions of sensors, so that the data shared can be used by

others. An example of a sensor web that applies the principles of

Participatory Sensing is Pachube.

Figure 3. XML description of a sensor node on Pachube

Pachube is a platform that supports storing and sharing sensor

data with the aim of contributing to the building of Internet of

Things. It offers support for remote environments interactions, as

well as structured metadata describing the sensor data streams.

The publisher can send their data from a sensor node for storage,

making it available to other users. Each sensor node has a unique

id and can send more data streams from different sensor devices.

When registering a sensor node on Pachube the publisher can also

provide a description of the data sensed which can include

information about the location of the sensor (latitude and

longitude), exposure of the sensor node (indoor or outdoor), tags

and units of measurements for a data stream. The descriptions are

in XML format and besides the publisher data they also contain

automatically generated data, such as timestamp of the last

update, the current status of the sensor node (live or frozen) or

minimum and maximum values for a specific stream. An example

o a sensor description is presented in Figure 3.

The sensor node described in Figure 3 has the title ― SunSpot‖ and

it has an URL address through with it can be accessed. Further, at

the time of the last update (stated in the ―environment‖ node, the

―updated‖ attribute) the status of the sensor node was ―live‖

meaning that it was sending data. The location node gives details

about sensor location. From the description we can understand

that the node is located indoor, at specified latitude and longitude

coordinates. The description about the data streams are given in

<environment updated="2010-05-01T15:16:55"id="6777" >

 <title> SunSPOT</title>

 <feed>http://www.pachube.com/api/feeds/6777.xml</feed>

 <status>live</status>

 <location domain="physical" exposure="indoor">

 <name>WSN SensorLab</name>

 <lat>46.0425085163033</lat>

 <lon>14.4882792234421</lon>

 </location>

 <data id="0">

 <tag>Temperature</tag>

 <value minValue="18.5" maxValue="38.75"> 33.25

</value>

 <unit type="basicSI" symbol="°C">Celsius</unit>

 </data>

 <data id="1">

 <tag>Light</tag>

 <value minValue="0.0" maxValue="727.0">723</value>

 <unit type="basicSI" symbol="%">Percent</unit>

 </data>

</environment>

(implies

 (and

 (isa ?SENSOR Sensor)

 (sensorMeasurmentsInterval ?SENSOR ?INT)

 (temporalBoundsContain ?SEASON ?INT)

 (isa ?SEASON SummerSeason)

 (hasRegionLocation ?SENSOR ?REGION)

 (hasClimateType ?REGION MediterraneanClimateCycle)

 (hasExposure ?SENSOR Outdoor)

 (hasDataStream ?SENSOR ?DS)

 (measures ?DS Temperature)

 (valueOf ?DS (DegreeCelsius ?C))

 (lessThan ?C 10))

 (anomalousMeasurments ?SENSOR ?DS))

66

http://cyc.ijs.si:3602/cgi-bin/cg?cb-cf&c15971
http://cyc.ijs.si:3602/cgi-bin/cg?cb-cf&c5403

the ―data‖ node. Since a sensor node can send more data streams,

each one has an id, a tag describing its measurements, last value

sensed, minimum and maximum values and unit of measurements.

Table 1. Frequent tags for data streams descriptions in

Pachube

Domain Tag Number of

occurrences

Temperature

related tags

temperature 336

Temperature 42

temp 32

celsius 293

Power

consumption

related tags

electricity 389

power 34

watts 34

No description null 1437

 Distinct tags Data streams

Total 2238 9466

 A particular aspect of these descriptions that captured our

attention is the tags used for describing a data stream. These tags

are introduced by the sensor publisher and they play a major role

in sensor discovery, as one would use the tags when searching for

a specific type of sensors. We have analyzed over 3700 sensor

description which provide over 9400 data streams. The most

frequent tags are presented in Table 1. It can be observed that for

a single domain, like temperature monitoring, there can be several

different tags that describe the data streams. This can bring

difficulties in sensor discovery since a simple search by tag will

not reveal all the sensors that one may be interested in.

4.1 Using Semantics for Pachube Sensor

Descriptions
An important aspect of Participatory Sensing is the description

that the user provides for the data sent. In general, when tagging

the data sent there is no common vocabulary that the participants

use. Therefore, processing these tags for extracting knowledge is

required. In our approach we used Cyc ontology for finding

corresponding concepts for sensor tags.

Table 2 Cyc Concepts for Sensor tags

Tag Cyc Concept Cyc Related Strings

temperature Fever Temperature

temp TemporaryWorker Employee

celsius DegreeCelsius Celsius

electricity Electricity Electrical power

power powerRating Power ratings

watts Watt W, Watt

The advantage of the Cyc ontology is that it provides string terms

for concepts. For instance, for the concept of #$Temperature one

of the strings associated, using the termStrings predicate is

―temperature‖ (termStrings Temperature ―temperature‖). This

predicate can be used to find the associated concept for a string

term. However, due to the very large number of concepts from

very different domains that Cyc includes, problems may appear

when trying to find a concept for less explicit strings.

To illustrate this we searched into to the Cyc knowledge base for

concepts associate to a set of sensor tags. The results are

represented in Table 2, showing that a too broad ontology can

introduce noise when associating concepts to strings. For instance,

for the ―temp‖ tag, which is used to represent a temperature

sensor, the concept found in Cyc (#$TemporaryWorker) is not

even related to what we were looking for. Furthermore, even for

an explicit tag, like ―temperature‖ the first concept returned for

associating the string with is #$Fever and the #$Temperature

concept is found only in the related concepts. However, for other

tags, such as ―celsius‖ or ―electricity‖, it is possible to correctly

annotate them with ontology concepts.

The results that we obtained for annotating sensor tags with

semantic concepts require improvements for real-world scenarios.

One way to achieve these improvements could be obtained by

introducing context when searching the concept related to those

tags. The context can be created with ontologies specialized for

sensor networks or by using microtheories in Cyc. Providing a

context for concept searching will reduce the number of irrelevant

concepts and will provide a better categorization of sensor types

of measurements.

Figure 4 Representation of a Sensor Description in Cyc

The tags used in describing data streams are important in

determining what type of measurements a sensor sends (e.g

temperature, light intensity, power consumption). Nevertheless,

other important features of a sensor can be found in the XML

description. For instance, the geographical location of the sensor,

if it is in an indoor or outdoor environment or if it sends data from

a physical or virtual environment, are important features that one

should take into consideration when interested in using these data

streams. An illustrative example of representing a sensor node in

Cyc ontology is depicted in Figure 4, which corresponds to the

XML description from Figure 3. The sensor node is represented as

an individual of the #$Sensor collection and it sends a data stream

with temperature measurements. Further, the geographical

location in terms of latitude and longitude are represented, along

with few other characteristics. We would like to mention that

most of the concepts already exist in the Cyc ontology (such as

#$Sensor, #$DataStream, #$latitude, #$longitude,

#$Temperature), while we also introduced some basic predicates

Individual: IJSSensor

isa: Sensor

hasDataStream: IJSSensor-Data1

hasDomain: Physical

hasExposure: Indoor

latitude: (Degree-UnitOfAngularMeasure
46.0425085163033)

longitude: (Degree-UnitOfAngularMeasure
14.4882792234421)

Individual: IJSSensor-Data1

isa: DataStream

hasUnitOfMeasurement: DegreeCelsius

measures: Temperature

67

http://cyc.ijs.si:3602/cgi-bin/cg?cb-cf&c44432
http://cyc.ijs.si:3602/cgi-bin/cg?cb-cf&c280

for illustrating other features that are relevant (#$hasDataStream,

#$hasDomain, #$hasExposure).

4.2 Searching for Sensors
Having sensor descriptions annotated with semantic concepts can

improve search capabilities. Assuming that context is provided for

semantic concepts search, all sensors tagged with ―temperature‖,

―temp‖ or ―celsius‖ will be annotated with the #$Temperature

concept. From here, retrieving all the sensors that measure

temperature is a trivial task. However, more complex queries

could be stated when having semantically annotated sensors.

Figure 5 Example of a query and its answers in Cyc

An example of a complex query derives from the possibility of

inferring geographical regions from sensors’ location. For

instance, the distance between a sensor node and a specific

location can be calculated based on geographical coordinates.

This means that new type of queries can be solved, such as:

―Which are the sensors that measure temperature in Ljubljana?‖.

Such a question can be solved in Cyc by using the

#$distanceBetween predicate, which can calculate the distance

between two locations based on their latitude and longitude

coordinates. The advantage of having access to a large knowledge

base that incorporates common sense knowledge is highlighted in

this example, where we already have represented the concepts of

cities, also with details about their location. Then, we can assume

that by ―sensor located in Ljubljana‖ it is meant a fixed distance

between city coordinates and sensor coordinates. For instance, we

can consider that an area of 10 kilometers from the city

coordinates is in the city region. An illustration of this query and

the answer provided is represented in Figure 5.

After solving a query, Cyc also provides explanation of the

inference performed. For the second answer of our query

example, we can observe the answer bindings for each of the

query variables. These bindings are resulted from simple default

assertions (such as: #$isa #$IJSSensor #$Sensor) and from

complex logic rules (such as the rule for computing the distance

between two locations). An illustration of the summary of answer

computed bindings is represented in Figure 6 or proving the

validity of the inference. We show simplified explanation of the

results, because the total number of steps that the Cyc inference

engine performed for solving this query is 78, and a detailed

explanation is out of the scope of this paper.

Figure 6 Answer bindings

With the current5 setting of the Pachube platform, these types of

queries are impossible to solve automatically. The only search for

sensors is possible by tags or title, which present the disadvantage

of not returning all the answers. For location matter they provide a

world-map with the location of each sensor, but the user has to

manually navigate through that map.

5. CONCLUSIONS AND FUTURE WORK
A solution for enriching sensor data streams for providing

machine understandable meaning is represented by the semantic

technologies. Semantic annotations can provide context for the

sensor measurements and observations, transforming data streams

from simple binary models into meaningful data, which can be

used in further analysis. In this paper we proposed and discussed a

system architecture that is able to automatically annotate, with

semantic concepts, sensor description provided by publishers. We

demonstrated through illustrative examples the advantages of

applying reasoning mechanisms on semantically enriched sensor

descriptions.

We also presented the results of applying our system in a real-

world scenario, that of Participatory Sensing. One of the main

conclusions after analyzing these results is that a too general

ontology will not be able to successfully annotate all the

descriptions with relevant concepts. This problem can be solved

by using a domain specific ontology or creating context in the

more general ones. However, the advantages of having access to

common sense knowledge have been illustrated in the examples

provided in this paper, namely extended knowledge can help in

inferring geographical regions or creating more complex rules.

In our future work we plan to provide more specific context for

the concepts used in sensor annotation. This will enable more

accurate annotation of the sensor description and will perform

better in real-world scenarios. In addition, we are considering

semantic solutions for sensor composition. The virtual sensor

created through composition of sensors will introduce a level of

abstractness that can enable better communication between people

and sensor networks or between sensor networks themselves.

Furthermore, the future work will be conducted using some OWL-

5 Reported on 30 April 2010

QUERY: (What are the sensors that measure temperature in

Ljubljana?)

(and

 (isa ?X Sensor)

 (hasDataStream ?X ?DS)

 (measures ?DS Temperature)

 (distanceBetween ?X CityOfLjubljanaSlovenia

 (Kilometer ?DIST))

 (lessThan ?DIST 10))

ANSWERS:

isa IJSSensor Sensor

hasDataStream IJSSensor

IJSSensor-Data1

measures IJSSensor-Data1

Temperature

Default True Assertions

Logic rules for calculating

the distance between two

location

Logic rules

?X → IJSSensor

?DS → IJSSensor-Data1

DIST → 2.481

Answer bindings

68

http://cyc.ijs.si:3602/cgi-bin/cg?cb-cf&c457
http://cyc.ijs.si:3602/cgi-bin/cg?cb-cf&c15971
http://cyc.ijs.si:3602/cgi-bin/cg?cb-cf&c5403
http://cyc.ijs.si:3602/cgi-bin/cg?cb-cf&c230948
http://cyc.ijs.si:3602/cgi-bin/cg?cb-cf&c230952
http://cyc.ijs.si:3602/cgi-bin/cg?cb-cf&c280
http://cyc.ijs.si:3602/cgi-bin/cg?cb-cf&c5287
http://cyc.ijs.si:3602/cgi-bin/cg?cb-cf&c3511
http://cyc.ijs.si:3602/cgi-bin/cg?cb-cf&c184
http://cyc.ijs.si:3602/cgi-bin/cg?cb-cf&c4317

based ontologies in comparison with the Cyc ontology, as well as

on considering different sensor description representations,

including relational databases and more standardized descriptions.

6. ACKNOWLEDGMENTS
This work was supported by the Slovenian Research Agency and

the IST Programme of the European Community under

ENVISION - ENVIronmental Services Infrastructures with

ONtologies (ICT-2009-249120) and PASCAL2 Network of

Excellence (ICT-NoE-2008- 216886).

7. REFERENCES
[1] Commission of the European Communities. 2009. Internet

of Things — An action plan for Europe. Communication

from the Commission to the European Parliament, the

Council, the European Economic and Social Committee and

the Committee of the Regions (Brussels, June 18, 2009).

[2] Botts, M., Percivall, G., Reed, C., Davidson, J. 2007. OGC

White Paper OGC® Sensor Web Enablement: Overview

And High Level Architecture. White Paper. OpenGIS.

[3] Delin,K.A., Jackson S. 2001. The Sensor Web: A New

Instrument Concept. Presented at SPIE’s Symposium on

Integrated Optics (San Jose, CA, January 20-26 2001).

[4] Goldman, J. Shilton, K., Burke, J., Estrin D., Hansen M.,

Ramanathan N., Reddy S., Samanta, V., Srivastava M. B.,

West, R. 2009. Participatoy Sensing: A Citizen-powered

Approach to Illuminating the Patterns That Shape our

World. Foresight & Governance Project, White Paper.

[5] Seth, A., Henson, C., Sahoo, S.S. 2008. Semantic Senor

Web. Internet Computing, IEEE, pp 78-83.

[6] Wei, W., Barnaghi, P. 2009. Semantic Annotation and

Reasoning for Sensor Data. 4th European Conference on

Smart Sensing and Context, EuroSSC 2009, volume 5741

of Lecture Notes in Computer Science, pp. 67-76. Berlin,

2009. Springer.

[7] Keβler, C., Raubal, M., Wosniol, C. Semantic Rules for

Context-Aware Geographical Information Retrieval. . 4th

European Conference on Smart Sensing and Context,

EuroSSC 2009, volume 5741 of Lecture Notes in Computer

Science, pp. 77-92. Berlin, 2009. Springer.

[8] Barnaghi, P., Meissner, S., Presser, M., Moessner, K. 2009.

Sense and Sens’ability: Semantic Data Modelling for

Sensor Networks. In Proceedings of ICT-Mobile Summit

2009.

[9] Janowicz, K., Schade, S., Bröring, A., Keßler, C., Maué, P.,

Stasch, C. 2010. Semantic Enablement for Spatial Data

Infrastructures. Transactions in GIS (TGIS) volume 14,

issue 2, 2010, pp. 111–129.

[10] Berners-Lee, T., Hendler, J., Lassila, O. 2001. The semantic

web a new form of web content that is meaningful to

computers will unleash a revolution of new possibilities.

Scientific American, May 2001.

[11] Neuhaus, H., Compton, M. 2009. The Semantic Sensor

Network Ontology: A Generic Language to Describe

Sensor Assets. In AGILE Workshop: Challenges in

Geospatial Data harmonization.

[12] Russomanno, D. et all. 2005. Building a Sensor Ontology:

A Practical Approach Leveraging ISO and OGC Models. In

Procceding of the International Conference on Artificial

Intelligence (Las Vegas, Nevada, 2005).

[13] Clader, M., Morris, R., Peri, F. 2009. Machine reasoning

about anomalous sensor data. Ecological Informatics.

[14] Compton, M., Henson, C., Lefort, L., Neuhaus, H., Sheth,

A. 2009. A Survey of the Semantic Specification of

Sensors, In 2nd International Workshop on Semantic Sensor

Networks, at 8th International Semantic Web Conference

(October 2009).

[15] Lenat, D.B. 1995. Cyc: A Large-Scale Investment in

Knowledge Infrastructure. Comm. of the ACM 38:11.

[16] Cycorp. The Syntax of CycL. Cycorp 1996-2002.

69

Random Kernel Perceptron on

ATTiny2313 Microcontroller

Nemanja Djuric
Department of Computer and

Information Sciences, Temple University
Philadelphia, PA 19122, USA

nemanja.djuric@temple.edu

Slobodan Vucetic
Department of Computer and

Information Sciences, Temple University
Philadelphia, PA 19122, USA

vucetic@ist.temple.edu

ABSTRACT

Kernel Perceptron is very simple and efficient online

classification algorithm. However, it requires increasingly large

computational resources with data stream size and is not

applicable on large-scale problems or on resource-limited

computational devices. In this paper we describe implementation

of Kernel Perceptron on ATTiny2313 microcontroller, one of the

most primitive computational devices with only 128B of data

memory and 2kB of program memory. ATTyny2313 is a

representative of devices that are popular in embedded systems

and sensor networks due to their low cost and low power

consumption. Implementation on microcontrollers is possible

thanks to two properties of Kernel Perceptrons: (1) availability of

budgeted Kernel Perceptron algorithms that bound the model size,

and (2) relatively simple calculations required to perform online

learning and provide predictions. Since ATTiny2313 is the fixed-

point controller that supports floating-point operations through

software which introduces significant computational overhead, we

considered implementation of basic Kernel Perceptron operations

through fixed-point arithmetic. In this paper, we present a new

approach to approximate one of the most used kernel functions,

the RBF kernel, on fixed-point microcontrollers. We conducted

simulations of the resulting budgeted Kernel Perceptron on

several datasets and the results show that accurate Kernel

Perceptrons can be trained using ATTiny2313. The success of our

implementation opens the doors for implementing powerful online

learning algorithms on the most resource-constrained

computational devices.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special purpose and

application-based systems – Real-time and embedded systems

General Terms

Algorithms, Performance, Experimentation.

Keywords

Kernel Perceptron, Budget, RBF kernel, Microcontroller.

1. I#TRODUCTIO#
Kernel Perceptron is a powerful class of machine learning

algorithms which can solve many real-world classification

problems. Initially proposed in [6], it was proven to be both

accurate and very easy to implement. Kernel Perceptron learns a

mapping f : X → R from a stream of training examples

S = {(xi, yi), i = 1…�}, where xi ∈ X is an M-dimensional input

vector, called the data point, and yi ∈ {−1, +1} is a binary

variable, called the label. The resulting Kernel Perceptron can be

represented as

)),(()(

1

∑
=

=

�

i

ii Ksignf xxx α , (1)

where αi are weights associated with training examples, and K is

the kernel function. The RBF kernel is probably the most popular

choice for Kernel Perceptron because it is intuitive and often

results in very accurate classifiers. It is defined as

)
||||

exp(),(
2

A
K i

i

xx
xx

−
−= , (2)

where || · || is the Euclidean distance, and A is the positive number

defining the width of the kernel.

Training of the Kernel Perceptron is simple: starting from the zero

function f(x) = 0 at time t = 0, data points are observed

sequentially, and f(x) is updated as f(x) ← f(x) + αi · K(xi, x),

where αi = yi, if point xi is misclassified (yi· f(xi) ≤ 0) and αi = 0

otherwise. Examples for which αi = yi have to be stored and they

are named the support vectors. Despite the simplicity of this

training algorithm, Kernel Perceptrons often achieve impressive

classification accuracies on highly non-linear problems. On the

other hand, number of the support vectors grows linearly with the

number of training examples on noisy classification problems.

Therefore, these algorithms require O(�) memory and O(�2) time

to learn in a single pass from � examples. Because number of

examples � can be extremely high, Kernel Perceptrons can be

infeasible on noisy real-world classification problems. This is the

reason why budgeted versions of Kernel Perceptron have been

proposed with the objective of retaining high accuracy while

removing the unlimited memory requirement.

Budget Kernel Perceptron [4] has been proposed to address the

problem of the unbounded growth in resource consumption with

training data size. The idea is to maintain a constant number of

support vectors during the training by removing a single support

vector every time the budget is exceeded upon addition of a new

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SensorKDD’10, July 25th, 2010, Washington, DC, USA.

Copyright 2010 ACM 978-1-4503-0224-1…$10.00.

