
D ATA I N T E G R AT I O N O N T H E (S E M A N T I C)
W E B W I T H R U L E S A N D R I C H

U N I F I C AT I O N

Dissertation

zur Erlangung des akademischen Grades des Doktors der
Naturwissenschaften an der Fakultät für Mathematik,

Informatik und Statistik der
Ludwig-Maximilians-Universität München

benedikt linse

June 21, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Hochschulschriften der LMU

https://core.ac.uk/display/11031732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Benedikt Linse: Data Integration on the (Semantic) Web with Rules and Rich
Unification, © June 21, 2010

Erstgutachter: Prof. Dr. François Bry

Ludwig-Maximilians-Universität München

Zweitgutachter: Prof. Michael Kifer

Department of Computer Science

State University of New York at Stony Brook

Tag der mündlichen Prüfung: 12.01.2010

iii

Dedicated to Anke and Lilly, to my parents, my brother and my sister.

A B S T R A C T

For the last decade a multitude of new data formats for the World Wide
Web have been developed, and a huge amount of heterogeneous semi-
structured data is flourishing online. With the ever increasing number
of documents on the Web, rules have been identified as the means of
choice for reasoning about this data, transforming and integrating it.
Query languages such as SPARQL and rule languages such as Xcerpt
use compound queries that are matched or unified with semi-structured
data. This notion of unification is different from the one that is known
from logic programming engines in that it (i) provides constructs that
allow queries to be incomplete in several ways (ii) in that variables may
have different types, (iii) in that it results in sets of substitutions for the
variables in the query instead of a single substitution and (iv) in that
subsumption between queries is much harder to decide than in logic
programming.

This thesis abstracts from Xcerpt query term simulation, SPARQL
graph pattern matching and XPath XML document matching, and
shows that all of them can be considered as a form of rich unifica-
tion. Given a set of mappings between substitution sets of different
languages, this abstraction opens up the possibility for format-versatile
querying, i.e. combination of queries in different formats, or transfor-
mation of one format into another format within a single rule.

To show the superiority of this approach, this thesis introduces an
extension of Xcerpt called Xcerpt

RDF, and describes use-cases for the
combined querying and integration of RDF and XML data. With XML
being the predominant Web format, and RDF the predominant Semantic
Web format, Xcerpt

RDF extends Xcerpt by a set of RDF query terms
and construct terms, including query primitives for RDF containers
collections and reifications. Moreover, Xcerpt

RDF includes an RDF path
query language called RPL that is more expressive than previously
proposed polynomial-time RDF path query languages, but can still be
evaluated in polynomial time combined complexity.

Besides the introduction of this framework for data integration based
on rich unification, this thesis extends the theoretical knowledge about
Xcerpt in several ways: We show that Xcerpt simulation unification is
decidable, and give complexity bounds for subsumption in several frag-
ments of Xcerpt query terms. The proof is based on a set of subsumption
monotone query term transformations, and is only feasible because of
the injectivity requirement on subterms of Xcerpt queries. The proof
gives rise to an algorithm for deciding Xcerpt query term simulation.
Moreover, we give a semantics to locally and weakly stratified Xcerpt
programs, but this semantics is applicable not only to Xcerpt, but to
any rule language with rich unification, including multi-rule SPARQL
programs. Finally, we show how Xcerpt grouping stratification can be
reduced to Xcerpt negation stratification, thereby also introducing the
notion of local grouping stratification and weak grouping stratification.

vii

Z U S A M M E N FA S S U N G

Über die letzten Jahre wurden eine Vielzahl von Datenformaten für
das Web entwickelt, und fast monatlich kommen neue Datenformate
hinzu. Nicht nur die Anzahl an verschiedenen Formaten, sondern
auch die Anzahl der Dokumente innerhalb eines Formats steigt stetig
und rapide an. Mit der Fülle an Information wächst der Bedarf an
Mitteln zur einfachen Integration und Transformation dieser Daten,
wie auch zur Kombination und zur Herleitung neuen Wissens aus
den bestehenden Datensammlungen. Regelsprachen konnten sich als
Mittel der Wahl für alle drei oben genannten Zwecke etablieren. Die
semi-strukturierte Natur der Daten im Web stellt jedoch neue Her-
ausforderungen an Regelsprachen; insbesondere müssen Anfragen
in Regelrümpfen Konstrukte zur unvollständigen Beschreibung der
gesuchten Daten bereitstellen, wie z.B. Suche in beliebiger Tiefe oder
Breite des Dokumentbaumes, optionale Teilanfragen, negierte Teilan-
fragen, reguläre Pfadausdrücke, und weitere. Wir bezeichnen den Ab-
gleich von solchen reichen Anfragen mit semi-strukturierten Daten im
Web als reiche Unifikation, und Regelsprachen, welche sich einer reichen
Unifikation im Rumpf zur Extraktion von Daten aus Webdokumenten
bedienen, als Regelsprachen mit reicher Unifikation. Neben ausdruck-
starken Anfragekonstrukten unterscheidet sich die reiche Unifikation
von der herkömmlichen Prolog-Unifikation durch ihre Assymetrie, un-
terschiedliche Typen von Variablen und der schwer-entscheidbaren
Subsumptionsrelation zwischen Anfragen. Weiterhin ist das Ergebnis
einer reichen Unifikation mit einem Dokument keine einzelne Substitu-
tion, sondern eine Substitutionsmenge.

Diese Arbeit abstrahiert von der XPath- und SPARQL-Anfrageauswer-
tung und von Xcerpt Simulationsunifikation und zeigt auf, dass sie alle
als eine Art der reichen Unifikation betrachtet werden können. Damit wer-
den Regelsprachen mit SPARQL- oder XPath-Anfragen im Rumpf zur
Regelsprachen mit reicher Unifikation. Legt man nun noch Abbildun-
gen zwischen Substitutionsmengen verschiedener Regelsprachen fest,
erhält man vielseitige Regelsprachen mit reicher Unifikation, welche sich her-
vorragend zur Datenintegration aus, und zur Datentransformation zwis-
chen verschiedenen Webdatenformaten eignen. Zur Untermauerung
dieser These wird eine Erweiterung von Xcerpt namens Xcerpt

RDF

vorgestellt, welche neben den bereits bekannten XML Anfrage- und
Konstrukttermen, RDF Anfrage- und Konstruktterme bereitstellt, und
die Simulationsunifikation auf diese Terme erweitert. Anwendungs-
fälle zur kombinierten Anfrage von RDF und XML mittels Xcerpt

RDF

werden präsentiert. Xcerpt
RDF ist die erste Sprache, welche Sprach-

mittel zur Anfrage und Konstruktion von zusammengesetzten RDF
Daten (RDF Container und Collections), und Reifikation nach einer
wohldefinierten formalen Semantik unterstützt. Xcerpt

RDF beinhal-
tet eine reguläre Pfadpsrache names RPL, die sich unter anderem
durch Pfadprädikate, Kleenesche Operatoren, Negation und Disjunk-
tion, sowie durche ihre effiziente Auswertbarkeit auszeichnet.

Neben der Einbettung von Xcerpt in das Rahmenwerk der Regel-
sprachen mit reicher Unifikation trägt diese Arbeit auch zum besseren
theoretischen Verständnis und zur Erweiterung der Semantik von

viii

Xcerpt bei. Die Entscheidbarkeit und Komplexität der Subsumption
zwischen Xcerpt Anfragetermen wird durch ein System von subsump-
tionsmonotonen Anfragetermtransformationen gezeigt. Weiterhin wird
die zweiwertige Fixpunktsemantik von Xcerpt auf eine dreiwertige
wohlfundierte Semantik erweitert, welche in Anlehnung an die wohl-
fundierte Semantik in der Logikprogrammierung definiert ist. Zwei
Klassen von lokal-stratifizierten und schwach-stratifizierten Xcerpt Pro-
grammen werden identifiziert, für welche die wohlfundierte Semantik
zweiwertig ist. Zuletzt wird die für Xcerpt bekannte Gruppierungsstrat-
ifikation auf die Negationsstratifikation reduziert, was zu einer ein-
facheren Definition von sowohl gruppierungs- wie auch negations-
stratifizierten Programmen führt.

ix

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following
publications:

[BEE+
07] François Bry, Norbert Eisinger, Thomas Eiter, Tim Furche, Georg

Gottlob, Clemens Ley, Benedikt Linse, Reinhard Pichler, and Fang
Wei. Foundations of rule-based query answering. In Grigoris
Antoniou, Uwe Aßmann, Cristina Baroglio, Stefan Decker, Nicola
Henze, Paula-Lavinia Patranjan, and Robert Tolksdorf, editors,
Reasoning Web, volume 4636 of Lecture Notes in Computer Science,
pages 1–153. Springer, 2007.

[BFLL07] François Bry, Tim Furche, Clemens Ley, and Benedikt Linse.
RDFLog—taming existence - a logic-based query language for
RDF. Research report, University of Munich, 2007.

[BFL+
08a] François Bry, Tim Furche, Clemens Ley, Benedikt Linse, and Bruno

Marnette. RDFLog: It’s like datalog for RDF. In Proceedings of
22nd Workshop on (Constraint) Logic Programming, Dresden (30th
September–1st October 2008), 2008.

[BFL+
08b] François Bry, Tim Furche, Clemens Ley, Benedikt Linse, and Bruno

Marnette. Taming existence in RDF querying. In Diego Calvanese
and Georg Lausen, editors, RR, volume 5341 of Lecture Notes in
Computer Science, pages 236–237. Springer, 2008.

[BFL06] François Bry, Tim Furche, and Benedikt Linse. Data model and
query constructs for versatile web query languages: State-of-the-
art and challenges for Xcerpt. In José Júlio Alferes, James Bailey,
Wolfgang May, and Uta Schwertel, editors, PPSWR, volume 4187

of Lecture Notes in Computer Science, pages 90–104. Springer, 2006.

[BFL08c] François Bry, Tim Furche, and Benedikt Linse. Simulation sub-
sumption or déjà vu on the Web. In Diego Calvanese and Georg
Lausen, editors, RR, volume 5341 of Lecture Notes in Computer
Science, pages 28–42. Springer, 2008.

[BFLP08] François Bry, Tim Furche, Benedikt Linse, and Alexander Pohl.
XcerptRDF: A pattern-based answer to the versatile web challenge.
In Proceedings of 22nd Workshop on (Constraint) Logic Programming,
Dresden, Germany (30th September–1st October 2008), pages 27–36,
2008.

[BFL+
09a] François Bry, Tim Furche, Benedikt Linse, Alexander Pohl, Anto-

nius Weinzierl, and Olga Yestekhina. Four lessons in versatility
or how query languages adapt to the web. In Semantic Techniques
for the Web, The Rewerse Perspective, volume 5500 of Lecture Notes
in Computer Science. Springer, 2009.

[BFLS06] François Bry, Tim Furche, Benedikt Linse, and Andreas Schroeder.
Efficient evaluation of n-ary conjunctive queries over trees and
graphs. In Angela Bonifati and Irini Fundulaki, editors, WIDM,
pages 11–18. ACM, 2006.

xi

[BFL09c] Francois Bry, Tim Furche, and Benedikt Linse. Model theory and
entailment rules for RDF containers, collections and reification.
forthcoming, 2009.

[BFL09d] Francois Bry, Tim Furche, and Benedikt Linse. The perfect match:
RPL and RDF rule languages. In Proceedings of the third interna-
tional conference on Web reasoning and rule Systems. Springer, 2009.

xii

A C K N O W L E D G M E N T S

Many people contributed to this thesis. Amongst others I would like to
thank the following persons:

• François Bry for giving me the chance to work on this fascinating
topic in an international team of researchers, and for his continous
and abundant stream of interesting ideas, many of which had a
great impact on the development of this thesis.

• Michael Kifer for proof reading my thesis and very valuable
remarks.

• Norbert Eisinger for introducing me to the beauty of logic pro-
gramming.

• Tim Furche for countless fruitful discussions and support in the
area of XPath and Xcerpt query evaluation, RDF Semantics, RDF
query languages, complexity classes, Xcerpt query term subsump-
tion, and for interesting research ideas.

• Alexander Pohl for the common work on Xcerpt
RDF, Clemens

Ley for the common work on RDFLog, Olga Poppe for countless
discussions about the semantics and evaluation of rich unification
languages and Harald Zauner for his great implementation of
RPL. Sacha Berger for discussions about programming languages
and type systems.

• The unknown reviewers of my publications for giving valuable
feedback which has also been integrated into this thesis.

• My family for their support and for always being there when I
need them.

xiii

C O N T E N T S

i introduction 1

1 motivation 3

1.1 Rule languages with Rich Unification 6

1.2 Substitution Sets as the result of Rich Unification 9

1.3 Asymmetry of Rich Unification 10

1.4 Rich Unification and Subsumption 11

1.5 Rich Unification and Types 13

1.6 Outline and Contributions of this Thesis 14

2 preliminaries 15

2.1 Introduction to Xcerpt 15

2.2 RDF and the Semantic Web Vision 17

2.2.1 RDF Abstract Data Model 19

2.2.2 RDF/XML 21

2.2.3 Notation 3 24

2.3 The RDF/S Model Theory 24

2.4 RDF Extensions 29

2.5 Critique of the RDF/S Model Theory 31

3 related work : data integration on the (semantic)
web 33

3.1 State of the Art: The SPARQL Query Language 33

3.1.1 SPARQL graph patterns 34

3.1.2 Blank nodes in SPARQL graph patterns 36

3.1.3 Testing RDF Graphs for Equivalence in SPARQL 38

3.1.4 Semantics and Complexity of SPARQL 39

3.2 Extensions of SPARQL 41

3.2.1 nSPARQL 41

3.2.2 SPARQLeR 42

3.2.3 XSPARQL 44

3.2.4 SPARQL update 46

3.2.5 SPARQL and Rules 47

3.3 Flora-2 49

3.4 RQL 52

3.5 Triple 53

3.6 SWRL 55

3.7 Metalog 56

3.8 The Rule Interchange Format 57

ii versatile querying with xcerpt
rdf

61

4 versatile use cases 63

4.1 Querying XML with Xcerpt: Examples and Patterns 66

4.1.1 XcerptXML Data and Rules. 67

4.1.2 XcerptXML Queries: Pattern-based Filtering of Search
Results 69

4.1.3 Mining Semantic data from Microformats embed-
ded in personal profiles. 70

4.2 Querying RDF with Xcerpt: Examples and Patterns 72

4.2.1 Representation of RDF Graphs as Xcerpt
RDF Data

Terms 72

4.2.2 Xcerpt
RDF Query Terms 76

xv

xvi contents

4.2.3 Xcerpt
RDF Construct Terms and Rules 79

4.3 Glueing RDF and XML with Rules 84

4.3.1 Versatile Rules 84

4.3.2 Transforming LinkedIn embedded Microformat
information to DOAC and FOAF 86

5 xcerpt
rdf

syntax and simulation 89

5.1 Compound RDF data structures in Xcerpt
RDF

89

5.2 A Model Theory for RDF Containers, Collections and
Reification 92

5.2.1 RDFS+ Model Theory and Entailment Rules 92

5.2.2 RDFCC Model Theory and Entailment Rules 94

5.2.3 RDFR Model Theory and Entailment Rules 100

5.3 Abstract Syntax of Xcerpt
RDF

102

5.4 Xcerpt
RDF Declarative Semantics: Term Simulation 109

5.5 Xcerpt
RDF Queries, Facts, Rules and Programs 116

6 the xcerpt
rdf

regular path language rpl 119

6.1 Design Goals of RPL 119

6.2 RPL by Example 120

6.3 Syntax of RPL 123

6.4 Compositional Semantics of RPL 124

6.5 Restrictions and Extensions of RPL 127

6.6 RPL compared to Lorel, SPARQLeR and nSPARQL 129

6.7 Further Complexity Results 132

6.8 Compilation of RPL to Prolog 135

iii xcerpt multi-rule semantics and term subsumption

139

7 xcerpt term simulation and multi-rule semantics 141

7.1 Simulation as the Foundation for Versatile Querying 141

7.2 Simulation and Negation: Local Stratification 146

7.3 Well-Founded Semantics for Xcerpt 150

7.4 Grouping versus Negation Stratification 156

7.4.1 Elimination of Single Grouping Constructs 157

7.4.2 Elimination of Nested Grouping Constructs 159

8 xcerpt query term subsumption 163

8.1 XcerptXML Query Terms and Simulation 165

8.2 Simulation Subsumption 165

8.3 Simulation Subsumption by Rewriting 167

8.4 Properties of the Rewriting System 170

8.4.1 Subsumption Monotonicity and Soundness 170

8.4.2 Completeness 172

8.4.3 Decidability and Complexity 173

8.5 Complexity for Xcerpt Fragments 174

8.6 Future Work in the Area of Xcerpt Query Term Subsump-
tion 185

9 summary and future work 187

iv appendix 189

a proofs related to xcerpt query term subsumption 191

a.1 Non-ground Simulation between XcerptXML Query Terms 191

a.2 Proof of Completeness of the Rewriting System 193

bibliography 197

L I S T O F F I G U R E S

Figure 1 Example terms for the illustration of blank node
simulation. 113

Figure 2 An example RDF graph 121

Figure 3 Relationships among subexpressions of RPEs 124

Figure 4 Reduction from the Hamilton Cycle Problem to
RPL→,/,{} evaluation 135

Figure 5 Social graph corresponding to the facts in Listing
7.1 147

Figure 6 Local stratification for Listing 7.1 148

Figure 7 Dependency graph for Listing 7.2 150

Figure 8 Weak stratification for Listing 7.6 154

Figure 9 Computation of the well-founded semantics for
the program S in Listing 7.6 155

Figure 10 Dependency graph of the grouping-free transfor-
mation of Q 161

Figure 11 Embeddings from [Kil92] versus Xcerpt simula-
tion 177

Figure 12 Homeomorphic and minor embeddings. 179

Figure 13 Representation of an undirected graph as an Xcerpt({})
data term for the proof of Theorem 18 183

Figure 14 Simulation for Xcerpt({{}}) 184

L I S T O F TA B L E S

Table 1 Syntax of Xcerpt
RDF data terms 77

Table 2 Query term simulation with different scopes for
without 78

Table 3 Query term simulation with variables for nodes,
predicates, graphs and concise bounded descrip-
tions. 79

Table 4 Syntax of Xcerpt
RDF query terms 80

Table 5 Application of substitution sets to Xcerpt
RDF con-

struct terms 81

Table 6 Application of substitution sets to Xcerpt
RDF con-

struct terms with casting of variable bindings. 84

Table 7 Evaluation of the program T(P) in Example 34 158

Table 8 Complexity of Simulation and Subsumption for
Xcerpt fragments. (m is the size of the query term;
n is the size of the data for simulation and the
size of the subsumed query term for subsump-
tion.) 184

xvii

A C R O N Y M S

BLD Basic Logic Dialect (RIF)

EBNF Extended Backus Naur Form

FLD Framework for Logic Dialects (RIF)

FOL First Order Logic

GRDDL Gleaning Resource Descriptions from Dialects of Languages

NCMP Numbered Container Membership Property

OWL Web Ontology Language

RDF Resource Description Framework

RDFCC RDF Container and Collection

RDFR RDF Reification

RDFS Resource Description Framework Schema

RDF/S RDF and RDFS

RIF Rule Interchange Format

RPE Conditional RDF path expression

RPL Conditional RDF path language

RQL RDF Query Language

SeRQL Sesame RQL

SPARQL SPARQL Protocol and RDF Query Language

SWRL Semantic Web Rule Language

XML Extensible Markup Language

xviii

Part I

I N T R O D U C T I O N

1M O T I VAT I O N

With the amount and diversity of information on the Web rapidly and Heterogeneity of data
on the Websteadily growing, and with new data formats, flavors of microformats

and methods for embedding semantic information in HTML emerg-
ing on a monthly basis, rules have been agreed upon as the method
of choice for data integration and knowledge exchange on the Web
[BHK+

09]. In the last years we have witnessed the rise of Semantic Web
data formats, most prominently the Resource Description Framework
and Topic Maps, as well as the increasing use of Microformats (hCard,
hCalendar, hResume, hReview, etc.), embeddings of semantic informa- Microformats and

embeddings of
semantic information
in HTML

tion in HTML (RDFa, eRDF, GRDDL), and wiki markup languages for
collaborative online document creation. Due to their declarativity, rule
languages have been found as a suitable means for transforming and in-
tegrating information from diverse sources (XSLT, XSPARQL, SPARQL
Construct Rules, Xcerpt) as well as for inferring new knowledge.

Considering that industrial software engineering is mostly dominated
by the imperative and object-oriented programming paradigm, with
increasing influence of functional techniques, it may be surprising that
rules have such a strong foothold in business applications and on the
(Semantic) Web. Taking a closer look, however, the advantages of rules
become evident:

• Ease of use: With rules encoding simple pairs of conditions and con- Benefits of rules for
data integrationsequences, they are rapidly explained even to users with limited

programming experience. Facilitated by their relatively simple
syntax, visual modelling tools for rules further lower the barrier
of their adoption [LW06], [BBF+

06], [BBB+
04], [BBSW03].

• Context-independence: Rules are, to a large part independent of the
rest of the program they appear in and are thus ideal to be ex-
changed over the Web and reused in various different applications.
To give an example, the pair of Datalog rules

t(X,Y)← r(X,Y).

t(X,Z)← r(X,Y), t(Y,Z).

compute the transitive closure t of a finite relation r, irrespective
of other rules in the program, the extension of the predicate r,
and the types of elements in the relation, be it strings, integers,
the names of cities, or the classes of an ontology. In the higher
order rule language HiLog[CKW93], context independence – and Higher order logic

programmingthus potential reuse – is further increased by parameterizing
predicate names. The following pair of HiLog rules from [CKW93]
computes the transitive closure for an arbitrary predicate r with
finite extension.

closure(R)(X,Y)← R(X,Y).

closure(R)(X,Z)← R(X,Y), closure(R)(Y,Z).

Since RDF data can be seen as a single ternary relation over
subjects, predicates and objects, the transitive closure can also be

3

4 motivation

computed over arbitrary RDF properties with finite extensions,
independent of the context by the following pair of RDFLog
rules[BFL+

08a, BFL+
08b].

∀x,y,p ∃pt . (

(triple(x,pt,y)← triple(x,p, t))∧

(triple(x,pt, z)← triple(x,p,y), triple(y,pt, z))

)

Context independence of rules on the Web is sometimes partially
sacrificed for more concise formulation of queries: Most RDF
rule languages proposed thus far (e.g. SPARQL, RDFLog, Xcerpt,
Triple) allow the use of qualified names instead of URIs for the
sake of conciseness. With qualified names depending on names-
pace prefix declarations, the context-independence of rules is only
maintained by expansion of qualified names to URIs. This is easily
achieved by a simple search-and-replace query over a rule or rule
program.

• Strong theoretical foundation: Rules have a straditionally been used
for information integration systems, especially in the context of
relational databases: A simple SQL view definition can be seen as
a Datalog rule.

Motivated by this wide-spread use, the complexity of evaluation
and containment for single datalog rules (i.e. conjunctive queries
[CM77]), single datalog rules with negation [LS93], datalog rules
with safe negation and built-in predicates [WL03], datalog rules
with arithmetic comparisons[Klu88a], datalog programs [Shm87],
etc. has been extensively studied. For an overview, see [Ull00].

• Declarative Semantics: Rule languages are in general equipped
with a declarative semantics that is independent of the chosen
evaluation strategy, and easier to understand. For logic programs
without negation the declarative semantics is given as the minimal
model semantics, or a fixpoint procedure. This fixpoint procedure
gives directly rise to bottom-up evaluation methods for rule pro-
grams mentioned below. For logic programs with negation, a
wide range of semantics has been proposed, most of which co-
incide on the class of stratified logic programs. Some of these
semantics for rule programs with negation are briefly discussed
below. Stratification is discussed in Section 7.2.

• Availability of evaluation algorithms: A series of evaluation strate-
gies have been proposed to evaluate rule programs. These eval-Categorization of

evaluation algorithms
for rule programs

uation strategies differ in the following points: (i) some of them
only evaluate Horn logic rules, others support negation as failure.
(ii) Rules may be allowed to contain function symbols or support
predicates only (Datalog). (iii) Some evaluation strategies table
(memoize) intermediate results, thereby improving time efficiency
and termination, but sacrificing space efficiency, others do not
table intermediate results, but adhere to a pure depth-first-search
strategy. (iv) Rule programs may be evaluated bottom-up (for-
ward chaining, data driven), or top-down (backward chaining,
goal driven). For an overview see [BEE+

07].

motivation 5

The most famous backward chaining evaluation strategy for rule
programs is arguably SLD resolution[Apt88] (linear definite reso-
lution with selection function), which is employed in most logic
programming engines. SLD resolution allows function symbols,
does not table intermediate results and does not handle negation.
An extension of SLD resolution to rules with negative body liter-
als is SLDNF[Apt92]. SLDNF resolution implements the so-called
program completion semantics for logic programs with negation.
The program completion semantics has been criticized for not Semantics of logic

programs with
negation

being intuitive, and for its weak reasoning ability[vRS91b]. Alter-
natives to the program completion semantics include the stable
model semantics[GL88], the well-founded model semantics[vRS91b],
and the inflationary semantics. The stable model semantics and the
well-founded semantics coincide on the set of locally stratified
logic programs (discussed in Section 7.2), and are commonly seen
to adequately capture the intuitive semantics of programs with
negation as failure.

