1,700 research outputs found

    RDF Querying

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Tool Support for Finding and Preventing Faults in Rule Bases

    Get PDF
    This thesis analyzes challenges for the correct creation of rule bases. Based on experiences and data from three rule base development projects, dedicated experiments and a survey of developers, ten main problem areas are identified. Four approaches in the area of Testing, Debugging, Anomaly Detection and Visualization are proposed and evaluated as remedies for these problem areas

    Data Integration on the (Semantic) Web with Rules and Rich Unification

    Get PDF
    For the last decade a multitude of new data formats for the World Wide Web have been developed, and a huge amount of heterogeneous semi-structured data is flourishing online. With the ever increasing number of documents on the Web, rules have been identified as the means of choice for reasoning about this data, transforming and integrating it. Query languages such as SPARQL and rule languages such as Xcerpt use compound queries that are matched or unified with semi-structured data. This notion of unification is different from the one that is known from logic programming engines in that it (i) provides constructs that allow queries to be incomplete in several ways (ii) in that variables may have different types, (iii) in that it results in sets of substitutions for the variables in the query instead of a single substitution and (iv) in that subsumption between queries is much harder to decide than in logic programming. This thesis abstracts from Xcerpt query term simulation, SPARQL graph pattern matching and XPath XML document matching, and shows that all of them can be considered as a form of rich unification. Given a set of mappings between substitution sets of different languages, this abstraction opens up the possibility for format-versatile querying, i.e. combination of queries in different formats, or transformation of one format into another format within a single rule. To show the superiority of this approach, this thesis introduces an extension of Xcerpt called Xcrdf, and describes use-cases for the combined querying and integration of RDF and XML data. With XML being the predominant Web format, and RDF the predominant Semantic Web format, Xcrdf extends Xcerpt by a set of RDF query terms and construct terms, including query primitives for RDF containers collections and reifications. Moreover, Xcrdf includes an RDF path query language called RPL that is more expressive than previously proposed polynomial-time RDF path query languages, but can still be evaluated in polynomial time combined complexity. Besides the introduction of this framework for data integration based on rich unification, this thesis extends the theoretical knowledge about Xcerpt in several ways: We show that Xcerpt simulation unification is decidable, and give complexity bounds for subsumption in several fragments of Xcerpt query terms. The proof is based on a set of subsumption monotone query term transformations, and is only feasible because of the injectivity requirement on subterms of Xcerpt queries. The proof gives rise to an algorithm for deciding Xcerpt query term simulation. Moreover, we give a semantics to locally and weakly stratified Xcerpt programs, but this semantics is applicable not only to Xcerpt, but to any rule language with rich unification, including multi-rule SPARQL programs. Finally, we show how Xcerpt grouping stratification can be reduced to Xcerpt negation stratification, thereby also introducing the notion of local grouping stratification and weak grouping stratification

    Knowledge-centric autonomic systems

    Get PDF
    Autonomic computing revolutionised the commonplace understanding of proactiveness in the digital world by introducing self-managing systems. Built on top of IBM’s structural and functional recommendations for implementing intelligent control, autonomic systems are meant to pursue high level goals, while adequately responding to changes in the environment, with a minimum amount of human intervention. One of the lead challenges related to implementing this type of behaviour in practical situations stems from the way autonomic systems manage their inner representation of the world. Specifically, all the components involved in the control loop have shared access to the system’s knowledge, which, for a seamless cooperation, needs to be kept consistent at all times.A possible solution lies with another popular technology of the 21st century, the Semantic Web,and the knowledge representation media it fosters, ontologies. These formal yet flexible descriptions of the problem domain are equipped with reasoners, inference tools that, among other functions, check knowledge consistency. The immediate application of reasoners in an autonomic context is to ensure that all components share and operate on a logically correct and coherent “view” of the world. At the same time, ontology change management is a difficult task to complete with semantic technologies alone, especially if little to no human supervision is available. This invites the idea of delegating change management to an autonomic manager, as the intelligent control loop it implements is engineered specifically for that purpose.Despite the inherent compatibility between autonomic computing and semantic technologies,their integration is non-trivial and insufficiently investigated in the literature. This gap represents the main motivation for this thesis. Moreover, existing attempts at provisioning autonomic architectures with semantic engines represent bespoke solutions for specific problems (load balancing in autonomic networking, deconflicting high level policies, informing the process of correlating diverse enterprise data are just a few examples). The main drawback of these efforts is that they only provide limited scope for reuse and cross-domain analysis (design guidelines, useful architectural models that would scale well across different applications and modular components that could be integrated in other systems seem to be poorly represented). This work proposes KAS (Knowledge-centric Autonomic System), a hybrid architecture combining semantic tools such as: • an ontology to capture domain knowledge,• a reasoner to maintain domain knowledge consistent as well as infer new knowledge, • a semantic querying engine,• a tool for semantic annotation analysis with a customised autonomic control loop featuring: • a novel algorithm for extracting knowledge authored by the domain expert, • “software sensors” to monitor user requests and environment changes, • a new algorithm for analysing the monitored changes, matching them against known patterns and producing plans for taking the necessary actions, • “software effectors” to implement the planned changes and modify the ontology accordingly. The purpose of KAS is to act as a blueprint for the implementation of autonomic systems harvesting semantic power to improve self-management. To this end, two KAS instances were built and deployed in two different problem domains, namely self-adaptive document rendering and autonomic decision2support for career management. The former case study is intended as a desktop application, whereas the latter is a large scale, web-based system built to capture and manage knowledge sourced by an entire (relevant) community. The two problems are representative for their own application classes –namely desktop tools required to respond in real time and, respectively, online decision support platforms expected to process large volumes of data undergoing continuous transformation – therefore, they were selected to demonstrate the cross-domain applicability (that state of the art approaches tend to lack) of the proposed architecture. Moreover, analysing KAS behaviour in these two applications enabled the distillation of design guidelines and of lessons learnt from practical implementation experience while building on and adapting state of the art tools and methodologies from both fields.KAS is described and analysed from design through to implementation. The design is evaluated using ATAM (Architecture Trade off Analysis Method) whereas the performance of the two practical realisations is measured both globally as well as deconstructed in an attempt to isolate the impact of each autonomic and semantic component. This last type of evaluation employs state of the art metrics for each of the two domains. The experimental findings show that both instances of the proposed hybrid architecture successfully meet the prescribed high-level goals and that the semantic components have a positive influence on the system’s autonomic behaviour

