115 research outputs found

    The Shape Part Slot Machine: Contact-based Reasoning for Generating 3D Shapes from Parts

    Full text link
    We present the Shape Part Slot Machine, a new method for assembling novel 3D shapes from existing parts by performing contact-based reasoning. Our method represents each shape as a graph of ``slots,'' where each slot is a region of contact between two shape parts. Based on this representation, we design a graph-neural-network-based model for generating new slot graphs and retrieving compatible parts, as well as a gradient-descent-based optimization scheme for assembling the retrieved parts into a complete shape that respects the generated slot graph. This approach does not require any semantic part labels; interestingly, it also does not require complete part geometries -- reasoning about the slots proves sufficient to generate novel, high-quality 3D shapes. We demonstrate that our method generates shapes that outperform existing modeling-by-assembly approaches regarding quality, diversity, and structural complexity.Comment: European Conference on Computer Vision (ECCV) 202

    Multidimensional process discovery

    Get PDF

    Advances in knowledge discovery and data mining Part II

    Get PDF
    19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part II</p

    3D Modelling for Improved Visual Traffic Analytics

    Get PDF
    Advanced Traffic Management Systems utilize diverse types of sensor networks with the goal of improving mobility and safety of transportation systems. These systems require information about the state of the traffic configuration, including volume, vehicle speed, density, and incidents, which are useful in applications such as urban planning, collision avoidance systems, and emergency vehicle notification systems, to name a few. Sensing technologies are an important part of Advanced Traffic Management Systems that enable the estimation of the traffic state. Inductive Loop Detectors are often used to sense vehicles on highway roads. Although this technology has proven to be effective, it has limitations. Their installation and replacement cost is high and causes traffic disruptions, and their sensing modality provides very limited information about the vehicles being sensed. No vehicle appearance information is available. Traffic camera networks are also used in advanced traffic monitoring centers where the cameras are controlled by a remote operator. The amount of visual information provided by such cameras can be overwhelmingly large, which may cause the operators to miss important traffic events happening in the field. This dissertation focuses on visual traffic surveillance for Advanced Traffic Management Systems. The focus is on the research and development of computer vision algorithms that contribute to the automation of highway traffic analytics systems that require estimates of traffic volume and density. This dissertation makes three contributions: The first contribution is an integrated vision surveillance system called 3DTown, where cameras installed at a university campus together with algorithms are used to produce vehicle and pedestrian detections to augment a 3D model of the university with dynamic information from the scene. A second major contribution is a technique for extracting road lines from highway images that are used to estimate the tilt angle and the focal length of the camera. This technique is useful when the operator changes the camera pose. The third major contribution is a method to automatically extract the active road lanes and model the vehicles in 3D to improve the vehicle count estimation by individuating 2D segments of imaged vehicles that have been merged due to occlusions

    Le nuage de point intelligent

    Full text link
    Discrete spatial datasets known as point clouds often lay the groundwork for decision-making applications. E.g., we can use such data as a reference for autonomous cars and robot’s navigation, as a layer for floor-plan’s creation and building’s construction, as a digital asset for environment modelling and incident prediction... Applications are numerous, and potentially increasing if we consider point clouds as digital reality assets. Yet, this expansion faces technical limitations mainly from the lack of semantic information within point ensembles. Connecting knowledge sources is still a very manual and time-consuming process suffering from error-prone human interpretation. This highlights a strong need for domain-related data analysis to create a coherent and structured information. The thesis clearly tries to solve automation problematics in point cloud processing to create intelligent environments, i.e. virtual copies that can be used/integrated in fully autonomous reasoning services. We tackle point cloud questions associated with knowledge extraction – particularly segmentation and classification – structuration, visualisation and interaction with cognitive decision systems. We propose to connect both point cloud properties and formalized knowledge to rapidly extract pertinent information using domain-centered graphs. The dissertation delivers the concept of a Smart Point Cloud (SPC) Infrastructure which serves as an interoperable and modular architecture for a unified processing. It permits an easy integration to existing workflows and a multi-domain specialization through device knowledge, analytic knowledge or domain knowledge. Concepts, algorithms, code and materials are given to replicate findings and extend current applications.Les ensembles discrets de données spatiales, appelés nuages de points, forment souvent le support principal pour des scénarios d’aide à la décision. Par exemple, nous pouvons utiliser ces données comme référence pour les voitures autonomes et la navigation des robots, comme couche pour la création de plans et la construction de bâtiments, comme actif numérique pour la modélisation de l'environnement et la prédiction d’incidents... Les applications sont nombreuses et potentiellement croissantes si l'on considère les nuages de points comme des actifs de réalité numérique. Cependant, cette expansion se heurte à des limites techniques dues principalement au manque d'information sémantique au sein des ensembles de points. La création de liens avec des sources de connaissances est encore un processus très manuel, chronophage et lié à une interprétation humaine sujette à l'erreur. Cela met en évidence la nécessité d'une analyse automatisée des données relatives au domaine étudié afin de créer une information cohérente et structurée. La thèse tente clairement de résoudre les problèmes d'automatisation dans le traitement des nuages de points pour créer des environnements intelligents, c'est-àdire des copies virtuelles qui peuvent être utilisées/intégrées dans des services de raisonnement totalement autonomes. Nous abordons plusieurs problématiques liées aux nuages de points et associées à l'extraction des connaissances - en particulier la segmentation et la classification - la structuration, la visualisation et l'interaction avec les systèmes cognitifs de décision. Nous proposons de relier à la fois les propriétés des nuages de points et les connaissances formalisées pour extraire rapidement les informations pertinentes à l'aide de graphes centrés sur le domaine. La dissertation propose le concept d'une infrastructure SPC (Smart Point Cloud) qui sert d'architecture interopérable et modulaire pour un traitement unifié. Elle permet une intégration facile aux flux de travail existants et une spécialisation multidomaine grâce aux connaissances liée aux capteurs, aux connaissances analytiques ou aux connaissances de domaine. Plusieurs concepts, algorithmes, codes et supports sont fournis pour reproduire les résultats et étendre les applications actuelles.Diskrete räumliche Datensätze, so genannte Punktwolken, bilden oft die Grundlage für Entscheidungsanwendungen. Beispielsweise können wir solche Daten als Referenz für autonome Autos und Roboternavigation, als Ebene für die Erstellung von Grundrissen und Gebäudekonstruktionen, als digitales Gut für die Umgebungsmodellierung und Ereignisprognose verwenden... Die Anwendungen sind zahlreich und nehmen potenziell zu, wenn wir Punktwolken als Digital Reality Assets betrachten. Allerdings stößt diese Erweiterung vor allem durch den Mangel an semantischen Informationen innerhalb von Punkt-Ensembles auf technische Grenzen. Die Verbindung von Wissensquellen ist immer noch ein sehr manueller und zeitaufwendiger Prozess, der unter fehleranfälliger menschlicher Interpretation leidet. Dies verdeutlicht den starken Bedarf an domänenbezogenen Datenanalysen, um eine kohärente und strukturierte Information zu schaffen. Die Arbeit versucht eindeutig, Automatisierungsprobleme in der Punktwolkenverarbeitung zu lösen, um intelligente Umgebungen zu schaffen, d.h. virtuelle Kopien, die in vollständig autonome Argumentationsdienste verwendet/integriert werden können. Wir befassen uns mit Punktwolkenfragen im Zusammenhang mit der Wissensextraktion - insbesondere Segmentierung und Klassifizierung - Strukturierung, Visualisierung und Interaktion mit kognitiven Entscheidungssystemen. Wir schlagen vor, sowohl Punktwolkeneigenschaften als auch formalisiertes Wissen zu verbinden, um schnell relevante Informationen mithilfe von domänenzentrierten Grafiken zu extrahieren. Die Dissertation liefert das Konzept einer Smart Point Cloud (SPC) Infrastruktur, die als interoperable und modulare Architektur für eine einheitliche Verarbeitung dient. Es ermöglicht eine einfache Integration in bestehende Workflows und eine multidimensionale Spezialisierung durch Gerätewissen, analytisches Wissen oder Domänenwissen. Konzepte, Algorithmen, Code und Materialien werden zur Verfügung gestellt, um Erkenntnisse zu replizieren und aktuelle Anwendungen zu erweitern