An extension of SLD resolution to support tabling is OLDT
resolution[TS86]. OLDT does not handle negative body literals. It
terminates and is complete for all programs that do not define
infinite relations. A backward chaining algorithm that handles
both negative body literals and performs tabling is SLG resolu-
tion [RC97]. SLG resolution computes the well-founded model
semantics. SLG resolution differentiates between solution goals and
look-up goals. Each look-up goal l is assigned to a solution goal s
which is a variant of l. Whereas the answers to solution goals are
saved in a table, the answers to look-up goals are retrieved from
the table of the associated solution goal. SLG resolution performs
variant checking instead of subsumption checking for the sake
of efficient implementation. Subsumption checking may further
reduce redundant computations and is therefore employed in
subsumption based resolution (SBR) [Pop].

For all the reasons given above, rule languages are ideal candidates
for information integration on the Web. Information on the Web is, how-
ever, quite different from the information found in relational databases,
or other kinds of databases employed in organizations:

Data on the Web does not adhere to a particular schema. Although Why rule languages
must adapt to the
Web

there are schemas available for large parts of the information on the
Web, such as the XML schema for XHTML 1.0 documents published by
the W3C [Ish02], the RELAX NG schema for RDF/XML serializations
of RDF graphs[Bec04], or the RELAX NG schema for XML Topic Maps1,
there is no guarantee that all data published on the Web validates
against these schemas. Moreover, even in case of validation, knowl-
edge about the structure of documents remains incomplete, since XML
schema languages provide means for very loose data description (e.g.
the XML schema and DTD any keywords). In particular, XML elements
may have an arbitrary (but finite) number of children and may be
deeply nested, nodes within an RDF graphs may have an arbitrary (but
finite) number of incoming or outgoing edges, and RDF ontologies may
be very large.

There are (at least) two ways of bringing rule languages and semi- Bringing rule
languages and
semi-structured data
together

structured data on the Web together: (i) the data must be transformed

1 http://www.isotopicmaps.org/sam/sam-xtm/#sect-relaxng

http://www.isotopicmaps.org/sam/sam-xtm/#sect-relaxng

6 motivation

in a way such that it can be processed by rule languages, or (ii) the
rule languages must adapt to the data. The first approach is taken
by rule languages such as RDFLog, Triple, and to some extend also
by SPARQL, the second approach is taken by rule languages such as
Xcerpt, nSPARQL, rule languages based on XPath such as XPathLog
[May04] and the nameless language proposed in [VD03]. Traditionally,
the first approach has been taken by rule languages for RDF data, and
the second approach has been more popular for rule languages dealing
with XML, nSPARQL being a notable exception. This is mainly due
to the fact that the decomposition of RDF graphs into RDF triples is a
well-defined and intended way of dealing with RDF data, whereas the
decomposition of XML trees into relational data is almost exclusively
considered for the formal specification of XML query languages and
the study of their complexity. This thesis takes the second approach
and highlights the challenges faced when extending rule languages
with rich unification in order to query semi-structured data.

As a result of the semi-structured nature of data on the Web, web
query languages provide so-called incompleteness constructs for partially
specifying the structure of documents that the query author is interested
in. Examples of these incompleteness constructs include the XPath
transitive closure axes descendant, ancestor, following-sibling, etc, the
SPARQL OPTIONAL and UNION keywords, and double curly braces or
square brackets in Xcerpt. Xcerpt is a rule language that makes intense
use of incompleteness constructs in the body of rules. This thesis
is inspired by Xcerpt, at the same time extending the language to
allow other types of terms in rule bodies (e.g. for querying RDF data)
and heads, and abstracting from it by introducing the notion of rule
languages with rich unification.

1.1 rule languages with rich unification

To give the reader a better feeling about the notion of rich unification,
this section outlines the commonalities and differences between Prolog
(poor) unification on the one hand and SPARQL graph pattern matching
over RDF graphs and XPath query evaluation over XML documents
on the other. Moreover, we introduce the notion of rule languages
with rich unification and show that SPARQL and Xcerpt fall into this
category. Paying attention to the separation of data querying and result
construction, one can also see XQuery as a rule language with rich
unification.

Based on these observations, this thesis proposes to use versatile rules
with rich unification for data integration on the Web. A versatile rule is
a rule of the form

H← L1, . . . ,Ln

where H is the head of the rule, and L1, . . . ,Ln are its body literals.
H may be a SPARQL construct pattern, an Xcerpt or Xcerpt

RDF con-
struct term, an XQuery expression involving element constructors and
variables only, and L1, . . . ,Ln are possibly negated XPath 2.0 queries,
SPARQL graph patterns, or Xcerpt or Xcerpt

RDF query terms. In this
way, data may be extracted by evaluating body literals over (semantic)
web data and transformed into some other format using a suitable
construction mechanism. With new web data formats being frequently

1.1 rule languages with rich unification 7

invented, this framework of data integration with versatile rules is
extensible to other formats such as Microformats, Topic Maps and
wiki pages. The common ground that versatile rules build upon is the
concept of rich unification, which is explained below.

Although versatile rules allow querying of different data formats in a
single body of a rule, and construction of data in a format that is distinct
from the formats queried, they do not have to. On the contrary, most
SPARQL rules already fit into the framework of versatile rules, and
even many XQuery programs can be thought of as versatile rules. The
SPARQL rule in Listing 3.1 from [SP08] is a versatile rule with a single
body literal consisting of a conjunction of unions of triple patterns,
and a SPARQL construct pattern as the head. SPARQL is introduced in
more detail in Section 3.1.

Listing 1.1: A SPARQL program consisting of a single construct rule

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

CONSTRUCT { ?x vcard:N _:v .
_:v vcard:givenName ?gname .
_:v vcard:familyName ?fname }

WHERE

{

{ ?x foaf:firstname ?gname } UNION

{ ?x foaf:givenname ?gname } .

{ ?x foaf:surname ?fname } UNION

{ ?x foaf:family_name ?fname } .

} �
To see that also some XQuery programs can be considered as rules,

consider Listing 1.2 from the XQuery recommendation [SCF+
07]. It

is essentially partitioned into three parts: Lines 1 and 2 extract data
from XML documents, lines 3 and 4 operate on the selected variable
bindings by selecting only the relevant ones and reordering them, and
lines 5 to 10 construct the result. Omitting lines 3 and 4 from Listing
1.2, one obtains still a valid and useful XQuery program, which is a
syntactical variant of a versatile rule. However, this example (and many
others) shows that in practice it is often necessary to do more than
simple querying and result construction; in particular data aggregation,
filtering, grouping and reordering. Often, some of these tasks such as
aggregation, ordering and grouping, can be, as in Xcerpt, accomplished
during result construction. This thesis considers rule programs that are
limited to data querying and result construction, and, to some extent,
grouping.

Listing 1.2: An XQuery FLWOR expression

for $d in fn:doc("depts.xml")/depts/deptno

2 let $e := fn:doc("emps.xml")/emps/emp[deptno = $d]

where fn:count($e) >= 10

order by fn:avg($e/salary) descending

return

<big-dept> {

7 $d,

<headcount>{fn:count($e)}</headcount>,

<avgsal>{fn:avg($e/salary)}</avgsal>

} </big-dept> �

8 motivation

prolog unification With Prolog being the most famous rule
language up to now, the notion of unification in Prolog deserves special
attention also in the context of the Web. Unification is Prolog’s sole way
of binding variables to terms and is similar to the notion of matching a
query with data. Often, unification is distinguished from matching inProlog unification

versus matching of
XPath and SPARQL
queries

that in unification both terms may contain variables, but in matching,
only the query may contain variables. During a forward chaining
evaluation of a Prolog program with range restricted rules, unification
of queries with ground terms (i.e. matching) is sufficient. In contrast,
a goal-directed or backward evaluation of a Prolog program generally
requires real unification between body literals and rule heads.

Given two first-order terms t1 and t2, unification is an algorithm that
computes a most general unifier between t1 and t2.

Definition 1 (Unifier). Given two first-order terms t1 and t2, a unifier for
t1 and t2 is a mapping σ from the variables in t1 and t2 to terms such that
the application of σ to t1 is syntactically equal to the application of σ to t2,
written σ(t1) = σ(t2).

A unifier is also often called a substitution for the variables in t1
and t2. Before being unified, the terms t1 and t2 are standardized apart.
Standardization apart is the renaming of variables within t1 (or t2)
such that t1 and t2 are variable-disjoint, i.e. do not have any common
variables. If there exists a unifier for t1 and t2, then t1 and t2 are called
unifiable.

Roughly speaking, a unifier σ is a most most general unifier of two
terms, if it instantiates as little as possible. For a precise definition of
most general unifier see [BEE+

07][Definition 50]. For two unifiable
first-order terms t1 and t2 the most general unifier is unique up to
variable renaming.

Example 1. Let t1 = f(g(X, Y),a) and t2 = f(g(V ,a),Z). Then

σ = {X 7→ b,V 7→ b, Y 7→ a,Z 7→ a}

is a unifier of t1 and t2, because σ(t1) = σ(t2) = f(g(b,a),a). σ is not a
most general unifier of t1 and t2, since for the unifier

µ = {X 7→ V , Y 7→ a,Z 7→ a}

there is no mapping τ such that µ = τ ◦ σ. In contrast, µ is a most gen-
eral unifier of t1 and t2, because it instantiates as little as possible. It does
not instantiate the variables V and Y by ground terms, since this would be
unnecessary.

rich unification versus prolog unification Rich unifica-
tion differs from Prolog unification in the following points:

• Unification of two Prolog terms yields a substitution. In contrast,
rich unification yields sets of substitutions.

• Prolog Unification is symmetric. If term µ is a unifier for the pair
of terms (t1, t2), then it is also a unifier for the pair (t2, t1). This
does not hold languages with rich unification. Rich unification is
asymmetric.

1.2 substitution sets as the result of rich unification 9

• Whereas subsumption between Prolog terms can be reduced to
variable instantiation, subsumption for languages with rich unifica-
tion is more involved, sometimes even at the verge of decidability.

• Due to the different data formats on the Web and the more
complex nature of semi-structured data, types and type coercion
play important roles in rich unification.

In the rest of this section, these properties of rich unification are
elaborated upon and illustrated by example.

1.2 substitution sets as the result of rich unification

Matching a SPARQL graph pattern P with an RDF graph G does not
result in a substitution, but a so-called solution set. A solution set is a
set of mappings from the free variables P to the vocabulary of G. Each
mapping µ in the solution set is a unifier of P and G in the sense that
µ(P) is a subgraph of G. In contrast to Prolog unification, there may be
more than one valid mapping for P and G.

Example 2. Consider the SPARQL pattern P and the RDF Graph G:

P = { (?X,name, "Bill"), (?X,knows, ?Y) }

G = { (:B,name, "Bill"), (:B,knows,anna), (:B,knows, chuck) }.

Matching P with G yields the solution set S:

S = { { ?X 7→: B, ?Y 7→ anna }, { ?X 7→: B, ?Y 7→ chuck } }

The evaluation of XPath queries over XML trees results in sets of
nodes, not substitution sets. This is due to the fact that XPath queries
can be considered as unary queries (i.e. Datalog queries with a single
distinguished variable) over tree structured data. The distinguished
variable in XPath is left implicit, and is determined by the last step
expression outside of any predicate of the XPath expression.

Example 3. Consider the XPath query q = a/b[c//a] over the XML docu-
ment D below. Evaluation of q over D yields the two nodes <c><c><a/></

c></c> and <c><a/></c>.

<a>

<c><c><a/></c></c>

<c><a/></c>

 �
D can be encoded as the binary relations label, child and desc as follows:

(i) each node in the document is assigned an unique id, (ii) the tuple (i, l) is in
the relation label iff the label of the node with id i is l, (iii) the tuple (i1, i2)
is in the relation child (desc) iff the node with id i2 is child (descendant) of
the node with id i1. Then q can be written as the unary Datalog query

q(x2) ← child(x1, x2), label(x1, "a"), label(x2, "b"),

child(x2, x3), label(x3, "c"),

desc(x3, x4), label(x4, "a").

10 motivation

Hence also for an XPath query over an XML document, there is no
single solution, but many embeddings of the query in the data.

1.3 incomplete queries and asymmetry of rich unification

Unification between terms in logic programming is, by definition, sym-
metric. Unification in rule languages with rich unification, on the other
hand, is asymmetric, which is an immediate consequence of the asym-
metry of matching queries with data in these languages. Asymmetry of
matching in languages such as SPARQL, XPATH or Xcerpt is due to the
inherent incompleteness of queries, which in turn is necessitated by the
semi-structured nature of data on the Web. Whereas for ground terms
t1 and t2 in logic programming it holds that t1 matches with t2 if and
only if t1 and t2 are syntactical equal, this is not true for matching
web queries with web data. XPath expressions and SPARQL queries are
inherently incomplete, in that they only specify what must be present
in the data. They do not specify what must not be present. Additionally
SPARQL supports optionality and blank nodes in queries acting as
undistinguished variables, and XPath supports transitive closure axes
for querying at arbitrary depth and breadth. Similarly, Xcerpt supports
optionality and incomplete specification of queries in breadth, depth
(descendant) and with respect to order. For a more detailed explanation
of these concepts see Section 2.1.

from ground matching to two-way rich unification Rule
languages with rich unification all agree in the way they base non-
ground query matching on ground query matching. From an abstract
point of view, the ground matching relationship between SPARQL
queries and RDF graphs, as well as between XPath expressions and
XML documents and between ground Xcerpt query terms and Xcerpt
data terms is an infinite binary relation R = {(q1,d1), . . . , (qn,dn)},
containing all pairs of queries and data items (qi,di) such that qi
matches with di. Given this relation R, non-ground matching is defined
in the very same way in all these languages: a not necessarily ground
query q matches with data d if and only if there is a substitution µ such
that (µ(q),d) is in R.

Example 4 (Ground and non-ground matching in SPARQL). The ground
matching relationship of basic SPARQL graph patterns is the relation

R = {(S,G) | G is an RDF graph, S ⊆ G}

The matching relationship between non-ground basic SPARQL graph pat-
terns and RDF graphs is

RV = {(S,G) | ∃µ such that (µ(S),G) ∈ R}

where µ is a mapping from the variables in S to the vocabulary of G.

Non-ground matching is sometimes termed one-way unification,
since only the query contains variables, which are bound to parts of the
data. One-way unification is sufficient for a forward chaining evaluation
of logic programs, but backward chaining requires two-way unification,
i.e. the computation of mappings from variables in both the query, and
in the construct pattern.

1.4 rich unification and subsumption 11

As a single-rule query language, SPARQL is not meant to be evalu-
ated in a forward or backward chaining manner, and therefore does
not define any kind of two-way unification. Nevertheless, SPARQL rule Rule chaining on the

Webchaining may already take place on the Web today. Most popular RDF
toolkits with support for SPARQL, such as Sesame [BKvH02] and Jena
[CDD+

04], also implement SPARQL’s construct query form. It is thus
easy to publish RDF documents on the Web that are views of other
RDF data sources, and these documents may themselves be queried by
other SPARQL (or RQL or SeRQL) engines. Hence, rule chaining on the
Semantic Web most likely already takes place today, although we may
not be aware of it yet.

Since SPARQL rules are scattered over different query engines on the
Web working independently of each other, most of them probably not
even exposing the rules they evaluate, but only publishing their results,
rule chaining on the (Semantic Web) takes place in an unsynchronized,
and forward-chaining manner only. For a backward chaining evalua- The necessity for

two-way rich
unification

tion, real unification is necessary, and can be consistently defined for
all rule languages with rich unification as follows: Given a query q
and a construct pattern p (e.g. a SPARQL construct pattern, an Xcerpt
construct term or an XQuery expression composed of element con-
structors and variables only) σ : vars(p) ∪ vars(q) → voc(p) ∪ voc(q)

is a most general unifier of q and p, if for all substitutions τ holds
((τ ◦ σ)q, (τ ◦ σ)p) ∈ R, where R is the ground matching relation. Two-
way unification aids backward chaining in the following way: If the
unification of a body literal l1 of a rule r1 with the head h of a rule r2
yields a non-empty substitution set, then r2 is relevant in answering l1,
and other queries that unify with the head of r1.

Example 5 (Two-way unification in SPARQL). Consider the SPARQL
construct pattern P and the SPARQL query Q

P = {(a,b, ?X), (?X, c, ?Y), (?Y,a?X)}

Q = {(?V ,b, ?W), (?S, c,a)}

with µ = {?V 7→ a, ?W 7→?X, ?S 7→?X, ?Y 7→ a} being the most general
unifier of Q and P,

µ(P) = {(a,a,a), (a,b, ?X), (?X, c,a)}

and

µ(Q) = {(a,b, ?X), (?X, c,a)}

and for any substitution τ holds ((τ ◦ µ)q, (τ ◦ µ)p) ∈ R where R is the
ground SPARQL matching relationship from example 4.

1.4 subsumption in rule languages with rich unification

Query containment between web queries is much harder to decide than
containment between Prolog terms. Subsumption or query containment
has played a crucial role in database systems and research for a long Subsumption between

Prolog terms
compared with
subsumption for
languages with rich
unification

time. [Sch04b] distinguishes binary XPath containment (⊆2), unary
XPath containment (⊆1) and boolean XPath containment (subseteq0).
In binary XPath containment, XPath expressions are evaluated relatively
over the entire XML tree to sets of pairs of nodes, and these sets are

12 motivation

tested for set inclusion. In unary XPath containment, XPath expressions
are evaluated absolutely – i.e. with respect to the document root – to
sets of nodes, which are subsequently tested for set inclusion. Boolean
XPath containment simply tests if an XPath expression matches with a
document or not, and does not consider the result of the queries. All
three versions of containment can be reduced to each other. Analogous
notions of containment can be defined for XcerptXML query terms, for
Xcerpt

RDF query terms and for SPARQL queries. In this thesis we
consider only boolean query term containment, i.e we say that a query q1
subsumes a query q2 if and only if for all data d holds if q2 matches d,
then also q1 matches d.

The subsumption relationship between two SPARQL graph patterns,
between two XPath expressions or between two Xcerpt query terms is
much more complex and harder to decide than between two Prolog
terms. Still, deciding subsumption between queries is crucial for the
efficient evaluation of rule programs, since it may be used in tabling
engines to memoize intermediate results and avoid recomputation
of solutions. Tabling evaluation engines for Prolog rule systems have
already been developed, but not – to the best of the author’s knowledge –
for SPARQL rule programs or other rule programs with rich unification.

Deciding subsumption between Prolog terms can be seen as a one
way unification between Prolog terms. Unification is an algorithm that
computes the most general unifier between two generally non-ground
Prolog terms. In Prolog it holds that a term t1 subsumes another term
t2 if and only if t2 is an instance of t1.

Example 6. The term t1 = p(f(X),X) subsumes the term t2 = p(f(g(Y)),g(Y)),
but it does not subsume the term t3 = p(f(g(Y)), Y). The substitution
{X 7→ g(Y)} shows that t2 is an instance of t1. In contrast there is no substi-
tution φ such that φ(t1) = t3.

The instance relationship (and thus the subsumption relationship)
between Prolog terms can be checked in time linear in the size of both
terms by a parallel depth first traversal of both terms.

In contrast, subsumption for queries in other rule languages are much
harder to decide. For example, evaluation of a basic SPARQL graphSPARQL query

evaluation and
containment

pattern P possibly containing filter expressions over an RDF graph
G is in O(|P| · |G|), evaluation of a basic SPARQL graph pattern with
filter expressions and the union keyword is NP-complete, and adding
the optional keyword makes evaluation PSPACE complete [PAG06].
Here, the evaluation problem is not finding all mappings µ from the
variables in P to nodes in G, such that µ(P) ⊆ G. Instead, the evaluation
problem takes P, G and a mapping µ as input, and the output is to
decide if µ(P) ⊆ (G). In contrast, given a simple SPARQL graph pattern
P (even without filter expressions) and an RDF graph G, deciding if P
matches G is already NP-complete, since it is exactly the graph coloring
problem (see e.g. [Kub04]). Containment for SPARQL queries has, to
the best of the author’s knowledge, not yet explicitly been studied, but
containment is obviously harder to decide than matching, i.e. already
NP-hard.

Unlike SPARQL, XPath query containment has extensively been stud-XPath query
containment ied [NS02, Sch04b, MS02, tL07]. Already the small fragment XPath{/,//,∗},

i.e. XPath with the descendant axis and label wild cards has been
shown to be CONP-complete. XPath version 2.0 [BBC+

07], the cur-
rent version of the XPath recommendation, is more expressive than

1.5 rich unification and types 13

XPath 1.0 in that it allows variable references. XPath query contain-
ment under an existential semantics (i.e. not given a variable mapping
to check, but testing for the existence of a variable mapping such
that the query q matches with an XML tree t) has been studied in
[DT01]. It turns out that already for the comparatively small fragments
XPath{/,//,[],∗,|,vars}, XPath{/,[],vars, 6=}, and XPath{/,//,[],|,vars, 6=} con-
tainment is Πp2 -complete, whereas for the fragment XPath{/,//,[],∗,|,vars, 6=}

it is undecidable.
In Section 8 we show that Xcerpt query term subsumption is in

O(n!n) by a system of subsumption monotone transformations trans-
forming the subsuming query term into the subsumed one.

1.5 types and type coercion in rule languages with rich

unification

Types play a much more crucial role in rule languages with rich unifi-
cation than they do in conventional rule languages. SPARQL variables
may be bound to IRIs, literals, blank nodes or even entire subgraphs
of an RDF graph. Blank nodes are only allowed to appear as subjects
or objects in an RDF graph, and literals as objects only. Thus, when
constructing graphs by filling variable bindings into SPARQL construct
patterns, one must take care to not construct invalid RDF graphs. This
is most easily and most elegantly met by the introduction of variables
with different types. Variables of type IRI may appear anywhere in
a construct pattern, variables of type blank node must not appear in
predicate position, and variables of type literal may only appear in
object position. Note that SPARQL, as of today, does not support vari-
ables with different types. Instead, invalid triples that are constructed
by SPARQL construct-query rules are simply omitted from the result.
By the introduction of types for variables, SPARQL rules could already
be checked for type-safety, i.e. to not construct invalid RDF triples, at
compile time.

Xcerpt already knows three different kinds of variables: label vari-
ables, XML term variables and XML attribute variables. Term variables
may not appear at the place of attributes or labels in Xcerpt construct
terms, and analogous constraints apply for attribute and label variables.
The type of a variable is derived from the position it appears at within
query terms. For example, the variable HREF in the first rule of Listing
1.3 is an attribute variable, since it appears within round parentheses
in the query term. In the construct term of the same rule, however, it
appears as a term variable. Thus this rule is unsafe and can be rejected
at compile time. Similarly, in the second rule, an element variable is
used at the place of an attribute in the construct term, the third rule
uses a label variable at the position of an element, and only the fourth
rule is type safe. Xcerpt

RDF, which is introduced in Section 5, provides
node, predicate, graph, arc and concise bounded descriptions.

Listing 1.3: "Type safety in Xcerpt"

1 CONSTRUCT link[var HREF] FROM desc a((var HREF)) END

CONSTRUCT link(var Div) FROM desc var Div → div{{ }} END

CONSTRUCT label[var Label] FROM desc var Label{{ }} END

CONSTRUCT label[var Term] FROM desc var Term END �

14 motivation

1.6 outline and contributions of this thesis

The contributions of this thesis are as follows:

• We extend the XML query language Xcerpt to Xcerpt
RDF, thereby

allowing combined and native querying of XML and RDF data. In
this way Xcerpt

RDF becomes a versatile rule language with rich
unification.

• Based on Xcerpt and Xcerpt
RDF, we describe versatile use-cases

for querying RDF and HTML data enriched with micro formats.

• With Xcerpt
RDF providing query constructs aimed at querying

RDF containers and collections and RDF reification, we formalize
the intuitive semantics of these modeling primitives provided
by [MM04] and [Hay04]. Formalization of these concepts is an
indispensable prerequisite for their consistent treatment across
all query languages. Furthermore, we identify a complete set
of entailment rules for a syntactical characterization of the RDF
containers, collections and reification semantics.

• We provide the syntax, semantics and complexity RPL, a novel
and expressive RDF path query language for incorporation into
RDF rule languages such as SPARQL and Xcerpt

RDF. Support-
ing path negation and regular string expressions for matching
qualified names, URIs and literals, RPL is more expressive than
previously proposed RDF path query languages. Despite of this
surge in expressivity, it can still be evaluated efficiently.

• We show the decidability of Xcerpt query term subsumption at
the aid of a system of subsumption monotone transformation
rules, that allows the transformation of a term t1 into a term t2 if
and only if t1 subsumes t2. By appropriate pruning of the search
tree, we show that Xcerpt query term subsumption is in O(n!n).
Additionally we identify complexity bounds for subsumption in
several less expressive fragments of Xcerpt query terms.

• We adapt the well-founded semantics of logic-programming to
rule languages with rich unification. The particular challenge
that must be overcome in this context is that ground queries in
rule languages with rich unification are generally not part of
the Herbrand Universe. In addition, we identify two classes of
locally and weakly stratified programs that have a two-valued
model in the well-founded semantics for rule languages with
rich unification, analogous to the locally and weakly stratified
fragment of logic programs.

2P R E L I M I N A R I E S

Contents
2.1 Introduction to Xcerpt 15
2.2 RDF and the Semantic Web Vision 17

2.2.1 RDF Abstract Data Model 19

2.2.2 RDF/XML 21

2.2.3 Notation 3 24

2.3 The RDF/S Model Theory 24
2.4 RDF Extensions 29
2.5 Critique of the RDF/S Model Theory 31

This chapter introduces the design principles of Xcerpt (Section 2.1),
the Semantic Web Vision and its basic data format RDF (Section 2.2),
the model theoretic semantics of RDF and RDF Schema (Section 2.3),
some extensions of RDF (Section 2.4) and some well-known criticism of
the RDF model theory (Section 2.5).