70

support vector. Given a budget of T support vectors, Budget

Kernel Perceptrons achieve constant space scaling O(T), linear

time to train O(T�) and constant time to predict O(T). There are

several ways one may choose to maintain the budget. The most

popular approach in literature is removal of an existing support

vector to accommodate the new one. For example Forgetron [5]

removes the oldest support vector, Random [3] the randomly

selected one, Budget [4] the one farthest from the margin, and

Tightest [13] the one that impacts the accuracy the least. There are

more advanced and computationally expensive approaches such

as merging of two support vectors [12] and projecting a support

vector to the remaining ones [9].

Although Budget Kernel Perceptrons are very frugal, requiring

constant memory and linear space to train, they are still not

applicable to one of the simplest computational devices,

microcontrollers. These devices have extremely small memory

and computational power. In this paper we consider

microcontroller ATTiny2313, which has only 128B of memory

available to store the model, maximum processor speed of 8MHz

and whose hardware does not support floating-point operations.

We propose a modification of Budget Kernel Perceptron that uses

only integers and makes it very suitable for use on resource-

limited microcontrollers. Our method approximates floating-point

Budget Kernel Perceptron operations using fixed-point arithmetic

that provides nearly the same accuracy, while allowing much

faster execution time and requiring less memory. We use Random

Removal as budget maintenance method [3, 11]. When the budget

is full and new support vector is to be included to the support

vector set, one existing support vector is randomly chosen for

deletion. Although this update rule is extremely simple, the

resulting Perceptron can achieve high accuracy when the allowed

budget is sufficiently large. The pseudocode of Budget Kernel

Perceptron is given as Algorithm 1.

It should be noted that a significant body of research exists on the

topic of efficient hardware implementation of various machine

learning and signal processing algorithms. In Compressed Kernel

Perceptron [11] the authors consider efficient memory utilization

through data quantization, but assume floating-point processor.

Several solutions have been proposed for implementation of

kernel machines on fixed-point processors as well. In [1], authors

propose special hardware suitable for budgeted Kernel

Perceptron. Similarly, in [2] authors consider implementation of

Support Vector Machines [10] on fixed-point hardware. The two

proposed algorithms, however, assume that the classifiers are

already trained. Additionally, use of the problem-specific

hardware is limited to a single problem. We, on the other hand,

implement our method on general-purpose hardware, which

makes the implementation much easier and more cost-efficient.

Moreover, we combine the two proposed approaches,

quantization of data and the use of fixed-point hardware, to obtain

an accurate classifier that can be used on the simplest existing

computational devices.

The paper is organized as follows. In Section 2 the proposed

method is explained in detail. In Section 3 the results are

presented and discussed. Finally, Section 4 concludes the paper.

Algorithm 1 - Budget Kernel Perceptron

Inputs : data sequence ((x1, y1), ..., (x� , y�)), budget T

Output : support vector set SV = {SVi, i = 1 ... I}

I ← 0; i ← 1

SV = Ø

for i = 1 : �

{

 if ((yi ·) ≤ 0)

 {

 if (I == T)

 new = random(I)

 else

 {

 I ← I + 1

 new ← I

 }

 SVnew = (xi, yi)

 }

}

2. METHODOLOGY
In this paper we focus on implementation of Kernel Perceptron on

the specific microcontroller. We first describe its properties and

then explain the proposed algorithm.

2.1 Microcontroller
The microcontroller ATTiny2313 [14] has been chosen as the

target platform because its specifications make it extremely

challenging to implement a data mining algorithm. It has very

limited speed (0-8 MHz, depending on voltage that ranges from

1.8 to 5.5V), low power requirements (when in 1.8V and 1MHz

mode, it requires only 300µA and 540µW power), and very

limited memory (2kB of program memory that is used to store

executable code and constants; 128B of data memory that is used

to store model and program variables). Because of its limitations

it is also very cheap, with the price of around 1$ [15]. It supports

16-bit integers and supports fixed-point operations. Multiplication

and division of integers is very fast, but at the expense of potential

overflow problems with multiplication and round-off error with

division. ATTiny2313 does not directly support floating-point

numbers, but can cope with them using certain software solutions.

Floating-point calculations can also be supported through C

library, but only after incurring significant overhead in both

memory and execution time.

2.2 Attribute quantization
In order to use the limited memory efficiently the data are first

normalized and then quantized using B bits, as proposed in [11].

Using quantized data, instead of (1), the predictor is

)))(),((()(∑= i ii qqKsignf xxx α , (3)

where q(x) is the quantized data point x. Quantization of data

introduces quantization error, which can have significant impact

on the classification, especially for the data points that are located

near the separating boundary. The quantization loss suffered by

the prediction model due to quantization is discussed in much

more detail in [11]. Objective of this paper is to approximate (3)

using fixed-point arithmetic.

),(
1

ji

I

j
j Ky xx⋅∑

=

71

2.3 Fixed-point method for prediction
Our algorithm should be implemented on microcontroller with

extremely low memory. Although quantization can save valuable

memory space, there are additional memory-related issues that

must be considered. First, number of program variables must be

minimal. Prudent use of variables allows more space to store the

model and leads to increased accuracy. On the computational side,

all unnecessary operations, such as excess multiplications and

exponentials should be avoided. If this is not taken into

consideration, the program can take a lot of memory and a lot of

time to execute. Furthermore, due to inability of ATTiny2313 to

deal with floating-point numbers in hardware, use of floating-

point library results in even larger program size.

Instead of RBF kernel (2) our algorithm uses its modified version,

as proposed in [2],

A

i

i eK 2

||

),(

xx

xx

−
−

= , (4)

where several differences from RBF kernel in (2) can be noticed.

First, instead of Euclidean distance, Manhattan distance is used.

In [2], kernel function with Manhattan distance is used because

multiplications can be completely omitted from their algorithm.

For our application, we use the Manhattan distance to limit the

range of distances between the quantized data, which will lead to

improved performance of our algorithm. Furthermore, without the

loss of generality, we represent the kernel width as 2A, where A is

any number.

Although the simplifications in equation (4) have been

introduced, the algorithm cannot be implemented without the

penalty in the speed of computation. This is because very simple

devices are not designed to compute exponents or other

operations involving floating-point arithmetic efficiently. This

results in slow run-time and excessive memory usage. Therefore,

an alternative way needs to be devised to perform kernel

calculation. The idea of our method is to use only integers, which

are handled easily by even the simplest devices, and still manage

to use the RBF kernel for predicting the label of new point.

The normalized data point x is quantized using B bits and its

integer representation I(x) is

)2()(B
roundI ⋅= xx . (5)

The value of I(x) is in the range [0, 2B − 1]. Since x is now

approximated by q(x) = I(x) 2-B, we can define kernel function

which takes quantized data

BA

iII

iiq eqqKK
+

−
−∆

== 2

|)()(|

))(),((),(

xx

xxxx . (6)

If we represent |I(x) − I(xi)| as di, and introduce for the simplicity

of notation

BA

eg
+

−

= 2

1

, (7)

we get

 id
iq gK =),(xx . (8)

We need to calculate)),((
1

iq

T

i
i Kysign xx⋅∑

=

, where T is the budget.

Since)),(()),((
11

iq

T

i
iiq

T

i
i cKysignKysign xxxx ∑=∑

==

 for any c > 0,

we can replace id
g from (8) with nni dd

Cg
−

, where dnn is the

distance between newly observed data point x and the nearest

support vector and C is a positive integer. Then, to allow integer

representation, we again replace it with integers

)()(nni
nni

dd
gCroundddw

−
⋅=−

∆

, (9)

and approximate)(),(nniiq ddwK −≈xx . It is clear that if

di = dnn then w = C, if di − dnn = 1 then w = round(C g), and if

di − dnn is sufficiently large then w = 0. We can notice that if the

i-th support vector is close to data point x its weight w and its

influence on classification will be large. Our final classifier is

approximated as

)(()()

1
nni

T

i
i ddwysignf −⋅∑=

=

x , (10)

where yi is the label of i-th support vector, and w is its weight

which depends on the distance di from data point x. The drawback

of the proposed method is that the support vector set needs to be

scanned every time a new data point x arrives in order to find the

nearest support vector distance. In addition, there is a

computational problem related to calculation of weights. These

issues will be addressed in Section 2.4.

2.3.1 Error of weight approximation
By using rounding operation (9) we are inevitably introducing

additional error, on top of the error made due to quantization of

data point using B bits [11]. In order to understand the effect of

the approximation error, let us define the relative error R as

valuetrue

ionapproximatvaluetrue
R

_

|_| −
= , (11)

where true_value is the actual value of the number, and

approximation is value of the number after rounding. It can be

shown [7] that the relative error R we are making by the rounding

(9) depends on the parameter C as R~1/C. This shows that large C

leads to small relative error. However, because the

microcontroller supports only 16-bit integers, too large C will

render our method useless on the chosen platform.

2.4 Weight calculation
To be able to use predictor (10) there is a need to calculate wi for

every support vector. For given parameters (A, B, C) we can

calculate the weight for every possible distance d = di − dnn as

illustrated in Table 1. In the naïve approach, we can precalculate

all the weights and save them as array in microcontroller memory.

If the dataset is M-dimensional, then d is in range [0, M (2B − 1)],

and storing each weight could become impossible.

Table 1 Distances and corresponding weights

Distance (d) 0 1 … d …

Weight (w(d)) Cg0 Cg1 … Cgd …

Therefore, we must find a way to represent entire array of weights

with only a subset of weights in order to save memory. Two

72

approaches are discussed next, both requiring very limited

memory.

2.4.1 Sequential method
The most obvious way is to store weights w(0) and w(1), for

distances 0 and 1, respectively. By storing these two weights we

can calculate other weights in Table 1. Every other weight can be

iteratively calculated, in integer calculus, as

 .
)2(

2)1(
)(

−

−
=

dw

dw
dw (12)

The memory requirement of this approach is minimal, but there

are certain problems. In order to calculate particular weight we

need to calculate all the weights up to that one by repeatedly

applying (12), which can take substantial time. In addition, the

division of two integers results in rounding error that would

propagate and increase for large d.

2.4.2 Log method
Different idea is to save only the weight of distance 0, which

equals C, together with the weights at distances that are the power

of 2, namely weights of distances 1, 2, 4, 8, 16 and so on. In this

way the number of weights we need to save is logarithm of total

number of distances, which is approximately log(M 2B). Using the

saved weights we calculate weight for any distance using

Algorithm 2.

Algorithm 2 - Find Weight

Inputs : array of weights W and corresponding distances D

 distance d for which the weight is being calculated

Output : weight w

i ← Index of the nearest smaller distance to d in array D

w ← W[i]

d ← d − D[i]

while (d > 0)

{

 i ← Index of the nearest smaller distance to d in array D

 w ← w · W[i] / W[0]

 d ← d − D[i]

}

As can be seen in Algorithm 2, if we are looking for the weight of

the distance d that is the power of 2, the weight will immediately

be found in the array W. If not, we are looking for the distance in

array D that is the closest smaller value than d, and start the

calculation from there. We repeat the process until convergence.

In this way, we will always try to make the smallest error while

calculating the weight, and the algorithm runs using O(log(M 2B))

space and O(log(M 2B)) time, which is efficient and fast even for

highly-dimensional data and large bit-lengths.

Figure 1 Illustration of log method

Log method is illustrated in Figure 1. Assume that we are looking

for the weight of distance 25, and we saved weights at distances 0,

1, 2, 4, 8, 16 and 32. It is clear that 25 can be represented as

16 + 8 + 1. In the first step we will use w(16), then w(8), because

8 is the closest to 25−16, and finally w(1). The sought-after

weight will be found both very quickly and with minimal error.

3. EXPERIME#TAL RESULTS
We evaluated our algorithm on several benchmark datasets from

UCI ML Repository whose properties are summarized in Table 2.

The digit dataset Pendigits, which was originally multi-class, was

converted to binary dataset in the following way: classes

representing digits 1, 2, 4, 5, 7 (non-round digits) were converted

to negative class, and those representing digits 3, 6, 8, 9, 0 (round

digits) to the positive class. Banana and Checkerboard were

originally binary class datasets. Checkerboard dataset is shown in

Figure 8.

Table 2 Dataset summaries

Dataset
Training set

size

Testing set

size

Number of

attributes

Banana 4800 500 2

Checkerboard 3500 500 2

Pendigits 2998 500 16

In all reported results, A is the kernel width parameter, B is bit-

length, and C is positive integer, all defined in Section 2.3.

In Figure 2 the absolute difference between the true weights and

the calculated ones using sequential and log methods for weight

calculation described in Sections 2.4.1 and 2.4.2 is shown. It can

be seen that log method makes very small error with minimal

memory overhead over the whole range of distances. We use the

log method as our default for weight calculation.

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

Distance

E
rr
o
r
o
f
a
p
p
ro
x
im
a
ti
o
n

Sequential method

Log method

Banana dataset
A = -1
B = 5 bits
C = 100

Figure 2 Error of two weight calculation methods

In the next set of experiments the quality of approximation was

evaluated. First, the Random Kernel Perceptron was trained using

equation (6) that requires floating-point calculations. Then, our

fixed-point method was executed, and the predictions of the two

algorithms were compared. The approximation accuracy is

defined as

73

�

yyI

accuracy

�

i

floating
i

fixed
i∑

=
=1

),(

, (13)

where I is the indicator function that is equal to 1 when the

predictions are the same and 0 otherwise, yi is the classifier

prediction, and � is the size of the test set.

0 10 20 30 40 50 60 70 80 90 100

0.4

0.5

0.6

0.7

0.8

0.9

1

Parameter C

A
p
p
ro
x
im
a
ti
o
n
 a
c
c
u
ra
c
y

Banana dataset
A = 0
B = 5 bits
budget = 70 bytes

Figure 3 Approximation accuracy as the function of C

Figure 3 shows that the approximation accuracy is relatively large

even for small values of C and that it quickly increases with C, as

expected from discussion in Section 2.3.1. Since ATTiny2313

microcontroller supports 16-bit integers, the maximum value of a

number is 65535. However, as can be seen from Algorithm 2, in

order to calculate weights multiplications are required, and at no

point the product should exceed this maximum value. Therefore,

the best choice for C is the square root of 65535, which is 255. In

the following experiments C was set to 255.

In Figure 4 the approximation accuracy is given for 3 datasets.

Total budget was fixed to only 70 bytes. Each dataset was

shuffled before each experiment and the reported results are

averages after 10 experiments. The value of parameter A was

changed in order to estimate its impact on the performance. High

negative values of A correspond to the algorithm that acts like

nearest neighbour. High positive values of parameter A

correspond to the majority vote algorithm. It can be seen that over

large range of A values the approximation accuracy was around

99%, and that is was lower at the extreme values of A. This

behavior is due to the numerical limitations of double-precision

format used when calculating equation (6). The exponentials of

large negative numbers are too close to 0 and are rounded to 0,

which results in much smaller accuracy. On the other hand, it can

be seen that for large values of A corresponding to the algorithm

that acts like majority vote the approximation accuracy starts to

decrease. This was expected, because in this case all the weights,

as calculated by our method, are practically the same since the

weights decrease extremely slowly and very small differences

between actual weights are lost when they are calculated using the

log method. However, it should be noted that in this problem

setting kernel width depends on A as 2A, and the values where

prediction accuracy starts to fall are practically never used.

Experiments were conducted for different values of parameter B

as well. However, the results for other bit-lengths were very

similar, and are thus not shown.

-8 -6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kernel width parameter A

A
p
p
ro
x
im
a
ti
o
n
 a
c
c
u
ra
c
y

Banana

Pendigits

Checkerboard

Figure 4 Approximation accuracy (B = 5 bits)

The next set of experiments was conducted to evaluate prediction

accuracy of the proposed Random Kernel Perceptron

implementation. The values of parameters A and B were changed

in order to estimate their influence on the accuracy of methods.

The results are the averages over 10 experiments and are reported

in Figures 5, 6 and 7.

-10 -8 -6 -4 -2 0 2 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Kernel width parameter A

A
c
c
u
ra
c
y

Floating-point method

Fixed-point method

Banana dataset
B = 5 bits
budget = 70 bytes

Figure 5 Accuracy of two methods

It can be seen that both floating- and fixed-point implementations

achieve essentially the same accuracy, as was expected since the

approximation has been proven to be very good. In some cases for

very small values of A the accuracy of floating-point method

drops sharply, as in Figure 6. This happens because of the

numerical problems, where the predictions are so close to 0 that

when calculated in double-precision they are rounded to 0. Our

method does not have this problem. It is also worth noticing that

for large A the accuracy drops sharply for both algorithms, which

supports the claim that large kernel widths are usually not useful.

It is exactly for these large values of A that the approximation

accuracy drops as well. Therefore, as can be seen in Figures 5, 6

and 7, these values are not of practical relevance. Only results for

bit-length of 5 bits were shown, since for the other bit-lengths the

results were nearly the same.

74

-10 -8 -6 -4 -2 0 2 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kernel width parameter A

A
c
c
u
ra
c
y

Floating-point method

Fixed-point method

Pendigits dataset
B = 5 bits
budget = 507 bytes

Figure 6 Accuracy of two methods

-10 -8 -6 -4 -2 0 2 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Kernel width parameter A

A
c
c
u
ra
c
y

Floating-point method

Fixed-point method

Checkerboard dataset
B = 5 bits
budget = 70 bytes

Figure 7 Accuracy of two methods

0 1 2 3 4 5 6
-3

-2

-1

0

1

2

3

Figure 8 Checkerboard dataset

3.1 Hardware implementation
The algorithm was tested on microcontroller ATTiny2313. The

program was written in C programming language using free IDE

AVR Studio 4 available for download from Atmel’s website.

Different methods were used in order to assess the complexity of

implementation on microcontroller. The details are given in

Tables 3, 4 and 5. Program and Data represent the required

program and data memory in bytes. Time, in milliseconds, is given

after 100 observed examples, and kernel width parameter A is set

to −6. Accuracy is calculated after all data points were observed.

Numbers in the brackets represent the total size of memory block

of the microcontroller. The microcontroller speed is set to 4 MHz.

Number of support vectors was chosen so that the entire data

memory of microcontroller is utilized in the case of fixed-point

method. This number of support vectors was then imposed on

both methods. Therefore, as the bit-length is increased, the

number of support vector decreased.

For Tables 3 and 4 the target microcontroller was ATTiny2313.

For Table 5 microcontroller with twice bigger memory was used

because of the high dimensionality of Pendigits dataset.

ATTiny48 was chosen which has 4kB of program memory and

256B of data memory.

It is clear that proposed fixed-point algorithm takes much less

memory and is faster than the floating-point algorithm. Both time

and space costs of fixed-point algorithm are nearly 3 times

smaller. In fact, in order to run simulations using floating-point

numbers, microcontroller ATTiny84 with four times larger

memory was used since the memory requirement was too big for

both ATTiny2313 and a more powerful ATTiny48, colored red in

the tables. The accuracy of these two methods is practically the

same, and the difference in computational cost is therefore even

more striking. In addition, it can be concluded that accuracy

depends greatly on the number of support vectors. The higher

number of support vectors usually means higher accuracy.

However, in our experiments, higher number of support vectors is

achieved at the expense of smaller bit-lengths, so the results in the

tables can be misleading. In some experiments larger support

vector set does not necessarily lead to better performance because

the quantization error is too big and this affects predictions

considerably. It should be noted that the support vector set

size/bit-length trade-off is not the topic of this work and will be

addressed in our future study.

4. CO#CLUSIO#
In this paper we proposed approximation of Kernel Perceptron

that is well-suitable for implementation on resource-limited

devices. The new algorithm uses only integers, without any need

for floating-point numbers, which makes it perfect for simple

devices such as microcontrollers.

The presented results show that the approach considered in this

paper can be successfully implemented. The described algorithm

approximates the kernel function defined in (6) with high

accuracy, and yields good results on several different datasets.

The results are, as expected, not perfect, which is the consequence

of the highly limited computation capabilities of ATTiny2313 that

required several approximations in calculation of the prediction.

While the quantization and approximation error limit the

performance, the degradation is relatively moderate considering

very limited computational resources. The simulations on ATTiny

microcontrollers proved that the algorithm is very frugal and fast,

while being able to match the performance of its unconstrained

counterpart.