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Active transitivity clustering of large-scale biomedical datasets

    Get PDF
    Clustering is a popular computational approach for partitioning data sets into groups of objects that share common traits. Due to recent advances in wet-lab technology, the amount of available biological data grows exponentially and increasingly poses problems in terms of computational complexity for current clustering approaches. In this thesis, we introduce two novel approaches, TransClustMV and ActiveTransClust, that enable the handling of large scale datasets by reducing the amount of required information drastically by means of exploiting missing values. Furthermore, there exists a plethora of different clustering tools and standards making it very difficult for researchers to choose the correct methods for a given problem. In order to clarify this multifarious field, we developed ClustEval which streamlines the clustering process and enables practitioners conducting large-scale cluster analyses in a standardized and bias-free manner. We conclude the thesis by demonstrating the power of clustering tools and the need for the previously developed methods by conducting real-world analyses. We transferred the regulatory network of E. coli K-12 to pathogenic EHEC organisms based on evolutionary conservation therefore avoiding tedious and potentially dangerous wet-lab experiments. In another example, we identify pathogenicity specific core genomes of actinobacteria in order to identify potential drug targets.Clustering ist ein populärer Ansatz um Datensätze in Gruppen ähnlicher Objekte zu partitionieren. Nicht zuletzt aufgrund der jüngsten Fortschritte in der Labortechnik wächst die Menge der biologischen Daten exponentiell und stellt zunehmend ein Problem für heutige Clusteralgorithmen dar. Im Rahmen dieser Arbeit stellen wir zwei neue Ansätze, TransClustMV und ActiveTransClust, vor die auch das Bearbeiten sehr großer Datensätze ermöglichen, indem sie den Umfang der benötigten Informationen drastisch reduzieren da fehlende Werte kompensiert werden können. Allein die schiere Vielfalt der vorhanden Cluster-Methoden und Standards stellt den Anwender darüber hinaus vor das Problem, den am besten geeigneten Algorithmus für das vorliegende Problem zu wählen. ClustEval wurde mit dem Ziel entwickelt, diese Unübersichtlichkeit zu beseitigen und gleichzeitig die Clusteranalyse zu vereinheitlichen und zu automatisieren um auch aufwendige Clusteranalysen zu realisieren. Abschließend demonstrieren wir die Nützlichkeit von Clustering anhand von realen Anwendungsfällen die darüber hinaus auch den Bedarf der zuvor entwickelten Methoden aufzeigen. Wir haben das genregulatorische Netzwerk von E. coli K-12 ohne langwierige und potentiell gefährliche Laborarbeit auf pathogene EHEC Stämme übertragen. In einem weiteren Beispiel bestimmen wir das pathogenitätsspeziefische „Kerngenom“ von Actinobakterien um potenzielle Angriffspunkte für Medikamente zu identifizieren

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways
    • …
    corecore