2.1 introduction to xcerpt

Xcerpt is a versatile, declarative language which was primarily designed Xcerpt and its
extensionsfor XML querying. Xcerpt as described in [Sch04a] has been extended

to the reactive rule language XChange in [P0̆5]. A type system based
on regular rooted graph grammers for Xcerpt is described in [Ber08].
XChangeEQ [Eck08] is a pattern-based language inspired by Xcerpt
for querying streams of XML events with both formal and operational
semantics. Efficient algebraic evaluation of Xcerpt query terms and
single-rule queries is described in [Fur08b, BFLS06]. Processing of RDF
data with Xcerpt by a translation to a relational representation is de-
scribed in [Bol05], challenges for native RDF querying are outlined in
[BFL06], a syntactic extension called Xcerpt

RDF for native RDF query-
ing is presented in [BFLP08] and [Poh08]. Xcerpt

RDF simulation and
Xcerpt

RDF use-cases are described in this thesis and in [BFL+
09a]. An

extension of Xcerpt
RDF with the path language RPL is described in

[BFL09d]. As a formal foundation for the Xcerpt
RDF query primitives

for RDF containers, collections and reifications, the model theoretic of
these compound RDF modelling mechanisms is specified in [BFL09c].
Xcerpt query term subsumption has been studied in [BFL08c] and is
further refined in Chapter 8.

The design principles of Xcerpt as layed out in [BS02] and [BFB+
05] Design principles of

Xcerptare valid for querying all kinds of semi-structured data and thus Xcerpt
is an ideal language to be extended to query new semistructured data
formats appearing on the Web such as RDF, Microformats, topic maps,
etc and to act as an intermediary between these formats. Among these
design principles are the following:

15

16 preliminaries

• Positional, or pattern based querying: Contrasting the navigational
approach of XPath and XQuery where each path expression yields
at most one variable binding (unary queries), Xcerpt takes a
positional one, returning multiple variable bindings for patterns
representing trees (and sometimes even graphs) (n-ary queries).
These patterns, which are used to extract variable bindings from
semistructured data, are called query terms and are informally
discussed in Section 4 and formally defined in Section 5 for RDF
and Section 8 for XML.

• Clear separation of querying and construction: A further characteris-
tic of Xcerpt is the clear separation of construct and query parts
in Xcerpt programs. This is achieved by the introduction of substi-
tution sets, which may be considered as an interface between the
querying and construction of data. Substitution sets are generated
by matching query terms with semistructured data and consumed
by their application to so-called construct terms. Construct and
query terms are connected via Xcerpt construct-query-rules.

• Goal directed reasoning on the Web: Several construct query rules
make up an Xcerpt program and are evaluated using forward or –
similar to Prolog programs – backward chaining. While forward
chaining evaluation of rules is sensible in the case of restricted
amounts of data, the open nature on the Web requires backward
chaining – or goal directed reasoning – to write programs that
query an a priori unknown amount of data such as Web crawlers
or Semantic Web agents [Hen01].

• Strong answer closedness: Reusability of code fragments is en-
hanced by so-called answer closedness. We call a query language
answer closed, if (i) data in the queried format can be used as a
query, and (ii) answers to queries can again be used as queries.
A query language is called weakly answer closed, if condition (ii) is
true only for some queries, and strongly answer closed, if condition
(ii) holds true for any query in the language.

• Reasoning capabilities: Being a rule-based language, Xcerpt is ide-
ally suited for deriving new knowledge from exisiting Web data,
or detecting inconsistencies between data published on the Web.

• Versatility: From the beginning, Xcerpt was conceived to be versa-
tile, supporting XML, bibtex and RDF querying. When querying
RDF, however, Xcerpt had to rely on syntactic processing of seri-
alizations of RDF data and on a conversion of the nested RDF
graph structure to sets of triples. This thesis extends Xcerpt to
Xcerpt

RDF which is able to natively query RDF graphs, thereby
respecting the semantics of RDF containers, collections and reifi-
cations.

set oriented processing capabilities in xcerpt In the same
way as the logic programming language Prolog offers set-oriented con-
structs such as findall, bagof, setof and coverof, and as SQL provides
group by, order by and aggregate functions such as count, Xcerpt of-
fers the set-oriented grouping constructs all and some and set-based
aggregation operations such as count and sum.

As pointed out by [GP91] the choice of including set oriented con-
structs in rule-based query languages is motivated by the fact that

2.2 rdf and the semantic web vision 17

the “ability of a single rule to directly access all of the data to be ma-
nipulated eliminates the need for unwieldy control mechanisms and
marking schemes”. Furthermore, the “division of a rule into LHS1 and
RHS2 breaks up the specification of a relation from the actions to be
performed on it” and prevents a rule from accessing “the entire relation
that its LHS defines”.

[GP91] further highlight that set-oriented constructs may be added
to the left hand side (i.e. the query part) of rules as well as to the right
hand side (i.e. the construct part). Since Xcerpt not only separates query-
ing from construction, but also querying from filtering, set-oriented
constructs are not necessary in Xcerpt query terms. As might be ex-
pected, and as the need for expressive web query languages dictates,
grouping constructs are allowed in Xcerpt construct terms and filter
expressions. For details on how to use Xcerpt’s set-oriented constructs
the reader is referred to [Sch04a].

The availability of set-oriented constructs in a logic programming
language has an important impact on the evaluation methods employed
by the language. In this case, tuple-based processing is simply not feasi-
ble, but sets of substitutions must be memorized during the evaluation.
While the linearity of SLD resolution often pays off in terms of low
memory consumption for programming languages without set-oriented
constructs, it is inconvenient in their presence. Instead, set-oriented eval-
uation mechanisms, that memorize computed extensions of predicates
naturally fit with these languages. This thought has been considered in
the optimization of the rule chaining in Xcerpt, which is described in
Section 8.

2.2 rdf and the semantic web vision

“The Semantic Web is an evolving extension of the World
Wide Web in which the semantics of information and ser-
vices on the web is defined, making it possible for the web to
understand and satisfy the requests of people and machines
to use the web content. It derives from W3C director Tim
Berners-Lee’s vision of the Web as a universal medium for
data, information, and knowledge exchange”. [Wikipedia]

While the World Wide Web is, today, only comprehensible for human
beings, the Semantic Web has the aim of giving Web content also a
semantics for machines, or to be more precise, to be understandable
for software agents that crawl and query Web content on the behalf of
human users.

Imagine a software agent that is given the task of making an ap- A semantic Web use
casepointment for some person called Anna living somewhere in Munich

with a dentist nearby. There are several sources of information that the
software agent must gather and process:

• Anna’s calendar information

• the location of Anna’s working or living place

• a list of dentists in Munich and their addresses

1 left hand side
2 right hand side

18 preliminaries

• geographic information about the distance between Anna’s ad-
dress and the one of the dentist.

• the dentists’ calendar information

Already today, many people manage their calendars online (such as
with Google calendar or within some social networking site), or they
manage their calendars with some desktop application such as Lotus
Notes or Microsoft Exchange, which can be easily exported into some
serialization format such as CSV (comma separated values) or some
more standardized format such as iCalendar.

Lists of dentists in a particular region can be found online using
yellow pages or a directory service such as the Yahoo! directory. A
human being can easily find out the distance between two addresses
online using mapping services such as Google Maps or Live Search
Maps.

Although all necessary information for fulfilling the task of the
software agent could be already put online today, the implementation of
the software agent is still a very challenging task, since the information
is scattered over a variety of places, in a variety of different formats,
and more importantly not intended to be understood by computers.

This is where RDF comes into play. Together with the Web ontologyThe role of RDF in
the Semantic Web language (OWL), RDF is the first data format with a model-theoretic

semantics, that has achieved considerable popularity on the Web. The
availability of a model theoretic semantics for a Web data format allows
the derivation of new knowledge from existing knowledge in a clearly
defined way. Thus, given the information that John Doe is a dentist in
Schwabing, and that Schwabing is a district of Munich, one can derive
by a simple rule that John Doe is a dentist in Munich.

Already today, RDF is used for describing persons and their relations
(FOAF3), Software Projects (DOAP4), biological data (e.g. the UniProt
database5), for exporting Wikipedia metadata, metadata about music
(MusicBrainz6), etc.

All of the above information could be converted to RDF, and for
many standardized formats such as iCal, tools for translating them to
RDF format are already available. The next step in the development of
the Semantic Web is the establishment of suitable RDF vocabularies for
the application domains mentioned above (calendar information, geo-
graphic positions, directions, distances, extensions, maps of cities, en-
tries in white and yellow pages). Once these vocabularies have emerged
and been agreed upon, and once there are tools for translating the
information, which is already available today, into these vocabularies,
query, reasoning and transformation languages will help to write truly
intelligent software agents that can indeed solve problems as complex
as the one described above. I.e. the scheduling of an appointment with
an a-priori unknown dentist that is compatible with the calendars of
the persons involved and that complies with geographic constraints.

3 http://xmlns.com/foaf/spec/
4 http://trac.usefulinc.com/doap
5 http://dev.isb-sib.ch/projects/uniprot-rdf/
6 http://musicbrainz.org/

http://xmlns.com/foaf/spec/
http://trac.usefulinc.com/doap
http://dev.isb-sib.ch/projects/uniprot-rdf/
http://musicbrainz.org/

2.2 rdf and the semantic web vision 19

2.2.1 RDF Abstract Data Model

Before taking a closer look at the syntax and serializations of RDF, i.e.
the form in which the programmer encounters RDF data on the Web,
we first explore the abstract data model of RDF, i.e. the concepts in
which RDF is thought of, the way we should think about RDF data.
These “Concepts and Abstract Syntax” are defined in [Kly04]. Arguably
the most important concepts of RDF are RDF Graphs and RDF Triples
as defined in [Kly04]:

“The underlying structure of any expression in RDF is a
collection of triples, each consisting of a subject, a predicate
and an object. A set of such triples is called an RDF graph
[. . .]. This can be illustrated by a node and directed-arc
diagram, in which each triple is represented as a node-arc-
node link (hence the term "graph").

Each triple represents a statement of a relationship between
the things denoted by the nodes that it links. Each triple has
three parts:

• a subject,
• an object, and
• a predicate (also called a property) that denotes a rela-

tionship.

The direction of the arc is significant: it always points toward
the object. The nodes of an RDF graph are its subjects and
objects.

The assertion of an RDF triple says that some relationship,
indicated by the predicate, holds between the things de-
noted by subject and object of the triple. The assertion of
an RDF graph amounts to asserting all the triples in it, so
the meaning of an RDF graph is the conjunction (logical
AND) of the statements corresponding to all the triples it
contains.”

While RDF statements7 always consist of exactly three components
– the subject, the predicate and the object – each of these components
may be – up to some restrictions – of one of three different types:
URI references, RDF literals or RDF blank nodes. The restrictions are: the
subject must not be a literal and the predicate must be a URI reference.
There are no restrictions for the type of the object.

uri references in rdf graphs URI references are used to refer
to concepts or real world objects one would like to make a statement
about. Assuming that a person called Anna would like to introduce
herself on the Web and make some statements about herself in RDF
format, such that these statements can be processed by software agents
or Semantic Web search engines, she would first have to come up
with some URI reference for herself, for the Person Anna. To avoid
name conflicts Anna could pick a URI belonging to a domain that
belongs to her (e.g. http://www.anna.org/me. Note that RDF makes
no assumption about the content of the web page located at http:

//www.anna.org/me. In fact it does not even demand that at there is a

7 we use the terms RDF statement and RDF triple synonymously

http://www.anna.org/me
http://www.anna.org/me
http://www.anna.org/me

20 preliminaries

web page at the given URI. The URI has the sole purpose of identifying
the concept of the Person Anna for software applications that reason
about RDF data.

rdf literals The use of RDF literals is motivated by the following
scenario: Assume that Anna would like to state that her first name
is “Anna”. As the subject of the RDF statement she would pick the
URI http://www.anna.org/me. Choosing the predicate, she could make
use of the popular friend-of-a-friend (FOAF) vocabulary, that was
specified to describe persons and their interrelationships. The predicate
designated for this purpose has the URI http://xmlns.com/foaf/0.

1/firstName and is commonly abbreviated by foaf:firstName using
the namespace prefix foaf associated with http://xmlns.com/foaf/

0.1/. Picking the object of the statement, Anna could come up with
a namespace URI for the string “Anna”, but since all information
about the string “Anna” is already conveyed by simply writing it as
a sequence of characters, a special type of node was introduced for
Strings, which is called an RDF Literal. Thus the statement that Anna
would like to make in RDF is the following triple:

(http://www.anna.org/me, foaf:firstName, "Anna").

As mentioned above, literals may only occur in object position of
RDF triples. The RDF recommendation [Kly04] distinguishes plain andPlain and typed

literals typed literals. The string “Anna” from above is called a plain literal,
since it does not have any associated datatype. Plain literals may haveLanguage tags for

plain literals an optional language tag such as "en", "fr", "de" that determines the
natural language the string is written in. The literal "Anna@en" is a
plain literal with a language tag. Typed literals are associated with a
datatype, usually one of the simple datatypes defined by RDF Schema
[BG04]. The type of the literal is separated from the literal itself by
"^^". An example for a typed literal is 27"|http://www.w3.org/2001/

XMLSchema#integer>.

rdf blank nodes The last type of node that can be found in RDF
triples, and which can only occur in subject or object position, are
RDF blank nodes, often abbreviated as b-nodes. Blank nodes are used
whenever one would like to make statements about a concept without
giving it a URI reference, because the exact nature of the concept is
unknown or because there is no need to identify the concept. The
use of blank nodes in RDF triples thus only asserts the existence of a
resource that satisfies the relationships asserted by the triples, without
identifying this resource (by giving it a URI reference). Blank nodes use
the empty namespace prefix “_” followed by a colon and an identifier.
Anna might want to state that she knows some person called Bob, by
making use of the FOAF vocabulary and by picking the blank node
identifier “_:bob” with the following triples:

http://www.anna.org/me, foaf:knows, _:bob
_:bob, foaf:firstName, ‘‘Bob’’

While RDF is only a data representation language, the role of blank
nodes and URIs in RDF can be compared to the notion of local and
global variable identifiers in programming languages. The scope of localScope of URIs and

blank node identifiers variable declarations is limited to the method, module or class they

http://www.anna.org/me
http://xmlns.com/foaf/0.1/firstName
http://xmlns.com/foaf/0.1/firstName
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema#integer

2.2 rdf and the semantic web vision 21

are defined in, while global variable declarations are valid in the entire
program or even software package. Similarly, the scope of blank node
identifiers is restricted to the document they occur in, and the scope
of URI references is unlimited, i.e. the same URI reference is supposed
to denote the same concept in all RDF documents ever published. This
means that URI references have to be carefully picked, and that the
same blank node identifier may denote different resources in different
RDF documents.

While the same URI denotes the same resource across all RDF docu-
ments, two different URIs might very well denote the same resource,
that is, the unique name assumption does not hold in RDF. Under the Unique name

assumptionunique name assumption, which underlies many description logic di-
alects, and has been investigated thoroughly in classical logics, different
identifiers always denote different resources. Enforcing the unique
name assumption would simply be impossible in a distributed environ-
ment such as the Web.

A closely related design decision of many RDF query languages Open and closed
world assumption;
(Scoped) Negation as
failure

is the adoption of the open world assumption. Under the open world
assumption, the relevant information is assumed to be only partially
known. This means that from the pure inability to prove some state-
ment, this statement cannot be assumed to be false – thus, the open
world assumption does not allow negation as failure. Since RDF does not
provide strong negation (and neither any other means for deriving the
falsity of a statement), RDF query languages based on the open world
assumption do not provide a negation operator at all. The closed world
assumption, on the other hand, assumes total knowledge of the relevant
data, and thus allows to derive negative conclusions simply by failing
to derive their positive counterparts. The open world assumption can,
however, be combined with scoped negation as failure, as proposed in
[PFH06]. This approach is also taken in Xcerpt.

lean rdf graphs The presence of blank nodes in RDF graphs
introduces the possibility of specifying redundant graphs. One RDF
statement may assert that there is a person that is president of Germany,
another statement may state that the person represented by the URI
http://example.org/Horst is president of Germany. Since the first
statement is a logical consequence of the second statement, the RDF
graph made up of both statements is redundant, or in RDF terminology
non-lean. Note that redundancy in RDF graphs cannot be determined by Redundancy in RDF

graphs and leannesssimply comparing single triples, but is instead a global attribute of the
entire RDF graph, since the same blank node may appear in multiple
RDF statements. Since RDF is a logical language, which is formally
specified by a model theory, the notion of redundancy or non-leanness
of RDF graphs can be specified in terms of logical entailment. Given
an arbitrary RDF graph, computing a lean version of the graph, i.e. a
graph which is logically equivalent, but non-redundant, is an NP-hard
problem [GHM03].

2.2.2 RDF/XML

Since RDF data is not only a data format for describing – among
others – resources on the Web, but is also exchanged over the Web, it is
unsurprising that its primary serialization format RDF/XML is an XML
application. The RDF/XML specification [Bec04] builds upon the XML

http://example.org/Horst

22 preliminaries

Information Set[CT04] and upon Namespaces in XML[BHLT06] and
the XML Base recommendation [MT08] for abbreviating URI references
within RDF graphs in their RDF/XML serialization.

In order to encode the graph in XML, the nodes and pred-
icates have to be represented in XML terms – element
names, attribute names, element contents and attribute val-
ues. RDF/XML uses XML QNames as defined in Names-
paces in XML [BHLT06] to represent RDF URI references.
All QNames have a namespace name which is a URI refer-
ence and a short local name. In addition, QNames can either
have a short prefix or be declared with the default names-
pace declaration and have none (but still have a namespace
name).[Bec04][Section 2.1]

This quote is clarified by Listing 2.2.2, which gives an example for
the serialization of an RDF graph as an RDF/XML document.

<?xml version=" 1.0 "?>
<rdf:RDF xmlns:rdf=" http://www.w3. org/1999/02/22−rdf−syntax−ns#"

xmlns:foaf=" http://xmlns.com/foaf/0.1/"
xml:base=" http://www.anna. org/"

<rdf:Description rdf:ID="anna">
<foaf:firstName>Anna</foaf:firstName>

<foaf:knows>

<rdf:Description rdf:about=" http://bob. org/bob">
<foaf:firstName>Bob</foaf:firstName>

</rdf:Description>

</foaf:knows>

</rdf:Description>

</rdf:RDF> �
encoding of uris in rdf/xml In the above RDF/XML docu-
ment, URIs are encoded in three different manners: The URI http:

//www.anna.org/#anna is encoded using the RDF base declaration
xml:base="http://www.anna.org/" together with the rdf:ID attribute
and the local name anna. The URI http://xmlns.com/foaf/0.1/knows
is encoded by defining the namespace prefix foaf and making use
of it in an element name (foaf:knows), which represents the knows-
relationship between Anna and Bob. Finally the URI for Bob is simply
given as the value of an rdf:about attribute of a rdf:description ele-
ment. The rdf:about attribute could also have been omitted, in which
case there would be no URI representing the person Bob, but only a
blank node.

striped syntax of rdf/xml The basic pattern for serializing
RDF graphs within RDF/XML is a striped nesting of elements within
the rdf:RDF root element: XML elements with an odd depth within
the XML document tree represent nodes in the RDF graph, whereas
XML elements occurring on an even level represent edges of the
RDF graph. The outermost rdf:RDF element contains one or more
rdf:Description elements, which are the entry points into the RDF
graph. Each rdf:Description element is a subject of an RDF state-
ment in the graph, and for each node in the RDF graph – with some
exceptions – there is an rdf:Description element in its RDF/XML
serialization. Note that since RDF graphs, in contrast to XML trees,

http://www.anna.org/#anna
http://www.anna.org/#anna
http://xmlns.com/foaf/0.1/knows

2.2 rdf and the semantic web vision 23

may not have a single root from which all other nodes are reachable,
it may be unavoidable to have more than one rdf:Description ele-
ment directly within the rdf:RDF document root. An RDF graph that
has n nodes without incoming edges will have at least n outermost
rdf:Description elements in its RDF/XML serialization.

blank nodes in rdf/xml Besides the implicit representation of
RDF blank nodes in RDF/XML mentioned above, one can also use
the rdf:nodeID attribute provided by the RDF/XML specification.
Moreover, if a blank node only occurs in object position the empty
rdf:description element can be omitted:

“Blank nodes (not RDF URI reference nodes) in RDF graphs
can be written in a form that allows the <rdf:Description>

</rdf:Description> pair to be omitted. The omission is
done by putting an rdf:parseType="Resource" attribute on
the containing property element that turns the property
element into a property-and-node element, which can it-
self have both property elements and property attributes.
Property attributes and the rdf:nodeID attribute are not
permitted on property-and-node elements.”[Bec04][Section
2.11]

literals in rdf/xml Literals of an RDF graph can be represented
as XML text nodes of its RDF/XML serialization – just as the text node
“Bob” of the RDF/XML document above represents the literal “Bob”
of the corresponding RDF graph. Literals may also be encoded as
attribute values. The statement that the first name of Chuck is “Chuck”,
where the person Chuck is represented by a blank node can be encoded
in RDF/XML as <rdf:description foaf:firstName=“Chuck”/>. Here
foaf:firstName is called a property attribute.

further syntactic sugar for abbreviating rdf/xml The
above mentioned alternative encodings for URIs, literals and predicates
are all abbreviations for the strictly striped RDF/XML syntax in which
every URI, literal or blank node, be it in subject, predicate or object
position is represented by an XML element or text node. But RDF/XML
features many more syntactic variations, of which the most common
ones are the following:

• empty property elements by usage of the rdf:resource attribute

• abbreviation of rdf:type statements

• using rdf:li as container membership properties instead of
rdf:_1, rdf:_2, . . .

• using rdf:parseType=“collection” instead of implicit blank node
construction

• usage of the rdf:id attribute on properties as an abbreviation for
rdf reification.

• specification of the type of a literal with the rdf:datatype at-
tribute

• usage of rdf:parseType=“Literal” for inclusion of XML-literals

24 preliminaries

2.2.3 Notation 3

Notation 3[BL98], often also called N3, is not a formally specified RDF
serialization format but only available as an ordinary HTML document
on the w3c domain, which may be put into the form of a working group
note or even a w3c recommendation in the future. Notation 3 must be
distinguished from the RDF serialization format NTriples, which is a
subset of Notation 3.

Notation 3 is meant to be “a language which is a compact and
readable alternative to RDF’s XML syntax, but also is extended to
allow greater expressiveness. It has subsets, one of which is RDF 1.0
equivalent, and one of which is RDF plus a form of RDF rules.”[BL98].
For space limitations this section gives only a brief introduction to
Notation 3 by examples. The interested reader is referred to [BL98] for
the complete documentation.
[:firstname “Ora”] dc:wrote [dc:title “Moby Dick”] .

The above Notation three fragment is equivalent to three rdf state-
ments, the first one asserting that there is someone (represented by a
blank node) who has the first name “Ora”, the second asserting that
there is something with the title “Moby Dick” (represented by another
blank node) and the third one asserting that the first blank node is
in dc:wrote relationship with the second blank. The example shows
how statements containing literals, blank nodes and URIs, possibly
abbreviated by using namespace prefixes and default namespaces can
be expressed in N3. Blank nodes can be conveniently expressed with
square brackets without the use of blank node identifiers (blank node
identifiers are still necessary to encode multiple statements containing
the same blank node). The prefix dc must certainly be declared and
in this case refers to the dublin core vocabulary for RDF. Also a de-
fault namespace must be declared to ensure that :firstname can be
expanded to form a URI. Finally literals are distinguished from URIs
by enclosing them in double quotes.

Notation 3 introduces several shorthand notations for frequently used
RDF properties such as rdf:type and allows to make statements about
RDF graphs themselves, thereby introducing a new concept which is
similar to RDF reification. Moreover, Notation 3 extends the expressivity
of plain RDF by providing universal quantification of variables besides
the existential quantification which is present as soon as blank nodes
are used.

2.3 the rdf/s model theory

RDF and RDFS being logical knowledge representation languages, their
semantics is formally specified by a model theory [Hay04]. This model
theory allows to decide which conclusions can or cannot be drawn
from RDF data published on the Web. The following definition of RDF
graphs is similar to the definition of conjunctions of logical atoms in
classical logic, and formalizes the notion of RDF data.

Definition 2 (RDF triple, RDF graph). Let U be a set of URIs, L a set of
literals and B a set of blank node identifiers. An RDF triple over U,B,L is a
triple (s,p,o) of subject, predicate and object, where s ∈ U ∪ B, p ∈ U and
o ∈ U ∪ B ∪ L. An RDF graph over U,B,L is a set of triples over U,B,L.
An RDF graph is called ground, if it does not contain any blank nodes.

2.3 the rdf/s model theory 25

There are two increasingly restrictive model theories for RDF, and
two more for RDFS, an extension of RDF which extends RDF by –
among others – a subclass relationships, the specification of domains
and ranges of predicate, and typing of RDF properties. These four
model theories are specified based on simple RDF interpretations, RDF
interpretations, RDFS interpretations and RDFS datatyped interpretations.

For space reasons, only simple RDF interpretations and RDFS inter-
pretations and the corresponding model theory are introduced here.
(Non-simple) RDF interpretations extend simple RDF interpretations by
giving a semantics to the RDF vocabulary rdf:type, rdf:Property and
rdf:XMLLiteral. Given a datatype map, RDFS datatyped interpretations
specify a minimal semantics for the typed literals in an RDF graph. A
datatype map is a set of pairs of URI references and datatypes. A datatype
in this context is defined as a mapping from a set strings (called the
lexical space) to a set of values (called the value space).