Although the kernel function defined in (6) is used, which is a

slightly modified RBF kernel, the fixed-point method can also be

used to approximate the original RBF kernel (2). The proposed

idea could probably be extended to some other kernel functions

75

Table 3 Microcontroller implementation costs

Banana 2 bits 4 bits 6 bits 8 bits

ATTiny2313 Fixed Float Fixed Float Fixed Float Fixed Float

Program [B] (2048B) 1744 6036 1720 6012 1720 6012 1748 6040

Data [B] (128B) 128 379 128 379 128 379 128 381

Time [ms] 1192 6604 1985 7505 1883 7610 1739 7496

Accuracy [%] 67.32 65.12 81.08 81.00 79.36 79.60 78.00 77.80

of SVs 112 62 43 32

Table 4 Microcontroller implementation costs

Checkerboard 2 bits 4 bits 6 bits 8 bits

ATTiny2313 Fixed Float Fixed Float Fixed Float Fixed Float

Program [B] (2048B) 1744 6036 1720 6012 1720 6012 1748 6040

Data [B] (128B) 128 379 128 379 128 379 128 381

Time [ms] 1568 7626 2226 6725 2410 7366 2232 7703

Accuracy [%] 52.20 51.20 72.60 72.64 78.20 78.60 74.04 73.80

of SVs 112 62 43 32

Table 5 Microcontroller implementation costs

Pendigits 2 bits 4 bits 6 bits 8 bits

ATTiny48 Fixed Float Fixed Float Fixed Float Fixed Float

Program [B] (4096B) 1836 6078 1810 6058 1812 6056 1816 5912

Data [B] (256B) 256 513 256 511 256 507 256 503

Time [ms] 3280 14186 3572 15352 4881 17102 5063 17373

Accuracy [%] 93.80 94.20 92.76 93.92 86.44 86.32 80.72 81.68

of SVs 46 23 15 11

that require operations with floating-point numbers, such as

polynomial kernel. This would be of great practical importance

for problems that do not work well with the RBF kernel. This

issue will be pursued in our future work.

The proposed algorithm could be improved by some more

advanced budget maintenance method, such as the one described

in [8]. By using support vector merging, the performance of

predictor would certainly improve, but it is to be seen if the

limited device can support such an approach. Also, in this paper

we assumed that parameters A and B, kernel width and bit-length,

respectively, are given. Although this is reasonable if we want to

use this method for applications where the classification problem

is well understood, it would be interesting to implement on a

resource-limited device an algorithm that can automatically find

the optimal parameter values.

5. ACK#OWLEDGME#TS
This work is funded in part by NSF grant IIS-0546155.

6. REFERE#CES
[1] Anguita, D., Boni, A., Ridella, S., Digital Kernel Perceptron,

Electronics letters, 38: 10, pp. 445-446, 2002.

[2] Anguita, D., Pischiutta, S., Ridella, S., Sterpi, D., Feed–

Forward Support Vector Machine without multipliers, IEEE

Transactions on �eural �etworks, 17, pp. 1328-1331, 2006.

[3] Cesa-Bianchi, N., Gentile, C., Tracking the best hyperplane

with a simple budget Perceptron, Proc. of the �ineteenth

Annual Conference on Computational Learning Theory, pp.

483-498, 2006.

[4] Crammer, K., Kandola, J., Singer, Y., Online Classification

on a Budget, Advances in �eural Information Processing

Systems, 2003.

[5] Dekel, O., Shalev-Shwartz, S., Singer, Y., The Forgetron: A

kernel-based Perceptron on a fixed budget, Advances in

�eural Information Processing Systems, pp. 259-266, 2005.

[6] Freund, Y., Schapire, D., Large Margin Classification Using

the Perceptron Algorithm, Machine Learning, pp. 277-296,

1998.

76

[7] Hildebrand, F. B., Introduction to Numerical Analysis, 2nd

edition, Dover, 1987.

[8] Nguyen, D., Ho, T., An efficient method for simplifying

support vector machines, Proceedings of ICML, pp. 617–

624, 2005.

[9] Orabona, F., Keshet, J., Caputo, B., The Projectron: a

bounded kernel-based Perceptron, Proceedings of ICML,

2008.

[10] Vapnik, V., The nature of statistical learning theory,

Springer, 1995.

[11] Vucetic, S., Coric, V., Wang, Z., Compressed Kernel

Perceptrons, Data Compression Conference, pp. 153-162,

2009.

[12] Wang, Z., Crammer, K., Vucetic, S., Multi-Class Pegasos on

a Budget, Proceedings of ICML, 2010.

[13] Wang, Z., Vucetic, S., Tighter Perceptron with Improved

Dual Use of Cached Data for Model Representation and

Validation, Proceedings of IJC��, 2009.

[14] www.atmel.com/dyn/resources/prod_documents/doc2543.pdf

ATTiny2313 Datasheet

[15] www.digikey.com

77

Anomalous Thermal Behavior Detection in Data Centers
using Hierarchical PCA

Manish Marwah
HP Labs

Palo Alto, CA, USA
manish.marwah@hp.com

Ratnesh Sharma
HP Labs

Palo Alto, CA, USA
ratnesh.sharma@hp.com

Wilfredo Lugo
HP Enterprise Business
Aguadilla, Puerto Rico

wilfredo.lugo@hp.com
Lola Bautista

CISE, University of Puerto
Rico

Mayagüez, Puerto Rico
Lola.Bautista@ece.uprm.edu

ABSTRACT
In recent years, there has been a significant growth in num-
ber, size and power densities of data centers. A significant
part of a data center power consumption is attributed to
the cooling infrastructure, such as air handling units and
chillers. For energy efficient operation and management of
the cooling infrastructure, data centers are beginning to be
extensively instrumented with temperature sensors. How-
ever, it is virtually impossible to manually inspect and ana-
lyze the large volumes of dynamic data generated by these
sensors for presence of anomalous behavior. Furthermore,
threshold-based methods are useful but limited in the kind
of anomalies that can be detected. Thus, in order to im-
prove energy efficiency of data centers, there is a need for
real-time detection of thermal anomalies such that corrective
measures can be promptly taken to remove the inefficiencies
and save power.

In this paper, we propose a hierarchical principal com-
ponent analysis (PCA) based methodology for detection of
anomalous thermal behavior, and demonstrate it on a large
temperature sensor network in a production data center.
Specifically, the technique is applied to thermal anomalies
that result from inefficiencies in the airflow pattern in a part
of a data center and normally go undetected since no thresh-
olds are violated. The hierarchical analysis performed on the
temperature sensor data streams also identifies the location
and scope of such anomalous behavior. A prototype of this
technique has been implemented and applied to a tempera-
ture sensor network spanning 75 racks with 10 sensors each
for over a period of 30 days. The results – accuracy: 98.0%,
sensitivity: 87.1%, and specificity: 98.8% – demonstrate the
effectiveness of our methodology in real-time detection of
anomalous thermal behavior in data centers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SensorKDD’10, July 25, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0224-1 ...$10.00.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Management:Data-
base Applications - Data Mining; K.6.2 [Management of
Computing and Information Systems]: Installation Man-
agement - Computing Equipment Management

Keywords
Data centers; sensor data; PCA; thermal anomalies; anomaly
detection

1. INTRODUCTION
In recent years, the demand for data centers has seen

tremendous growth. Many of the largest data centers in
the US are experiencing a growth of 20% per year and over
40% of enterprises are refurbishing or building new data cen-
ters to support ongoing business operations and future de-
mand [11]. However, energy consumption of data centers
is a concern. The Environmental Protection Agency (EPA)
calculates that in 2006, 61 billion kilowatt-hour (kWh) was
consumed by data centers in the US. This amount accounts
for 1.5% of the total electricity consumed, costing $4.5 bil-
lion [1]. Moreover, the cooling infrastructure can be respon-
sible for up to 50% of that consumption [7]. It is estimated
that data center power consumption will increase 4% to 8%
annually and is expected to reach 100 billion kWh by 2011
[12].

Given these trends, monitoring thermal conditions in data
centers and responding rapidly to anomalies assumes great
significance and can help save energy and operational costs.
Until recently data centers were a black box with minimal in-
strumentation in the way of thermal sensing. After their ini-
tial design (where cooling infrastructure was typically over-
provisioned, thus leading to higher capital and operational
energy costs), there was not much monitoring, only sched-
uled maintenance or repair after a failure occurred. How-
ever, the state-of-the-art data centers today are extensively
instrumented and closely monitored. Indeed, a large data
center can easily contain tens of thousands of sensors which
produce a continuous stream of data. Although these sensors
produce a wealth of information on the state of a data center,
using this information effectively is a challenge. To detect
an anomaly, an administrator must correlate observed mea-

78

surements to anomalous behavior based on past experience.
In addition to very specific domain knowledge required, just
the volume of data can be prohibitive to examine manually.
The current industry trend is towards a lights out data cen-
ter that is managed remotely with no manual intervention
required.

The monitoring techniques currently deployed in data cen-
ters are typically threshold based, that is, they alarm when
an administrator configured threshold is crossed. These,
however, do not always work well and important anomalies
are missed since many do not manifest as threshold viola-
tions. Also, early detection of anomalies, which allow pre-
emptive measures to be taken, is difficult using only thresh-
old techniques.

Furthermore, when an anomalous sensor reading is ob-
served, current monitoring systems raise alarms requiring
investigation by an administrator. It is nontrivial to deter-
mine if the cause of the anomaly is local or related to a
larger, facility wide outage. For example, a high tempera-
ture sensor reading could be caused by any of the following:
1) a faulty sensor; 2) a rack level anomaly e.g. obstruction of
a cool air vent near a rack; or, 3) a failed computer room air-
conditioning (CRAC) unit affecting a significant portion of
a data center. Automated mechanisms to determine which
of the above has occurred is challenging.

The observations made above necessitate automated, timely
and specific anomaly detection using the available sensor
data streams. In this paper, we propose a hierarchical, prin-
cipal component analysis (PCA) based technique for auto-
mated monitoring of correlations between sensor measure-
ments within a data center. Any change in the correlations
signals anomalous behavior. Correlations across several hi-
erarchical groupings are analyzed to determine the extent of
an anomaly. Furthermore, the sensors most likely responsi-
ble for the anomalous behavior are identified.

We conducted performance evaluation of our methodology
at a large, heterogeneous, state-of-the-art production data
center. For efficient monitoring and control, this facility
has an extensive infrastructure of sensors. The results show
that we can detect anomalies at rack, zone and data center
region levels. For rack level analysis, the results show an
accuracy, sensitivity and specificity of 97.96%, 87.1% and
98.76%, respectively. Threshold based methods are unable
to detect most of these anomalies.

Specifically, in this paper, we make three key contribu-
tions.

1. We present a scalable, hierarchical PCA-based data
mining methodology that can be applied to a large
data center sensor network.

2. We introduce a mechanism that allows PCA hidden
variables associated with short-lived and insignificant
trends to be ignored.

3. We demonstrate the effectiveness of our technique by
analyzing sensor data from around 375 temperature
sensors for a period of 30 days in a real life production
data center.

The rest of the paper is organized as follows. In the next
section, we discuss related work. In section 3, we discuss
the hierarchical anomaly detection methodology. The layout
and architecture of the data center where we demonstrate

our techniques is described in section 4. The results are
presented in section 5. Finally, we conclude in section 6.

2. RELATED WORK
Considering the huge potential for cost and energy sav-

ings, mining of streams of environmental data in data centers
has recently received attention. Additionally, local temper-
ature sensing within a data center for better thermal man-
agement is becoming important [19, 6]. In the past, ex-
ploratory data analysis techniques have been used to eval-
uate data center environmental data [18]. While statistical
and Fourier analysis of air temperature data from rack inlet
sensors was performed, the study did not detect events or
anomalies within a data center.

SPIRIT [16] performs on-line PCA on n data streams by
incrementally updating the principal components as each
data point arrives. As long as correlations between these
streams continue to hold, the number of hidden variables
remain constant. Change in the number of hidden variables
indicates anomalous behavior. While our methodology is
based on SPIRIT, we make it scalable by using hierarchical
groupings, and add a mechanism to filter out hidden vari-
ables associated with short-lived trends.

InteMon [13] provides a prototype for monitoring data
center information through use of SPIRIT [16]. It ana-
lyzes correlations in real-time and alarms on detecting an
anomaly. While our work is related to InteMon, there are
clear differences. InteMon uses only four temperature sen-
sors, while we analyze a large sensor network consisting
of 375 temperature sensors. Using a hierarchical approach
makes our technique inherently more scalable. Furthermore,
it is only through rich instrumentation that anomalies that
we are interested in surface.

In recent years, data streams have been the focus of ex-
tensive research. The availability of continuous, real time,
dynamic data in systems, such as, sensor networks and web
servers, and the need for real-time monitoring and analysis
have been the prime motivations. Traditional database man-
agement systems (DBMS) [10] are not suited to store or pro-
cess such high volume data streams due to performance and
storage limitations. However, data stream management sys-
tems (DSMS) [5] have emerged to address this need. They
aim to provide DBMS like functionalities for data streams
[5, 8, 15].

In addition to DSMS, the other major area of research in
data streams – and the one that is the focus of this pa-
per – is mining of data streams for discovering patterns
and correlations. Numerous research efforts have focused
on clustering and classifying data streams into groups in-
cluding CluStream [2] and HPStream [3]. Each data stream
is passed through an evaluation function – typically based
on distance measures – which determines the membership
of the stream. Data mining of time series data has been in-
vestigated in many research projects including SPIRIT [16]
and StatStream [21]. StatStream uses discrete Fourier trans-
form for computing statistical measures over time series data
streams.

3. STREAM MINING OF SENSOR DATA
Mining of sensor data in a data center can provide im-

portant information for its management including control,
optimization and fault-tolerance of various devices and pro-

79

cesses. Early detection of abnormal events such as failure
of a computer room air conditioning (CRAC) unit can be
used to redeploy resources and minimize any potential user
impact. Cooling resources from other CRAC units can be
provided to the affected region. Additionally, if server vir-
tualization techniques are in use, workload can be preemp-
tively migrated to other racks not affected by the failure.
Similarly, identification of an errand temperature sensor by
observing the correlations between the sensors in the same
rack provides valuable information to the data center man-
agement system, allowing it to ignore measurements from
such sensors instead of taking remedial actions.

3.1 Hierarchical Methodology
The goal of our methodology is to analyze sensor data

streams to detect anomalous behavior in a data center. Anoma-
lies that manifest as broken correlations between sensors are
detected. In addition to detecting an anomaly, the level or
scope of the anomaly is also inferred. In the data center
context, this refers to whether the anomalous behavior oc-
curred at a sensor level, a rack level, or in an entire zone of a
data center. An advantage of our approach is that no prior
learning or training is required. Furthermore, by virtue of
being hierarchical, it is very scalable.

The core component of the technique consists of analyzing
sensor measurements organized in hierarchical groupings.
The analysis comprises performing streaming principal com-
ponent analysis (PCA) on each grouping and at each level.
Considering hierarchical groupings provides a deeper insight
into the location and nature of an anomaly. The groupings
exploit correlations that exist between sensors during normal
operation. In this paper, a simple mechanism of grouping
the sensors, based on their physical locality, is used since
the expectation is that closely located temperature sensors
receive similar air flow and hence are likely to show corre-
lated behavior. We verified this by using historic data to
compute correlation coefficients between pairs of sensors in
the same group. Note that in the absence of any domain
knowledge, these correlation coefficients computed over his-
toric data could be used to group the sensors. Further, our
technique is generic and does not depend on the criterion
used for the grouping.

We consider three groupings: 1) Rack level, 2) Zone level,
and 3) Region level. As shown in Figure 1, PCA is con-
ducted in a bottom up fashion starting at the rack level. At
each level, trends in sensor measurements are evaluated to
identify anomalous behavior of the entities comprising that
level. Analysis at a particular level requires trends from the
level below. For example, zone level analysis requires rack
trends and allows rack anomalies to be discovered. Trends
(hidden variables) identified as anomalous at a particular
level are removed from analysis at higher levels. The three
hierarchical levels considered are described below.

Rack Level. This is the lowest level consisting of sen-
sors located in a rack. The objective of rack level analysis
is to identify anomalous behavior at the scale of a sensor.
Incremental PCA is separately performed on groups of sen-
sor data streams from each rack. The expectation is that
during normal operation sensors in the same rack are corre-
lated. Ceasing of this correlation indicates an anomaly. In
PCA, this is reflected by a change in the number of hidden
variables. Furthermore, the sensor(s) associated with the
anomalous behavior is (are) also identified as discussed in

the next section.
Zone Level. A zone consists of a group of racks. Zones

are demarcated based on commonality of an attribute re-
lated to the sensor measurements. For example, for temper-
ature sensors, racks in a row are considered one zone. The
objective of zone level analysis is to identify entire racks
within a zone that show anomalous behavior. Analysis at
this level utilizes the results of the rack level analysis. The
trends (hidden variables) – discovered in the rack level anal-
ysis – of each rack in a zone are analyzed together to de-
termine if the number of trends remain preserved. An addi-
tional trend indicates anomalous behavior. An example of
a rack level anomaly is an obstruction blocking a cool air
vent next to a rack. This causes the rack sensors to exhibit
deviant behavior. Note that rack level analysis is unlikely
to uncover this problem, since the blocked vent affects all
sensors in the rack, which are likely to remain correlated.

Region Level. This level consists of a number of related
zones. For example, all zones under the influence of a partic-
ular CRAC unit can be considered together. The objective
of analysis at this level is to discovery aberrant zones. The
main trends from each zone – computed in the zone level
analysis – are used to perform incremental PCA. The emer-
gence of additional trends in the results indicates anomalous
behavior.

Although, in this paper, we only use temperature sensors,
sensors measuring other characteristics such as humidity can
also be simultaneously analyzed to detect related anomalies
[20]. Furthermore, even with one kind of sensor, different
criteria for association of sensors can be used. In addition
to physical locality, locality based on data center cooling in-
frastructure or workload/power consumption of servers can
be exploited.

3.1.1 Pre-processing
Before being passed through the PCA algorithm, a data

stream is pre-processed to make it more amenable to PCA
analysis. This consists of two main components. First, high
frequency noise is removed through use of a moving average
filter. Then, the data is normalized such that it has zero
mean and a standard deviation of one, that is,

T ′ = (T − µ)/σ (1)

Although this is trivial to do for historical data, efficiently
computing mean and standard deviation over a sliding win-
dow for streaming data is challenging. While several re-
search efforts [21, 9, 4] have focused on computing statistics
for streaming data without having to store an entire win-
dow’s worth of data, we use a simple solution.

Figure 2: Computing sliding window mean for stream-

ing data.

The basic idea is to divide the sliding window into blocks
and statistics related to these blocks are preserved and used
to update statistics over the sliding window. Assume a win-
dow size of w is divided into k blocks of size b, as shown in

80

Rack Level

Zone Level PCA PCA

PCA

Rack level
anomalies

PCA

Rack level
anomalies

PCA

Rack level
anomalies

PCA

Rack level
anomalies

Zone level
anomalies

Region Level PCA

Region level
anomalies

Sensors Sensors Sensors Sensors

Ra
ck

 tr
en

d

Zon
e t

ren
d

Zo
ne

 tr
en

d

Zone trend

R
ac

k
tre

nd

Rac
k t

ren
d

R
ac

k
tre

nd

R
ac

k
tre

nd

Rack trend

Zone level
anomalies

Figure 1: Our hierarchical PCA methodology applied to data centers with groupings of temperature sensors at three

levels, namely, rack, zone and region.

Figure 2. At the beginning/end of each block, the statistics
can be accurately computed. The sliding window mean at
the end of block p+ 1 is given by

µw,p+1 = µw,p −
µb,p−k+1 · b

w
+
µb,p+1 · b

w
(2)

where µw,p is the sliding window mean at the end of block
p. While in a block, the mean can be estimated by assuming
that the data point moving out of the sliding window is equal
to the average of its block and updating the mean with the
newly arrived point. Standard deviation of streaming data
can be similarly computed. It requires that sum of squares
for each block be also saved.

Since temperatures depend on server workloads, the ap-
propriate choice of the window size is governed by the work-
load patterns. In our analysis, based on the observed diurnal
workload pattern in the data center, we use a window size
of 24 hours with block size of 15 minutes.

3.1.2 PCA of streaming data
Our methodology to discover trends and anomalous be-

havior in data center sensor streams involves using principal
component analysis (PCA) [14]. PCA is a generic technique
to reduce the dimensionality of correlated variables by intro-
ducing a new orthogonal basis. These are called the prin-
cipal components (PCs). Each PC is successively chosen
such that it captures the maximum variance remaining in
the data. Thus, usually the first few PCs are sufficient for
reconstructing the data to a good approximation. Since the
PC directions are orthogonal, they are uncorrelated. Note
that PCA only considers linear dependence; non-linear in-
terdependence between variables is not captured by PCA.
Another assumption is that the data has a normal distri-
bution, a property satisfied by the temperature sensor data
considered in this paper.