    Acquiring symbolic design optimization problem reformulation knowledge: On computable relationships between design syntax and semantics

    Get PDF
    This thesis presents a computational method for the inductive inference of explicit and implicit semantic design knowledge from the symbolic-mathematical syntax of design formulations using an unsupervised pattern recognition and extraction approach. Existing research shows that AI / machine learning based design computation approaches either require high levels of knowledge engineering or large training databases to acquire problem reformulation knowledge. The method presented in this thesis addresses these methodological limitations. The thesis develops, tests, and evaluates ways in which the method may be employed for design problem reformulation. The method is based on the linear algebra based factorization method Singular Value Decomposition (SVD), dimensionality reduction and similarity measurement through unsupervised clustering. The method calculates linear approximations of the associative patterns of symbol cooccurrences in a design problem representation to infer induced coupling strengths between variables, constraints and system components. Unsupervised clustering of these approximations is used to identify useful reformulations. These two components of the method automate a range of reformulation tasks that have traditionally required different solution algorithms. Example reformulation tasks that it performs include selection of linked design variables, parameters and constraints, design decomposition, modularity and integrative systems analysis, heuristically aiding design “case” identification, topology modeling and layout planning. The relationship between the syntax of design representation and the encoded semantic meaning is an open design theory research question. Based on the results of the method, the thesis presents a set of theoretical postulates on computable relationships between design syntax and semantics. The postulates relate the performance of the method with empirical findings and theoretical insights provided by cognitive neuroscience and cognitive science on how the human mind engages in symbol processing and the resulting capacities inherent in symbolic representational systems to encode “meaning”. The performance of the method suggests that semantic “meaning” is a higher order, global phenomenon that lies distributed in the design representation in explicit and implicit ways. A one-to-one local mapping between a design symbol and its meaning, a largely prevalent approach adopted by many AI and learning algorithms, may not be sufficient to capture and represent this meaning. By changing the theoretical standpoint on how a “symbol” is defined in design representations, it was possible to use a simple set of mathematical ideas to perform unsupervised inductive inference of knowledge in a knowledge-lean and training-lean manner, for a knowledge domain that traditionally relies on “giving” the system complex design domain and task knowledge for performing the same set of tasks

    Situating logic and information in information science

    Get PDF
    Information Science (IS) is commonly said to study collection, classification, storage, retrieval, and use of information. However, there is no consensus on what information is. This article examines some of the formal models of information and informational processes, namely, Situation Theory and Shannon's Information Theory, in terms of their suitability for providing a useful framework for studying information in IS. It is argued that formal models of information are concerned with mainly ontological aspects of information, whereas IS, because of its evaluative role with respect to semantic content, needs an epistemological conception of information. It is argued from this perspective that concepts of epistemological/aesthetic/ethical information are plausible, and that information science needs to rise to the challenge of studying many different conceptions of information embedded in different contexts. This goal requires exploration of a wide variety of tools from philosophy and logic. © 2009 ASIS&T
    corecore