In a very similar fashion to classical logic entailment, simple entail-
ment is defined based on the concepts of simple RDF interpretations and
simple RDF denotations and the model relationship between simple RDF
interpretations and RDF graphs. RDF interpretations in turn make use
of the notion of an RDF vocabulary:

Definition 3. An RDF vocabulary V is a set of names, i.e. a set of URIs U
plus a set of literals8. The vocabulary of an RDF graph are all the URIs and
literals that occur in it.

Definition 4 (Simple RDF interpretation [Hay04]). A Simple interpreta-
tion of an RDF vocabulary V = U∪L is a six-tuple (IR, IP, IEXT , IS, IL,LV)

where

• IR 6= ∅: the domain or universe of I.

• IP: the set of properties of I.

• IEXT : IP → P(IR× IR).

• IS : U→ IR∪ IP.

• IL : a mapping from typed Literals in V into IR.

• LV ⊆ IR: the set of literal values
Relationship between
simple RDF
interpretations and
first-order
interpretations

The most obvious difference of simple RDF interpretations to inter-
pretations of classical logic is that property names are also interpreted
as elements of the domain. This is necessary, since the same URI may
both appear in predicate position of an RDF triple and in subject and/or
object position of another (or even the same) RDF triple. Note that for Relationship between

IR and IPsimple RDF interpretations, IR and IP are neither required to be disjunct
nor is it demanded that IP ⊆ IR. But if a URI u appears within an RDF
graph G both in predicate and in subject or object position, then for a
simple interpretation I = (IR, IP, IEXT , IS, IL,LV) that is a model of G,
IS(u) must be in the intersection of IR and IP, thus for such graphs,
IR and IP must not be disjunct. Non-simple RDF interpretations (see
Definition 8) require IP ⊆ IR.

While RDF interpretations give meaning to URIs and typed literals,
RDF denotations give meaning also to untyped literals, and assign truth
values to ground RDF triples and ground RDF graphs based on an
interpretation:

8 blank node identifiers are – as variables in predicate logic – not considered part of the
vocabulary

26 preliminaries

Definition 5 (Denotation of ground RDF graphs). Given an RDF inter-
pretation I = (IR, IP, IEXT , IS, IL,LV) over a vocabulary V , the denotation
of a ground RDF graph is defined as follows:

• if E is a plain literal "aaa" in V then I(E) = aaa

• if E is a plain literal "aaa"@ttt in V then I(E) = <aaa,ttt>

• if E is a typed literal in V then I(E)=IL(E)

• if E is a URI reference in V then I(E)=IS(E)

• if E is a ground triple (s,p,o) then I(E) = true iff s, p, o are in V , I(p)
is in IP and (I(s), I(o)) is in IEXT(I(p)).

• if E is a ground RDF graph then I(E) = false if I(E ′) = false for some
triple E ′ in E, otherwise I(E) = true.

By the above definition it is easy to see that the denotation of the
empty RDF graph is always true, just as an empty conjunction is often
considered true in first-order logic. Moreover, if some name in an RDF
graph G is not in the vocabulary V of the interpretation I, then the
denotation of G is false under I. Definition 5 already allows to decide
entailment between ground RDF graphs. We say that an interpretation
I is a model of a ground RDF graph G, if the denotation of G is true
under I. A ground RDF graph G1 entails a ground RDF graph G2, if
all models of G1 are also models of G2. Ground entailment between
G1 and G2 can simply be reduced to testing the subset relationship
between G1 and G2 and is thus decidable in linear time. Entailment
between RDF graphs becomes more involved when blank nodes come
into play. We therefore introduce denotations for non-ground RDF
graphs:

Definition 6 (Denotation of arbitrary RDF graphs). Let G be an RDF
graph, blank(G) the set of blank nodes in G, I an interpretation and A a
mapping from blank(G) to IR.

Then [I+A] denotes an extended interpretation which is like I, but maps
any blank node B to A(B). I(G) = true if [I+A ′](G) = true for some
mapping A ′ from blank(G) to IR.

The important clause in Definition 6 is that there must be some
mapping A ′ from blank nodes to elements in the domain, such that
the interpretation extended by this mapping makes the RDF graph
true. Therefore blank nodes in RDF graphs can seen as existentially
quantified variables.

Definition 7 (Model, simple entailment). Let G1 and G2 be two not
necessarily ground RDF graphs, I an intepretation. I is a model of G1, if and
only if the denotation of G1 is true under I. G1 simply entails G2, if and
only if every model of G1 is also a model of G2.

Definition 8 (RDF interpretation (Adapted from [Hay04])). RDF inter-
pretations are simple RDF interpretations satisfying the following additional
conditions:

• x ∈ IP iff (x, I(rdf : Property)) ∈ IEXT(rdf : type)

• For all literals l, which are typed as XML literals, and which are well-
typed9 IL(l) must denote the XML value of l (i.e. an XML fragment).

9 An XML Literal is well-typed, if it the serialization of some well-formed fragment of
XML. Otherwise it is called ill-typed.

2.3 the rdf/s model theory 27

• For a well-typed XML literal l, IL(l) must be in LV .

• For a well-typed XML literal l, (IL(l), I(rdf : XMLLiteral)) is in
IEXT(rdf : type).

• For an ill-typed XML literal l, IL(l) is not in LV , and (IL(l), I(rdf :

XMLLiteral)) is not in IEXT(rdf : type).

Definition 9 (RDFS interpretation [Hay04]). An RDFS interpretation is
an RDF interpretation satisfying the following additional conditions:10

• x ∈ ICEXT(y) iff (x,y) ∈ IEXT(I(type))

• IC = ICEXT(I(Class))

• IR = ICEXT(I(Resource))

• LV = ICEXT(I(Literal))

• If (x,y) is in IEXT(I(domain)) and (u, v) is in IEXT(x) then u is in
ICEXT(y).

• If (x,y) is in IEXT(I(range)) and (u, v) is in IEXT(x) then v is in
ICEXT(y).

• IEXT(I(subPropertyOf)) is transitive and reflexive on IP.

• If (x,y) is in IEXT(I(subPropertyOf)) then x and y are in IP and
IEXT(x) is a subset of IEXT(y).

• If x is in IC then (x, I(Resource)) is in IEXT(I(subClassOf)).

• If (x,y) is in IEXT(I(subClassOf)) then x and y are in IC and ICEXT(x)
is a subset of ICEXT(y).

• IEXT(I(subClassOf)) is transitive and reflexive on IC.

• If x is in ICEXT(I(ContainerMembershipProperty)) then (x, I(member))
is in IEXT(I(subPropertyOf)).

• If x is in ICEXT(I(Datatype)) then (x, I(Literal)) is in IEXT(I(subClassOf)).

For RDF and especially for RDFS, so-called derivation rules have RDF/S derivation
rulesbeen identified, which can be used to derive additional knowledge from

RDF graphs. While the definitions of (simple) RDF/S interpretations
impose constraints on the valid interpretations of a graph only, deriva-
tion rules are syntactical transformations on RDF graphs, such that the
model relationship between interpretations and the graphs to be trans-
formed remain untouched. For simple RDF entailment, these derivation
rules are very restricted. Given an RDF graph consisting of the single
triple (a,b, c), one may add other triples to the graph in which the
subject, the object or both are replaced by a blank node identifier. For
RDFS entailment, these transformations include derivation rules for the
transitivity of the subclass relationship, the subproperty relationship,
derivation rules for the special predicates rdfs:domain and rdfs:range.
The validity of these transformation rules can be checked by applying
the following definition.

10 The namespace prefixes rdf and rdfs are omitted for the sake of brevity.

28 preliminaries

Definition 10 (Valid and invalid transformations on RDF graphs (adapted
from [Hay04])). Let G be the set of all RDF graphs. A transformation
T : G → G is valid, if g entails T(g) for all RDF graphs g ∈ G. Other-
wise T is called invalid.

Based on Definition 7, several lemmata have been derived, some
of which are straight-forward. The empty graph lemma (Lemma 1) is
analogous to the fact that the empty conjunction is equivalent to > in
first order logic. The subgraph lemma 2 is analogous to the fact that in
first order logic a conjunction c entails any conjunction c ′ formed from
a subset of the conjuncts of c. The instance lemma (Lemma 3) asserts
that all graphs G which contain information about some resource r
without identifying r, are entailed by all graphs G ′ which identify r by
some URI u, and are otherwise the same as G.

Lemma 1 (Empty graph lemma). The empty set of triples is entailed by
any graph.

Lemma 2 (Subgraph lemma). A graph entails all its subgraphs.

Lemma 3 (Instance lemma). A graph is entailed by any of its instances.

The merge of a set of graphs G1, . . . ,Gn is the union of G ′1, . . . ,G ′n,
where G ′i is obtained from Gi by consistent renaming of blank node
identifiers, and G ′1, . . . ,G ′n do not have any blank nodes in common.
We say that G ′1, . . . ,G ′n have been standardized apart. Lemma 4 says
that if a set of RDF graphs is thrown accidentally together (without
standardization apart), then the outcome may entail more than the
merge of the graph, and that the taking the merge is the only right way
of combining a set of RDF graphs on the Web. The interpolation Lemma
(Lemma 3) shows that simple RDF entailment is decidable by giving
a syntactic criterion for entailment. The model theoretic definition for
entailment does not give an algorithm, since it requires the considera-
tion of an infinite number of interpretations. Just as the interpolation
lemma gives a syntactic criterion for deciding entailment, Lemma 6

gives a syntactic criterion for deciding the leanness of an RDF graph.
Intuitively, an RDF graph is lean, if it does not contain any redundant
information, that is, if it cannot be expressed by an equivalent (under
bi-entailment) graph with a smaller set of triples.11

Lemma 4 (Merging lemma). The merge of a set S of RDF graphs is entailed
by S, and entails every member of S.

Lemma 5 (Interpolation lemma). S simply entails a graph E if and only
if a subgraph of S is an instance of E.

Lemma 6 (Leanness lemma). An RDF graph G is lean with respect to
simple entailment, if it has no instance, which is a proper subgraph of G.

RDF graphs may simply-entail instances of themselves. For instance,
the graph G = {(a,b, c), (a,b, _ : X)} entails G ′ = {(a,b, c)}, which is an
instance of G. Lemma 7 states that this is only true for non-lean graphs.
Lemma 8 is related to the Compactness Theorem of first order logic,

11 In [Hay04], Lemma 6 is the definition of lean RDF graphs. The intuitive meaning of
leanness, however, is the one of non-redundancy, and is better characterized in model
theoretic terms as here. In this way, leanness not only applies for redundancy due to the
presence of blank nodes, but also due to the presence of triples in the graph which are
already contained under the RDFS semantics, or some other semantic extension of RDF.
In fact, leanness under the RDFS semantics has already been considered in [GHM04].

2.4 rdf extensions 29

which allows to draw conclusions from finite subsets Si of an infinite
set of formulas S to S itself. If RDF entailment were defined in terms of
first order interpretations, Lemma 8 would be a direct consequence of
the Compactness Theorem of FOL.

Lemma 7 (Anonymity Lemma). Let E be a lean graph and E ′ a proper
instance of E. Then E does not entail E ′.

Lemma 8 (Compactness Lemma). If S entails E and E is a finite graph,
then some finite subset S ′ of S entails E.

2.4 rdf extensions

In this section we briefly describe three extensions of the RDF/S model
theory proposed by [ter05a] and [ter05a]. The RDF/S model theory
explicitly encourages semantic extensions of RDF/S, and the extensions
described in this section have been proven not to increase the complexity
of checking ground and non-ground entailment between RDF graphs
when compared to simple RDF entailment. In Sections 5.2.2 and 5.2.3
we propose two further extensions of the RDF/S model theory, that
are orthogonal to the extensions D∗, pD∗ and R described in this
section, in the sense that the semantic conditions layed on D∗, pD∗ or
R interpretations do not interfere with the semantic conditions layed
on RDFCC interpretations or RDFR interpretations. Put in another way,
if an RDF graph is satisfiable under the D∗ semantics (or the pD∗, or
the R semantics), and also under the RDFCC (or the RDFR semantics),
then it is valid also if the conditions for D∗ (or pD∗ or R) and RDFCC
(or RDFR) are combined.

d*-entailment D∗ entailment is a minor extension of RDFS en-
tailment, that deals with typed RDF literals, and that generalizes the
notion of XML clashes to D-clashes. The only type known to RDF/S
interpretations is the one of XML literals, but D∗ interpretations can
be used with arbitrary RDF schema datatypes such as xsd:string and
xsd:integer. An XML clash is present in an RDF graph when an RDF
literal, which is not a well-formed XML fragment, is asserted to be of
type XMLLiteral. Similarly, a D-clash occurs in an RDF graph G, when-
ever an RDF literal l in G is asserted to be of some XML Schema type t,
and l does not belong the the lexical space of t.

When compared to ordinary RDF datatype entailment as described
in [Hay04], which is also referred to as D-entailment, D∗ entailment
is weaker, as the following example from [ter05a] illustrates: The set
of triples S = {(a p "true"), (a p "false"), (b rdf:type boolean)} D-
entails the triple t = (a p b), but t is not D∗-entailed by S. This is
best explained by the intuition that while D-entailment follows an
‘iff-semantics’ approach for entailment, D∗-entailment gets by with a
’if-semantics’. As a second example, an RDF graph G containing the
triples (b rdf:type xsd:integer), (b rdf:type xsd:string), asserting that
some blank node b in G is a surrogate for some literal that is both
a string and an integer, has no D-interpretation, but it does have a
D∗-interpretation. While D∗ entailment is in P for ground RDF graphs,
and NP-complete for non-ground RDF graphs, the complexity of D-
entailment has, to the best of the author’s knowledge, not yet been
determined.

30 preliminaries

pd* entailment pD∗-Entailment[ter04] is a variant of OWL entail-
ment, but weaker than OWL Full. In the pD∗ semantics there may be
datatype clashes as well as P clashes. P clashes occur in two sets of
circumstances: (a) for the same pair of resources it is asserted that they
are the same (i.e. they are in the extension of the owl:same-as relation)
and also different (i.e. in the extension of the owl:differentFrom rela-
tion), and (b) two classes a and b are defined to be disjoint (by using
the relation owl:disjointWith) and at the same time non-disjoint by
asserting that the same resource r is both of rdf:type a and b. Also
RDF entailment under the pD∗ semantics is not harder than simple
entailment.

r-entailment [ter05a] presents a straight-forward rule extension to
RDF similar to RDFLog[BFL+

08a, BFLL07], that can be used to describe
other semantic extensions of RDF, such as the RDFS entailment rules,
and the pD∗ entailment rules. This rule extension distinguishes proper
rules for deriving new triples from an RDF graph, axiom rules for
adding axiomatic triples to an RDF graph, and inconsistency rules for
characterizing unsatisfiability of an RDF graph. Axiom rules have an
empty body and a non-empty head, inconsistency rules an empty head
but a non-empty body and proper rules have non-empty heads and
bodies.

Definition 11 (RDF Rule Graph, RDF Rule). An RDF rule graph is
defined as a set of triple patterns, i.e. a subset of U ∪ B ∪ X×U ∪ B ∪ X×
U∪B∪ L∪X, where X is a set of variables disjoint from U, B and L.

An RDF rule is defined as a pair of rule graphs ρ = (ρl, ρr) with var(ρr) ⊆
var(ρl) and bl(ρl) = ∅.12 ρl is said to be the left hand side or the body of the
rule, whereas ρr is the head, or right hand side of the rule. A rule ρ is said to
introduce blank nodes iff bl(ρr) 6= ∅.

In order to give a semantics to RDF rules, [ter05a] extends simple
interpretations by a mapping from variables to elements of the domain:

Definition 12 (RDFR Semantics ([ter05a])). Let I be a simple RDF Inter-
pretation, Z : X ⇀ RI a partial function from the set of variables X to the set
of Resources of I, and A : B ⇀ RI a partial function from the set of blank
nodes to the set of resources in RI. IZ is defined as an extension of I such that
IZ(v) := Z(v) for all v ∈ dom(Z), and IZA is defined as an extension of IZ
setting IZA(v) := A(v) for all v ∈ dom(A).

Let G be a rule graph, I a simple interpretation and Z : var(G) → RI a
function. IZ satisfies G iff there is a function A : bl(G) → RI such that
for each triple pattern (s p o) ∈ G, IZA(p) ∈ PI and (IZA(s), IZA(o)) ∈
IEXT(IZA(p)).

Let I be a simple RDF interpretation and ρ a proper rule. I satisfies ρ =

(ρl, ρr) iff for all (s p o) ∈ ρl ∪ ρr . I(p) ∈ PI, and for any function
Z : var(ρ)→ RI holds if IZ satisfies ρl, then IZ also satisfies ρr.

In contrast to most other rule languages for RDF (except for RDFLog),
the semantics for this rule extension is indeed based on (extensions of)
RDF interpretations. In comparison to RDFLog, this rule extension does
not consider quantifier alternations, i.e. grouping of resources in rule
heads, but each instantiation of a rule is evaluated separately. In contrast,
RDFLog and Xcerpt

RDF allow grouping of variable bindings by values,

12 var(ρr) and var(ρl) denotes the set of variables in the rule head and rule body,
respectively.

2.5 critique of the rdf/s model theory 31

and construction of a single blank node for a set of substitutions. To see
how Xcerpt

RDF allows grouping of values consider Table 37 in Section
5.4.

[ter05a] shows that R-entailment is in P, if there is a bound on the
number of rule bodies, and if the entailed graph is ground.

2.5 critique of the rdf/s model theory

The last section already made clear that the RDF and RDFS model
theory is somewhat non-standard, when compared to first order model
theories. For this reason it has been criticized by various authors
(e.g. [PSF02, PH03a]). This section summarizes the criticism and out-
lines several possibilities for Semantic Web query languages to deal
with this situation. Two directions have been followed by the W3C
in the development of the Web Ontology Language OWL: OWL-DL
simply breaks with RDFS in chosing a more standard model theory
and redefining the semantics of RDFS vocabulary in a different way.
OWL-Full on the other hand, builds upon the RDFS model theory, and
must therefore deal with the consequences.

[PSF02] points out that a same-syntax and same-semantics exten- Same-syntax and
same-semantics
extensions of RDFS

sion of RDFS with a description logic (the OWL-Full way) leads to
semantic paradoxes analogous to Russell’s paradox in the set theory of
Frege (See the problem of contradiction classes below). The idea of the
Semantic Web tower is to have RDF as a fundamental building block
on which more expressive ontology languages and rule languages are
to be layered. There are several possibilities for extending RDF, and
it turns out that not all of them are suitable. As described in the last
sections, RDFS is a same-syntax and same-semantics extension of RDF. It
is called a same-syntax extension, because all RDFS documents are syn-
tactically valid RDF documents. Moreover it is called a same-semantics
extension, because all entailments which can be derived by an RDF
inference engine from an RDF database D can also be derived by an
RDFS inference engine from the same database D. Just as RDFS is a
same-syntax and same-semantics extension of RDF, one might expect
that the Web Ontology Language OWL is a same syntax and same-
semantics extension of RDFS. Unfortunately, such an extensions leads
to semantic paradoxes (present in OWL-Full), which are due to the fact
that RDFS defines classes extensionally, i.e. the members of a class are
explicitely given by the rdf:type predicate, or derived by one of the
RDFS inference rules. OWL, on the other hand, supports intentional
class definitions. The following problems arise:

The problem of too few entailments [PH03b] of the RDFS model theory The problem of too
few entailmentsis that not all entailments can be guaranteed. Adding a description

logic language to RDFS gives rise to implicitly defined classes such
as the intersection between two other classes: Assume that John is an
instance of the class Studentu Employeeu European. Is John also an
instance of Studentu Employee? In the RDFS model theory any class
or property is interpreted as an element of the domain itself, and thus
the answer is no, because it cannot guarantee that an element in the
domain exists for each intentionally defined class in a DL-extension
of RDFS. The definition of classes in description logics is not limited
to class intersection, but is also achieved by class union (e.g. A t B),
class complementation (e.g. ¬A), existential restriction (e.g. ∃R.>) and
universal restriction (e.g. ∀R.A). For all these intentional class deriva-

32 preliminaries

tions, RDFS interpretations must provide elements in the domain. To
deal with this issue, OWL Full introduces comprehension principles to
make sure that each OWL Full interpretation contains all the necessary
classes.

The problem of Contradiction classes: In RDF and RDFS resources canThe problem of
contradiction classes be defined as instances of themselves. With a description logic extension

one could define a class C as an instance of itself and add a cardinality
constraint = 0 on the rdf:type property. In a similar way (mentioned
in [Pan04]), OWL Full allows the definition of a restriction class C
that prohibits that the class C appears as the value of the its rdf:type

property:C := ∀rdf : type¬C. In pure description logics such a class is
– of course – valid, since the rdf:type predicate does not have special
semantics. In the combination with RDFS, on the other hand, the class
membership of C cannot be determined. Given an arbitrary element
e, assume that e is in C. Then e should have an outgoing rdf:type

predicate with object C. This is, however, forbidden for elements in
class C. Similar reasoning rules also out that e is not in C.

[Pan04] mentions yet another problem, called size of the universe,Different size of
universes in
OWL-DL and
OWL-Full;
Non-comparability of
OWL-Full and
OWL-DL entailment

which shows that the size of the universe of valid interpretations under
the OWL-Full semantics differs from the size of the universe of valid
OWL-DL interpretations. While this issue does not appear crucial at
first glance, all three problems lead to the non-comparability of OWL-
DL and OWL-Full entailment. For two ontologies O1 and O2, neither
O1 |=full O2 ⇒ O1 |=dl O2 holds, nor O1 |=dl O2 ⇒ O1 |=full O2.

This section has shown that layering a first order language on top of
RDFS is problematic. Xcerpt does not have to deal with these problems
since it does not define derived classes as description logics do. Instead,
Xcerpt considers XML documents and RDF graphs as terms. RDFS
derivation rules are easily encoded as Xcerpt rules.

Description logics are an intensively studied area of research. Ex-
tensions of RDFS to description logics mostly aim at bringing the
decidability of decision problems and the complexity bounds for these
problems to the Semantic Web. These decision problems include check-
ing the instance relationship for a given individual and a concept, the
subsumption relationship between concepts, and the consistency of the
description logic database.

In contrast, Xcerpt relies on the query author for writing programs
that can be evaluated efficiently. Since Xcerpt supports recursion and
value invention, i.e. the construction of new RDF fragments and new
RDF graphs, Xcerpt is Turing-complete and thus undecidable.

3R E L AT E D W O R K : D ATA I N T E G R AT I O N O N T H E
(S E M A N T I C) W E B

Contents
3.1 State of the Art: The SPARQL Query Language 33

3.1.1 SPARQL graph patterns 34

3.1.2 Blank nodes in SPARQL graph patterns 36

3.1.3 Testing RDF Graphs for Equivalence in SPARQL 38

3.1.4 Semantics and Complexity of SPARQL 39

3.2 Extensions of SPARQL 41
3.2.1 nSPARQL 41

3.2.2 SPARQLeR 42

3.2.3 XSPARQL 44

3.2.4 SPARQL update 46

3.2.5 SPARQL and Rules 47

3.3 Flora-2 49
3.4 RQL 52
3.5 Triple 53
3.6 SWRL 55
3.7 Metalog 56
3.8 The Rule Interchange Format 57

3.1 state of the art: the sparql query language

With the publication of the SPARQL W3C recommendation on January
2008, SPARQL has become the first RDF query language that has been
standardized by a major standardization body. In contrast to most other
languages that have been proposed for RDF querying, SPARQL is, due
to its triple syntax, quite easy to understand and use for programmers
familiar with relational query languages.

In this section, SPARQL is introduced by example, its semantics ac-
cording to [PAG06] is recapitulated, and several extensions to SPARQL
are presented. Throughout the presentation, the commonalities and
differences to Xcerpt

RDF are highlighted.
A SPARQL query consists of the three building blocks pattern match- Building blocks and

query forms of a
SPARQL query

ing part, solution modifiers and output. In addition there are four different
kinds of query forms (identified by the keywords ASK, DESCRIBE, SELECT
and CONSTRUCT). Arguably the most popular one is the select query form,
which is inspired by SQL and returns so-called solution sets, the coun-
terpart of Xcerpt substitution sets in SPARQL. An example of a select
query is given in Listing 3.1. In case of a select query, the output part of
the query is a selection of distinguished variables, i.e. the specification
of the variables of interest in the query. If no variable bindings are
of interest, the ask query form is to be used. It simply gives a yes/no
answer to the question if a given query pattern is entailed by the RDF

33

34 related work: data integration on the (semantic) web

graph being queried. A useful query form for RDF graph transformations
is the construct query form, which does not return single values, but
entire RDF graphs as a result. There are, however certain limitations toLimitations to

SPARQL blank node
construction

the blank node construction (in database theory termed value invention)
in the SPARQL construct query form. Indeed, there is no possibility
of expressing the RDFLog query in Example 7 as a SPARQL rule. In
general, all RDFLog rules which contain a universal quantifier in the
scope of an existential one are not expressible in SPARQL and most
other RDF rule languages 1 proposed so far. Considering, that an ex-
tension of SPARQL in this direction does not increase the complexity
of SPARQL query evaluation, this limitation may come as a surprise.
An extension of SPARQL to allow arbitrary blank node construction as
RDFLog and Xcerpt

RDF is described in [BFL+
09b].

Example 7 (An RDFLog rule not expressible in SPARQL).

∀lt ∃pr ∀st((triple(st,knows,pr)← triple(st,attends, lt))

The RDFLog rule above expresses that for each lecture lt there is a professor
pr such that all students st attending lt know the professor pr.