At each time tick, a data point (vector containing a mea-
surement from each sensor) is received and transformed from
the original n-dimensional space to the new m-dimensional
space by taking its projection onto the PCs.

ym×1 = Wm×n · xn×1 (3)

where x is the input vector; y is the output vector in the PC
space (the components of y are also called hidden variables);

W is the projection matrix with its ith row containing a unit
vector along the ith PC. A row vector of W is also called
the participation weight vector since its elements determine
the contribution of an input (xi) to a hidden variable (yi).
This is very useful information since it can be used to rank
the contributions of input variables to a particular hidden
variable. The original variables can be reconstructed as fol-
lows:

x̃n×1 = WT
n×m · ym×1 (4)

The reconstruction error is given by ||x− x̃||2.
The basic assumption in using PCA for anomalous behav-

ior detection is that during normal operation the number of
PCs remains constant. An increase or decrease in the num-
ber of hidden variables indicates an underlying change in
the number of correlations of the original data and hence
considered anomalous behavior. While our application of
PCA to streaming data is based on SPIRIT [16], we im-
prove scalability by hierarchical processing. We also make
one other enhancement (described further in the next sec-
tion): the criterion for determining the number of hidden
variables is modified such that short-lived and insignificant
trends are ignored. The algorithm incrementally updates
the PCs (matrix W) as each data point arrives. It is effi-
cient with O(mn) complexity in both time and space and is
independent of the total number of data points seen. In our
analysis each sensor measurement is considered a separate
dimension. Thus, n is equal to the number of sensors being
analyzed.

3.1.3 Number of hidden variables
The number of hidden variables depends on the degree

of reconstruction accuracy desired. A common technique to
estimate this number is energy thresholding [16, 14]. Energy
of a time series variable (yi) is defined as the average sum
of squares of all its past values.

E(i) = 1/t

t∑
i=1

yi
2 i ∈ [1, t] (5)

Energy thresholding operates as follows. The energies of
the reconstructed and original variables are compared. As
long as this ratio is within threshold limits (e.g. 0.95 and

81

0.98), the number of hidden variables is kept constant. If
it falls below the lower threshold (indicating unacceptably
high reconstruction error), the number of hidden variables
is increased. On the other hand, if it rises above the up-
per threshold (indicating unacceptably low reconstruction
error), the number is decreased.

An issue with energy thresholding is that small changes
in the value of the energy ratio around the threshold val-
ues increases or decreases the number of hidden variables,
signaling anomalous behavior. However, these new trends
created may be short lived and insignificant, likely related
to a transient phenomenon in the original data. In order
to filter out such trends, energy thresholding is enhanced
to also consider the energy contribution of a new hidden
variable in conjunction with the thresholds. A new hidden
variable, i, is considered viable only if it has made a sig-
nificant contribution to the total energy since it appeared,
i.e.,

E(i)a ≥ α · Ea (6)

continues to hold for b time ticks. Here, E(i)a is the con-
tribution of the ith hidden variable since time a; Ea is the
total energy since time a; and, α is the contribution thresh-
old. The parameters α and b can be adjusted based on the
degree of sensitivity desired. For the results described in
section 5, the values of α and b were set at 0.4 and 6, re-
spectively. These values worked well for the temperature
data analyzed.

0 50 100 150 200 250 300 350
−10

0

10

20
(b) PCA with energy thresholding

Hi
dd

en
 V

ar
ia

bl
e

0 50 100 150 200 250 300 350
15

20

25

30

35
(a) Temperature measurements

Te
m

pe
ra

tu
re

0 50 100 150 200 250 300 350
−10

0

10

20
(c) PCA with enhanced energy thresholding

Time ticks

Hi
dd

en
 V

ar
ia

bl
e

Figure 3: Use of enhanced energy thresholding with

PCA analysis removes insignificant trends.

Figure 3 (a) shows temperature measurements from seven
racks, that is, 35 sensors in all. The hidden variables that re-
sult from conducting incremental PCA are shown in Figure
3 (b). In addition to the main trend, four short-lived trends
(appearing at time 12, 23, 139 and 150) are also seen. These
are caused by transitory disturbances and are not significant
trends. Although uninteresting, these events are not distin-
guished from cases where a major new trend appears since
both are signaled by the appearance of a hidden variable.
However, using the mechanism described above, these in-
significant trends are filtered out (shown in Figure 3 (c)).
In all the results described in section 5, this hidden variable

filtering algorithm was used.

4. EXPERIMENTAL TEST BED
We apply our analysis and data stream mining methodol-

ogy to a real life, state-of-the-art data center. In this study,
temperature sensor data from a production data center is
considered. Power consumption on a per rack basis in this
data center ranges from 5 to 20kW. Racks comprise of off-
the-shelf standard or blade servers, storage arrays and net-
work switches. Note that our methodology is generic and
not limited to the data center architecture presented here.

4.1 Data Center Infrastructure
These data centers are air-cooled with a raised floor plenum

to distribute cool air, power and networking. Figure 4 de-
picts a typical state-of-the-art data center air-conditioning
environment with under-floor cool air distribution [17]. Com-
puter room air conditioning (CRAC) units cool the exhaust
hot air from the computer racks. Energy consumption in
data center cooling comprises work done to distribute the
cool air to the racks and to extract heat from the hot ex-
haust air. The air movers in the CRAC units pressurize the
plenum with cool air which enters the data center through
vented tiles located on the raised floor close to the inlet of
the racks. Typically the racks are laid out in rows separated
by hot and cold aisles as shown in Figure 4. This separa-
tion is done for thermal efficiency considerations. Air inlets
for all racks face cold aisles while hot air is expelled to hot
aisles.

Figure 4: A typical raised-floor data center.

4.2 Sensor Network and Data Aggregation
Temperature data is collected from sensors, mounted at

the inlet and outlet of racks (see Figure 5). A data center
wide distribution of such temperature sensor networks are
deployed on rack-to-rack basis. The placement density of
the sensors is based on the power dissipated per unit area
of a data center. The temperature sensors are mounted on
racks as shown in the figure and provide temperature data
at both air inlet and outlet of the racks. The digital output
from each sensor is accurate to 0.5 C in the range of interest.
Since the sensor is primarily a transistor with compensation
for leakage, no calibration is needed. Ten temperature sen-
sors are attached to each rack, with five at the inlet and the
other five at the outlet. Each rack also contains a base sta-
tion to which all sensors on a rack are connected. The base
station has an Ethernet interface and multicasts the tem-
perature data collected on the data center LAN. In addition

82

to temperature sensors, data is collected from CRAC units,
Variable fan drive (VFD) units and power distribution units
(PDUs). However, in this paper, only rack inlet temperature
data is considered since it is more critical (as compared to
outlet temperature) in determining the thermal well-being
of the entities in a data center.

Rack Outlet
Sensors at rear

Rack Inlet Sensors
at the frontat the front

Figure 5: Sensors mounted at the rack inlet and ex-

haust.

An underlying assumption in the use of PCA on a data
set is that it is normally distributed. Figure 6 shows the cu-
mulative frequency distribution (CFD) of typical instances
of the temperature sensor data taken from the test bed data
center. The standard normal curve is also shown for compar-
ison. In the anomaly-free case, the close agreement between
the normal CFD and the temperature data CFD indicates
that the temperature data is normally distributed with ran-
dom variations. The anomalous data deviates slightly from
the normal curve due to the systemic variation in the tem-
perature values because of the anomaly.

0.8

1

0.4

0.6

Standard Normal distribution

Data with anomaly

0

0.2

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

Data with anomaly

Data without anomaly

Figure 6: Distribution of temperature sensor data.

5. RESULTS AND DISCUSSION
As a proof of concept, we have implemented a prototype

of our methodology and applied it to sensor data streams
obtained from a real-life production data center located in
Palo Alto, CA. The servers in this 3000 sq. ft. facility dis-
sipate 350 KW of power. Its architecture is similar to that
described in Section 4. There are 75 racks of computing
equipment, each with 10 temperature sensors, arranged in
rows as shown in Figure 7. Each rack can contain up to
64 blade servers or 42 1U servers. Six CRAC units provide
cooling. Temperature data streams from five sensors located
at the air inlet of each rack, resulting in 375 data streams in
all, are analyzed.

Region Level

Zone Level

Rack Level

Figure 7: Layout of the test bed data center.

Number of Anomalies Detected

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Days

A
n

o
m

a
li

e
s

PCA

Moving Ave.

Threshold

Figure 8: Number of anomalies detected over a period

of 30 days.

Figure 8 shows the number of rack anomalies detected
on each day for a 30 day period, from January 1, 2008, to
January 30, 2008. In addition to our methodology (labeled
PCA), also shown are the number of rack anomalies detected
through (1) a threshold method, where an anomaly is flagged
if any temperature sensor in a rack exceeds 30◦C, and (2)
a moving average method, where an anomaly is flagged if a
rack temperature is greater than 5◦C from the moving av-
erage of the previous 24 hours. During this period a major
failure occurred on day 3 when all CRAC units failed due
to unavailability of chilled water, and a similar minor fail-
ure occurred on day 27. These are captured well by the
moving average and threshold methods. The PCA method
does not appear to do well for such large scale anomalies
where temperature of sensors remain correlated while in-
creasing. However, many anomalies manifest with no vio-
lation of temperature thresholds and are thus particularly
hard to detect. Several of these can be detected through the
PCA method since they result in uncorrelated behavior be-
tween sensors. These anomalies indicate inefficient airflow
in the data center and result in higher power consumption.
The cause of airflow inefficiencies could be related to mis-
configuration of equipment, or increased recirculation of hot
air. However, automatic determination of the cause of a
particular anomaly is beyond the scope of the current work.
Anomaly detection allows an operator to investigate further
and if required take corrective measures to fix airflow ineffi-
ciencies, thus, saving power. Note that the threshold-based
and PCA-based methods compliment each other.

In order to validate the performance of the PCA method,

83

a thermal sciences expert visually inspected the daily rack
temperature plots for the 30 days and identified racks that
seemed to exhibit abnormal behavior. Each of the 75 racks,
for each of the 30 days, were marked as anomalous or nor-
mal. These labeled samples were then compared with the
results obtained using PCA. The resulting confusion matrix
is shown in Table 1. In all, there are 2250 day-long sam-
ples (75 racks over 30 days). In the table, Positive indicates
presence of an anomaly while Negative indicates its absence.
135 anomalous and 2069 normal samples are correctly clas-
sified. There are 26 false positive samples while 20 are false
negatives. There are 155 anomalies in all (about 7%). Since
the anomaly rate is relatively low, the total accuracy, that
is, proportion of correctly classified samples, of 97.96%, al-
though high, is not very significant. The sensitivity, which
measures the true positive rate, and the specificity, which
measures the true negative rate, are better indicators of the
performance. As shown in Table 2, these are 87.1% and
98.76%, respectively. The precision of the PCA method,
that is, the proportion of true positives out of the total num-
ber of positives, is 83.85%.

PCA Method
Positive Negative Total

Actual Positive 135 20 155
Negative 26 2069 2095

Total 161 2089 2250

Table 1: Results from the PCA method as com-
pared to the actual positive (anomalous) and neg-
ative (normal) results, as provided by the domain
(thermal sciences) expert.

Measure Value(%)

Accuracy 97.96
Sensitivity 87.1
Specificity 98.76
Precision 83.85

Table 2: Summary of the performance of the PCA
method.

In the following sections, we present some qualitative re-
sults from the 30 day run and show how the hierarchical
analysis allows the source and scope of an anomaly to be
identified.

5.1 Rack Level Analysis
Figure 9 (a) shows the temperature measurements from

five sensors located on the same rack (A1). Each time tick
corresponds to about 1 minute. The key point to note is
that although the temperature varies in the rack, the five
sensors follow the same trend. This trend is captured by a
single hidden variable obtained by conducting PCA (shown
in Figure 9(b)). This also shows the usefulness of hidden
variables in summarizing trends.

Five temperature measurements from a different rack (Bext4),
during the same period of time, are shown in Figure 10(a).
After conducting PCA, we discover two trends (Figure 10(b)).
The larger trend is similar to the one seen for the previous
rack (A1); however, an additional trend starting at time

0 50 100 150 200 250 300 350
−4

−2

0

2

4

6

8
(b) Rack level analysis

Time ticks

Ra
ck

 le
ve

l h
id

de
n

va
r

0 50 100 150 200 250 300 350
18

20

22

24

26

28

30

32
(a) Temperature measurements at a rack

Te
m

pe
ra

tu
re

Figure 9: (a) Rack temperature data; (b) One hidden

variable is able to capture all five temperature sensors.

0 50 100 150 200 250 300 350
16

18

20

22

24

26

28

30

32
(a) Temperature measurements at a rack

Te
m

pe
ra

tu
re

0 50 100 150 200 250 300 350
−4

−2

0

2

4

6
(b) Rack level analysis

Time ticks

Ra
ck

 le
ve

l h
id

de
n

va
rs

T1
T2
T3
T4
T5

Figure 10: Analysis of Uncorrelated Rack Temperature

Data.

tick 38 is also seen. The largest contributor to this new
trend – as determined from the weight vector – is sensor 5
(T5). Although the fact – that T5 shows deviant behavior
– is quite apparent from the temperature plot, the ability
to identify this behavior and the particular sensor involved
autonomously in a data center with thousands to tens of
thousands of sensors is a big advantage. Furthermore, in
this case, the new trend is detected before (at time tick 38)
it becomes visually obvious from the temperature plot (be-
tween time ticks 50 and 100). This is an extremely useful
input to a data center monitoring and control system which
can perform further analysis to determine the root cause, or
take other preemptive actions. Note that since the deviant
sensor shows temperatures that are within the normal oper-
ation range, a threshold based mechanism will be unable to
detect this behavior.

5.2 Zone Level Analysis
At this level, a group of racks, organized as a zone, is an-

84

0 50 100 150 200 250 300 350
−10

−5

0

5

10
(b) Rack level analysis for D racks

Ra
ck

 le
ve

l h
id

de
n

va
rs

0 50 100 150 200 250 300 350
15

20

25

30

35
(a) Racks D1 through D6

Te
m

pe
ra

tu
re

D1
D2
D3
D4
D5
D6

0 50 100 150 200 250 300 350
−10

−5

0

5

10

15
(c) Zone level analysis

Time ticks

Zo
ne

 le
ve

l h
id

de
n

va
rs

Figure 11: Zonal Analysis of Rack Temperature Data.

alyzed with the objective of detecting anomalous behavior
in an entire rack. Figure 11(a) shows the raw temperatures
of six racks (D1 through D6). These racks, comprising a
zone, are located in the same aisle. The main trends (hid-
den variables) for the six racks, computed during rack level
analysis, is shown in Figure 11(b). These six variables, each
representing one rack, are passed through another round of
PCA. The results, shown in Figure 11(c), indicate two hid-
den variables. The smaller trend can be traced to racks D1
and D2. The larger one represents the other racks. Note
that in Figure 11(b) trend D5 is essentially the same as D3,
D4 and D6 (inverting D5 will result in a close approximation
of the others). The results indicate that racks D1 and D2
show anomalous behavior as compared to the other racks in
the zone. Another observation (from Figure 11 (c)) is that
the anomalous behavior is intermittent as on two occasions
the second hidden variable disappears. Although deviant
behavior can be identified, the cause of the deviance cannot
be inferred though this analysis.

5.3 Region Level Analysis
At the region level, trends from multiple zones are ana-

lyzed together to detect the existence of zone-wide anoma-
lous behavior. Note that an anomaly impacting an entire
zone may not be detected at the zone level analysis, since the
zone may continue to show correlated behavior. However,
conducting PCA on multiple zones, that show correlated be-
havior during normal operation, can facilitate identification
of entire zones that exhibit anomalous behavior.

Figure 12 shows the hidden variables of racks, obtained
from rack level analysis, for four different zones (Zones A,
E, F and G). Each zone consists of seven racks in a single
aisle and each rack is summarized by one hidden variable.
Zone level trends for the four zones are plotted in Figure
13 (a). Note that each zone can be represented by one hid-
den variable implying that within each of these zones the
temperature behavior is highly correlated.

PCA is performed on the four zone level hidden variables
and the results are plotted in Figure 13 (b). Two distinct
trends can be seen. Trend T1 strongly corresponds to Zone
A (as determined from the participation weight vector) while
trend T2 is associated with the remaining zones, namely, E,

0 20 40 60 80 100 120 140 160 180 200
−5

0

5
(a) Racks A1 through A7

Ra
ck

 H
id

de
n

Va
rs

0 20 40 60 80 100 120 140 160 180 200
−20

−10

0

10
(b) Racks E1 through E7

Ra
ck

 H
id

de
n

Va
rs

0 20 40 60 80 100 120 140 160 180 200
−20

−10

0

10
(c) Racks F1 through F7

Ra
ck

 H
id

de
n

Va
rs

0 20 40 60 80 100 120 140 160 180 200
−20

−10

0

10
(d) Racks G1 through G7

Time ticks

Ra
ck

 H
id

de
n

Va
rs

Figure 12: Hidden Variable plots from rack level anal-

ysis for zones A, E, F and G.

F and G. The implication is that while the behavior of zones
E, F and G remains correlated, zone A shows anomalous
behavior. Note that this is obvious from the rack level hid-
den variables (Figure 12) where racks A1 through A7 show
markedly different behavior than the other racks. The key
advantage is that this distinction can be autonomously de-
duced without human involvement. From knowledge of the
data center during this time period, it is known that the
settings at a CRAC unit next to zone A racks were being
manually changed. Due to their location, Racks E, F and G
were not impacted by this event. The region level analysis
is aimed at detection of such larger scale anomalies.

0 20 40 60 80 100 120 140 160 180 200
−40

−30

−20

−10

0

10
(a) Zones A, E, F, G

Zo
ne

 H
id

de
n

Va
ria

bl
es

0 20 40 60 80 100 120 140 160 180 200
−60

−50

−40

−30

−20

−10

0

10
(b) Data Center Level Analysis

Time ticks

DC
 L

ev
el

 H
id

de
n

Va
ria

bl
es

Zone A
Zone E
Zone F
Zone G

T2
T1

Figure 13: Zonal and Region level Analysis.

6. CONCLUSIONS AND FUTURE WORK
Timely and specific discovery of anomalous behavior is

vital for efficient and cost-effective management of state-of-
the-art data centers hosting tens of thousands of servers.
Considering the large volumes of sensor data continuously
being produced, automated mechanisms for discovering anoma-

85

lies and trends are indispensable. In this paper, we used
incremental PCA on data streams generated by a large tem-
perature sensor network in a data center. This allowed hard-
to-detect anomalous behavior resulting from airflow ineffi-
ciencies in a data center to be detected and then potentially
fixed to save energy. A hierarchical methodology, that is
inherently scalable and allows the scope of an anomaly to
be determined, was proposed. Furthermore, an enhanced
mechanism to detect new hidden variables — that filters
short-lived and insignificant trends — was presented. Our
methodology was deployed in a production data center and
we presented results from 30 continuous days of operation
involving tens of racks and hundreds of sensors. The re-
sults are encouraging and validate the performance of our
methodology.

While anomalous events where correlations break can be
detected, the severity of the events or their root cause cannot
be determined by PCA analysis alone. Bayesian networks
could be used to model the temperature sensors to achieve
that; similarly, classifiers could also be integrated to identify
specific anomalies. Other future directions include mining
of correlations between different kinds of sensors, for ex-
ample, temperature and humidity sensors; and IT systems
data, such as, OS logs, server CPU utilizations, application
response times, etc.

7. REFERENCES
[1] U.S. Environmental Protection Agency. Report to

congress on server and data center energy efficiency
public law. pages 109–431, 2007.

[2] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and
Philip S. Yu. A framework for clustering evolving data
streams. In vldb’2003: Proceedings of the 29th
international conference on Very large data bases,
pages 81–92. VLDB Endowment, 2003.

[3] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and
Philip S. Yu. A framework for projected clustering of
high dimensional data streams. In VLDB ’04:
Proceedings of the Thirtieth international conference
on Very large data bases, pages 852–863. VLDB
Endowment, 2004.

[4] Arvind Arasu and Gurmeet Singh Manku.
Approximate counts and quantiles over sliding
windows. In PODS ’04: Proceedings of the
twenty-third ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages
286–296, New York, NY, USA, 2004. ACM.

[5] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev
Motwani, and Jennifer Widom. Models and issues in
data stream systems. In PODS ’02: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, 2002.

[6] Cullen Bash, Chandrakant Patel, and Ratnesh
Sharma. Dynamic thermal management of air-cooled
datacenter. In ITherm2006, Intersociety Conference
on Thermal and Thermomechanical Phenomena in
Electronic Systems, 2006.