A final query form is given by the describe key word which pays
tribute to the fact that a blank node identifier returned as a variable
binding in a SPARQL select-query is somewhat useless, since it only
asserts the fact that something exists, and cannot be reused in a follow-
up query to extract further information about the resource in question.
When using the describe query form, not only single identifiers are
returned as variable bindings, but also descriptions of resources. The
exact nature of a resource description is left unspecified in the SPARQL
recommendation, but a promising solution is the one of Concise Bounded
Descriptions presented in [Sti05].

The SPARQL query form which is most similar to Xcerpt
RDF rules

is the construct query form. Xcerpt
RDF does not distinguish between

query forms, but is strongly answer closed in the sense that every
Xcerpt

RDF data term is also a Xcerpt
RDF query, and in that every

result of an Xcerpt
RDF query is again an RDF graph. While SPARQL

construct queries are answer closed, the remaining query forms are not.
However, SPARQL ask and select queries can be simulated by construct
queries. Similarly, boolean queries can be formulated in Xcerpt

RDF by
interpreting the empty RDF graph as false and all other RDF graphs
as true, and tuple-generating queries can be expressed in Xcerpt

RDF

by wrapping the tuples within RDF containers or similar constructs.
Describe queries are expressed in Xcerpt

RDF by using concise-bounded-
description variables.

All four SPARQL query forms make use of the pattern matching part,
which is described next.

3.1.1 SPARQL graph patterns

SPARQL is weakly answer closed in the sense that any RDF graph
is also a valid SPARQL graph pattern. But only in the case of the
construct query form, also the result of a SPARQL query is again an
RDF graph. The syntax of SPARQL graph patterns resembles the one

1 The term rule language must be taken with a grain of salt here, since SPARQL is mostly
considered as a query language, especially if a query form other than CONSTRUCT is
used.

3.1 state of the art: the sparql query language 35

of Turtle [DB08], but is augmented with variables. Listing 3.1 (from
[SP08]) shows a query to retrieve the name and email address of persons
within an RDF graph using the FOAF vocabulary. With the term graph
pattern, one refers to the set of triples within curly braces in lines
4 to 5. The select-clause serves to specify the distinguished variables
of the query. Any variable appearing within the graph pattern, but
not within the select-clause is called a non-distinguished variable. The
terms distinguished and non-distinguished variables have thus the same
meaning as in conjunctive queries in database theory.

Listing 3.1: A simple SPARQL query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?mbox

WHERE

{ ?x foaf:name ?name .

?x foaf:mbox ?mbox } �
SPARQL allows the selection of variables that do not appear within

the graph pattern as shown in Listing 3.2. The empty query pattern
matches with any RDF graph, and the variable ?x in the select clause
does not appear within the query pattern. In database theory, such
rules are said to violate the principle of range-restrictedness. In fact the
intuitive semantics of non-range-restricted rules is unclear and varies Range-restrictedness

in SPARQLfrom one language to another. While according to [SP08] Listing 3.2 is
supposed to return a single solution with no binding for the variable ?x,
unbound variables are forbidden within construct clauses of SPARQL
queries. In Prolog, on the other hand, the non ground fact p(X) simply
remains uninstantiated and can be unified with ground bodies of other
queries such as p(a).

Listing 3.2: A non-range-restricted SPARQL query matching with arbitrary
RDF graphs

SELECT ?x

WHERE {} �
Since queries such as the one in Listing 3.2 can also be expressed

with the SPARQL ask query form, and since SPARQL does not allow
any kind of rule-chaining, non-range-restricted queries do not add to
the expressive power of the SPARQL language, but cause the semantics
of the language to be more complex than it needs to be.

The graph pattern in Listing 3.1 is termed a basic graph pattern. It
consists of two triple patterns, which are ordinary RDF triples except
that subject, predicate and object may be replaced by SPARQL variables.
Basic graph patterns may contain filter expressions in addition to a set of
triple patterns. Filter expressions use the boolean predicates ‘=’, ‘bound’,
‘isIRI’ and others to construct atomic filters. Additionally the logical
connectives ‘&&’ for logical conjunction, ‘||’ for logical disjunction and
‘!’ for logical negation are used to construct compound filters from
atomic ones. Atomic and compound filters are used to eliminate sets of
variable bindings that do not fulfill the filter requirements.

Besides basic graph patterns, SPARQL provides group graph patterns
that may either be unions of graph patterns, optional graph patterns or
named graph patterns. Unions of graph patterns are similar to disjunctions
in the bodies of rules in logic programming. For the query to succeed,
only one of the graph patterns in the union must be successful, and
the solution sets from all graph patterns in the union are collected to

36 related work: data integration on the (semantic) web

yield the solution set for the union. Optional graph patterns are patterns
that may bind additional variables besides the ones present in the
non-optional parts of a graph pattern, not causing the entire query
to fail if the optional graph pattern fails. In contrast to unions of
graph patterns, the non-optional part is obliged to match. Named graph
patterns are introduced into the SPARQL language, because Semantic
Web databases may hold multiple RDF graphs, each identified by a
URI. To explain the concept of querying named graphs in SPARQL, the
notion of a dataset must be introduced. A dataset is a pair (d,N) where
d is the default graph to be queried, and N is a set of named graphs.
Datasets are specified by the FROM and FROM NAMED clauses in
SPARQL. Whereas the default graph is the merge of all RDF graphs
specified in the FROM clause, the FROM NAMED clauses specify the
set N of named graphs, and remain unmerged. The GRAPH key word
must subsequently be used to refer to named graphs in a WHERE
clause as Listing 3.3 (taken from [Pol07]) illustrates.

Listing 3.3: Querying named graphs in SPARQL

SELECT ?N WHERE { ?G foaf:maker ?M .

GRAPH ?G { ?X foaf:name ?N } } �
As [Pol07] points out, the query in Listing 3.3 is somewhat unintu-

itive, since SPARQL engines compliant with the W3C specification will
search for answers to the triple pattern ?X foaf:name ?N only in named
graphs, but not in the default graph. The notion of named graphs is dis-
cussed in more detail in [CBHS05a], and can be compared to grouping
XML data in XML documents.

3.1.2 Blank nodes in SPARQL graph patterns

Blank nodes in SPARQL graph patterns act in the same way as non-
distinguished variables, and therefore cannot be used to reference
specific blank node identifiers within an RDF graph. Hence, one could
substitute an arbitrary blank node for the variable ?x in Listing 3.1 and
still obtain the same result.2

Before proceeding, we will quickly discuss this treatment of blank
nodes in SPARQL. When issuing a query with a blank node, newcomers
to the SPARQL language may have five different expectations in mind:

• Syntactic equality: The blank node in the query is supposed to
match only with the data that uses exactly the same blank node
identifier, as it is the case for URIs in graph patterns. While this
is a valid desire, it would fall into the domain of syntactic pro-
cessing of RDF data. A query on two equivalent RDF graphs
should obviously return equivalent answers. But what is a sensi-
ble notion of equivalence in this context? As with all data items
in information processing, one may introduce several equivalence
relationships for RDF graphs. One such equivalence relationshipBi-entailment versus

syntactic equivalence
of RDF graphs.

is bi-entailment, and it is arguably the most sensible one for RDF
graphs. In this thesis we adopt the following understanding of
bi-entailment: two RDF graphs H and G are considered equiva-
lent under bi-entailment, iff G RDF-entails H and H RDF-entails
G. Of course, bi-entailment could also be based on simple RDF

2 Note that one could not use a blank node at the place of the other two variables in Listing
3.1, since they are distinguished.

3.1 state of the art: the sparql query language 37

entailment, RDFS entailment, datatype entailment, or other ex-
tensions of RDF entailment. Another quite different equivalence
relationship would be syntactic equality, and there is certainly the
necessity to compare RDF graphs for syntactic equality, but then
we could also simply consider them as plain text files and run a
UNIX diff command to test them for equality. With the decision
for syntactic equality for blank nodes in queries, one would obtain
different results for equivalent RDF graphs (under bi-entailment),
and for this fact the decision of SPARQL not to use syntactic
equality is a sensible one.

• Treatment as non-distinguished variables: The blank node is sup-
posed to act as a non-distinguished variable as explained above.3

One minor problem with this understanding is that there are two
alternative ways of specifying the same query, which may be con-
fusing for new-comers to the language. Another more important
issue with this solution is that while SPARQL remains answer
closed in the sense that any RDF graph can be used as a SPARQL
query, the answer to such a query would not only be graphs that
are equivalent or contain an equivalent graph, but also graphs that
are more specific. The simple SPARQL graph pattern {(_ : X,b, c)}
will also return true on the RDF graph {(a,b, c)}. This behavior
can, however, be consistently explained by stating that an RDF
graph G matches with a ground SPARQL graph pattern P, if and
only if G simply entails P.

• Banning of blank nodes within queries: As the inclusion of blank
nodes within queries does not add expressive power to SPARQL
graph patterns, an obvious approach is to ban blank nodes from
graph patterns. This approach has the advantage that SPARQL
users cannot be fooled to assume a different semantics of blank
nodes in graph patterns other than non-distinguished variables.
On the other hand, this approach has the obvious drawback that
SPARQL is not answer closed in the sense that an RDF graph
containing blank nodes cannot be viewed as a SPARQL query.

• Treatment as ordinary variables: Since blank nodes are viewed as
existentially quantified variables in RDF graphs, one might view
them as plain variables in queries as well, and specify in the
select-clause if they are to be treated as distinguished variables or
non-distinguished variables. This solution has the plain advantage
that any RDF graph can be viewed as a query. Still, this approach
is similar to treating blank nodes as non-distinguished variables
(see above): An RDF graph pattern containing blank nodes (such
as _:X b c) not only matches with RDF graphs that are equivalent
or contain an equivalent RDF graph (such as {(_ : X,b, c), (c,d, e)})
but also with RDF graphs that are more specific (such as {(a,b, c)}).
Clearly this approach would mean that there is no longer the
necessity for SPARQL variables.

• Matching blank nodes only: A final intuition query authors may
have in mind is that blank node identifiers in queries must be
mapped to blank node identifiers in the data only. None of the
above approaches can express this semantics. The graph pat-
tern {_:X b c} would thus return true when evaluated on the

3 This expectation is in fact the one SPARQL implements.

38 related work: data integration on the (semantic) web

graphs {(_ : X,b, c)} and {(_ : Y,b, c)}, but it would not match with
{(a,b, c)}. Thus with answer closedness in mind, this approach
ensures that an RDF graph q considered as a SPARQL query
only matches with RDF graphs that are equivalent or have a sub-
graph equivalent to q. The major drawback of this solution is,
however, that the same query may once return true for an RDF
graph g1 and false for an equivalent (under bi-entailment) RDF
graph g2. To see this, consider again the query pattern _:X b c

and the graphs g1 := {(_ : Y,b, c), (a,b, c)} and g2 := {(a,b, c)}.
Under the light of this deficiency and with the availability of the
filter predicate isBlank in SPARQL that can be used for imitating
this blank node semantics, it is a good choice not to adopt this
treatment of blank nodes in SPARQL graph patterns.

3.1.3 Testing RDF Graphs for Equivalence in SPARQL

None of the above solutions are completely satisfactory in that they do
not allow the specification of a query q that returns true on exactly the
equivalence class Σ⇔(g) induced by RDF bi-entailment for an arbitrary
graph g containing a blank node.

Note that SPARQL query patterns cannot express the above query
even in the absence of blank nodes. Consider the RDF graph g :=

{(a,b, c)} consisting of a single triple. Evaluating g as a SPARQL query
pattern will yield all RDF graphs that contain g, but there is no way of
expressing a query that will find all equivalent graphs.

In other words, a SPARQL basic graph pattern q returns true on an
RDF graph g iff g RDF-entails4 n(q) where the normalization operator
n replaces variables in q by blank nodes (multiple occurrences of the
same variable by the same blank node identifier, and distinct variables
by distinct blank nodes, that do not occur anywhere else in q). Hence,
with basic SPARQL graph patterns it is only possible to demand that
something be entailed by the graph g to be queried, but not to restrict
the entailments of g. The development of the language Xcerpt

RDF, on
the other hand, is influenced by the assumption that query authors
would like to both demand some entailments from a graph as well as
demand that something is not entailed by it.

There is, however, the possibility to express such queries in SPARQL
at the aid of optional graph patterns, SPARQL filter constructs, and theNegation as failure in

SPARQL SPARQL unbound keyword. The query in Listing 3.4 only returns true
for the one-triple graph {(eg:a, eg:b, eg:c)}, where the namespace prefix
eg is bound as indicated in Listing 3.4. For all other graphs it returns
false. The graph pattern first ensures that the triple (eg:a, eg:b, eg:c)
is in fact contained in the RDF graph. Secondly it uses an optional
pattern to find other triples in the graph. The filter inside the optional
pattern makes sure that the optional pattern matches with a triple other
than (eg:a, eg:b, eg:c). The second filter expression makes sure that the
optional graph pattern was unsuccessful by testing for a binding of the
variable ?x.

4 As outlined in Section 2.3, there are different variants of RDF entailment. In this section
we mean simple RDF entailment when when speaking of RDF entailment only.

3.1 state of the art: the sparql query language 39

Listing 3.4: A query that only matches with a graph consisting of a single triple
(a b c)

PREFIX eg: <http://eg.org/>

ASK

WHERE { eg:a eg:b eg:c .

OPTIONAL { ?x ?y ?z

FILTER (?x != eg:a || ?y != eg:b || ?z != eg:c)

}

FILTER (!bound(?x))

} �
Before proceeding to the study of the complexity and semantics of

SPARQL, we will quickly discuss how to test for equivalence with RDF
graphs containing blank nodes. Consider the graph

G = {(eg:a, eg:b, eg:c), (?X, eg:b, eg:d)} (3.1)

consisting of two triples only with a single occurrence of a single
blank node. When formulating a SPARQL query to return true on
exactly the set of RDF graphs equivalent to g, one first needs to test for
the presence of the two triples and then for the absence of triples that
are different from the two ones given in the graph. While the query in
Listing 3.5 is not trivial to figure out, testing graphs for equivalence
in SPARQL becomes even more complex in the presence of multiple
occurrences of the same blank node identifier, since in this case it does
not suffice to test for the absence of single triples only, but one has to
test for the absence of multiple triples connected via blank nodes – i.e.
concise bounded descriptions [Sti05].

Listing 3.5: A query that only matches the graph G in Equation 3.1

PREFIX eg: <http://eg.org/>

ASK

WHERE {

eg:a eg:b eg:c .

?blank eg:b eg:d .

OPTIONAL { ?x ?y ?z

FILTER ((?x != eg:a || ?y != eg:b || ?z != eg:c)) &&

(!(isBlank(_?x)) || ?y != eg:b || ?z != eg:d))

}

FILTER (!bound(?x))

} �
Obviously the queries in Listing 3.4 and 3.5 are much more com-

plicated than they need to be. This is due to the absence of explicit
negation in SPARQL, a design decision that is supposed to make imple-
mentation easier and to circumvent the non-monotonicity of negation
as failure.5 In Section 5 we show how the query in Listing 3.4 can be
expressed by the single Xcerpt

RDFterm RDFGRAPH { a { b → c } }.

3.1.4 Semantics and Complexity of SPARQL

[PAG06] recursively defines the semantics of SPARQL query patterns
in terms of relational algebra operators as follows:

5 Since negation as failure still is expressible in SPARQL, as shown above, both of these
goals are missed.

40 related work: data integration on the (semantic) web

• The semantics [[t]]G of a possibly non-ground triple t evaluated
over an RDF graph G is the set of mappings µ such that the
domain of µ is the set Var(t) of variables in t and the application
µ(t) of the mapping µ to t is a triple in G. Here, µ(t) is simply the
triple pattern with the variables in t replaced by their bindings in
µ.

• The semantics [[(P1 AND P2)]]G of a conjunction of query patterns
evaluated over the RDF graph G is defined as the set {[[P1]] on [[P2]]}

= {µ1 ∪ µ2 | µ1 ∈ [[P1]],µ2 ∈ [[P2]],µ1 and µ2 are compatible} of
unions of compatible pairs of mappings of P1 and P2. In this
context two mappings are termed compatible if they coincide on
the bindings of their common variables. The semantics of the
conjunction can thus be thought of as the natural join over the
relations defined by the conjuncts.6

In [Pol07] the notion of compatibility of pairs of mappings is
refined to brave compatibility, cautious compatibility and strict com-
patibility. While in the absence of unbound variables within map-
pings, all three notions of compatibility coincides, in the presence
of unbound variables, only the brave compatibility coincides with
compatibility as understood by [PAG06].

– Two mappings σ1 and σ2 are bravely compatible if they co-
incide on the bindings of their common bound variables.
Brave compatibility hence does not restrict the bindings of
variables that are unbound in either σ1, σ2 or both.

– σ1 and σ2 are cautiously compatible if for all common vari-
ables – no matter if bound or unbound – the bindings coin-
cide.

– σ1 and σ2 are strictly compatible if they are cautiously com-
patible and if additionally there is no common variable of
σ1 and σ2 which is unbound in both.

• The semantics of a graph pattern [[P1 OPT P2]]G including an
optional construct over an RDF graph G is defined as the left
outer join between [[P1]] and [[P2]].

• Finally the semantics [[P1 UNION P2]] of a union of two graph
patterns is defined as the union of [[P1]] and [[P2]].

[PAG06] extend the semantics to SPARQL queries including filter
expressions and show some important properties of SPARQL queries:

• Generally the expressions (P1 AND (P2 OPTIONAL P3)) and (P1 AND

P2)OPTIONAL P3)) are not semantically equivalent, but they are
equivalent for the class of well-defined graph patterns introduced
in the same work.

• In the presence of optional patterns, AND is only commutative
for well-designed graph patterns.

Some results on the complexity of query evaluation in SPARQL from
[PAG06] are the following:

6 Note that the terms relation and sets of mappings can be used interchangeably here.

3.2 extensions of sparql 41

• The combined complexity of SPARQL graph patterns involving
only AND and FILTER expressions is in O(|P| · |D|) where |D| is
the size of the data and |P| is the size of the query. This result is
based on the assumption that the application of a mapping µ to a
triple t is achieved in a constant amount of time, independently
of the number of variables in µ.

• The combined complexity of SPARQL graph patterns involving
AND, FILTER and UNION is NP-complete. The proof is by poly-
nomial reduction of the satisfiability problem of propositional
logic formulas in conjunctive normal form to SPARQL queries.

• The combined complexity of SPARQL graph patterns including
AND UNION and OPTIONAL is PSPACE-complete, indepen-
dently of the presence or absence of FILTER expressions.

• The data complexity of SPARQL graph patterns is in LOGSPACE.

3.2 extensions of sparql

SPARQL being the most popular RDF query language and the only
one which has been standardized by some standardization organi-
zation such as the W3C, it has received considerable attention from
the research community. Its expressiveness and complexity has been
formally studied, and as a result of its limited expressiveness, exten-
sions of SPARQL in different directions have been proposed. With the
absence of path expressions in SPARQL, nSPARQL[PAG08] has been
suggested to enhance the expressive power of SPARQL into this direc-
tion. The necessity of combined processing of XML and RDF has been
acknowledged by XSPARQL[AKKP08], an extension of XQuery to RDF
processing at the aid of SPARQL WHERE and CONSTRUCT clauses.
Just as SQL allows the deletion and insertion of data and creation of
new tables, SPARQL update [SMB+

08] and SPARQL+7 extend SPARQL
with facilities to manipulate and create RDF graphs. Finally [CP06],
[Pol07] and [SS04] eliminate the restriction of SPARQL to single rules
by allowing possibly recursive multi-rule programs.

3.2.1 nSPARQL

nSPARQL[PAG08] is an extension of SPARQL to support arbitrary-
depth navigation in SPARQL queries. It arose from the need to answer
queries for finding all nodes reachable from a given node via a given
predicate name, a disjunction of predicate names or simply for finding
all transitively connected nodes. The RDF path language employed in
nSPARQL remains unnamed in [PAG08], but is constructed from nested
regular expressions. We thus adopt the name NRE for the nSPARQL
path language.

The syntax of NRE is heavily influenced by the syntax of XPath,
and NRE borrows the notions of axes, node tests, reverse axes, step
expressions, and path predicates from XPath. While path expressions in
XPath evaluate to a set of nodes of an XML document, path expressions
in nSPARQL evaluate to a set of pairs of nodes within an RDF graph.
This is due to the fact that XPath expressions are always evaluated

7 http://arc.semsol.org/home

http://arc.semsol.org/home

42 related work: data integration on the (semantic) web

with respect to a context node, while this is not necessarily the case for
nSPARQL expressions.

Although the terms axis and node tests are borrowed from XPath, the
function quite differently in NRE. While a node test n following an axis
specification a in an XPath expression a :: n returns true if and only if
the node reached by the axis has label n, node tests in nSPARQL do
not test the label of the navigation end. For example, if the next axis is
used, the corresponding node test does not test the label of the node
reached, but the label of the edge traversed from the source node to
the sink node. Even more confusing are node tests paired with the node

axis. Although the node axis is used to navigate from an edge within an
RDF graph to an adjacent node, a node test on this axis applies to the
node the edge originates from. While this design decision allows for
a brief description of the semantics of NRE, it is unintuitive for users
familiar with XPath.

The following examples illustrate the syntax and semantics of nSPARQL
path expressions evaluated over an RDF graph G:

• next::a allows the navigation from one node in an RDF graph
to another node via an edge labelled a in a composed nSPARQL
path expression. It evaluates to all pairs of nodes connected via a
predicate labeled a: {(x,y) | (x,a,y) ∈ G}. The axis next−1 can be
used to navigate in the reverse direction.

• edge::a allows the navigation from a node x to an edge y within
an RDF graph, if the graph contains the triple (x,y,a). It evaluates
to {(x,y) | (x,y,a) ∈ G}. The axis edge−1 is used to navigate from
predicates of triples to their subjects.

• node:a allows the navigation from an edge x to a node y if the
corresponding triple has subject a. It evaluates to {(x,y)|(a, x,y) ∈
G}. node−1 is used for navigating in the reverse direction.

• nSPARQL path expressions are combined just like XPath step
expressions by the / sign: The nSPARQL expression next::a/next

::b finds pairs of nodes connected via two triples with predicate
names a and b over an arbitrary intermediate node. The URI
of the intermediate node can be checked by using the self axis:
next::a/self::c/next::b.

• The evaluation of nested nSPARQL path expressions is more com-
plex. The semantics of edge::[exp] is given by {(x,y) | ∃z,w.(x,y, z) ∈
G∧ (z,w) ∈ [[exp]]G}, where [[exp]]G is the semantics of exp over
G. Nested path expressions including the axes self, next and node

are similarly involved.

3.2.2 SPARQLeR

A different approach for extending SPARQL with regular path ex-
pressions is taken by the language SPARQLeR described in [KJ07]. In
contrast to nSPARQL, entire paths are bound to so-called path vari-
ables, which are distinguished from ordinary SPARQL variables in
that they are prefixed by % instead of ?. The bindings of path variables
are themselves represented as RDF sequences, which allows to put
further restrictions on the bindings in SPARQL WHERE clauses, as the
following example from [KJ07] demonstrates:

3.2 extensions of sparql 43

Listing 3.6: A simple SPARQLeR path query

CONSTRUCT %path

WHERE { r %path s . %path rdfs:_1 p . } �
The query in Listing 3.6 finds all directed paths between a resource r

and a resource s that have p as the first predicate. Bindings for the path
variable %path in the above query are of the form p1, n1, p2, n2, . . . , pi,
ni, pi+1, such that the triples (r,p1,n1), (n1,p2,n2), . . ., (ni−1,pi,ni)
and (ni,pi+1, s) are in the queried graph. Since these bindings are
represented as RDF sequences (as exemplified in Listing 3.7), triples in
the same WHERE clause can be used to put restrictions on the bindings
to path variables.

Listing 3.7: The RDF representation of bindings to SPARQLeR path variables

_:Path1 rdfs:_1 p1,
_:Path1 rdfs:_2 n1,
_:Path1 rdfs:_3 p2,

... �
Since bindings to SPARQLeR path variables are represented as RDF

sequences represented by blank nodes, the use of path variables within
SELECT query forms hardly makes sense. Imagine Listing 3.6 with
the SELECT keyword at the place of the CONSTRUCT keyword. The
result of this query is a list of blank nodes generated by the SPARQLeR
query generator, which means that the only information returned is
the number of paths found within the queried graph. To deal with
this inconvenience, SPARQLer introduces a list operator that extracts
all resources from the paths. In the case of multiple bindings for a
path variable, however, the application of the list operator merges the
resources from all paths into a single list, thereby preventing the user
from recognizing the actual paths.

SPARQLeR provides a second method for constraining paths at the
aid of a ternary regex method to be used within FILTER clauses of
SPARQLeR queries. The first argument to this method is the name of
the path variable whose bindings are to be constrained, the second
one is a regular path expression, and the third are options specifying
whether the path must be directed, if it must be made up of schema
classes, instances, or literals, and if rdfs:subPropertyOf inferencing is to
be considered. SPARQLeR regular path expressions allow alternatives,
concatenation, Kleene’s star, wildcards, negations and reverse predi-
cates. The SPARQLeR length method is used to find paths of a minimal,
maximum or exact length.

While SPARQLeR seems to be a sensible suggestion for an extension
of SPARQL, there are two obvious points of criticism:

• The fact that predicate names can be specified within path expres-
sions, but subjects and objects cannot, seems to be an arbitrary
design choice which is not motivated in [KJ07].

• Representing bindings to variables as RDF sequences that are not
part of the original RDF graph and allowing these RDF sequences
to be queried within the SPARQLeR WHERE clause may be
confusing for novices in that the WHERE clause is successfully
evaluated on a graph which does not entail every single triple of
the clause.

44 related work: data integration on the (semantic) web

3.2.3 XSPARQL

[AKKP08] advocates the reuse of plain XML and HTML data of the
Web as RDF data on the Semantic Web, and vice versa and introduces
the notions of lifting – i.e. transforming “syntactic” XML data into
“semantic” RDF data – and lowering – transforming RDF data into
XML. Starting out from the insight that current tools and languages
are not adequate for translating between syntactic and semantic web
data, they propose an integration of SPARQL into XQuery, which they
dub XSPARQL, together with use-cases and a formal semantics. Since
it aims at being data-versatile in the same sense as Xcerpt does, we take
a closer look at XSPARQL in this section.

Listing 3.8: XML example data

<relations>

<person name="Alice">

<knows>Bob</knows>

<knows>Charles</knows>

</person>

<knows>Charles</knows>

</person>

<person name="Charles/>

</relations> �
Listing 3.9: RDF example data

@prefix foaf: <...foaf/0.1/> .
_:b1 a foaf:Person;

foaf:name _:b2;

foaf:knows _:b3 .
_:b2 a foaf:Person;

foaf:name "Bob";

foaf:knows _:b3 .
_:b3 a foaf:Person;

foaf:name "Charles" . �
Listing 3.10 shows how the lifting task is solved in XSPARQL for the

example data given in Listings 3.8 and 3.9. In line 3 all element nodes of
the XML input file that represent persons are selected. Names are either
given as the name attribute of a person element or as XML text nodes
within knows elements. In order to make sure that the list $persons

contains each name exactly once, duplicates are elminitated in the where

clause by testing the absence of elements on the following axis that
contain the same name. In this way duplicates are eliminated and only
the last occurrence of a name is selected. In line 6, a numeric identifier
is computed for each person which serves to construct unique blank
nodes in the SPARQL construct pattern starting at line 8. The construct

keyword is not part of the XQuery syntax, but newly introduced
in XSPARQL to mark the beginning of a SPARQL construct pattern.
Inside of SPARQL construct patterns, XQuery code is embedded within
curly braces. In this way nested XSPARQL queries are constructed.
While the outer XSPARQL query (lines 3 to 10) serves to represent the
persons found in the XML source as RDF blank nodes with associated
names and type, the inner SPARQL query translates the acquaintance
relationships. Note that the triples constructed in line 18 are duplicates
of the ones constructed in line 10, i.e. this line is superflous.

3.2 extensions of sparql 45

Listing 3.10: Lifting in XSPARQL

declare namespace foaf="...foaf/0.1/";

declare namespace rdf="...-syntax-ns#";

3 let $persons := //*[@name or ../knows] return

for $p in $persons

let $n := if (@p[@name]) then $p/name else $p

6 let $id := count($p/preceding::*) + count($p/ancestor::*)

where not(exists($p/following::*[@name=$n or data(.)=$n]))

construct

9
_:b{$id} a foaf:Person;

foaf:name { data($n) }.

{ for $k in $persons

12 let $kn := if ($k[@name]) then $k/@name else $k

let $kid := count($k/preceding::*) + count($k/ancestor::*)

where $kn = data(//*[@name=$n/knows) and

15 not(exists($kn/../following::*[@name=$kn or data(.)=$kn])

)

construct
_:b{$id} foaf:knows _:b{$kid} .

18
_:b{$kid} a foaf:Person .

} �
XSPARQL does not set out to be a query language that natively sup-

ports XML and RDF querying in an intuitive and coherent way. Instead
it explores how SPARQL can be integrated into XQuery, how the seman-
tics of this integration can be defined and proposes an implementation
on top of existing XQuery and SPARQL engines. XSPARQL succeeds
in its coherent treatment of schema heterogeneous RDF/XML files, and
due to the large expressiveness of XQuery it allows the formulation of
many queries not expressible in SPARQL alone. On the other hand it
suffers from the following deficiencies:

• Intertwined querying and construction. As can be observed in List-
ing 3.10, there is no clear separation of querying and construction
in XSPARQL queries, a deficiency which is inherited from XQuery.
While it is clear that there are queries that cannot be expressed by
a single rule with a single query and construction pattern, this is
not the case for the query above.

• Complicated blank node construction. An RDF query language should
support automatic construction of blank nodes without the need
of computing blank node identifiers within a program. Since
blank node construction is essentially the same as the introduc-
tion of skolem terms within logic programs, languages such as
RDFLog and Xcerpt achieve the same result in a much easier and
straightforward way.

• Absence of path patterns. While XSPARQL inherits the complexity
of XQuery, it suffers also from the limitations of SPARQL such as
no support for containers, collections and reification, and limited
support for negation. Above all, XSPARQL lacks rich path patterns
to navigate RDF graphs at arbitrary depth, such as the ones
proposed by nSPARQL and SPARQLeR.

• Jumbling of query paradigms. Due to the popularity of XQuery as
an XML query language and SPARQL as an RDF query language,
Listing 3.10 is easy to understand for most people familiar with

46 related work: data integration on the (semantic) web

(Semantic) Web querying. For people unfamiliar with one or both
of these languages, it may be confusing that a functional language
such as XQuery is intermingled with a rule based language such
as SPARQL. With Xcerpt

RDFwe introduce a purely rule based
language based on the clear design principles of Xcerpt.

3.2.4 SPARQL update

Similar as for the XML query language XQuery, SPARQL has been con-
ceived primarily as a data selection language, not as a data manipulation
language. In fact, the SELECT, DESCRIBE and ASK query forms of
SPARQL can only be used to extract parts of a graph, not to manipulate
data or construct new data. The SPARQL CONSTRUCT query form
allows limited transformations between one RDF dialect to another,
but cannot be used to modify existing RDF stores. The W3C member
submission SPARQL update sets out to elminate this restriction.

SPARQL update consists of two sets of directives – one for updating
graphs and the other for graph management. The set of directives for
updating existing RDF graphs with SPARQL update constists of the
following seven commands:8

• The DELETE DATA FROM directive is used to delete a set of ground
triples from a named or the default graph. In the latter case, the
FROM keyword is omitted.

• The INSERT DATA INTO statement is used to insert a new set of
ground triples into an existing graph identified by a URI. If the
triples are to be inserted into the default graph, then the INTO

keyword is omitted.

• The MODIFY operation consists of a delete and an insert statement
(see below) issued on the same graph.

• The DELETE FROM ... WHERE operation is used to delete a set of
triples from a graph. In contrast to the DELETE DATA operation
discussed above, this command may specify the triples to be
deleted in a non-ground form, i.e. with SPARQL variables bound
in the WHERE clause. If the WHERE clause consists of the empty
graph pattern, this command is indeed equivalent to the DELETE

DATA operation above. In case the FROM keyword is omitted, the
default graph is manipulated.

• INSERT FROM ... WHERE is the non-ground version of the INSERT

DATA command. Its relationship to INSERT DATA is analogous to
the relationship from DELETE FROM ... WHERE to the DELETE DATA

operation. Together with the DELETE FROM ... WHERE operation,
this operation can be used to move data from one RDF graph to
another.

• The LOAD primitive copies all RDF triples from one named graph
to another named graph or the default graph.

• The CLEAR primitive removes all triples from the default graph, or
a named graph. It can be simulated by a DELETE FROM ... WHERE

operation selecting all triples of a graph.

8 We only briefly sketch the commands for the sake of brevity.

3.2 extensions of sparql 47

Graph management in SPARQL update is achieved by the two opera-
tions CREATE GRAPH and DROP GRAPH which have the exact same semantics
as the SQL operations CREATE TABLE and DROP TABLE. Only when a graph
has been created by the CREATE GRAPH operation it is available for modi-
fication by one of the seven above mentioned manipulation directives.

To sum up, SPARQL update is a straight-forward extension of SPARQL
to include mechanisms for creating new and changing existing RDF
graphs, much inspired by SQL. The difference between the Web consid-
ered as a huge database and ordinary databases is, however, that the
Web is open and generally readable and processable by any person or
computer connected to the Internet. As a result RDF graphs will more
likely to be reasoned with and transformed than updated. Write access
to RDF graphs is restricted to the content provider, but deriving new
knowledge from existing one, which is the fundamental use case for Se-
mantic Web use-cases, is possible for all Web users and will be achieved
with rule languages, not update languages. Under these considerations,
update primitives have been excluded from Xcerpt

RDF.

3.2.5 SPARQL and Rules

[Pol07] defines translation rules for SPARQL rules to datalog rules and
thus opens up the possibility to rule chaining, i.e. the translation of
multiple SPARQL rules to Datalog and the combined evaluation of
the resulting rule set by a logic programming engine, thus allowing
intermediate results to be constructed and queried. This extension
gives SPARQL an obvious boost in expressivity (recursion) and affects
its termination properties. In the following, the translation procedure
from SPARQL to Datalog given in [Pol07] is quickly illustrated by an
example, as it opens up the possibility for easy implementations also
of single rule SPARQL queries on top of existing logic programming
engines.

For this purpose reconsider the SPARQL query in Listing 3.11 and the
RDF graph in Listing 3.12 available via the URL http://www.example.

org/bob. The result of the translation is given in Listing 3.13.

Listing 3.11: A simple SPARQL select-query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name ?mbox

FROM http://example.org/bob

WHERE

{ ?x foaf:name ?name .

?x foaf:mbox ?mbox } �
Listing 3.12: RDF Graph with some FOAF information

_:B foaf:name bob .
_:B foaf:nick bobby .
_:B foaf:mbox bob@example.org . �

http://www.example.org/bob
http://www.example.org/bob

48 related work: data integration on the (semantic) web

Listing 3.13: Translation of the SPARQL query in Listing 3.11 to Datalog with
external predicates

triple(S, P, O, default) :- rdf(http://example.org/bob, S, P, O) .

answer_1((Name, Mbox), default) :-

answer_2(vars(Name, X), default),

answer_3(vars(Mbox, X), default) .

answer_2(vars(Name, X), default) :- triple(X, foaf:name, Name,

default) .

answer_3(vars(Mbox, X), default) :- triple(X, foaf:name, Mbox,

default) . �
The translation makes use of the external predicate rdf that takes

four arguments: the graph to be queried as input, and the subject,
predicate and object of triples as output. The external predicate rdf can
thus be used to enumerate all triples within an RDF graph given by
the input URI. The first rule in Listing 3.13 defines the 4-ary relation
triple. In the case of multiple FROM or FROM NAMED clauses in the original
SPARQL query, the relation triple will obviously be defined by the
corresponding number of clauses. Since Listing 3.11 only contains
conjunctions of triple patterns, but no UNION, OPTIONAL or FILTER
expression, the translation remains of manageable size, and we focus the
discussion of the tranlsation procedure on conjunctive triple patterns.

As can be observed in Listing 3.13, each triple pattern in the SPARQL
query translates to a single Datalog rule, and each conjunction of
triple patterns translates to a rule with body atoms referencing the
rules obtained by the translation of its conjuncts. As expected, disjunc-
tions (UNION) of triple patterns are translated to sets of rules. For
details on the tranlsation procedure, involving more complex SPARQL
queries with FILTER and OPTIONAL, the interested reader is referred
to [Pol07].

While reusing existing rule languages together with the enormous
body of knowledge about their semantics, evaluation methods and
complexity is certainly a sensible way for designing a rule language
for the Semantic Web, the approach taken in [Pol07] is not completely
satisfactory for the following reasons:

• Blank node construction in rule heads has been largely ignored,
especially the different modes of blank node construction as
pointed out by [BFL+

08a].

• This approach inherits the weakness of SPARQL concerning nega-
tion: implicit negation as failure is provided by the combination of
the OPTIONAL directive and the unbound predicate. For newcomers
to the language this feature is hard to discover, and should be
better declared as what it is.

• The expressivity of SPARQL graph patterns is limited when com-
pared to languages that allow possibly recursive path expres-
sions such as Versa on RDF graphs or Conditional XPath[Mar05,
Mar04b] and Xcerpt on XML documents. This limitation is obvi-
ously inherited by all rule extensions to SPARQL.

• Rule extensions of SPARQL remain pure RDF query languages
and therefore cannot deal with the versatility requirements for
modern Web query languages.

3.3 flora-2 49

3.3 flora-2

Flora-2[YKZ03, Kif05] is a logic programming environment based on
F-Logic[KLW95b] with features borrowed from HiLog[CKW93] and
from Transaction Logic[BK93] and is developed at the State University
of New York. Its applications range from ontology management over
information integration to agent systems and it is supposed to be useful
for doing “anything that requires manipulation of complex structured
(especially semi-structured) data” [YKZ02].

The development of Flora-2 i is based on the following design princi- Flora-2 design
principlesples:

• Knowledge asserted on the Web must be strictly separated from
inferred knowledge, which is subject to change if the reasoning
mechanism is non-monotonic, i.e. uses some form of negation as
failure. Flora-2 is based on the assumption that non-monotonic
negation is a valid requirement for Web reasoning languages.

• Knowledge gathered on the Web is assumed to be incomplete,
and future changes to the knowledge should – as far as possible
– not cause inconsistencies with earlier derivations. Thus, the
specification that an object o has type t does not conflict with the
specification that there is another class t ′ such that t ′ is subclass
of t and o is of type t ′. Likewise, the specification of the subclass
relationship is not immediate. Both of these conventions are in
line with the RDF/S model theory, which does not allow the
derivation of inconsistencies.9 Moreover, knowledge about any
resource on the Web is assumed to be incomplete. Finding that eg:
bob knows eg:anna in one RDF graph and later learning that eg:bob
also knows eg:chuck from another resource on the Web, does not
constitute a problem. Also this convention is in line with the open
nature of the Web and the principles of RDF, but certainly differs
from the nature of XML, which locally specifies all relations of
one node to another. Finally, while logic-based programming or
modelling languages generally assume that distinct ground terms
denote distinct entities (the so-called unique name assumption) , Unique name

assumption in
logic-based
programming and
modelling languages

Flora-2 drops this convention due to the fact that the open nature
of the Web hinders the adoption of unique names. Instead, Flora-2
provides an equality operator that can be used to state that two
terms denote the same resource, corresponding to the owl:sameAs

property in OWL[BvH+
04]. All of the above conventions are

subsumed under the notion lazy knowledge assimilation in [YKZ03].

• Querying schema and reifications of triples should be naturally
integrated into a Semantic Web query language.

flora-2 features for the semantic web Although FLora-2
was not designed as a Semantic Web query language [YKZ03] argue
that it provides many features that make it an appropriate rule language
for the Semantic Web:

representation of rdf graphs RDF graphs can be represented
by Flora molecules. When considering Flora-2 as a data representation

9 Apart from XML clashes for typed RDF literals

50 related work: data integration on the (semantic) web

language, it shows similar features as RDF/XML: Several RDF state-
ments sharing the same subject can be merged to a single molecule, and
these molecules can be nested: In Listing 3.15 two statements about the
blank node resource _# are merged into a single molecule. Furthermore
the rdf:type statements can be implicitly written by appending a colon
and a qualified name representing the class to the resource in question:
In Listing 3.15 the statement _# rdf:type eg:mammal is abbreviated to
read _#:’eg:mammal’.

Since RDF containers and collections are ordinary RDF graphs, they
can also be represented as Flora-2 molecules (see Listing 3.14). Flora-2
does not implement the intuitive semantics for RDF containers and
collections as presented in Section 5.2.2.

Listing 3.14: Flora-2 representation of an RDF container

_#[’rdf:type’ ->> ’rdf:bag’,

’rdf:_1’ ->> ’Huey’,

’rdf:_2’ ->> ’Dewey’,

’rdf:_3’ ->> ’Louie’

]. �
anonymous nodes Whereas originally F-Logic was not designed
to deal with anonymous resources, Flora-2 extends F-Logic to do so. It
provides both an unnumbered anonymous ID symbol _# and a countable
set of numbered anonymous ID symbols _#1, _#2, By convention,
every occurrence of the unnumbered anonymous ID symbol refers to
a distinct entity. In contrast, two occurrences of the same numbered
anonymous ID symbol within the same Flora-2 clause refer to the same
entity. Occurrences of the same numbered anonymous ID symbols
distributed over distinct clauses refer to different entities of the universe.
This semantics is equivalent to the semantics of many other RDF rule
languages (e.g. RDFLog), in that blank nodes in rule heads are treated
as skolem constants.

Listing 3.15: Blank nodes and typed data in Flora-2

_#:’eg:mammal’[

’eg:lays_eggs’ ->> literal(’true’),

’foaf:nick’ ->> literal(’puggle’)

].

_#:’eg:mammal’[

’foaf:nick’ ->> literal(’puggle’)

] �
The first molecule in Listing 3.15 states that there is an animal with

nick name ’puggle’ that is both a mammal and lays eggs. The second
molecule in Listing 3.15 states that there is another (different) mammal
also with nick name ’puggle’. Note that the same information cannot
be expressed in RDF, since RDF provides no way for stating that two
names must be interpreted as different elements of the domain. It is,
however, expressible using the OWL owl:differentFrom vocabulary.

As a further remark, note that the RDF graph in Listing 3.16 is not
expressible as a set of F-Logic atoms, since _:X and _:Y are neither
required to be distinct, nor are they required to be interpreted as the
same resource. Different RDF interpretations may map _:X and _:Y to
the same element of the domain, or to different elements of the domain.

3.3 flora-2 51

This subtle difference has, however, no effect on the result of queries,
since Flora-2, as most other RDF query and rule languages does not
support aggregates or negation.

Listing 3.16: An RDF graph with two blank nodes

_:X rdf:type eg:mammal.
_:X eg:lays_egss ’true’.
_:Y foaf:nick ’puggle’. �
explicit and implicit equality In contrast to conventional logic
programming languages, terms can be become equal in F-logic due to
the availability of single valued predicates within terms. Consider the
following example from [YKZ03]:

mary[spouse→ joseph].
mary[spouse→ joe].
joseph[son� frank].

Since spouse is a single-valued predicate on mary, joe and joseph

must be equal. In fact, Flora-2 can deduce from the above program
that the term joe[son � frank] holds. Besides this inferred equality,
one may also state that two terms are equal with the built-in equality
operator :=:. Both inferred equality and explicit equality are features
which are important on the Web, because it is inherently distributed,
and different actors may publish complementary information about
the same resource, not knowing of each other. Therefore it must be
possible for a third person to infer or explicitly assert the equality of
the resources. This need is further acknowledged by the presence of
the owl:sameAs predicate in the Web ontology language [BvH+

04].

path expressions for navigation in rdf documents Flora-
2 inherits from F-Logic path navigation expressions. The F-Logic path
expression

paper[authors → {author[name → john]}].publication..editors

from [YKZ03] finds all editors of papers which were co-authored
by a person with name john. The predicate authors is called multi-
valued or set-valued in F-Logic, in contrast to the single-valued predicate
publication. Navigation along a single-valued predicate is written with
a single ‘.’, navigation along a multi-valued predicate by ‘..’. The
use of path-expressions in Flora-2 circumvents the excessive use of
conjunctions, which would have to be used in a query language without
path navigation such as SPARQL. Path expressions in F-logic, and thus
also in Flora-2 do not provide transitive axes such as the descendant or
ancestor axis in XPath, RPL (see Section 6) and NRE (see also Section
6).

While we have presented many beneficial features of Flora when
it comes to querying the semantic web, some more have not been
touched in this overview. Among them is the support for querying
reified statements, schema queries, and rules. Possible shortcomings
of Flora-2 as an RDF query language are the absence of namespace
declarations, transitivity within path expressions and support for RDF
Literals. Namespace declarations and support for RDF literals could,
however, be straight-forwardly added to the language.

52 related work: data integration on the (semantic) web

3.4 rql

RQL is an early RDF query language inspired by OQL, supporting
generalized path expressions, variables, set-based queries, containers and
collections, and aggregate functions. RQL differentiates between schema
queries, meta-schema queries and instance descriptions.

[KMA+
04] splits RDF graphs into an instance layer, a schema layerThree layers of RDF

graphs and a meta-schema layer. The schema layer contains information about
classes, the subclass-hierarchy, the subproperty-hierarchy, and the do-
mains and ranges or properties. In contrast, the instance layer contains
information about individuals that are members of a class, but not classes
themselves, and the relationships that hold between them. Finally the
meta-schema layer includes the predefined RDF classes rdf:Property

and rdf:Class and the corresponding instance relationships, and user-
defined schema-information about the schema.

ordinary schema queries The RQL schema queries subClassOf(

Artist) and subClassOf^(Artist) find all transitive and direct subclasses
of the class Artist, respectively. The RQL keywords subPropertyOf and
subPropertyOf^ provide the same functionality for RDF properties. Su-
perproperties and superclasses are determined with the vocabulary
superPropertyOf, superPropertyOfˆ, superClassOf, and superClassOf^.
Moreover, one can find all classes that are leaves in an RDF subclass
hierarchy, and all properties that are leaves in an RDF subproperty hi-
erarchy with the single keywords leafclass and leafproperty. topclass
and topproperty achieve the same aim for the top most classes or prop-
erties of an RDF schema hierarchy. The keyword nca serves to find all
nearest common ancestors of two classes or properties within an RDF
Schema class or property hierarchy. The unary functions domain and
range return the domains and ranges of properties.

All these queries (except for the nearest common ancestor query,
which specifies a relation between three nodes) can be concisely ex-
pressed in the RDF path query language RPL introduced in Section 6

(See Example 30). A main difference between RQL and RPL queries is
that RQL is explicitly geared at RDF schema querying, providing key-
words for accessing the transitive subclass and subproperty hierarchies
of RDFS. Since RDFS is certainly the RDF vocabulary in widest use, this
seems to be a reasonable choice. On the other hand, the RPL method is
not restricted to a single vocabulary extension of RDF, but is applicable
to arbitrary RDF graphs, and is also more generally applicable to the
RDFS vocabulary.

meta-schema queries Meta-schema queries in RQL are centered
around the vocabulary Class, Property, Literal, and user-defined meta-
classes such as RealWorldObject and SchemaProperty. While not explicitely
mentioned in [KMA+

04], a classM seems to belong to the meta-schema,
if some class C of the schema is of type M.

The RQL queries Class, Property and Literal evaluate to all classes,
properties, and literals of an RDF graph, respectively.

variables , select-clauses , class and property instances

RQL provides three different kinds of variables: class variables, property
variables and instance variables. Class variables and property variables
are distinguished from instance variables in that they begin with a

3.5 triple 53

dollar sign and at-symbol (‘@’). Hence the query {$C1}creates{$C2}

finds the domains and ranges of the property creates. In contrast, the
query {C1}creates{C2} yields all pairs of individuals in an RDF graph
that are connected via a creates property.

In contrast to the queries given above, queries involving variables
must be contained within an RQL select clause, that tells distinguished
and undistinguished variables apart. The notions of distinguished and
undistinguished variables are used here in the same way as in SPARQL.

Example 8. The query

SELECT @P, range(@P) FROM {; Painter}@P

finds all pairs of nodes (p, r) such that the domain of p is the class Painter
or some of its superclasses, and such that r is one of the domains of p.

Example 9. The following RQL query consults the schema layer of an RDF
graph to find classes z that are in the range of property exhibited and classes
x that are in the range of property creates. Morever, xmust be in the domain
of property exhibited.

SELECT $X, $Z FROM creates{$X}.exhibited{$Z}

Each class c and property p in an RDF graph is itself considered
an RQL query, evaluating to the class extension of c and the property
extension of p, respectively.

Besides the above-mentioned features, RQL provides also filter ex-
pressions, set based queries, aggregate functions, namespace queries,
nested queries in the style of SQL, and quantifiers similar to the forall

and exists quantifiers in XQuery.

criticism RQL is a very expressive RDF query language, that fulfills
almost all needs of query authors. In contrast to Xcerpt

RDF it does
not provide regular string expressions and recursion, and it lacks, to
the best of our knowledge, a formal semantics. Integration with XML
query languages for versatile data integration on the Web has not yet
been attempted. Moreover it does not take into account the intuitive
semantics of RDF containers, collections and reification. Finally, the
distinction between instance, schema and meta-schema queries is based
on the assumption that RDFS is the only important semantic extension
to RDF, neglecting its extensions to datatypes and OWL.

3.5 triple

“TRIPLE is based on Horn Logic and borrows many features from F-
logic, but is especially designed to querying and transforming RDF
models.”[SD01] Models in the TRIPLE terminology are similar to the
idea of named graphs of SPARQL. Triple models (also called contexts
in [DSN03]) are just a collection of RDF statements with an associated
name which is used to refer to them. Besides these ordinary models,
[DSN03] also introduces parameterized models, which can be seen as
logic programs operating on RDF graphs (i.e. models in the terminology
of [DSN03]). Cast in the nomenclature of logic programming, ordinary
Triple models are sequences of facts (with an associated name, and each
fact represents an RDF triple), and parameterized Triple models are
sequences of rules.

54 related work: data integration on the (semantic) web

The authors of [SD01] argue that most RDF query languages de-
veloped thus far have a static built-in semantics and are not flexible
enough to adapt to different semantics. E.g. SPARQL does not care
about RDF semantics at all, but considers the derivation of implied
statements to be the task of an underlying data model. RQL in contrast
implements the RDFS semantics, but cannot adapt to other semantic
extensions to RDF such as RDFCC and RDFR (see Section 5.2) or RDF
datatype semantics because it lacks user defined rules.

As most other query and transformation languages for the Web
and the Semantic Web, TRIPLE supports namespace abbreviations and
named graphs. Apart from this, TRIPLE features several characteristics
which distinguish it from other languages for the Semantic Web:

• RDF statements are written in F-logic syntax – e.g. the RDFS
axiomatic triple rdf:type rdfs:domain rdf:Resource is written
as rdf:type[rdf:domain 7→ rdf:Resource], assuming that the
rdf and rdfs namespace prefixes are defined in the expected way.