[7] C. L. Belady. In the data center, power and cooling
costs more than the it equipment it supports.
Electronics Cooling, 13(1), Feb 2007.

[8] Sirish Chandrasekaran, Owen Cooper, Amol
Deshpande, Michael J. Franklin, Joseph M.

Hellerstein, Wei Hong, Sailesh Krishnamurthy,
Samuel R. Madden, Fred Reiss, and Mehul A. Shah.
Telegraphcq: continuous dataflow processing. In
SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, 2003.

[9] Mayur Datar, Aristides Gionis, Piotr Indyk, and
Rajeev Motwani. Maintaining stream statistics over
sliding windows: (extended abstract). In SODA ’02:
Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 635–644,
Philadelphia, PA, USA, 2002. Society for Industrial
and Applied Mathematics.

[10] Lukasz Golab and M. Tamer Özsu. Issues in data
stream management. SIGMOD Rec., 32(2):5–14, 2003.

[11] Carl Greiner. Considerations for a ’green’
energy-efficient data center. Ovum, 2008.

[12] The Climate Group. Smart 2020: Enabling the low
carbon economy in the information age, 2008.
http://www.theclimategroup.org.

[13] Evan Hoke, Jimeng Sun, John D. Strunk, Gregory R.
Ganger, and Christos Faloutsos. Intemon: continuous
mining of sensor data in large-scale
self-infrastructures. SIGOPS Oper. Syst. Rev.,
40(3):38–44, 2006.

[14] I. T. Jolliffe. Principal Component Analysis. Springer,
2002.

[15] Alberto Lerner and Dennis Shasha. Aquery: query
language for ordered data, optimization techniques,
and experiments. In vldb’2003: Proceedings of the 29th
international conference on Very large data bases,
pages 345–356. VLDB Endowment, 2003.

[16] Spiros Papadimitriou, Jimeng Sun, and Christos
Faloutsos. Streaming pattern discovery in multiple
time-series. In VLDB ’05: Proceedings of the 31st
international conference on Very large data bases,
pages 697–708. VLDB Endowment, 2005.

[17] R. Schmidt. Computer and telecommunications
equipment room cooling: A review of literature. In
Proceedings of Eighth Intersociety Conference on
Thermal and Thermomecanical Phenomena in
Electronic Systems, May 2002.

[18] Ratnesh Sharma, Rocky Shih, Chandrakant Patel, and
John Sontag. Application of exploratory data analysis
to temperature data in conventional data centers. In
Proc, IPACK, 2007.

[19] Ratnesh K. Sharma, Cullen Bash, Chandrakant D.
Patel, Richard J. Friedrich, and Jeffrey S. Chase.
Balance of power: Dynamic thermal management for
internet data centers. IEEE Internet Computing,
9(1):42–49, 2005.

[20] Jimeng Sun, Dacheng Tao, and Christos Faloutsos.
Beyond streams and graphs: dynamic tensor analysis.
In KDD ’06: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 374–383, New York, NY, USA,
2006. ACM.

[21] Yunyue Zhu and Dennis Shasha. Statstream:
statistical monitoring of thousands of data streams in
real time. In VLDB ’02: Proceedings of the 28th
international conference on Very Large Data Bases,
pages 358–369, 2002.

86

Self-Organizing Energy Aware Clustering of Nodes in
Sensor Networks Using Relevant Attributes

Marwan Hassani • Emmanuel Müller • Pascal Spaus • Adriola Faqolli
Themis Palpanas ◦ Thomas Seidl •

•Data Management and Data Exploration Group ◦Department of Computer Science
RWTH Aachen University, Germany University of Trento, Italy

{hassani, mueller, seidl}@cs.rwth-aachen.de themis@disi.unitn.eu

ABSTRACT
Physical clustering of nodes in sensor networks aims at group-
ing together sensor nodes according to some similarity cri-
teria like neighborhood. Out of each group, one selected
node will be the group representative for forwarding the
data collected by its group. This considerably reduces the
total energy consumption, as only representatives need to
communicate with distant data sink. In data mining, one
is interested in constructing these physical clusters accord-
ing to similar measurements of sensor nodes. Previous data
mining approaches for physical clustering concentrated on
the similarity over all dimensions of measurements.

We propose ECLUN, an energy aware method for physical
clustering of sensor nodes based on both spatial and mea-
surements similarities. Our approach uses a novel method
for constructing physical clusters according to similarities
over some dimensions of the measured data. In an unsu-
pervised way, our method maintains physical clusters and
detects outliers. Through extensive experiments on syn-
thetic and real world data sets, we show that our approach
outperforms a competing state-of-the-art technique in both
the amount of consumed energy and the effectiveness of de-
tecting changes in the sensor network. Thus, we achieve
an overall significantly better life times of sensor networks,
while still following changes of observed phenomena.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications—
Data mining

General Terms
Algorithms, Management

Keywords
Physical Clustering, Relevant Attributes, Subspace Cluster-
ing, Sensor networks, Energy Efficiency, Change detection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SensorKDD’10, July 25, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0224-1 ...$10.00

1. INTRODUCTION
The communication process is the dominating energy con-
sumer in sensor networks, particularly when this is happen-
ing over long distances. Sensor nodes need to use their full
sending power to forward their sensed data to distant sink,
while they can use less power when communicating locally
with each other. Considering the energy limited resources
in sensor networks, this motivated a lot of research on the
physical clustering of sensor nodes. The idea is to divide sen-
sor nodes into groups according to some criteria, and then
selecting one node from each of these group to serve a group
representative. The main task of the group representative is
forwarding the readings of sensor from its group to this dis-
tant sink. As nodes need to communicate within the group
(the cluster) using less energy, this considerably reduces the
total consumed energy in the whole network.

Data mining approaches contributed to this problem mainly
in two parts: the criteria used for clustering and the process
of selecting representatives. The similarity of sensed mea-
surements and spatial characteristics were used as a group-
ing measure. Thus, inside each cluster, the node with the
most similar readings to the measurements of all nodes in-
side that cluster is selected as a cluster representative.

In both cases, the selection methodology is based on the sim-
ilarity between all attributes of clustered nodes. Todays sen-
sor nodes are collecting increasingly many number of dimen-
sions for each sensor node. The similarity measures should
cope with the increasing dimensionality of sensed data. In
such data, distances grow more and more alike. The full
data space is thus sparse and each nodes will be alone in its
physical cluster as no global similarity between the measure-
ments of different nodes can be observed. We are tackling
this point in this work, by introducing a novel method for
performing physical clustering based on the similarity over
some of the sensed attributes using subspace clustering. We
show that this method produces improvements in energy
consumption even for low dimensional data.

In addition to the importance of saving energy, we designed
our method to cope with the change detection. Detecting
novelty in input stream is an important feature that has to
be considered when designing any data knowledge technique
in sensor networks. For example, it is an essential point in
evaluating learning algorithms in drifting environments [9].

87

1.1 Our Contribution
The following aspects are our main contributions we in-
cluded in this work:

• Reducing the communication burden
In our approach, nodes do not continuously commu-
nicate with the representative. Communication is es-
tablished only when a state change is detected in the
monitored phenomena. By the careful construction of
clusters, this communication is further reduced by us-
ing the similarity to representative readings.

• Subspace physical clustering
Our novel method for building clusters according to
the relevant attributes results in more consistent clus-
ters, and helps for maintaining the clusters with less
effort.

• Outlier-aware change detection
We present a simple but effective method for detecting
outliers in the input stream performed by each node,
and another one performed by the representative to
detect deviating nodes in its cluster. We show that
our approach by applying this method, is still capable
of detecting changes in input stream.

• Uniform utilization of energy resources in sen-
sor network
We suggest further optimization methods to our ap-
proach to uniformly distribute the usage of energy be-
tween the nodes. We cope with the cases of single-
node clusters, and changing representatives according
to residual energy. This results in a longer lifetime of
the whole sensor network as nodes die close to each
other.

The remainder of this paper is organized as follows. Sec-
tion 2 mainly reviews the literature related to the physical
clustering problem. Section 3 introduces some formulations
and definitions used in our approach. Section 4 describes in
detail our algorithm. Section 5 presents the experimental
results. We conclude the paper and suggest future work in
Section 6.

2. RELATED WORK
In this section we list briefly the related work to our physical
clustering problem.

Traditional offline clustering algorithms e.g. [8], [4],[25]
can not cope with the streaming and distributed nature of
sensor nodes.

Although some distributed versions of clustering al-
gorithms were established like SDBDC [11], DFEKM [12],
they are still dealing with offline data and can not simply
adapted to perform online distributed clustering.

Many algorithms were developed to deal with the online
distributed clustering of data. EDISKCO [10] is an en-
ergy efficient approach for online approximative clustering

of sensor data. The Distributed Grid Clustering algorithm
[22] is an example of an online 2-layer distributed clustering
of sensor data. ELink [16] and the Distributed Single-Pass
Incremental algorithm DSIC [24] are two examples on time
series clustering of sensor nodes. None of these algorithms
considered the possibility of having clusters hidden in sub-
sets of the attributes.

Subspace clustering has been proposed, for today’s applica-
tions with incising number of given dimensions. Subspace
clustering detects clusters in arbitrary projections by auto-
matically determining a set of relevant dimensions for each
cluster [20, 15]. Thus, one is able to detect objects as part of
various clusters in different subspaces. Recent research has
seen a number of approaches using different definitions of
what constitutes a subspace cluster [3, 13]. As summarized
in a recent evaluation study [19], their common problem is
that the output generated is typically huge. In recent sub-
space clustering algorithms we have focused on tackling re-
dundancy [5, 6, 18]. In contrast, projected clustering assigns
each object to a single projection [2, 17]. This strict parti-
tioning of the data into projected clusters can be regarded
as extreme redundancy elimination. Projected clustering re-
sults in a manageable number of clusters, but is not able to
detect overlapping clusters. Both subspace clustering and
projected clustering have its focus on offline data outside
sensor networks. In contrast, we aim at combining cluster-
ing in subspace projections [5, 2] with physical clustering for
sensor networks [10].

SERENE [7] is a framework for SElecting REpresentatives
in a sensor NEtwork. It uses clustering techniques to se-
lect the subset of nodes that can best represent the rest of
sensors in the network. In order to reduce communication,
rather than directly querying all network nodes, only the
representative sensors are queried. In this way the overall
energy consumption in sensor network is reduced and con-
sequently sensor network lifetime is extended.
To select an appropriate set of representative sensors, SERENE
performs the analysis of historical readings of sensor nodes,
in order to find out the correlations both in space and time
dimensions among sensors and sensor readings. Sensors may
be physically correlated. Sensor readings may be correlated
in time. Physically correlated sensors with correlated read-
ings are assigned to the same cluster. Then each cluster
performs further analysis in order to select the sensors with
the highest representation quality. The last two steps of this
process are the same with the steps of clustering process in
our algorithm.

Similar to our algorithm, this technique uses density-based
clustering algorithm, DBSCAN [8]. Nevertheless, different
from our algorithm, in SERENE approach the first stage of
clustering process is analysis of historical data for detect-
ing correlations among nodes and sensor readings. Due to
restrictions of energy, computational and memory capacity
in sensor nodes, this analysis can not be performed by the
nodes themselves.

Continuous storing of historical data for all nodes that are
spatially correlated, in order to analyze correlation of their
readings, requires more memory capacity than a sensor node

88

possesses. Processing of all the analyses over measurements
of sensors to find out correlations, needs high computation
resources as well. Moreover, this process requires exchange
of attribute measurements between all the nodes that are
spatially correlated. This is followed by a high energy con-
sumption in nodes, due to frequent communication and data
exchange with more than one node in their clusters. Due to
all these restrictions, in this approach sensor nodes can not
be self organized into clusters. As a result, this technique
is suitable only for those scenarios where nodes operate in a
supervised way.

Another difficult part of this technique is related with main-
tenance of SERENE platform. With passing of time, the
readings of sensor nodes change, consequently the same set
of sensors may not be anymore correlated with each other,
or a new correlation may appear among some other nodes.
This change requires a reorganization of nodes in clusters.
Reclustering process is followed by additional communica-
tion among nodes for updating historical data. This will
increase the communication burden and the size of trans-
mitted data will be significantly high. More analyses should
be performed over data, meaning more resources will be con-
sumed for computation purposes.
All the above mentioned reasons make this approach expen-
sive in terms of energy and not easy to maintain in cases of
continuous clustering applications.

In [23] a Data-Driven Processing Technique in Sensor Net-
works was suggested. The goal of this technique is to pro-
vide continuous data without continuous reporting, but with
checks against the actual data. To achieve this goal, this ap-
proach introduces temporal and spatio-temporal suppression
schemes, which use the in-network monitoring to reduce the
communication rate to the central server. Based on these
schemes, data is routed over a chain architecture. At the
end of this chain, the nodes that are most near to central
server send the aggregate change of the data to it.

Snapshot Queries [14] is another approach that introduces
a platform for energy efficient data collection in sensor net-
works. By selecting a small set of representative nodes, this
approach provides responses to user queries and reduces the
energy consumption in the network. In order to select its
representative, each sensor node in this approach builds a
data model for capturing the distribution of measurement
values of its neighbors for each attribute.

After a node decides which of its neighbors it can repre-
sent, it broadcasts its list of candidate cluster members to
all its neighbors. Each node selects as its representative that
neighbor that can represent it and that additionally has the
longest list of candidate cluster members. This is again ex-
pensive as all messages are broadcasted and not directed to
specific nodes, which might result in repeated broadcasting
in case of message loss. Maintaining this model is very ex-
pensive in terms of energy, as all nodes needs to exchange
all historical readings among each other. In our algorithm,
each sensor node maintains a small cache of past measure-
ments of itself for each attribute. And the control messages
exchanged among nodes during the initialization phase are
directed to specified nodes. As the closest state-of-the-art
to our approach, we evaluate our algorithm by comparing it

to Snapshot Queries [14].

3. PROBLEM FORMULATION
In this section we formally define the related problems to
our algorithm.

3.1 The Representatives Selection Problem
Given a set SN of n sensor nodes SN = {sn1, sn2, ..., snn}
each measuring a set of attributes {a1, a2, ..., ak}, an Eu-
clidean distance function d(sna, snb) ≥ 0; {a, b} ⊂ {1, 2, ..., n}
and a real number ε > 0. The problem of selecting represen-
tative nodes in SN is to find a subset R = {r1, r2, ..., rm} ⊆
SN ; m ≤ n each ri ∈ R is representing a set of nodes Di =
{sni1, sni2, ..., snil}, Di ⊆ SN and ∀sn ∈ Di: d(ri, sn) ≤ ε
such that the measurements sensed by all members of Di

are best represented by the measurements of ri.

Definition 1. (Physical cluster of nodes)
A physical cluster C of sensor nodes is a set Di with a max-
imum number of MaxNds > 0 nodes represented by the
representative ri such that ∀sn ∈ Di:√

(xri − xsn)2 + (yri − ysn)2 + (zri − zsn)2 ≤ ε

where ε is the radius of C.

Definition 2. (Spatial and non-spatial attributes)
Each node sn ∈ SN is defined in each time stamp t by a set
of attributes {a1t, a2t, ..., akt, xsn, ysn, zsn} where {a1t, a2t, ..., akt}
is a set of non-spatial attributes which represent the mea-
surements of sn at time stamp t and {xsn, ysn, zsn} are the
spatial attributes of sn.

Definition 3. (Relevant attributes)
Let {µ1(t), µ2(t), · · ·µk(t)} and {σ1(t), σ2(t), · · ·σk(t)} be re-
spectively the mean values and the standard deviations of
the non-spatial attributes of l readings of sensor node sna at
time stamp t, a non-spatial attribute am, where 1 ≤ m ≤ k,
is called a relevant attribute between two nodes sna and snb

at the time t if Xmt(snb) ∈ [µm(t)−2σm(t), µm(t)+2σm(t)]
where Xmt(snb) is the sensor snb reading of attribute m at
time stamp t.

3.2 The Problem of the ECLUN Algorithm
Given a set SN of n sensor nodes with a set of attributes
deployed in an environment for monitoring physical phe-
nomena and a base station to collect these measurements,
the general problem of ECLUN algorithm is to decrease the
total amount of consumed energy in SN by grouping the
nodes of SN into physical clusters Ci where 1 ≤ i ≤ n each
represented by a representative ri with some relevant at-
tributes aj where 1 ≤ j ≤ k and then sending to the base
station either the readings of the relevant attributes of ri to
represent the readings of all members of Ci or the summary
of the readings of all members of Ci. The target is to con-
tinuously update the base station by all important changes
in the sensed phenomena.

89

4. ECLUN ALGORITHM
In this section we describe in details our approach. We dif-
ferentiate between two phases of the algorithm. The initial-
ization phase where physical clusters are constructed in an
unsupervised way, and the running phase when these clus-
ters are maintained and updates are sent to the representa-
tive and the server.

4.1 The Initialization Phase
Algorithm 1 gives an overview of this phase. We will next
describe each of these steps in details.

Algorithm 1 Initialization Phase of ECLUN

1. Caching of initial data
2. Detection of geographical neighbors
3. Setting relevant attributes
4. Estimation of representation quality for each node
5. Selection of local representatives
6. Load balancing among representatives

4.1.1 Caching of Initial Data
Each node senses the first l measurements for each attribute
and stores them in the cache of data history. These l mea-
surements will be exchanged between nodes, and thus will
decide the initial physical clustering of nodes. Therefore,
outlier readings must completely be excluded in this phase.
We assume that attribute measurements for each sensor are
normally distributed. Therefor, nodes during this phase con-
tinuously calculate the mean and standard deviation values
of their measurements for each attribute. If any new reading
falls out the corresponding confidence interval [µ − 2σ, µ +
2σ], it is suspected to be an outlier, and stored in the sus-
pected list with a maximum length of s. If the suspected list
was filled within the previous s time stamps, then its read-
ings are considered in the main list, otherwise it is excluded
completely from both lists.

4.1.2 Detection of Geographical Neighbors
Every node detects its geographical neighbors GN by run-
ning spatial queries with radius ε. This is done by broad-
casting its ID and spatial attributes and mean values of
non-spatial attributes < IDn, µ1, µ2, · · · , µk, xsn, ysn, zsn >
within a radius ε, where µ1, µ2, · · · , µk are the mean values
of the initial l readings of sn for each non-spatial attribute.
Thus, every node becomes aware of the geographical coor-
dinates as well as the initial readings of its neighbors, these
data are stored in a list GN in each node.

4.1.3 Setting Relevant Attributes
In this step, each node decides the relevant attributes be-
tween it and each node in its GN list. According to Def-
inition 3, the node uses the non-spatial readings received
in the previous step and the statistics of its own previous l
measurements to decide the relevant attributes. The thresh-
old Min Rel Attr ≤ k; k is the number of non-spatial at-
tributes, decides the minimum number of relevant attributes
between two nodes when one wants to represent the other.
Each node excludes from the list of GN , all neighboring
nodes with less than Min Rel Attr relevant attributes to

sn1

sn2

sn3

sn4sn7

CCMsn1
CCMsn7

Figure 1: Candidate Cluster Members

it. The rest nodes are stored in the candidate cluster mem-
ber CCM list.

In Figure 1, although nodes sn2 and sn3 are part of GN of
node sn1, they do not belong to its candidate cluster mem-
bers CCM . Apparently, there are less than Min Rel Attr
relative attributes between node sn1 and each of sn2 and
sn3, so they are both not in the CCM of sn1.

4.1.4 Estimation of Representation Quality for Each
Node

In this step of algorithm, each node analyzes how effective
it is in representing its CCM nodes in the network.

Definition 4. (Representation quality)
The representation quality RepQ of node sn when repre-
senting its CCM nodes is defined as:

RepQ(sn) = (1−α)

∑
sni∈CCM(sn)(ε− d(sn, sni))

ε× | CCM(sn) | +α
REsn

IEsn

Where ε is the maximum radius of the possible cluster that
might be represented by sn, d(sn, sni) is the distance be-
tween sn and any of its CCM , α is a coefficient for weighting
the energy, IEsn and REsnare the initial and the residual
energy of sn respectively.

According to Definition 4, RepQ is greater when the mem-
bers of CCM are forming a compact cluster around sn.
Closer nodes means less consumed energy and much more
similar measurements. Additionally, the residual energy is
an important factor, as the possibility will be less later that
sn gets soon out of energy. The bigger the value of α, the
more the importance of the residual energy factor when se-
lecting representatives.