• Resource abbreviations such as isa := rdfs:subclassOf. allow
to write statements more briefly.

• Several statements with the same subject can be grouped by the
subject in so-called RDF molecules and these groupings may be
nested just as in RDF/XML.

• A brief syntax for reified statements allows for a significant
reduction of the verbosity of RDF graphs. The RDF molecule
george[believes 7→ <osama[rdf:type 7→ deadPerson]>] in fact
represents five statements:

– george believes _:Statement1

– _:Statement1 rdf:type rdf:Statement

– _:Statement1 rdf:subject osama

– _:Statement1 rdf:predicate rdf:type

– _:Statement1 rdf:object deadPerson

• path expressions in the extended dot notation

• Parameterized triple models consist of multiple rules with RDF
molecules in the head. The application of such Triple models to
an RDF graph is itself an RDF graph, which means that Triple is
answer closed.

• parameterized models are defined in a so-called model specification
block of the form

∀Mdl@modelname(Mdl){ . . .}

and consist of a model name, a parameter name for the RDF graph
to be transformed, and contain a collection of facts and rules that
are applied to the graph which is the parameter. Parameterized
models are useful to enrich an RDF graph by axiomatic triples,
the implied triples under the RDFS semantics – as the example in
[SD01] shows – or other semantic extensions to RDF.

Parameterized models can be seen as view definitions on RDF
graphs. Multiple rules may be present in the same rule, and

3.6 swrl 55

the application of views to an RDF graph may be composed.
This allows easy information integration across different RDF
vocabularies.

The semantics of triple was first informally defined by a mapping
from TRIPLE expressions to Horn Logic rules evaluated by an XSB Pro-
log system. In subsequent work [DSN03], a model theory was specified.

Compared to other Web query languages, Triple exhibits the follow-
ing weaknesses:

• Very limited graph matching facilities. RDF molecules as the
primary building blocks of Triple rule bodies do not support
optional subqueries such as SPARQL, descendant constructs and
arbitrary depth navigation within RDF graphs such as nSPARQL,
different types of variables and support for RDF containers and
collections as Xcerpt

RDF.

• Complete support for blank node construction as in RDFLog
remains unclear in Triple. The examples in [DSN03] suggest that
blank node construction is not supported.

• Triple being a pure RDF query language, it is not format versatile
as XSPARQL and Xcerpt

RDF.

3.6 swrl

SWRL [HPSB+
04], an acronym for Semantic Web Rule Language, is a

rule language for the Semantic Web built upon a combination of OWL
DL and the Unary/Binary sublanguages of the Rule Markup Language
[BW01].

RuleML is not a rule language itself, but a markup language for rules
for the Semantic Web aimed at allowing easy and standardized inter-
change of rules between various applications on the Web. Nevertheless
it is briefly introduced in this section because one of its sublanguages,
namely the unary/binary datalog sublanguage, constitutes one of the
building blocks of SWRL.

The RuleML initiative aims at standardizing a whole hierarchy of rule
languages, which are potentially useful on the Web. At the very top of
this hierarchy are reaction rules, meaning that all rules considered by the
RuleML initiative are regarded as reaction rules. Two specializations of
reaction rules are given by integrity constraints and derivation rules. All
rule languages considered so far in this thesis fall into this last category
of deriviation rules. Derivation rules are considered as reaction rules
under the RuleML hierarchy since they may be regarded as reactive
rules in which the only action allowed is the assertion of new facts.

a quick introduction to swrl SWRL features four syntaxes:
an abstract syntax, which is supposed to be used by parsers and other
programs operating on rule programs, a human readable syntax which
is primarily used in [HPSB+

04] to explain how SWRL is supposed to be
used, an XML syntax which allows to process rule programs with XML
tools and finally an RDF syntax. In this overview of SWRL only the
human readable syntax is needed and introduced by examples taken
from [HPSB+

04].
In contrast to RDF, the human readable syntax of SWRL uses prefix

notation for atoms consisting of a predicate and two arguments. Being

56 related work: data integration on the (semantic) web

a rule language, it uses→ for implication and ∧ for conjunction. With
SWRL itself not providing disjunction and negation, an extension of
SWRL in the direction of first order logic called SWRL-FOL [PS04] has
been proposed. The following SWRL rule is used to derive the uncle

relationship based on a hasParent and a hasBrother predicate.

hasParent(?x1,?x2) ∧ hasBrother(?x2, ?x3) → hasUncle(?x1,?x3) �
SWRL has a direct model theoretic semantics which is based on the

semantics of OWL, extending basic OWL interpretations by bindings.
Bindings are mappings from individual variables and datatype variables to
elements of the domain and the set of literal values, respectively. Recall
the definition of OWL interpretations:

An abstract OWL interpretation is a six-tuple I =< R,EC,ER,L,S,LV >
with R being the domain of the interpretation, EC is the extension of
classes and datatypes, ER is the extension of predicate symbols, LV ⊆ R
is a set of literal values, L is a mapping from typed literals to elements
of LV , and S is a mapping from individual names to the extension of
the class owl:thing.

The model theoretic semantics of SWRL rules is defined in the same
way as for Datalog programs.10: A binding B(I) satisfies the antecedent
of a SWRL rule, iff it satisfies each of its atoms. B(I) satisfies the
consequent C of a rule, if C is non-empty, and B(I) satisfies each atom
in C.

3.7 metalog

Metalog [Mar04a] is a logical language for the Semantic Web which
aims to fill the gap present on the “People Axis” as described in
[Mar04a]. Metalog aims at lowering the entrance level for authors
of rule programs by providing a pseudo natural language interface.

It features two syntaxes: an RDF representation of logical formulae
which is called Metalog Model Level (MML) and a natural language
representation which is called Pseudo Natural Language (PNL). The se-
mantics of the Metalog Model Level is defined by a mapping to the
Metalog Logic Level (MLL), a subset of infinitary equational first or-
der logic. MML is an extension of RDF by logical conjunction, dis-
junction, negation and implication, denoted by ml:and, ml:or and
ml:imply, respectively, with the namespace prefix ml: referring to
http://www.w3.org/1999/02/22-rdf-syntax-ns. Moreover, MML pro-
vides numerical comparison and the math operators +, −, ∗ and /.
Instantiations of the operators are given an RDF representation using
blank nodes and some reserved vocabulary. The simple RDFLog rule in
Listing 3.17 is represented by Listing 3.18, where β1 and β2 denote the
triples in the body of the rule in Listing 3.17, whose exact representation
is left unspecified in [Mar04a].

Listing 3.17: A simple RDFLog rule

triple(ex:s1, ex:p1, ex:o1), triple(ex:s2, ex:p2, ex:o2)

→ triple(ex:s3, ex:p3, ex:o3)

10 Except for the fact that SWRL rules may have conjunctions in rule heads. Since SWRL
does not deal with explicit blank node quantification, conjunctions are straight-forwardly
resolved by splitting a rule into muliple rules – one for each conjunct.

http://www.w3.org/1999/02/22-rdf-syntax-ns

3.8 the rule interchange format 57

Listing 3.18: Metalog representation of a rule
_:Imp <ml:operator> <ml:imply>
_:Imp <rdf_1> _:Head
_:Imp <rdf_2> _:Body

_:Body <ml:operator> <ml:and>
_:Body <rdf_1> β1
_:Body <rdf_2> β2

The Pseudo Natural Language Interface operates on top of the logical
layer, and is at the heart of the Metalog system. In this sense, Metalog
is different from conventional rule languages for the Semantic Web,
because the greatest part of the effort has been put in designing and
implementing an easy to use pseudo natural language and into parsing
of natural language.

Another distinguishing feature of Metalog is that it is one of the few
RDF query languages that formalizes the semantics of RDF bags and
alternatives. In the same way as the model theory for RDF containers
and collections (RDFCC) presented in Section 5.2.2, Metalog assumes
that an RDF bag entails any reordering of its members. The RDFCC
model theory and Metalog disagree, however, in the way that RDF
alternatives are formalized. While the RDFCC model theory treats
all members of an RDF alternative equally, Metalog considers the
first element in the alternative as a distinguished element – i.e. as
the default value. The intuitive semantics provided by the W3C for
RDF alternatives is not precise in this respect, and both semantics are
conceivable. Metalog’s treatment of RDF Containers is thus a further
hint that a formalization of the RDF grouping constructs is in desperate
need.

3.8 the rule interchange format

The rule interchange format (RIF) is an effort of the W3C to standardize a
family of rule languages serving as an exchange format for virtually all
rule languages used on the Web. As mentioned in Section 1, the avail-
ability of rules and their interchange makes goal-directed evaluation
of Web queries feasible. Moreover, it is in many cases more efficient to
transmit rule sets instead of the views they define. The term “format”
in RIF does not mean that RIF is only about syntax. On the contrary,
the working group sets out to rigorously define the semantics of all the
dialects within the framework.

With current rule languages not only differing in their syntax, but
also in their expressivity and semantics, the invention of an interchange
format for all available rule languages is a quite ambitious goal. The RIF Families of RIF

dialectsworking group has identified two major families of rules that must be
representable in the RIF dialects: logical rules and rules with actions. The
family of logical rules is outlined in the W3C working draft Framework
for Logic Dialects (FLD) [BK09b], and the production rule dialect, a
member of the family of rules with actions, is described in [dSMPH09].
The only completely specified member of the family of RIF logic dialects
is the basic logic dialect (BLD) described in [BK09a]. [BK09b, dSMPH09, W3C specifications

related to RIFBK09a] are all W3C working drafts, and are complemented by the
working drafts RIF Core Dialect [BHK+

09], which is supposed to act as
the basis for all RIF dialects, no matter if logic or reactive, RIF RDF and
OWL Compatibility [dB09], which specifies the interoperation between

58 related work: data integration on the (semantic) web

RIF rule languages and RDF data, and RDF/S or OWL ontologies,
and RIF Datatypes and Built-Ins 1.0 [PBK09], which lists the datatypes
– to a large part adopted from XML Schema – and built in functions –
partially adopted from XPath – that are expected to be supported by
RIF dialects.

Since the rules with action dialect is less related to the contents of
this thesis, the focus of this section lies on the basic logic dialect and itsSyntactic and

Semantic framework
of FLD

embedding framework FLD. The framework for logic dialects defines a
syntactic framework which is intended to be used as a starting point for
deriving the syntax of a new rule language by specialization. Moreover
FLD provides a semantic framework from which the semantics of a new
dialect can be derived by the introduction of new datatypes, by fixing a
partial or total order of truth values for the language, by defining the
set of intended models for the rule language (such as minimal models,
well-founded models, stable models, Herbrand models, etc) and by
restricting the syntax of valid terms.

The syntactic framework of FLD is aware of 11 different types ofTerms within FLD

terms: (a) constants and variables make up the set of simple terms, (b)
positional terms generalize logic terms by allowing variables and entire
terms to appear also in predicate position, (c) terms with named argu-
ments give names to the arguments of a term, and therefore are agnostic
of the order of the subterms, (d) list terms which may also be nested
and open, (e) equality terms, (f) classification terms for specifying instance
and subclass relationships, (g) frame terms for describing properties of
objects, (h) externally defined terms for representing (among others) built-
in functions treated as “black boxes”, (i) formula terms for representing
compound logical formulas, (j) aggregate terms aggregating information
with functions such as Sum, Count, Max, Min, Avg, etc, (k) remote terms for
querying external RIF resources, i.e. documents whose semantics is
defined by RIF, and which – in contrast to external terms – are not
treated as black-boxes.

FLD distinguishes between syntactically valid terms, and well-formed
terms. The well-formedness of terms is expected to be specified by the
RIF-dialects by the provision of signatures for the constant and variable
symbols they use.

The semantic framework of FLD is based on the semantics of F-logic
[KLW95a] and HiLog [CKW93], but adapted to deal with multiple
truth values. FLD is parameterized by the set of allowed truth values.
Moreover, FLD accomodates all kinds of semantics of logic programs –
including minimal model semantics, stable model semantics and well-
founded model semantics – by leaving open the set of intended models.
Entailment is defined based on intended models as follows. A formula
f1 entails a formula f2 if and only if all intended models of f1 are
also intended models of f2. Again, the RIF dialect derived from FLD is
expected to define which models are intended.

The ambition of FLD being to encapsulate all RDF rule languagesRelation between RIF
and rich unification
languages,
Xcerpt

RDF

used on the Web, it is interesting to see if the syntax and semantics
of Xcerpt can be encoded in terms of FLD, or, at least canonically be
mapped to some (new) RIF dialect derived from FLD. Pure Xcerpt

RDF

(without XML querying capabilities) only uses simple terms and frame
terms, but not positional terms, list terms, terms with named argu-
ments or equality terms. Classification terms for Xcerpt

RDF have been
developed in [Poh08], but are not mentioned in this thesis. Xcerpt

RDF

allows formulas to be built from terms, but these are not considered as

3.8 the rule interchange format 59

terms themselves. Externally defined terms, remote terms and aggre-
gate terms could extend Xcerpt

RDF in a natural and sensible manner,
but are not introduced in this thesis, since the focus is on rich unifica-
tion languages for versatile data integration. Rule languages with rich
unification as introduced in Section 1 seem to not be derivable from
FLD. SPARQL matching and Xcerpt

RDF term simulation can, however,
be translated to rules with negation, but without rich unification, e.g.
to Prolog.

Part II

V E R S AT I L E Q U E RY I N G W I T H XCERPTRDF

4V E R S AT I L E U S E C A S E S

Contents
4.1 Querying XML with Xcerpt: Examples and Patterns 66

4.1.1 XcerptXML Data and Rules. 67

4.1.2 XcerptXML Queries: Pattern-based Filtering of Search
Results 69

4.1.3 Mining Semantic data from Microformats embedded in
personal profiles. 70

4.2 Querying RDF with Xcerpt: Examples and Patterns 72
4.2.1 Representation of RDF Graphs as Xcerpt

RDF Data Terms 72

4.2.2 Xcerpt
RDF Query Terms 76

4.2.3 Xcerpt
RDF Construct Terms and Rules 79

4.3 Glueing RDF and XML with Rules 84
4.3.1 Versatile Rules 84

4.3.2 Transforming LinkedIn embedded Microformat infor-
mation to DOAC and FOAF 86

With the rise of a plethora of different semi-structured Web formats,
versatility [BFB+

05] has become the central requirement for web query
languages. Besides the well-known and ubiquitous formats HTML,
XML and RDF, there are quite a lot of less familiar formats such as
RDFa [AB07, Adi08] for embedding RDF information in HTML pages,
the microformats [Kc06] geo, hCard, hCalendar, hResume, etc., the ISO-
standard Topic Maps [GM06, Pep00]. We call a web query language
format versatile, if it can handle, merge or transform data in different
formats within the same query program. The need for integrating data
from different formats has been acknowledged by partial solutions such
as GRDDL [dav06, W3C07, Gan07], hGRDDL [Adi08] and XSPARQL
[AKKP08]. All these solutions have in common that they try to solve
the problem of web data integration by applying a mix of already estab-
lished technologies such as XSLT transformations, DOM manipulations,
and a combination of XML and RDF query languages such as XQuery
and SPARQL. It is thus unsurprising that understanding these solutions
requires a large background knowledge of the employed technologies,
and that the methods are much more complicated than they could be
if a format-versatile language particularly geared at integrating data
from different web formats was employed.

Besides format versatility, we distinguish two other kinds of versa-
tility: schema and representational versatility. A web query language is
called schema versatile, if it can handle and intermediate between differ-
ent schemata (i.e. schema heterogeneity) on the Web. Usage of different
schemata for representing similar data is very common and well-studied
in the field of data integration [Ull00, Len02]. Since the Web is being
enhanced with structured and semantically rich data, data integration
on the Web [KMA+

98] has also received considerable attention and
has spurred the growth of ontology alignment [NM00, EV03, EV04]

63

64 versatile use cases

research. Schema heterogeneity on the Web is encountered whenever
two ontologies describe the same kind of information on the Web, but
employ different languages for this end.

Finally, representational heterogeneity is encountered in XML dialects
such as RDF/XML, where the same information is represented dif-
ferently due to the use of syntactic sugar notations – e.g. for rdf:type

arcs or for the concise notation of literals, URIs or RDF containers.
Moreover, representational heterogeneity is present in any XML dialect
that does not enforce any order of the information that it provides,
since for serialization an arbitrary order must be chosen. We call a
language representational versatile, if it can query data agnostic of the
representational variant chosen.

In this chapter, we show how the design of Xcerpt query terms, con-
struct terms and rules has lead to a versatile language with respect to
all three issues – format, schema and representation. This section starts
out by looking at Xcerpt from an abstract point of view, its relationship
to logic programming and the interface defined by Xcerpt terms. In
Section 4.1, we introduce XML querying, construction and transfor-
mation at the example of harvesting search results and microformat
information of personal profile pages of a social network. In Section 4.2,
Xcerpt’s RDF querying capabilities are presented with special emphasis
on treating RDF specifies such as containers, collections and reifications.
Finally, in Section 4.3, we present a use-case on combining microformat
information harvested with XcerptXML and RDF data queried with
Xcerpt

RDF, thus combining versatile querying in XML and RDF.

xcerpt terms from an abstract point of view : simulation,
substitutions, and application of substitution sets .
Xcerpt is a rule and pattern based language inspired by logic pro-

gramming, but with significantly richer querying capabilities that are
necessitated by the semi-structured nature of data on the Web.

In contrast to Prolog unification, Xcerpt uses a more involved kind
of unification called simulation unification1 to extract bindings of logical
variables from Web data.

While Prolog rules consist of possibly non-ground terms in the head
and the body of a rule, Xcerpt distinguishes between construct terms and
query terms to be used in the heads and the bodies of rules, respectively.
This differentiation is necessary because the semi-structured nature
of data on the Web requires expressive query constructs – such as
descendant, subterm negation, optionality – only in the query part of a
rule (i.e. in the query terms), and constructs for reassembling the data
– such as grouping – only in the construction part (i.e. the construct
terms). Additionally, Xcerpt offers data terms as an abstraction of XML
(and thus also HTML) and RDF data. Xcerpt terms fulfill the following
three properties: (i) any data term is also a query term, (ii) any data
term is also a construct term, and (iii) the intersection between the set
of construct terms and query terms is exactly the set of data terms,
where some subterms may be substituted by variables.

Also Prolog differentiates between terms and ground terms and
facts. In Prolog it holds that any ground term is a fact (i.e. data). In
Xcerpt, however, a term may very well be ground, but still be only an
incomplete description of data – i.e. a query. Xcerpt terms are formally –
but, for the sake of brevity, not in their entirety – defined in Section 7.1.

1 The term simulation is derived from graph simulation as defined in [ABS00].

versatile use cases 65

The differences between Prolog Unification and Simulation unifica-
tion can be briefly summarized as follows:

• Non-Symmetry of simulation unification. Whereas Prolog unification
is a symmetric operation on two generally non-ground terms,
Xcerpt simulation unfication is a non-symmetric relation having
a query term as the first argument, and a construct term as the
second.

• Different types of variables. While Prolog Unification only allows
for one single type of variable that will bind to any type of
term, Xcerpt differentiates between different types of variables.
Obviously the types of variables also differ with the data format
that is being queried (XML, RDF, Topic Maps, Microformats, etc).
When querying XML data, Xcerpt distinguishes between term
variables, that bind to an entire XML fragment and label variables,
that bind to a qualified or local name only.2

• Notations for querying incomplete data. Due to the almost schema-
less nature of data on the Web, Xcerpt terms must be able to
incompletely specify or describe the data that is being searched
for. These notations include optionality of subterms, subterms
at arbitrary depth and negated subterms and are introduced in
detail in Section 4.1.

• Substitution sets instead of substitutions. While in Prolog one can
find a single most general unifier for two terms t1 and t2 up to
variable renaming, this is not true for Xcerpt. Simulation unifi-
cation between two Xcerpt terms xt1 and xt2 results in a set of
substitutions (that may very well contain only a single substitu-
tion or none at all), which is due to the richer kind of simulation
and the deeper structure of data found on the Web. Imagine,
for example, a biological database in XML format on the Web
that contains data about enzymes and chemical reactions they
catalyze. Although the database may be contained in a single
XML document, the query for all pairs of enzymes and catalyzed
reactions should, obviously, return more than a single tuple.

Feature unification [Kay84, Kay85], i.e. unification between feature
terms, has been investigated in linguistics to aid automatic translation
of natural language texts. Feature terms are used as an abstract repre-
sentation of text, and are similar to semi-structured expressions as far
as they can be arbitrarily nested as XML documents, may contain nodes
that are entirely represented by their properties (just as RDF blank
nodes), and in that the order of subterms may or may not be relevant.
In contrast to simulation unification, feature unification is symmetric,
and feature terms do not provide constructs for specifying incomplete-
ness in depth or different types of variables. Finally, feature unification
does not return sets of variable bindings but serves to translate text
from one natural language to another.

Matching or – in Xcerpt terminology – simulating queries with data
is only one of two steps in the transformation of semi-structured data.
Just as Prolog, but more consequently (because of aggregation), Xcerpt
clearly separates extraction of data (the data is bound to variables

2 Variables for term identifiers and for XML attributes are not considered in this survey for
the sake of brevity.

66 versatile use cases

within rule bodies) and construction of new data (reassembling the data
by application of substitution sets to rule heads).3 This separation con-
trasts with XML query languages such as XQuery and XSLT, in which
querying and construction is intertwined. Construction of new data with
rule based languages is achieved by applying a substitution to a term.
As mentioned above, however, Xcerpt does not deal with ordinary
substitutions, but with substitution sets, and moreover, it differentiates
between different kinds of terms. Therefore, we must be more specific:
Construction of new data in Xcerpt is achieved by applying sets of
substitutions to construct terms. The step from single substitutions to
substitution sets allows the introduction of grouping constructs and
aggregations to rule-based web querying. In the absence of grouping
and aggregation constructs, application of substitution sets does not
result in a single Xcerpt term, but in a set of terms (which may very
well be unary or even empty).

The above discussion of Xcerpt terms can be summarized by the
following interface (written as a functional type signature) of an Xcerpt
term, where QTerm, CTerm and DTerm denotes the set of query,
construct and data terms, respectively:

simulates :: QTerm→ CTerm→ Bool

simulation_unify :: QTerm→ CTerm→ SubstitutionSet

apply_substitution_set :: SubstitutionSet→ CTerm→ [DTerm]

The function simulates returns true for a query term q and a con-
struct term t if and only if the substitution set simulation_unify(q, t)
is non-empty. In addition to the three above mentioned functions, a
function which decides the subsumption relationship between two
Xcerpt query terms is required if an optimized tabling algorithm for
backward chaining evaluation of a multi-rule program is to be used. For
more information about the subsumption relationship between Xcerpt
query terms see Section 8.

In Section 4.1, we informally introduce the XML processing capabili-
ties of Xcerpt, XcerptXML terms, XcerptXML simulation unification and
the application of substitution sets to XcerptXML terms. In Section 4.2
we do the same for Xcerpt

RDF. Section 4.3 gives an intuitive introduc-
tion to Xcerpt multi-rule programs, and shows how Xcerpt programs
are used for data integration between RDF and XML.

4.1 querying xml with xcerpt : examples and patterns

A large number of query languages for XML data have been proposed in
the past. They range from navigational languages such as XSLT [Kay07]
XQuery [SCF+

07], their common subset XPath [BBC+
07], and Quilt

[CRF00] (the predecessor of XQuery) over pattern based languages
such as XML-QL [DFF+

98], UnQL [BFS00] and Xcerpt to visual query
languages such as visXcerpt [BBB+

04], XQBE [ABCC03] and XML-GL
[CCD+

98]. For a comprehensive survey over XML query languages,
their expressive power and language constructs, see [BBFS05], for a
comparison of Lorel, XML-QL, XML-GL, XSL and XQL see [BC99].

3 Queries against a single Prolog rule, such as the append rule, may indeed be used to
achieve both: concatenation of lists and finding components of a list. Still, querying is
performed by matching rule bodies with terms, and data construction by filling in bindings
for variables in rule heads.

4.1 querying xml with xcerpt: examples and patterns 67

In this section, we introduce the XML processing capabilities of
Xcerpt, taking Web search results, personal profile pages from the
LinkedIn social network and FOAF documents as a running example.
With this data, the following task will be accomplished:

• We will extract links to LinkedIn profile pages from search re-
sults of the Google search engine. LinkedIn is a popular social
network for keeping track of business contacts. In principal, this
use case could be applied to any other social network that makes
parts of its pages available for indexing by search engines. We
chose LinkedIn in this example since its HTML pages are well-
structured and make at the time of this writing more and cleaner
use of semantic markup. Unfortunately, Google search results are
primarily intended for human consumption, and presentation by
the browser, not for machine processing or even understanding.
As a result, the relevant search results for a person name are
wrapped within deeply nested HTML which primarily serves
presentation purposes, and snippets of text extracted from the in-
dexed pages. Still, Xcerpt’s powerful querying constructs, such as
optionality and the descendant axis, allow the concise formulation
of query terms that extract only the relevant links by matching
among others class and id attributes.

• From the profile pages relevant data of the curriculum vitae of the
persons is identified and extracted by exploiting the microformat
vocabularies hresume, hcalendar and hcard which LinkedIn has
integrated into the HTML pages for semantic enrichment of the
textual content.

• Finally, FOAF documents are queried to find additional infor-
mation not present in the LinkedIn profile. Since FOAF is an
RDF format that may be serialized in RDF/XML, we will discuss
the syntactic XML structure of these documents and their cor-
respondence to Xcerpt

RDF query terms in this section, but use
Xcerpt

RDF to query their contents in Section 4.2.