4.1.5 Selection of Local Representatives
Each node decides whether it will be itself a local represen-
tative or it will be represented by any other similar node in
its neighborhood. To take this decision, nodes refer to the
representation quality parameter.

Each node sni broadcasts its RepQ value to every node snj

that belongs to its CCM . Every node sn ∈ SN stores the
list of candidate local representatives CLR, together with
the RepQ values received by them, and includes also itself

90

in this list. The list is ranked in a decreasing order according
to RepQ. One of the following will happen:

1. If the current node has its own RepQ value in the top
of this list, it announces itself as a representative.

2. If two nodes have the same RepQ value, then the closer
node is selected as a representative for the current node

3. Otherwise, node sn is represented by the node which
is having the RepQ in its CLR

After this step, every node either has chosen only one node
as its representative, or is a representative itself. Since rep-
resentatives announce themselves, each node collects the IDs
of representative nodes in its neighborhood, it stores them
in an internal list called neighbor local representatives NLR.

As we saw when building CCM , we had Min Rel Attr ≤
k; k is the number of non-spatial attributes, we adopt this
idea from the subspace clustering area [5, 2]. For many
given attributes, one can hardly find two sensor nodes that
can have similar measurements in all attributes, this will
result in a huge number of single-node clusters. To avoid this
we relax the representation criteria in such a way that the
representative needs only to have some relevant attributes
with its represented nodes. Algorithm 2 gives a description
of the process of selecting the representative according to
the relevant attributes and updating the server with relevant
and non-relevant attributes by each node.

Algorithm 2 Selecting representatives per attributes

1. if this attributeis a relevant attribute then
2. Let it be represented by the local representative

repa which is sharing the highest number of
relevant attributes

3. else if (other representative repb can represent
this attribute) then

4. Some attributes are represented by repa others
by repb

5. else
6. Let this attribute be forwarded to server by repa
7. end if

4.1.6 Load Balancing Among Representatives
To provide a uniform utilization of energy resources in sen-
sor network, we set a threshold MaxNds for the maximum
number of nodes that can be represented by one represen-
tative. According to that, representatives decide to exclude
from its cluster the most distant cluster members. The ex-
cluded node then tries to join the nearest representative in
its NLR list.

At the end of the initialization phase, physical clusters C
are established.

4.2 The Running Phase
The algorithm initiates the communication process only when
a state change is detected. Nodes communicate with their
representatives only when they detect a state change in the
attribute measurements of the event they are monitoring.

Similarly, representatives send data to the server only if they
detect a state change in the statistics of the measurements
collected from all the nodes of their clusters. We have then
two possible communication paths: node-representative and
representative-server.

4.2.1 Node-Local Representative Communication
Each node sn compares the current measurement values
Xjti(sn) on non-spatial attribute j = (1 · · ·m) sensed at ti
with the mean value µj(ti−1) of the l previous measurements
values of the corresponding attribute. If |Xjti(sn)− µj(ti−1)| ≤
δj where δj ; j = (1 · · ·m) are the measurements thresholds
for attribute j, then a change in the measurements is de-
tected and an update of Xjti should be sent to the corre-
sponding representative. Otherwise no data is sent to the
representative and old measurements sent previously to the
representative by sn are used.

4.2.2 Local Representative-Server Communication
During each time stamp in the running phase, the repre-
sentative executes Algorithm 3. After this, and at the same
time stamp, the representative maintains C. It checks whether
Xjti(sn) that it has received from sn falls inside the confi-
dence interval [µjC(ti−1)−2σjC(ti−1), µjC(ti−1)+2σjC(ti−1)]
for each relevant attribute in C or not. If this was not the
case, then sn is temporarily excluded from the ti statistics.
Its readings are saved in a list with a maximum length s. If
s was filled within the previous s time stamps with readings
of sn, then the representative requests sn to join another
physical cluster, and forwards its s readings together with
the ID of sn to the server. And sn in turn, searches for
a neighboring representative in its NLR list and continues
from step 5 in Algorithm 1. The only exception here will be
that Min Rel Attr threshold does not apply, as nodes try
to minimize the number of nodes representing it.

Algorithm 3 Representative running phase

1. while updates are received from nodes at time ti do
2. if any attribute is missed then
3. use ti−1 values
4. for each relevant attribute j do
5. µjC(ti) = 1

|C|
∑

sn∈C
6. if |mujC(ti)− µjC(ti−1)| ≤ ψj then
7. update the server with µjC(ti) and σjC(ti)
8. end for
9. end while

4.3 Energy Aware Optimizations
We suggest further optimizations for the sake of energy effi-
ciency in our algorithm.

4.3.1 Delegation of Representative Authority
The energy of local representatives decreases rapidly much
more than the energy of other nodes in the network.

If a representative runs out of energy, all of its cluster nodes
should recluster.This is considerably energy consuming. Fur-
thermore, losing the representative node will cause a big lack
of information about the monitored phenomena delivered by
the complete cluster. We suggest a uniform utilization of

91

energy sources in the network, by applying a technique of
delegation representative authority.

Each local representative is aware of its residual energy. At
the time it notices that its energy capacity is decreased un-
der a certain threshold (for instance: 50% of its initial energy
as it started to represent this cluster), local representative
requests the residual energy values of nodes in C. The au-
thority of representing the cluster is delegated to the node
with the highest residual energy including current represen-
tative. If none of the cluster nodes has more residual energy
than current representative, then it continues being the rep-
resentative of its cluster and performs later the same check
again.

4.3.2 Optimization in Case of Single Node Cluster
In such a scenario, sensor node has to communicate with
distant server for updating only its measurements. To avoid
this, each node that is alone in its cluster sends lazily ‘join
requests’ to its neighbor representatives. Each neighbor rep-
resentative then checks whether the attribute measurements
are relevant to its cluster. Accordingly it might join that
cluster or keep representing itself. In case of more acknowl-
edgments, it selects the nearest neighbor representatives.
Receiving no-acknowledgment means that the node is se-
lecting different data than its neighbors and will keep rep-
resenting itself. This might mean that either this node is
corrupted or measuring some local event.

5. EXPERIMENTAL EVALUATION
To evaluate the performance of ECLUN, we performed a
set of experiments to test the effectivity of each feature of
ECLUN, and to compare the performance of ECLUN with
the state-of-the-art competing algorithm, Snapshot Queries
[14]. We start by describing our real and synthetic datasets
in 5.1, then our evaluation methodology for each set of ex-
periments in 5.2, in 5.3 we describe the settings of our ex-
periments and then we conclude this section by discussing
the experimental results in 5.4.

5.1 Datasets
We have used three real datasets in addition to one syn-
thetic dataset for evaluating ECLUN. We give a description
of each with some of the parameter settings applied with
them on both ECLUN and Snapshot Queries. Unless oth-
erwise stated, these parameter settings applies to all exper-
iments.

5.1.1 Real Datasets
Intel Berkeley Research Lab: Intel Lab 1
Out of the 54 nodes readings collected in [1]. Three nodes
had a huge number of missing readings, therefore we used the
clean readings of 51 nodes each contains 4-parameters read-
ings taken every 31 seconds. The clean processed dataset
contained 15730 readings. We have mapped these time stamps
into 5 days, 15 hours, 27 min and 10 sec period of time. The
network topology was selected to be as close as possible to
original nodes topology. When applying this dataset on any
algorithm we set the initial energy IE of each node to 295
Joules. We call this real dataset Intel Lab 1 in our next
experiments.

Table 1: Generated events in the synthetic dataset
Event 1 Event 2

Values per
dimension

D1{Low}
D2{High}
D3{Low}

D1{High}
D2{Low}
D3{High}

Time stamps
[From, to]

[0,200],
[1000,1100],
[10000,11000]

[300,350],
[1000,1100],
[2000,2500]

Most af-
fected node

Node 2,
coordinates:
(2,0)

Node 47,
coordinates:
(4,6)

Intel Berkeley Research Lab: Intel Lab 2
To get more readings, we have excluded 5 nodes from the
original Intel lab dataset. This resulted in 23077 healthy
readings. For small missed values in between, we have al-
ways inserted the last received value instead of later missed
readings. Again we set the topology of the network in both
evaluated algorithms to be as close as possible to the origi-
nal topology. When applying this dataset on any algorithm
we set the initial energy IE of each node to 10000 Joules.
We call this dataset Intel Lab 2.

I9 Sensor Dataset
Explanation about this one-dimensional dataset with 40589
readings can be found in [10]. The 16 nodes were randomly
inserted to the algorithms without mapping the coordinates
of network topology. When applying this dataset on any
algorithm we set the initial energy IE of each node to 1100
Joules.

5.1.2 Synthetic Dataset
The synthetic dataset was generated mainly for evaluating
the response of each of the competing algorithms to some in-
serted changes in the monitored phenomena.We generated
readings for 49 sensor nodes distributed in one 7x7 grid with
12000 3-dimensional readings for each node. The normally
distributed random readings were mainly simulating the hu-
midity, light and temperature attributes sensed by TelosB
nodes [21]. The total range of each attribute was divided into
three subranges: Low, normal and High. Inserted events
are any combination of three ranges, each taken from an
attribute. We have generated 2 different in different parts
of the network, details about these events are depicted in
Table 1.

5.2 Evaluation Methodology
We evaluated ECLUN from three different perspectives:

1. Evaluating each Feature of ECLUN: We have
tested the effect of each feature of ECLUN by eval-
uating for every feature two versions of ECLUN, one
containing this feature and the other not. The mea-
sure was the total number of dead nodes in the whole
network with the progress of time.

2. Energy Consumption: Two measures were performed
to evaluate the energy consumption of ECLUN with
that of Snapshot Queries, the total number of dead

92

nodes in the network, and the total amount of con-
sumed energy in Joules.

3. Detection of Changes in Input Stream: We wanted
to see the values of readings delivered to the server by
the representatives in each algorithm on time stamps
where we synthetically inserted events as in Table 1.

5.3 Setup of the Experiments
For evaluating the energy consumption, in all experiments
we used the energy model described in [10]. For all ex-
periments of ECLUN, we had the following settings on all
datasets: the radius of covered nodes by the range of each
node: ε = 2, the maximum number of nodes in one physical
cluster: MaxNds = 4 and the delegation authority thresh-
old: 50% of initial energy. For Intel Lab 1 and Intel
Lab 2 datasets, we have selected the number of initial read-
ings l = 10, the threshold of relevant attributes for repre-
senting Min Rel Attr = 2, the node-representative update
thresholds: δj ; j = (1 · · · 4) as (0.2, 0.2, 0.2, 0.2) and the
representative-server update thresholds: ψj ; j = (1 · · · 4) as
(0.2, 0.2, 0.2, 0.2). For I9 dataset: l = 10, Min Rel Attr =
1, δ1 = 0.2 and ψ1 = 0.2. To have fair results, the pa-
rameter settings of Snapshot Queries were always identical
to that of ECLUN whenever they apply. We set the error
threshold Tj ; j = (1 · · · 4) to (5, 5, 5, 5). According to [14],
these values deliver the best results in terms of number of
participating nodes in each cluster on the one hand, and an
accepted representation error on the other hand.

5.4 Experimental Results
5.4.1 Results of Features Evaluation

In each of the following selected two experiments, we test a
feature in ECLUN, by comparing the energy consumption
of two versions of ECLUN that differ only in including this
feature or not.

Node - Representative and Representative - Server
Communications
This feature enables the update of the representative or the

0

10

20

30

40

50

60

N
um

be
r o

f D
ea

d
N

od
es

Time

No State Change
in
Communication
Node-LR & LR-CS

Algorithm with
All Features
Enabled

Figure 2: Testing the ECLUN feature of performing the

update only when a change is detected using the Intel

Lab 1 dataset

server to occur only when a change is detected. Exclud-
ing it means that the nodes always communicate with the
representative whenever they have a new reading, and the
representative in turn always communicates with the server.

0

5

10

15

20

25

30

35

40

45

N
um

be
r o

f D
ea

d
N

od
es

Time

Full Space
Clustering

Algorithm with
All Features
Enabled
(Subspace
Clustering)

Figure 3: Testing the ECLUN feature of subspace clus-

tering using the Intel Lab 1 dataset

As expected, the results in Figure 2 shows that this feature
extends the whole network life time. Without using this fea-
tures nodes start to die in the network after 5 days, 14 hours,
1 minute and 55 seconds, while by using the first node dies
around 1 hour and 20 minutes after that. Additionally, by
the end of dataset 21 nodes are still alive when enabling this
feature, while all nodes die when disabling it. As we will see
in the change detection results, this feature is not delaying
important changes.

Subspace Clustering:(Clustering per Relevant At-
tributes)
Disabling this feature means that a node can only be rep-

resented by nodes that are relevant to it in all spaces (at-
tributes). The possibility for nodes to find such a represen-
tative in its neighbors will be very low. Which ends with
a self representation by the node. As depicted in Figure
3, using this feature delays the death of first node around
31 minutes and increases the number of the still-alive nodes
by 11 with the end of the simulation. The impact of the
subspace clustering is even stronger with higher dimensions.

5.4.2 Results of Energy Consumption Evaluation
We evaluate here the energy consumption of ECLUN and
Snapshot Queries algorithm [14]. Figure 4 depicts the resid-
ual energy in Joules of each sensor node after the initializa-
tion phase. As shown, the initialization phase of Snapshot
Queries consumes more energy than that of ECLUN. This
is because of the extensive messages of big sizes that are
exchanged between nodes in Snapshot Queries during this
phase. Although this initialization phase happens not so of-
ten in ECLUN through reclustering, our experiments showed
that it happens more likely in Snapshot Queries. This is due
to the subspace nature that ECLUN uses. It can be seen also
in Figure 4, that the energy consumption in ECLUN is bal-
anced between all the nodes after this phase, in contrast to
Snapshot Queries, where selected representatives consumes
more energy than others even during this phase.

Figure 5 presents a comparison between two versions of each
algorithm. For ECLUN, we used the all-features version
and another without the previous features tested in 5.4.1
and without the delegation of authority optimization. For
Snapshot Queries, we applied the two forms of changing the
representative with the decrease of energy suggested in [14].

93

Figure 4: The residual energy in each of the 51 nodes

after the process of selecting representatives in ECLUN

and Snapshot Queries using Intel Lab 1

Table 2: Total energy consumption of ECLUN and
Snapshot queries in Joules

Dataset Number
of
Nodes

Number
of Read-
ings per
Node

ECLUN
Energy
Consump-
tion [Joules]

Snapshot
Energy
Consump-
tion [Joules]

Intel
Lab 2

49 23077 22552.5 25546.9

I9 16 40589 13837.1 14094.9

The first one is similar to ECLUN, where nodes are invited
to send their residual energy and the one with the high-
est residual energy is selected. The other approach ran-
domly selects the next representative, we called this (Snap-
shot Queries with randomized representatives). The two ver-
sions of ECLUN extend considerably the network life time
much more than both of the versions of Snapshot Queries.
The better version of Snapshot Queries starts to lose nodes
around 7 hours and 15 minutes earlier than the normal
ECLUN. When the dataset ends, ECLUN has still 21 alive
nodes, while the two versions of Snapshot Queries almost
lose all of their nodes. Another important feature is that
the nodes in ECLUN die close to each other, which yields a
better usage of the network resources and more data about
observed phenomena. Figure 6 and Table 2 show the effi-
ciency of ECLUN over Snapshot Queries for different sizes
of data with different dimensionality.

Figure 5: Number of dead nodes in different versions of

ECLUN and Snapshot Queries using Intel Lab 1

0

2

4

6

8

10

12

14

16

18

35000 35600 36200 36800 37400 38000 38600 39200 39800 40400

N
u

m
b

e
r

o
f

D
e

ad
 N

o
d

e
s

Timestamps

ECLUN Snapshot Queries

Figure 6: Number of dead nodes using the I9 dataset

5.4.3 Results of Change Detection Evaluation
For evaluating this measure, we used the synthetic dataset.
Figure 7 depicts the input events affecting some parts of
the sensor network, and the corresponding output sent by
ECLUN and Snapshot Queries to the server at the same time
stamp. Figures 7(a) and 7(b) show the input and ECLUN
output Event 1 at time stamp:11. Snapshot Queries de-
tected this event at time stamp:12 Figure 7(c). Obviously,
ECLUN was not only able to detect this event exactly when
it appeared, it could also deliver the involved nodes in this
event with few false positives. Snapshot Queries detected
the change event with a delay of one time stamp, then de-
livered the data of only one node out of the six involved
in Event 1. Figures 7(d), 7(e) and 7(f) describe the in-
put, ECLUN output and Snapshot Queries output at time
stamp:1000. ECLUN detected the event at the same time
stamp but was less accurate than at time stamp:11. This is
due to the fact that at time stamp:11, ECLUN has clustered
the nodes according to the first l = 10 readings. Event 1 was
existing during that interval, and thus detecting it was much
more accurate. Snapshot Queries could not detect this event
at all. Figures 7(g), 7(h) and 7(i) depict the same sequence
for Event 2 at time stamp: 1050.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a novel algorithm for an energy
aware physical clustering of sensor nodes. Our algorithm
considers both spatial and data similarities when building
these physical clusters. Nodes in our suggested approach
make use of established data mining techniques like sub-
space clustering for joining physical clusters according to
relevant attributes, and outlier detection for online exclu-
sion of outlying readings. We further suggested a power-
ful method for the maintenance of the constructed clusters.
This enables the network to adapt with different changes of
observed phenomena in an unsupervised way, while consum-
ing less energy. We proved the efficiency and effectiveness
of our approach through comprehensive experiments.

In the future, we would like to combine our sensor stream
data clustering approach (EDISKCO [10]) with this node
clustering approach. This can further save energy, and might
improve the correctness of approximative solutions applied
on stream sensor data. With the huge exchange of data in
physical clustering of sensor nodes, security looks like an im-
portant issue. We aim at tackling this point by extending
our outlier ranking techniques. As an additional require-

94

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Change detection evaluation using the Synthetic Dataset with 2 inserted events

ment, we would like to extend our approach additionally to
consider subspace physical clustering of mobile sensor nodes.

Acknowledgments
This research was funded in part by the cluster of excel-
lence on Ultra-high speed Mobile Information and Commu-
nication (UMIC) of the DFG (German Research Foundation
grant EXC 89).

7. REFERENCES
[1] Dataset of intel berkeley research lab. In Online under

http://db.csail.mit.edu/labdata/labdata.html, 2004.

[2] C. Aggarwal, J. Wolf, P. Yu, C. Procopiuc, and
J. Park. Fast algorithms for projected clustering. In
SIGMOD, pages 61–72, 1999.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and
P. Raghavan. Automatic subspace clustering of high
dimensional data for data mining applications. In
SIGMOD, pages 94–105, 1998.

[4] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and
J. Sander. Optics: Ordering points to identify the
clustering structure. In Proceedings ACM SIGMOD’
99 Int Conf. on Management of Data, 1999.

[5] I. Assent, R. Krieger, E. Müller, and T. Seidl. DUSC:
Dimensionality unbiased subspace clustering. In
ICDM, pages 409–414, 2007.

[6] I. Assent, R. Krieger, E. Müller, and T. Seidl. INSCY:

Indexing subspace clusters with in-process-removal of
redundancy. In ICDM, pages 719–724, 2008.

[7] E. Baralis and T. Cerquitelli. Selecting representatives
in a sensor network. In In Proceedings of the SEBD,
pages 351–360, 2006.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. pages 226–231.
AAAI Press, 1996.

[9] A. R. Ganguly, J. Gama, O. A. Omitaomu, M. M.
Gaber, and R. R. Vatsavai. Knowledge Discovery from
Sensor Data. 2008.

[10] M. Hassani, E. Müller, and T. Seidl. EDISKCO:
Energy efficient distributed in-sensor-network k-center
clustering with outliers. In In Proceedings of the Third
International Workshop on Knowledge Discovery from
Sensor Data SensorKDD, pages 39–48, 2009.

[11] E. Januzaj, H.-P. Kriegel, and M. Pfeifle. Scalable
density-based distributed clustering. In Proceedings
8th European Conference on Principles and Practice
of Knowledge Discovery in Databases PKDD, 2004.

[12] R. Jin, A. Goswami, and G. Agrawal. Fast and exact
out-of-core and distributed k-means clustering.
Knowledge and Information Systems, 10(1):17–40,
2006.

[13] K. Kailing, H.-P. Kriegel, and P. Kröger.
Density-connected subspace clustering for

95

high-dimensional data. In SDM, pages 246–257, 2004.

[14] Y. Kotidis. Snapshot queries: Towards data-centric
sensor networks. In Proceeding of the 21st
International Conference on Data Engineering, ICDE,
2005.

[15] H.-P. Kriegel, P. Kröger, and A. Zimek. Clustering
high-dimensional data: A survey on subspace
clustering, pattern-based clustering, and correlation
clustering. TKDD, 3(1), 2009.

[16] A. Meka and A. K. Singh. Distributed special
clustering in sensor networks. In EDBT 2006, LNCS
3896, pages 980–1000, 2006.

[17] G. Moise, J. Sander, and M. Ester. P3C: A robust
projected clustering algorithm. In ICDM, pages
414–425, 2006.

[18] E. Müller, I. Assent, S. Günnemann, R. Krieger, and
T. Seidl. Relevant subspace clustering: Mining the
most interesting non-redundant concepts in high
dimensional data. In ICDM, pages 377–386, 2009.

[19] E. Müller, S. Günnemann, I. Assent, and T. Seidl.
Evaluating clustering in subspace projections of high
dimensional data. PVLDB, 2(1):1270–1281, 2009.

[20] L. Parsons, E. Haque, and H. Liu. Subspace clustering

for high dimensional data: a review. SIGKDD
Explorations, 6(1):90–105, 2004.

[21] J. Polastre, R. Szewczyk, and D. Culler. Telos:
Enabling ultra-low power wireless research. In
Proceedings of the Fourth International Symposium on
Information Processing in Sensor Networks, IPSN,
2005.

[22] P. P. Rodrigues, J. Gama, and L. Lopes. Clustering
distributed sensor data streams. In ECML PKDD
2008, LNAI. Springer-Verlag, 2008.

[23] A. Silberstein, R. Braynard, G. Filpus, G. Puggioni,
A. Gelfand, K. Munagala, and J. Yang. Data-driven
processing in sensor networks. In Proceedings of the
3rd Biennal Conference on Innovative Data Systems
Research (CIDR), 2007.

[24] J. Yin and M. M. Gaber. Clustering distributed time
series in sensor networks. In In Proceedings of the
Eighth IEEE Conference on Data Mining, ICDM,
2008.

[25] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An
efficient data clustering method for very large
databases. In Proceedings ACM SIGMOD’ 96 Int
Conf. on Management of Data, 1996.

96

Anomaly Localization by Joint Sparse PCA in Wireless
Sensor Networks

Ruoyi Jiang, Hongliang Fei, Jun Huan
Department of Electrical Engineering and Computer Science

University of Kansas
Lawrence, KS 66047-7621, USA

{jiangruoyi, hfei, jhuan}@ittc.ku.edu

ABSTRACT
Principal Component Analysis based anomaly detection ap-
proaches have been extensively studied recently. However,
none of these approaches address the problem of anomaly
localization. In this paper, we proposed a novel approach
based on PCA to perform anomaly detection and localiza-
tion in sensor networks simultaneously. By enforcing the
joint sparsity across the Principal Components in the ab-
normal subspace, we can accurately localize the abnormal
sensor nodes from normal nodes. We demonstrate the local-
ization performance in the experimental study on two real
world data sets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining

General Terms
Algorithms, Experimentation

Keywords
Anomaly Localization, Regularization, Joint Sparsity

1. INTRODUCTION
Anomaly localization in wireless sensor network is an emerg-

ing research topic in sensor data analysis. As an important
step after anomaly detection, anomaly localization is to iden-
tify the specific sensor(s) that contribute to the observed
anomaly. There is a wide range of applications of anomaly
localization in sensor networks. For instance we need to
localize the exact position of damage when we use sensors
to monitor the state of buildings such as bridges [17]. In
designing protocols against car theft [16], the knowledge of
which car is in danger is far more useful than the knowledge
that whether a theft happened in a parking lot. Anomaly
localization is also a critical step in nature disaster moni-
toring including flooding and forest fire monitoring [1, 4].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SensorKDD’10, July 25, 2010, Washington, DC, USA
Copyright 2010 ACM 978-1-4503-0224-1 ...$10.00.

A accurate anomaly localization technique helps us quickly
localize the anomaly and recover the abnormal situation.

PCA is a widely investigated unsupervised anomaly de-
tection technique. In recent years, an extensive research has
been done to demonstrate the utility of PCA in anomaly
detection [1, 6, 10, 11]. However, a fundamental problem of
PCA is that the current PCA technology can not be used
for anomaly localization, as claimed in [15]. The root cause
of the problem is that each principal component is a lin-
ear combination of features from the whole network. This
property makes PCA difficult to identify the particular sen-
sor(s) that contribute significantly to the abnormal subspace
spanned by a few principal components.

In this paper, we propose a novel PCA based anomaly lo-
calization method, named as joint sparsity PCA (JSPCA),
to fill in the perceived technology gap. The key observation
of JSPCA is that PCA may be formulated as a regular-
ized smoothing technique through which we identify a low
dimensional approximation of a high dimensional data, as
originally studied in [19]. Utilizing recently developed sparse
learning techniques such as 𝐿1 regularization, we could ob-
tain a sparse representation of principle components, each
of which is a linear combination of data from just a few
sensors and hence achieve “localization” and ”detection” si-
multaneously. We have provided theoretical insights about
the power of our method. Extensive experimental study also
shows that JSPCA is able to single out those sensor nodes
that contribute most to the abnormal data. To the best of
our knowledge, this is the first work using joint sparse PCA
to detect and localize anomaly simultaneously.

The remainder of the paper is organized as follows. In
Section 2 we present the related work of anomaly localization
in data analysis domain and introduce some basic knowledge
of PCA when applying to anomaly detection. In section
3, we introduce the formulation of JSPCA and illustrate
why JSPCA can localize the anomaly. Our experiments in
section 4 demonstrate the effectiveness of the approach on
on two real world data set, followed by conclusion in section
5.

2. RELATED WORK

2.1 Anomaly Localization
A few anomaly localization techniques based on data min-

ing techniques have been proposed recently [5, 7, 8]. Ide et
al. proposed a method [8] called stochastic nearest neighbor-
hood. The assumption of this method is that the neighbor-
hood graph of each node is almost invariant under normal

97

conditions. The abnormal score of each node is measured
by how much its neighborhood network changes. A higher
abnormal score indicates a higher probability that it was
an abnormal node. In [7], Ide et al. extended their previ-
ous work of neighborhood graph to localize anomalous node,
while focusing more on the advanced method for construct-
ing the neighborhood network for each node.
In [5], Hirose et al. also used the principle of neighbor-

hood preservation to measure the node that deviated most
compared with other nodes. They formulated the detection
and localization tasks as a compression of eigen equation.
By conducting eigen equation compression, the whole net-
work is divided into three clusters from the view point of
each node: the node itself, the nodes with higher correla-
tion, and the nodes with lower correlation. The correlation
between clusters can be used as a metric for cluster struc-
ture. By tracking how significantly the cluster structures
changed, the abnormal score was computed for each node.
The abnormal node was the one with the highest abnormal
score.
The disadvantage of these two methods is that both of

them have a neighborhood/cluster parameter and the pa-
rameter is difficult to tune. In our method, we present
a totally different formalization and show that we can di-
rectly compute the abnormal score to localize the abnormal
node(s) without constructing a neighborhood for each node.

2.2 PCA in Anomaly Detection
As a widely investigated unsupervised technique for anomaly

detection, PCA was first proposed to detect network vol-
ume anomaly by Lakhina et al. [10]. After that, a lot of
research proposed extensions to the initial method. Huang
et al. [6] develop a distributed PCA anomaly detector by
installing a local filter in each node. Recently, Brauckhof et
al. [1] considers both the temporal and spatial correlation of
the data by extending PCA to Karhunen-Loeve Expansion
(KLE) and solve the sensitivity problem of PCA proposed
by Ringberg et al. [15].
PCA detects anomaly of the whole network by the con-

struction of normal and abnormal subspace. The normal
subspace is extended by the top few principal components
while the abnormal subspace is extended by the last few.
The normal subspace can capture the behaviors common
among all the nodes, at the same time the abnormal sub-
space can be used to represent the noise and abnormal be-
haviors which happen to a small part of the nodes. The
basic idea of PCA is that it makes use of the correlation of
the data.

3. METHODOLOGY
In this section, we design the framework of joint sparse

PCA for anomaly localization. The approach is divided into
two phases: abnormal data projection and anomaly local-
ization via joint sparsity construction. At the first phase,
we construct normal and abnormal subspace the same as
previous research on PCA based anomaly detection. After
that, we project original data into the abnormal subspace
and perform joint sparse PCA on the projected data in the
abnormal subspace to localize abnormal nodes. Our key ob-
servation is that the projection of normal data onto the ab-
normal subspace will have very limited even no contribution
to the nonzero entries of the Principal Components (PCs).
Therefore, by enforcing joint sparsity for the entries across

PCs corresponding to each sensor nodes, we can effectively
and accurately locate the anomalies. Before formally pre-
senting the approach, we provide the notation for this paper
bellow.

3.1 Notation
In this paper, we use capital letters, such as𝑋 to represent

a matrix and bold lowercase letters such as x to represent a
vector. The columns of a matrix 𝑋 ∈ 𝑅𝑛×𝑝 are x1 through
xp, while the rows are given (as vectors) by x̃𝑇

1 through
x̃𝑇
n . A Greek letter such as 𝜆 is a scalar to represent a

Lagrangian multiplier. < 𝐴,𝐵 > represents matrix inner
product where< 𝐴,𝐵 >= 𝑇𝑟(𝐴𝑇𝐵). We use ∣∣.∣∣𝐹 to denote

Frobenius norm of a matrix, where ∣∣𝑋∣∣𝐹 =

√√√⎷ 𝑛∑
𝑖=1

𝑝∑
𝑗=1

𝑥2
𝑖𝑗 .

∣∣x∣∣2 =

√√√⎷ 𝑝∑
𝑖=1

𝑥2
𝑖 denotes the 𝐿2 norm of x ∈ 𝑅𝑝. Unless

state otherwise, all vectors are column vectors.

3.2 Anomaly Localization with PCA
PCA is often introduced as a variance maximization tech-

nique. In PCA, we aim to identify a set of vectors sequen-
tially to maximize the variance of the data when the data
are projected to those vectors. These identified vectors are
known as principle components. Such explanation has been
widely used when applying PCA to anomaly detection [1,
11, 6]. This definition leads to a sequential formulations
that compute principal components one at a time.

Another approach to interpret PCA is that PCA finds
some bases, such that the projections on these bases repre-
sent a low dimension approximation of data which minimizes
the reconstruction error (i.e. the squared distance between
the original data and its “estimate”). Following this, we
could estimate the first 𝑘 principle components simultane-
ously without ranking the corresponding eigen values of the
covariance matrix of 𝑋.

Given the data matrix 𝑋 ∈ 𝑅𝑛×𝑝, where 𝑛 is the number
of observations during a period of time and 𝑝 is the number
of nodes. 𝑋 can be represented as 𝑋 = [x̃𝑇

1 , x̃
𝑇
2 , ⋅ ⋅ ⋅ , x̃𝑇

n]
𝑇 ,

where x̃i ∈ 𝑅𝑝 is a vector from all nodes at a given time
stamp 𝑖. Assuming data matrix 𝑋 has been centered along
𝑛 observations, PCA can be formalized by the second inter-
pretation as:

argmin∥v∥2=1

1

𝑛

𝑛∑
𝑖=1

∥x̃i −
𝑘∑

𝑗=1

vjvj
𝑇 x̃i∥22∑𝑘

𝑗=1 vjvj
𝑇 x̃i = ˆ̃xi, 𝑘 ≤ 𝑝

Here ˆ̃xi is an approximated data of x̃i with a lower dimension
𝑘. vi is the 𝑖th principal component with the orthogonal
property and unit norm. When 𝑘 = 𝑝, x̃i = ˆ̃xi.

The solution to find the principal components is equivalent
to computing the Singular Value Decomposition (SVD) of
𝑋:

𝑋 = 𝑈𝐷𝑉 𝑇 (1)

The 𝑖th column of 𝑉 is the 𝑖th principal component vi, 𝑉 =
[v1,v2, ⋅ ⋅ ⋅vp]. 𝐷 is a diagonal matrix with the 𝑖th singular
value equal to the 𝑖th diagonal element 𝜆𝑖. Since 𝑉 is also
a unitary matrix with the property 𝑉 𝑇𝑉 = 𝐼, (1) can be

98

represented by multiplying 𝑉 on both sides as:

𝑋𝑉 = 𝑈𝐷

Let ui the 𝑖th column of matrix 𝑈 , for each principal com-
ponent vi, the projection of data matrix 𝑋 onto 𝑉 can be
represented as:

𝑋vi =

𝑝∑
𝑗=1

xj𝑣𝑖𝑗 = ui𝜆𝑖 (2)

where xj is the 𝑗th column of 𝑋.
From (2), we can see that the projection is a summation

of xj, which is the data from the 𝑗th node weighted by 𝑣𝑖𝑗 .
If 𝑣𝑖𝑗 is zero, xj has no projection onto vi. Therefore, we
can build a connection between the original data stream and
the entries in the principal components.
By the previous work on standard PCA based anomaly

detection [1, 6, 11], the last 𝑝 − 𝑘 principal components
{vi}𝑝𝑖=𝑘+1 are used to represent the abnormal subspace [10].
If the 𝑗th entry of vk+1 is zero, the data stream from the
𝑗th node has no projection (zeros) along the direction vk+1.
If the 𝑗th entries from vk+1 to vp are all zero, the data from
𝑗th node can be projected to the normal subspace [v1 . . .vk]
completely without any loss. In such a situation, we can de-
termine that the 𝑗th node is a normal node.
Our key insight of the anomaly localization is that once

the anomaly is detected, we check the 𝑖th entries across the
principal components in abnormal subspace: if all of them
are (close to) zero, the corresponding node 𝑖 is an innocent
node which is not responsible for the abnormal event.
However, in most situation, we cannot observe a joint zero

(sparse) across the abnormal subspace [vk+1, ⋅ ⋅ ⋅ ,vp], if it
is directly generated from PCA. For the most cases, the 𝑗th
entry in one PC is close to zero, while in another PC is a large
absolute value. Furthermore, the noise is expressed in the
abnormal subspace as well, which causes the simultaneous
zero entries even more difficult to achieve. Therefore, using
PCA directly in anomaly localization is not practical in most
situations.
In order to overcome the challenge to get a joint sparsity in

abnormal subspace, we propose joint sparse PCA (JSPCA).
JSPCA is an extension of PCA with the regularization to
constrain the entries in the same position of principal com-
ponents to share the sparsity pattern. Sparsity can enforces
the unimportant entries to be zero or close to zero, which
releases the influence of noise. Thus, the abnormal node will
be located by a series of greater value across the abnormal
principal components. Therefore, we can efficiently localize
the anomalous node(s).

3.3 Joint Sparse PCA
Motivated by the formalization of sparse PCA in [19], we

propose a new regularization framework with joint sparsity
on bases for each node across the last 𝑝−𝑘 principal compo-
nents. The new formalization has connection to multi-task
feature learning with 𝐿1,2 [12] and 𝐿1,∞ [2] regularization,
in which the regularization imposes joint sparsity for the
weights of each individual feature across all the tasks. The
difference is that our framework is totally unsupervised and
the sparsity is imposed on a part of the bases ({vi}𝑝𝑖=𝑘+1).
As indicated before, we suppose the principal components

are 𝑉 = [v1,v2, ⋅ ⋅ ⋅ ,vp] computed from standard PCA on
data 𝑋𝑛×𝑝, we select top 𝑘 principal components as normal

subspace denoted by 𝑉 𝑛𝑝×𝑘 = [v1,v2, ⋅ ⋅ ⋅ ,vk]. Following
the method in [6, 11], we calculate abnormal subspace as
𝐼−𝑉 𝑛𝑉 𝑛𝑇 and then project original data𝑋 to the abnormal
subspace:

𝑋 ′ = 𝑋(𝐼 − 𝑉 𝑛𝑉 𝑛𝑇) (3)

so that the projected data keeps the abnormal information
only. For the projected data, we perform PCA with joint
sparsity to localize the anomalous nodes in the abnormal
subspace.

Similar to the formalization of sparse PCA in [19] (equa-
tion 3.12) with a different regularization scheme rather than
elastic net penalty [18], we consider the following optimiza-
tion problem:

min𝐴,𝐵

𝑛∑
𝑖=1

∣∣x̃′
i −𝐴𝐵𝑇 x̃′

i∣∣22 + 𝜆
𝑝∑

𝑗=1

∣∣b̃j∣∣2
s.t. 𝐴𝑇𝐴 = 𝐼(𝑝−𝑘)×(𝑝−𝑘)

(4)

where x̃′
i is the 𝑖th row of 𝑋 ′, 𝜆 is a scalar controlling the

sparse penalty, 𝐴,𝐵 ∈ 𝑅𝑝×(𝑝−𝑘) and 𝐴 is the basis and
𝐵 is the loading matrix. The regularization part 𝐵1,2 =
𝑝∑

𝑗=1

∣∣b̃j∣∣2 is a 𝐿1,2 penalty which enforces joint sparsity for

each node across the principal components. If 𝐴 = 𝐵, then
the minimizer under the orthogonal constrain is exactly the
principal components of ordinary PCA. Based on the theo-
rem 3 in [19], the minimizer 𝐵∗ of (4) is proportional prin-
cipal component of 𝑋 ′.

3.4 Optimization algorithms
We propose an algorithm to solve (4) based on the work

of [2, 12, 19]. The algorithm solves 𝐴, 𝐵 iteratively and
alternatively.

𝐴 given 𝐵: If 𝐵 is fixed, we directly use the result from
[19] because we can ignore the regularization part in 4. Now
4 degenerates to

min𝐴

𝑛∑
𝑖=1

∣∣x̃′
i −𝐴𝐵𝑇 x̃′

i∣∣22 = ∣∣𝑋 ′ −𝑋 ′𝐵𝐴𝑇 ∣∣2𝐹
s.t. 𝐴𝑇𝐴 = 𝐼(𝑝−𝑘)×(𝑝−𝑘)

(5)

The solution is obtained by a reduced rank form of Pro-
crustes rotation. We compute the SVD of (𝑋 ′𝑇𝑋 ′)𝐵 to
obtain the solution:

(𝑋 ′𝑇𝑋 ′)𝐵 = 𝑈𝐷𝑉 𝑇

𝐴 = 𝑈𝑉 𝑇 (6)

See [19] for more information.
𝐵 given 𝐴: On the other hand, if 𝐴 is fixed and let

𝑓(𝐵) = ∣∣𝑋 ′ − 𝑋 ′𝐴𝐵𝑇 ∣∣2𝐹 , it is easy to verify that 𝑓 is a

convex and smooth function over 𝐵 ∈ 𝑅𝑝×(𝑝−𝑘). (4) can be
reformulated as:

min𝐵 𝑓(𝐵) + 𝜆

𝑝∑
𝑗=1

∣∣b̃j∣∣2 (7)

We adopt the framework in [2, 12] to solve (7). Since 𝑓(𝐵)
is a smooth and convex function but the regularization part
is nonsmooth (non-differentiable), we apply Nestrerov first
order (gradient) method [13] with 𝑂(1/𝑡2) convergence rate
where 𝑡 is the number of iterations, and perform Euclidean
Projection onto the 𝐿1,2 ball for each gradient update step.

99

First we define the generalized gradient update step given
𝐵𝑡 at iteration 𝑡+ 1 as following:

𝑄𝐿(𝐵,𝐵𝑡) = 𝑓(𝐵𝑡)+ < 𝐵 −𝐵𝑡,∇𝑓(𝐵𝑡) >
+𝐿/2∣∣𝐵 −𝐵𝑡∣∣2𝐹 + 𝜆∣∣𝐵∣∣1,2

𝑞𝐿(𝐵𝑡) = argmin𝐵 𝑄𝐿(𝐵,𝐵𝑡)
(8)

Where 𝐿 is the lipschitz Constant. We follow the framework
proposed in [2] and simplify (8) to

𝑞𝐿(𝐵𝑡) = argmin𝐵(
1
2
∣∣𝐵 − 𝐶∣∣2𝐹 + 𝜆̃∣∣𝐵∣∣1,2)

= argminb̃1,⋅⋅⋅ ,b̃p

∑𝑝
𝑖=1(

1
2
∣∣b̃i − c̃i∣∣22 + 𝜆̃∣∣b̃i∣∣2)

(9)

where 𝐶 = 𝐵𝑡 − 1
𝐿
∇𝑓(𝐵𝑡) and 𝜆̃ = 𝜆/𝐿.

By the additivity of (9), we decompose (9) into 𝑝 subprob-
lems. For each subproblem:

minb
1

2
∣∣b− c∣∣22 + 𝜆̃∣∣b∣∣2 (10)

By forming the Lagrangian dual form, the analytical solution
of (10) is

b∗ =

{
(1− 𝜆̃

∣∣c∣∣2)c ∣∣c∣∣2 > 𝜆̃

0 otherwise
(11)

With (10), the problem of Euclidean projection defined in
(8) can be solved efficiently. Therefore, we compute the
gradient of 𝑓 at current estimate 𝐵𝑡 and perform Projected
subgradient to find the next update 𝐵𝑡+1. We repeat this
iteratively until converges. Refer to [2, 3, 12] therein for
more information about Euclidean projection and Nesterov
algorithm.
We summarize what is briefly discussed previously in the

algorithm called JSPCA. Given the data 𝑋 ∈ 𝑅𝑛×𝑝, num-
ber of Principal Components of normal subspace 𝑘 and reg-
ularization parameters 𝜆, we first project 𝑋 into abnormal
subspace, then perform joint sparse PCA in the abnormal
subspace on the projected data.

Algorithm 1 JSPCA(𝑋,𝜆, 𝑘)

1: Perform PCA on 𝑋 and obtain Principal Components
𝑉 = [v1,v2, ⋅ ⋅ ⋅ ,vp];

2: 𝑉𝑛 := [v1, ⋅ ⋅ ⋅ ,vk]; 𝑋
′ := 𝑋(𝐼 − 𝑉𝑛𝑉

𝑇
𝑛);

3: 𝐴 := [vk+1, ⋅ ⋅ ⋅ ,vp]; 𝐵 := 0;
4: while not converge do
5: Update 𝐵 given 𝐴 defined in (7) using (8), (9), (10),

(11);
6: Update 𝐴 given 𝐵 in (5) using (6);
7: end while
8: return 𝐵;

4. EXPERIMENT
In this section, we evaluate our proposed approach joint

sparse PCA (PCA) on two real world data sets. One is the
Sun SPOTs data set collected from a short haul trial and
the other one is a benchmark data set. We demonstrate
that our method can simultaneously detect anomalies and
localize the anomalous nodes with a high accuracy. To per-
form the comparison to the state of art, we implement two
localization algorithms: stochastic nearest neighbor (SNN)
[8] and eigen equation compression (EEC) [5]. All the ex-
periments are conducted in Matlab on a desktop with 6 GB
memory and Intel core i7 2.66 GHz CPU.

4.1 Data sets

4.1.1 Sun Spot Sensor Data Set
In the experiment, we use wireless Sun Small Programmable

Object Technologies (SPOTs) [14] to collect data for trans-
port chain security validation. A Sun SPOT contains a 3-
axis accelerometer, a light sensor and a temperature sensor
as well as a 180MHz 32-bit ARM920T core processor with
512K RAM and 4M Flash memory, a 2.4GHz radio with an
integrated antenna on the board, and a 3.7V rechargeable,
750 mAh lithium-ion battery.

The sensor data was collected during a car trial along
the campus of University of Kansas under a noisy environ-
ment. Seven Sun SPOTs were fixed in separated boxes and
loaded on the back seat of a car. During the trial, each sen-
sor recorded the magnitude of accelerations along x,y,z axis,
temperature and luminance with a sample rate 3.33Hz. To
collect the data for the trip, the SPOTs were programmed
to continuously read and aggregate the sensor value for each

sensor. We used the overall acceleration (𝑥2 + 𝑦2 + 𝑧2)
1
2 as

the feature to detect the designed anomalous events with
our anomaly detection and localization algorithm.

The following plot shows the collected data of acceleration
magnitude readings for each of the seven SPOTs. The time
of the events are marked in the plot as well.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

5

10

15

20

25

Time stamp

a
c
c
e

le
ra

ti
o

n
 (

m
/s

)

5383 acc.
52FA acc.
18B3 acc.
2610 acc.
0690 acc.
5111 acc.
524E acc.

Rotate 52FA,
Rotate Back

Rotate 5111
Rotate Back

Flip 2610,
Flip Back

Flip5111
Flip Back

Remove and
Replace 52FA

Remove and
Replace 2610

Figure 1: Sun Spot Sensor Data for Entire Trip

The plot shows around 16,000 samples we collected for al-
most the entire trip, including all the events we simulated.
In the plot, each curve shows the overall accelerations for
each of the seven Sun SPOTs, each in a different color and
scaled and shifted up so that each could be seen along. The
black vertical lines show the recorded times of key events.
During the whole trip, we simulated box removal and re-
placement, box rotation and flipping. Each event was re-
peated twice, in around 5 minutes interval. The whole ex-
periment last about 1 hour.

4.1.2 Motor Current Data Set
The Motor Current Data is the current observation gen-

erated by the state space simulations, which is available at
UCR Time Series Archive [9]. The anomalies are the sim-
ulated machinery failure in different components of a ma-
chine. The current value was observed from 21 different
motor operating conditions,including one healthy operating
mode, 10 broken bars and 10 broken end-ring connectors.

100

For each motor operating condition, there are 20 time se-
ries, each with a length of 1,500 samples with the sample
rate 33.3 kHz. Therefore, there are 20 normal timer series
and 400 different abnormal time series altogether.
In our evaluation, we constructed a data matrix with nor-

mal and abnormal data to detect anomalies happened to the
Motor Current data set. This data matrix contains 20 time
series, each of which has 1500 samples: {𝑥𝑖(𝑡)}𝑡=1:1500

𝑖=1:20 . We
single out all the 20 time series data under normal opera-
tion, and then replaced time series 𝑥6 ∼ 𝑥10 and 𝑥16 ∼ 𝑥20

at 1000 ≤ 𝑡 ≤ 1500 by 10 anomalous time series randomly
sampled from 400 time series in the 20 abnormal operations.
Figure2 shows parts of normal and abnormal current read-
ings. Our object is to detect the anomalies and localize the
anomalous currents(here they are No. 6 to No. 10 and No.
16 to No. 20) simultaneously.

1000 1200 1400
−10

−5

0

5

10

T

C
u

rr
e

n
t

1000 1200 1400
−10

−5

0

5

10

T

C
u

rr
e

n
t

1000 1200 1400
−10

−5

0

5

10

T

C
u

rr
e

n
t

1000 1200 1400
−10

−5

0

5

10

T

C
u

rr
e

n
t

Figure 2: Time Series Motor Current Data. Top Row:

Normal Time Series; Lower Row: Abnormal Time Series

4.2 Experiment Protocol
In this subsection, we provide the experimental protocol

regarding the parameter selection and performance evalu-
ation. For the EEC method, there is only one parameter:
number of clusters 𝑐. For SSN, the number of neighbors 𝑘 is
the parameter. In our experiment, we use 𝑐 = 3 and 𝑘 = 2
as provided in their papers.
For our own method, we have a regularization parameter

𝜆 for localization. For each data set, we single out a period
of time series containing one event to select 𝜆 which gives
the best 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠 of localization defined as:

𝑒𝑓𝑓 = min{𝑠𝑖}𝑖∈𝐴 −max{𝑠𝑖}𝑖∈𝑁 (12)

Where 𝑠 is the vector of normalized scores for all the nodes,
𝐴 is the set of anomalous nodes and 𝑁 is the set of normal
nodes. The key insight within 𝑒𝑓𝑓 is that the node with a
small score among all the abnormal nodes is the most likely
to be misclassified as a normal node. Conversely, the normal
node with a large score is prone to be judged as abnormal.
Therefore, we use Equation (12) to measure the effectiveness
of localization on the whole network. The larger of 𝑒𝑓𝑓 , the
more effective of localization method is. Within training

data, we tune the best 𝜆 arranging from 2−10, 2−9, ⋅ ⋅ ⋅ , 210
by criteria in (12). We use the tuned parameter 𝜆 for testing
on the rest of the data after the training event.

For the Sun SPOTs data set, we choose the first event (ro-
tation of Sensor #2) as the training data. Since the abnor-
mal events of our collected sensor data are very limited, we
cannot perform cross validation within training data, while
just perform the procedure described above one time. For
Motor Current data set, both training and testing data were
generated by the same step aforementioned in Sun SPOTs
data. We perform 5 fold cross validation within training
data to get the best 𝜆.

Since anomaly detection of our method is directly inher-
ited from standard PCA based anomaly detection algorithm
[10], we only focus on localization. It is nontrivial to com-
pare the localization performance because different methods
use different abnormal score criteria. In our experiment, we
normalize the score for each sensor between 0 and 1 for each
method. A significantly high score indicates an abnormal
state of a sensor.

4.3 Experimental Results

4.3.1 Anomaly localization with Sun SPOTs Data
In this subsection, we give the localization performance

on Sun SPOTs data. We use the first 3 Principal compo-
nents(PCs) to represent the normal subspace, and the rest 4
PCs as the abnormal subspace. In Figure 3, we plot the ab-
normal subspace composed of the four principal components
with joint sparsity learned from the projected data on the
rest 4 PCs. Each column along the x-axis is one PC in the
abnormal subspace and each row corresponds to one sensor.
The lighter color represents larger values of the entries in
these abnormal PCs. Each abnormal PC is normalized to
make the largest entry as one. The components with black
color indicates a larger value corresponding to the node con-
tributing more to the anomaly, while the whiter ones indi-
cate the entries equal or close to zero with less contribution
to the abnormal subspace. In Figure 3, it is obvious that the
sixth row corresponding to the sensor #6, has a significantly
higher value compared with all the other sensors, which are
almost all 0s. We can see that joint sparsity on the principal
components of the projected data on the abnormal subspace
is capable of localizing the abnormal node.

N
od

e
In

de
x

Principal Components (abnormal subspace)
1 2 3 4

1

2

3

4

5

6

7

Figure 3: Abnormal Subspace

101

We also plot the the abnormal scores for the other events
in the upper row of Figure 4, for all the seven sensors. Each
figure corresponds to a different event. As shown, the ab-
normal score of the anomalous node is significantly higher
than that of the other normal nodes.
For comparison, we show the localization performance of

EEC [5] and SNN [8] in the middle and lower low in Figure 4.
In the upper row of Figure 4, we show the abnormal score
computed by SNN with the neighborhood graph size 𝑘 =
2. We compared the difference of two neighborhood graph
for each node between normal and abnormal time stamps
and computed the abnormal score in [8]. The result shows
that the abnormal score cannot reflect abnormal event. For
example, in the rotation event of node 6, there is nearly no
difference between normal (especially # 3) and abnormal
node. In our experiment, we found that the score is quiet
sensitive to the choice of neighbor size 𝑘, while our method is
pretty stable and we will demonstrate that in section 4.3.3.

1 2 3 4 5 6 7
0

0.5

1

node index

a
b

n
o

rm
a

l
s
c
o

re

1 2 3 4 5 6 7
0

0.5

1

node index

a
b

n
o

rm
a

l
s
c
o

re

1 2 3 4 5 6 7
0

0.5

1

node index

a
b

n
o

rm
a

l
s
c
o

re

1 2 3 4 5 6 7
0

0.5

1

node index

a
b

n
o

rm
a

l
s
c
o

re

1 2 3 4 5 6 7
0

0.5

1

node index

a
b

n
o

rm
a

l
s
c
o

re

1 2 3 4 5 6 7
0

0.5

1

node index

a
b

n
o

rm
a

l
s
c
o

re

1 2 3 4 5 6 7
0

0.5

1

node index

a
b

n
o

rm
a

l
s
c
o

re

1 2 3 4 5 6 7
0

0.5

1

node index

a
b

n
o

rm
a

l
s
c
o

re

1 2 3 4 5 6 7
0

0.5

1

node index

a
b

n
o

rm
a

l
s
c
o

re

Figure 4: Upper Row: JSPCA. Middle Row: Stochastic

Nearest Neighbor. Lower Row: Eigen Equation Com-

pression. From left to right: Abnormal Score for Re-

moval and Replacement Event of Node #2. Flipping

Event of Node #4. Rotation Event of Node #6.

In the lower row of Figure 4, we show the localization
performance of EEC. Following [5], we clustered the whole
network into 3 groups for each sensor. The abnormal score
was measured as the change of such group information for
each time stamp. We plotted the average abnormal score
within each event on the second row of Figure 4. We can
observe that EC has the same problem as in SNN. The dif-
ference between the scores of normal and abnormal nodes is
too small to distinguish the abnormal nodes.

4.3.2 Anomaly localization with Motor Current Data
In this subsection, we evaluate the localization perfor-

mance of JSPCA on the Motor Current Data Set. We use
5 PCs to represent normal subspace, while the left 15 to
represent the abnormal subspace. In the first two rows of
Figure 5, we show four situations by randomly selecting four
abnormal current patterns. We can observe that JSPCA ef-

fectively localizes all of the abnormal patterns. As shown
in Figure 5, the abnormal scores from the 6th to the 10th,
and from the 16th to the 20th nodes are much higher than
the normal nodes. We can easily visualize and separate the
normal and abnormal nodes although there exist some fluc-
tuations for different situations.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

node index

a
b
n
o
rm

a
l s

co
re

0 5 10 15 20
0

0.5

1

node index

a
b
n
o
rm

a
l s

co
re

0 5 10 15 20
0

0.5

1

node index
a
b
n
o
rm

a
l s

co
re

0 5 10 15 20
0

0.5

1

node index

a
b
n
o
rm

a
l s

co
re

0 5 10 15 20
0

0.5

1

node index

a
b
n
o
rm

a
l s

co
re

0 5 10 15 20
0.8

0.85

0.9

0.95

1

node index

a
b
n
o
rm

a
l s

co
re

Figure 5: First Two Rows: JSPCA. Last Row: Left:

Stochastic Nearest Neighborhood. Right: Eigen Equa-

tion Compression with 3 Clusters

Figure 5 also shows the performance of the two compared
method on Motor Current data. We computed the average
abnormal score for each node during the interval 𝑡 > 1000.
From the figure, it is difficult to distinguish the normal
nodes(1 ∼ 5, 11 ∼ 15) from the abnormal nodes(6 ∼ 10, 16 ∼
20). The score values of abnormal nodes 17 ∼ 20 are a little
higher but still close to the score of normal nodes. For the
other abnormal nodes, we cannot determine whether they
are anomalous nodes based on the abnormal score. Com-
pared with these methods, our algorithm is more effective
to localize abnormal nodes.

4.3.3 Robustness on Parameters
Since we have a parameter 𝜆 in the joint sparse PCA for-

malization, we evaluate the robustness of our method by
changing different parameter values on Sun SPOTs data,
although this parameter can be tuned from training data.
In Figure 6, we show the effectiveness of localizing the re-
moval and replacement event of node 2 by varying 𝜆 from
2−5 to 25. From Figure 6, we can observe that the 𝑒𝑓𝑓 is
always above 0, which demonstrates that our method can ef-
fectively distinguish abnormal nodes from normal ones over
a wide range of 𝜆.

102

−5 0 5
0

0.2

0.4

0.6

0.8

1

power of λ

ef
f

Figure 6: Sensitivity of 𝜆 for the Removal and Replace-

ment Event of Node 2

4.3.4 Importance of joint sparse regularization
To further study the role of joint sparse regularization in

localization, we analyze the performance of standard PCA,
in which 𝜆 = 0. The detailed abnormal score for the event
that removal and replacement of Node No.2 is shown in Fig-
ure 7. We can see that 𝑒𝑓𝑓 is a negative value for standard
PCA, which claims that the maximum score is not from the
abnormal node. For example, the abnormal score of node
5 is a little higher than node 2 and the abnormal score of
node 4 is very close to node 2, all of which undermine the
performance of localizing the abnormal node 2. Compared
with Figure 7, the first figure in Figure 4, where the abnor-
mal score was computed with joint sparsity, is much clear to
localize the abnormal node.

1 2 3 4 5 6 7
0

0.5

1

node index

ab
no

rm
al

 s
co

re

Figure 7: Standard PCA without Regularization(𝜆 = 0)

5. CONCLUSIONS AND FUTURE WORK
Previous work on PCA based anomaly detection claimed

that PCA cannot be used for anomaly localization, but in
our paper, we proposed a novel approach: joint sparse PCA
(JSPCA) in abnormal space to localize anomaly in sensor
network. By bridging the sensor node and the correspond-
ing entries in Principal Components, we enforce joint sparse-
ness on PCs to realize anomaly localization. Our experiment
study on two real world data sets demonstrates the effective-
ness of our approach. Future works focus on two directions:
(1) how to select the number of principal components which
best interpreting the normal subspace. (2) How to inte-
grate the network topology information of sensor network
into JSPCA to improve the localization performance.

Acknowledgments
This work has been partially supported by an Office of Naval
Research award N00014-07-1-1042 and an NSF grant IIS
0845951.

6. REFERENCES
[1] D. Brauckhoff, K. Salamatian, and M. May. Applying

pca for traffic anomaly detection: Problems and
solutions. In INFOCOM, pages 2866–2870. IEEE,
2009.

[2] X. Chen, W. Pan, J. T. Kwok, and J. G. Carbonell.
Accelerated gradient method for multi-task sparse
learning problem. In ICDM, pages 746–751, 2009.

[3] J. Duchi, S. Shalev-Shwartz, Y. Singer, and
T. Chandra. Efficient projections onto the 1-ball for
learning in high dimensions. In ICML, pages 272–279,
2008.

[4] C. Franke and M. Gertz. Orden: outlier region
detection and exploration in sensor networks. In
SIGMOD Conference, pages 1075–1078, 2009.

[5] S. Hirose, K. Yamanishi, T. Nakata, and R. Fujimaki.
Network anomaly detection based on eigen equation
compression. In KDD ’09: Proceedings of the 15th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1185–1194, New
York, NY, USA, 2009. ACM.

[6] L. Huang, M. I. Jordan, A. Joseph, M. Garofalakis,
and N. Taft. In-network pca and anomaly detection.
In In NIPS, pages 617–624, 2006.

[7] T. Idé, A. C. Lozano, N. Abe, and Y. Liu.
Proximity-based anomaly detection using sparse
structure learning. In SDM, pages 97–108, 2009.

[8] T. Idé, S. Papadimitriou, and M. Vlachos. Computing
correlation anomaly scores using stochastic nearest
neighbors. In ICDM ’07: Proceedings of the 2007
Seventh IEEE International Conference on Data
Mining, pages 523–528, Washington, DC, USA, 2007.
IEEE Computer Society.

[9] E. Keogh and T. Folias. The ucr time series data
mining archive. Website, 2002.
http://www.cs.ucr.edu/eamonn/TSDMA/index.html.

[10] A. Lakhina, M. Crovella, and C. Diot. Diagnosing
network-wide traffic anomalies. In In ACM
SIGCOMM, pages 219–230, 2004.

[11] A. Lakhina, M. Crovella, and C. Diot. Mining
anomalies using traffic feature distributions. In In
ACM SIGCOMM, pages 217–228, 2005.

[12] J. Liu, S. Ji, and J. Ye. Multi-task feature learning via
efficient l2,1-norm minimization. In Conference on
Uncertainty in Artificial Intelligence (UAI) 2009,
2009.

[13] Y. Nesterov. Gradient methods for minimizing
composite objective function. CORE Discussion
Paper, 76:265–286, 2007.

[14] B. Quanz and C. Tsatsoulis. Determining object
safety using a multiagent, collaborative system. In
Environment-Mediated Coordination in
Self-Organizing and Self-Adaptive Systems (ECOSOA
2008) Workshop, Venice, Italy, October 2008.

103

[15] H. Ringberg, A. Soule, J. Rexford, and C. Diot.
Sensitivity of pca for traffic anomaly detection. In
SIGMETRICS ’07: Proceedings of the 2007 ACM
SIGMETRICS international conference on
Measurement and modeling of computer systems,
pages 109–120, New York, NY, USA, 2007. ACM.

[16] H. Song, S. Zhu, and G. Cao. Svats: A
sensor-network-based vehicle anti-theft system. In
INFOCOM, pages 2128–2136, 2008.

[17] N. Xu, S. Rangwala, and et al. A wireless sensor
network for structural monitoring. In IN SENSYS,
pages 13–24, 2004.

[18] H. Zou and T. Hastie. Regularization and variable
selection via the elastic net. Journal of the Royal
Statistical Society B, 67:301–320, 2005.

[19] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal
component analysis. Journal of Computational and
Graphical Statistics, 15(2):265–286, 1996.

104

	Paper_02
	Paper_04
	Paper_05
	Paper_13
	Paper_06
	Insert
	Paper_01
	Paper_07
	Paper_08
	Paper_11
	Paper_15
	Paper_16

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