4.1.1 XcerptXML Data and Rules.

This section introduces XcerptXML data terms, that abstract from XML
documents, ignoring XML specifities such as processing instructions,
comments, entities and DTDs. XcerptXML terms are introduced to allow
a more concise representation of XML data that can be extended to
form queries and construct patterns to be used in rules.

Rules are written in a similar fashion to Datalog or Prolog rules, and
have the following general form:

CONSTRUCT <CONSTRUCTTERM> FROM <QUERY> END �
Xcerpt queries are enclosed between the FROM and END keywords

and are matched – in Xcerpt terminology simulated – with data. Due
to Xcerpt’s answer closedness (see Definition 13 for details), data may
also be used as queries. To see how XML is represented as Xcerpt data,
consider the FOAF document in Listing 4.1 and the corresponding
Xcerpt data term in Listing 4.2.

FOAF is an acronym for “Friend-Of-A-Friend”, which is a vocabulary
for specifying relationships among people, their personal information

68 versatile use cases

such as adresses, education and contact information. FOAF is primarily
an RDF vocabulary, and is therefore semantically richer than plain
XML data, but most FOAF documents are serialized in RDF/XML.
Therefore, FOAF documents serialized in RDF/XML can be queried or
transformed syntactically (on the XML level) or semantically (on the RDF
level). While this section deals with syntactic transformations of Web
data, semantic queries, transformations and reasoning using Xcerpt

RDF

are discussed in Section 4.2.

Listing 4.1: A friend-of-a-friend document

<rdf:RDF xmlns:rdf=" http://www.w3 . . . rdf−syntax−ns#"
xmlns:rdfs=" http://www.w3 . . . rdf−schema#"
xmlns:foaf=" http://xmlns.com/foaf/0.1/"
xml:base=" http://www.example.com/">

<foaf:PersonalProfileDocument rdf:about="descriptions/Bi l l . foaf ">
<foaf:maker rdf:resource="#me"/>
<foaf:primaryTopic rdf:resource="#me"/>

</foaf:PersonalProfileDocument>

<foaf:Person rdf:ID="me">
<foaf:givenname>Bill</foaf:givenname>

<foaf:mbox_sha1sum>5e22c ... 35b9</foaf:mbox_sha1sum>

<foaf:depiction rdf:ID="images/bi l l .png"/>
<foaf:knows>

<foaf:Person>

<foaf:name>Hillary</foaf:name>

<foaf:mbox_sha1sum>1228 ... 2f5</foaf:mbox_sha1sum>

<rdfs:seeAlso rdf:ID="descriptions/Hillary . foaf "/>
</foaf:Person>

</foaf:knows>

</foaf:Person>

</rdf:RDF> �
Listings 4.1 and 4.2 exhibit an overwhelming similarity. Therefore, we

will only quickly discuss the points in which the data term representa-
tion deviates from the XML serialization. While attributes are given as
name-value pairs inside of opening tags in an XML document, they are
given in round braces following a qualified name in XcerptXML. More-
over, the beginning and end of an element are specified by opening and
closing brackets (or braces). Namespace prefixes are declared outside
of the data terms, which disallows redefinition of namespace prefixes.
Nevertheless all XML documents conforming to the Namespace rec-
ommendation [BHLT06] can also be represented as an XcerptXML data
term. Finally, text nodes are enclosed within quotation marks in order
to be differentiated from empty element nodes.

Listing 4.2: A friend-of-a-friend-document written as an Xcerpt data term

declare namespace rdf "http://www.w3 ... rdf-syntax-ns#";

declare namespace rdfs "http://www.w3 ... rdf-schema#";

declare namespace foaf "http://xmlns.com/foaf/0.1/"

declare xml-base "http://www.example.com/"

rdf:RDF [

foaf:PersonalProfileDocument (rdf:about="descriptions/Bill.foaf")

[

foaf:maker (rdf:resource="#me"),

foaf:primaryTopic (rdf:resource="#me")],

foaf:Person (rdf:ID="#me") [

4.1 querying xml with xcerpt: examples and patterns 69

foaf:givenname ["Bill"],

foaf:mbox_sha1sum ["5e22c ... 35b9"],

foaf:depiction (rdf:ID="images/bill.png"),

foaf:knows [

foaf:Person [

foaf:name ["Hillary"],

foaf:mbox_sha1sum ["1228 ... 2f5"]

rdfs:seeAlso (rdf:ID="descriptions/Hillary.foaf")]]]] �
4.1.2 XcerptXML Queries: Pattern-based Filtering of Search Results

Consider the task of finding people and their curriculum vitae who
study or have studied at the university of Munich. Searching for the
term “LinkedIn” and “Munich” with a decent search engine returns
among other search results links to pages of personal profiles of persons
living in that city. The following Xcerpt query can be used to filter out
other links in the search result page of Google.4

html{{

desc div((id="res"))[[

h2((class="hd")){ "Search Results" },

desc h3((class="r")){{

or(

a((href=var Link as /.*linkedin\.com\/in\//)){{ }},

a((href=var Link as /.*linkedin\.com\/pub\//)){{ }}

)

]]

}}

}} �
The following features of Xcerpt must be explained to understand the

above query: (in)completeness in breadth for elements and attributes,
incompleteness in depth, logical variables, regular expressions and
query term disjunction.

• Curly braces are used to specify subterm relationship between
an element and another element or a text node. The query h2{

"Search Results" } finds h2 elements with an enclosed text node
with text "Search results". Double curly braces signify that more
subterms may be present than are specified. If more than one
subterm is specified within double curly braces, they must be
mapped in an injective manner, i.e. they may not match with the
same subterm of the data. This injectivity requirement can be
avoided by using triple curly braces {{{ }}}. Square parentheses
may be used instead of curly braces, if the order of the subterms
appearing in the query is relevant. In the presence of zero or one
subterm only, using square brackets or curly braces has the same
semantics. A query that uses double or triple braces or brackets is
termed incomplete in breadth, a query with single braces or brackets
only is termed complete in breadth.

• XML attributes and values are given in round parentheses di-
rectly following element names. Attribute names are followed
by an “=” sign and by an attribute value in quotation marks.

4 We make use of the fact that all LinkedIn profile pages start either with http://www.

linkedin.com/pub/ or http://www.linkedin.com/in/.

http://www.linkedin.com/pub/
http://www.linkedin.com/pub/
http://www.linkedin.com/in/

70 versatile use cases

Double parentheses may be used to state that there may be more
attributes present in the data than specified in the query. Since
XML attributes are always considered to be unordered, there is
no way of expressing an ordered query on attributes in Xcerpt. In
case of double parentheses, the attributes are said to be specified
incompletely in breadth.

• The desc keyword has the same semantics as the XPath descendant
axis: The subterm following the desc may either be a direct child
of the surrounding term or nested at arbitrary depth within
one of the children. A term using the desc keyword is termed
incomplete in depth, the other terms are said to be completely
specified in depth. As the example above shows, incompleteness
significantly eases query authoring, since it requires only a very
basic knowledge about the structure underlying the queried data.

• Logical variables are used to extract information from an HTML
or XML document. In XcerptXML terms, variables may bind ei-
ther to entire XML elements, in which case they are called term
variables, to the labels of elements only (label variables), to entire
attributes (attribute variables) or to the values of attributes only
(label variables). Variables may additionally feature a variable re-
striction initiated with the as keyword. Variable restrictions serve
to lay a restriction on the possible bindings of variables.

• Regular expressions are delimited by the sign ’/’ and can be used
at the place of labels to restrict the set of XML names that are
matched by an XcerptXML query term. The query term /ab*/, for
example, will match with the labels a, ab, abb, etc. only.

• Queries may be composed using the boolean connectives and, or,
and not which have the same intuitive semantics as in logic.

4.1.3 Mining Semantic data from Microformats embedded in personal pro-
files.

Let us now turn to the second task of our use case. Having identified
relevant URIs from the results of a search engine query, we now exploit
microformats as a semantic enrichment for HTML pages to gather
additional knowledge from web pages.

LinkedIn uses the microformats hcalendar, hresume, hcard, hAtom,
and XFN to semantically enrich the contents of their pages. Unfortu-
nately, the use of microformats has not been standardized, but evolves
over time. Moreover, there is no underlying formal data model for mi-
croformat data as in RDF or XML. Microformats primarily use the XML
attribute names class and rel for semantic information. In contrast to
RDF, microformats do not use namespaces or globally unique identi-
fiers, which makes it hard or sometimes even impossible to find out the
exact semantics of an HTML fragment enriched by microformats. For
example, both the hresume and the hcalendar specifications make use
of a tag called summary for specifying either the summary of one’s expe-
rience gained during a professional career or the summary of an event
description.5 With this deficiency in mind, the importance of query

5 Consult the descriptions of these microformats available online http://microformats.

org/wiki/hresume and http://microformats.org/wiki/hcalendar for details.

http://microformats.org/wiki/hresume
http://microformats.org/wiki/hresume
http://microformats.org/wiki/hcalendar

4.1 querying xml with xcerpt: examples and patterns 71

languages that transform semantic information embedded in HTML
pages into a more precise RDF dialect becomes even more obvious.
The fragment of a personal profile in Listing 4.3 pictures the use of
microformats on LinkedIn and serves as further example data in this
section.6 One can observe that finding the semantic information within
the HTML markup requires knowledge about the microformat stan-
dards, and that using the class attribute both for identifying elements
to be formatted by stylesheets and for microformat predicate names
is against the principle of separation of concerns coined by Dijkstra in
[Dij82].

Listing 4.3: A simplified personal profile page with embedded semantic infor-
mation.

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-US" lang="
en-US">

<head><title>John Doe - LinkedIn</title></head>
<body>
<div class="hresume">
<div class="profile-header">
<div class="masthead vcard contact portrait">
<h1 id="name">

John
Doe

</h1>

</div>
</div>
<div id="experience">
<h2>John Doe Experience</h2>
<ul class="vcalendar">
<li class="experience vevent vcard">
<h3 class="title">Research assistant</h3>
<h4 class="summary">
University of Munich

</h4>
<p class="organization-details">(Research industry)</p>
<p class="period">
<abbr class="dtstart" title="2000-02-01">February 2000</

abbr> until
<abbr class="dtstamp" title="2008-11-24">Present</abbr>
<abbr class="duration" title="P8Y10M">(8 years 10 months)

</abbr>
</p>

</div>
</body>
</html> �

The following Xcerpt query extracts the first and last name of a
Person, if she has some experience as a research assistant in some
organization in Munich. Aside from that, the query extracts the duration
of the working relationship between the person and the organization
if present. Unlike other query subterms, the relevant subterm for the
duration is marked optional, which means that the whole query is still
successfull, if the optional subquery fails to match. Optional matching
of subterms is only suitable if the subterm contains variables, and has
also been proposed for SPARQL and other query languages. In contrast
to SPARQL, however, the order of optional subterms within a query
does not have any effect on the query result – see [FLB+

06] for a more
detailed discussion of this issue.

Listing 4.3 makes use of abbreviations for displaying information
about the start, end and duration of an event. The actual date or

6 The majority of the HTML markup serving presentation purposes and also most of the
irrelevant content has been stripped out to shorten the presentation.

72 versatile use cases

duration is hidden within an XML attribute value that is meant for
computational processing. 7

Listing 4.4: Finding research assistants from some organization in Munich.

html{{

body{{

desc{{

desc /.*/((class="given-name")){ var FirstName },

desc /.*/((class="family-name")){ var LastName }

}},

desc /.*/((class=/.*experience.*/")){{

/.*/((class="title")){ "Research assistant" },

/.*/((class="summary")){ /.*Munich.*/ },

optional /.*/((class="period")){{

/.*/((class="duration" title=var Duration)){{ }}

}}

}

}}

}} �
Listing 4.4 highlights the peculiarities of matching HTML documents

with embedded microformat information. While element names have
almost no relevance, the values of the class attributes are of primary
importance. When querying plain HTML data, or XML dialects such
as XMLSchema or DocBook, however, the role of attributes is less im-
portant, but element names occurr more often in the query. Another
issue in extracting microformat information from documents is that the
values of class attributes are often space separated lists of microformat
predicate names such as vcard contact portrait. Up until now, Xcerpt
has no specialized means for accessing these atomic strings in attribute
values, which results in excessive use of regular expressions. Therefore,
it may be beneficial to invent a domain specific language or at least a
class of query patterns that are specifically suited for querying micro-
format information and which would allow a less verbose notation of
the query in Listing 4.4. In the following Section, we introduce the class
of Xcerpt

RDF query terms, which are geared at native and concise RDF
querying.

4.2 querying rdf with xcerpt : examples and patterns

In this section, the RDF processing capabilities of Xcerpt – united
under the term Xcerpt

RDF – such as data, query and construct terms
particularly geared towards RDF are introduced by example. This
section is structured in four parts. In Section 4.2.1 Xcerpt

RDF data
terms as a convenient way for representing RDF data are introduced.
In Sections 4.2.2 and 4.2.3, Xcerpt

RDF query and construct terms are
introduced as syntactic extensions to data terms.

4.2.1 Representation of RDF Graphs as Xcerpt
RDF Data Terms

Many serializations for RDF Data have been proposed (RDF/XML,
Notation3, Turtle, NTriples, etc.), with their inventors pursuing a set of

7 This convention was proposed by Tantek Çelik on his blog (http://tantek.com/log/
2005/01.html#d26t0100) since humans prefer dates in a natural language description
over a formal and concise notation, and may also deduce some information from the
context.

http://tantek.com/log/2005/01.html#d26t0100
http://tantek.com/log/2005/01.html#d26t0100

4.2 querying rdf with xcerpt: examples and patterns 73

partially competing goals: On the one hand, (i) RDF serializations are
supposed to be as short as possible, on the other hand, (ii) an optimal
serialization should have a canonical and unique representation for
each RDF graph – put more formally, there should be an isomorphism
between the set of RDF graphs and the set of RDF graph serializations.
Moreover, RDF serializations should be (iii) interchangeable between
software systems on the Web, and at the same time (iv) easy to author
and read by humans.

RDF/XML was proposed by the W3C with the first and the third
aim in mind. Due to the encoding of RDF in XML, RDF/XML is easily
exchanged over the Web, and standard XML tools, such as XPath,
XQuery, XSLT processors and XML Schema validators can be used to
process this serialization. Furthermore, the RDF/XML syntax allows
for a plethora of syntactic sugar notations that significantly reduce
the verbosity of an XML encoding of data. Unfortunately, RDF/XML
does not perform well in the second and fourth discipline, i.e. it is not
canonical, and it is not easy to read and write by humans. Due the
availability of the syntactic sugar notations, there are many different
possibilities for encoding the same RDF graph, which makes parsing
XML/RDF into a set of triples a major challenge, and also requires
more background knowledge about the serialization format by the user
than other serializations do.

Notation3 is a product of discussions in the Semantic Web Interest
Group and performs well under the first and lasst criterion. 8 Due to
its non-XML serialization format and some short hand notations, it
is easier to read and write for human users, and is also quite dense
in comparison with other serialization formats. Notation3 does not
perform well, however, under the second and third design goal.

Turtle being a subset of Notation3, and NTriples being a minimal
subset of Turtle (and thus also of Notation3), NTriples does not provide
any short hand notations and is thus significantly more verbose and
redundant than Notation3. Still, it is quite readable for human users
and can be easily read into or serialized from a relational database
containing only one single relation for all triples in an RDF graph9. Due
to its simplicity, NTriples comes pretty close to fulfilling the second aim:
An RDF graph being a set of triples, its possible NTriples serializations
only differ in the order of the triples and in the naming of the blank
nodes.

With Xcerpt
RDF data terms, we introduce yet another format for seri-

alizing RDF graphs. Besides the common goals stated above, Xcerpt
RDF

data terms were invented with three other goals in mind: (a) compat-
ibility with XcerptXML data terms, (b) extensibility to query terms
involving variables and incompleteness constructs10, and (c) support
for RDF specificities such as containers and collections11.

Consider the RDF graph displayed as an XML/RDF document in List-
ing 4.1 and as an XcerptXML data term in Listing 4.2. Its representation
as an Xcerpt

RDF data term is as follows:

Listing 4.5: A friend-of-a-friend-document written as an Xcerpt
RDF data term.

declare namespace rdf "http://www.w3 ... rdf-syntax-ns#";

declare namespace rdfs "http://www.w3 ... rdf-schema#";

8 Its specification can be found online at http://www.w3.org/DesignIssues/Notation3 .
9 This is a common schema for RDF stores

10 any Xcerpt
RDF data term is per se also an Xcerpt

RDF query
11 This last point has already been partially addressed by XML/RDF

http://www.w3.org/DesignIssues/Notation3

74 versatile use cases

declare namespace foaf "http://xmlns.com/foaf/0.1/"

declare namespace ex "http://www.example.org/"

ex:descriptions/Bill.foaf {

rdf:type → foaf:PersonalProfileDocument,

foaf:maker → ex:#me,

foaf:primaryTopic → ex:#me {

rdf:type → foaf:Person,

foaf:givenname → "Bill",

foaf:mbox_sha1sum → "5e22c ... 35b9",

foaf:depiction → base:images/bill.png,

foaf:knows {
_:SomePerson {

rdf:type → foaf:Person,

foaf:name → "Hillary",

foaf:mbox_sha1sum "1228 ... 2f5"

rdfs:seeAlso → base:descriptions/Hillary.foaf

} } } } �
As another example consider Figure 6 from the RDF Primer [MM04].

Its representation as an Xcerpt
RDF term is as follows:

Listing 4.6: Example from the W3C RDF Primer in Xcerpt
RDF notation.

declare namespace exterms "http://www.example.org/terms/"

declare namespace exstaff "http://www.example.org/staffid/"

exstaff:85740 {

exterms:address → _:A {

!http://www.example.org/terms/city → "Bedford",

exterms:street → "1501 Grant Avenue",

exterms:state → "Massachusetts",

exterms:postalCode → "01730"

}

} �
Similarly to RDF/XML, Notation3, Turtle and SPARQL, Xcerpt

RDF

data terms can be abbreviated using namespace prefixes in qualified
names. Full URIs are distinguished from qualified names by prefixing
an exclamation mark, blank nodes by the prefix _:, and literals by
quotation marks.

In the RDF graph above, multiple statements have the blank node
_:A as their common subject, which is factored out in the Xcerpt

RDF

serialization. In many cases RDF statements do not only share the
subject, but also the predicate, in which case also the predicate can be
factored out:

declare namespace ex "http://www.example.org/"

declare namespace foaf "http://xmlns.com/foaf/0.1/"

ex:anna { foaf:knows → (ex:bob, ex:chuck) }, �
Xcerpt

RDF also supports the factorization of properties only, objects
only, predicate and object, subject and object, and of all three elements –
subject, predicate and object, in which case there will be one Xcerpt

RDF

term for each RDF triple. Factoring out the predicate only could be
used, for example, to represent a clique of friends, in which every
member knows every other member and herself:

4.2 querying rdf with xcerpt: examples and patterns 75

(ex:anna, ex:bob, ex:chuck) {

foaf:knows → (ex:anna, ex:bob, ex:chuck) }, �
The RDF graph in Listing 4.6 has only a single node without incoming

edges, and therefore the choice of the root of the Xcerpt
RDF term

is trivial. RDF graphs may, however, have multiple nodes without
incoming edges or none at all, or may even be entirely disconnected.
In the case of no nodes without incoming edges, one can arbitrarily
pick a root node for the Xcerpt

RDF term representation, but in the
case of multiple nodes without incoming edges, and in the case of a
disconnected RDF graph, the graph cannot be serialized as a single
Xcerpt

RDF term, but only as a conjunction of terms. Therefore, the
keyword RDFGRAPH is introduced:

RDFGRAPH {

ex:anna { foaf:knows → ex:bob },

ex:chuck { foaf:knows → ex:bob }

} �
RDF Schema is a specification that “describes how to use RDF to

describe RDF vocabularies” [McB04]. It therefore provides a set of URIs,
with a semantics defined by RDFS entailment rules, and which are
in popular use for defining new RDF ontologies. Xcerpt

RDF provides
shorthand notations for the most common ones among them: rdf:type,
rdfs:range, rdfs:domain, rdf:Property and rdfs:Resource.

ex:name { is [ex:Person -> ex:Name] } �
The Xcerpt

RDF term above is a shorthand for the following Xcerpt
RDF

term:

ex:name {

rdf:type → rdf:Property,

rdfs:domain → eg:Person,

rdfs:range → eg:Name

} �
If the domain and/or the range of a predicate shall be left unre-

stricted, then the restricting classes can be simply omitted as in the
Xcerpt

RDF term eg:name{ is [eg:Person ->] }. In Xcerpt
RDF this ex-

pands to the following term:12

ex:name {

rdf:type → rdf:Property,

rdfs:domain → eg:Person,

} �
Besides the RDFS vocabulary, RDF distinguishes a set of URIs for

expressing reification of RDF statements and containers and collections
of Resources in RDF bags, sequences, alternatives or lists. Xcerpt

RDF

provides syntactic sugar notations both for reifications on the one hand
and RDF containers and collections on the other hand. Consider the
following Xcerpt

RDF term:

ex:bob { ex:believes →
_:Statement1 { < ex:anna{ foaf:knows → ex:bob } >

} �
12 Note that under the RDFS entailment rules, also the triple ex:name rdfs:range-->

rdf:Resource would be implied. Xcerpt
RDF, however, does not enforce the RDFS

semantics, since RDF/S entailment rules can be easily encoded in Xcerpt
RDF itself.

76 versatile use cases

The Xcerpt
RDF term enclosed in angle brackets is a reified statement,

and thus the entire term is equivalent to the following, significantly
more verbose one:

ex:bob { ex:believes →
_:Statement1 {

rdf:type → rdf:Statement,

rdf:subject → ex:anna,

rdf:predicate → foaf:knows,

rdf:object → eg:tim

}

} �
Whereas bags, sequences and alternatives are termed as RDF contain-

ers, and are considered to be open (i.e. there may be other elements in
the container, which are not specified in the present RDF graph), RDF
collections (i.e. RDF lists) are considered to be completely specified.
However, this intuitive semantics is in no way reflected within the RD-
F/S model theory. When using only Xcerpt

RDF shorthand notations for
representing RDF graphs featuring RDF containers, collections or reifi-
cation, one can be sure to respect this intuitive semantics. Xcerpt

RDF

provides the reserved words bagOf, seqOf, altOf and listOf to reduce
the verbosity serializing RDF containers and collections. To represent a
research group, one might chose the following Xcerpt

RDF term, which
would expand to the four triples in Listing 4.7.

_:Group1 { bagOf{ eg:anna, eg:bob, eg:chuck } } �
Listing 4.7: An RDF bag written as an Xcerpt

RDF data term without shorthand
notation.

_:Group1 {

rdf:type → rdf:Bag,

rdf:_1 → eg:anna,

rdf:_2 → eg:bob,

rdf:_3 → eg:chuck

} �
4.2.2 Xcerpt

RDF Query Terms

Just as in XcerptXML, Xcerpt
RDF data terms are augmented with con-

structs for specifying incompleteness to yield Xcerpt
RDF query terms.

Such constructs include the use of logical variables, subterm negation,
subterm optionality, incompleteness in breadth and qualified descen-
dant. While originally invented for XML processing, these constructs
are also beneficial for querying RDF graphs as exemplified in Exam-
ple 4.8. The query extracts variable bindings for all Persons and their
nick names within an RDF graph, who know some Person with nick
name ’Bill’, who in case do not know any other Person named ’Hillary’.
As in XcerptXML, the optional keyword is used to bind the nick name to
the variable var Nick whenever possible, but does not cause the query
to fail if the nick name is not present. Also the semantics of double
curly braces and the without keyword is analogous to XcerptXML. In
Listing 4.8, the scope of the without and optional keyword is explicitly
given by round parentheses. The scope of a without or optional does
not have to be the entire subterm following the keyword, but may also

4.2 querying rdf with xcerpt: examples and patterns 77

Table 1: Syntax of Xcerpt
RDF data terms

term = node | node ’{’ arc (’,’ arc)* ’}’ | reification

node = blank | uri | literal | qname

arc = uri ’→’ term | container | collection

blank = attvalueW3C

literal = ’"’ char* ’"’ | "’" char* "’"

uri = ’!’ uriW3C

qname = qnameW3C

collection = bag | sequence | alternative

container = ’listOf’ ’{ }’ | ’listOf’ ’{’ term (’,’ term)* ’}’

bag = ’bagOf’ ’{ }’ | ’bagOf’ ’{’ term (’,’ term)* ’}’

sequence = ’seqOf’ ’{ }’ | ’seqOf’ ’{’ term (’,’ term)* ’}’

alternative = ’altOf’ ’{ }’ | ’altOf’ ’{’ term (’,’ term)* ’}’

reification = ’<’ term ’>’

be restricted to the edge only. Table 2 gives an intuition of the exact
semantics of without with varying scopes by providing example data
that does or does not simulate with the given query terms. The intuitive
semantics for optional can be described by similar examples, but is left
unspecified here for the sake of brevity. Note, however, that optional
subterms are only useful if they contain variables for extracting data.

Listing 4.8: An Xcerpt
RDF query term.

var Person{{

optional (foaf:nick → var Nick),

rdf:type → foaf:Person,

foaf:knows → _:X{{

foaf:nick → ’Bill’, rdf:type → Person,

without (

foaf:knows → {{ _:Y{{ foaf:nick → ’Hillary’ }} }}

)

}}

}} �
Although the XcerptXML constructs for specifying incomplete queries

mentionend above retain their semantics in Xcerpt
RDF, there are some

different requirements in XML and RDF processing that are also re-
flected in the way that Xcerpt

RDF variables are used in Xcerpt
RDF

query terms.
An obvious difference between matching RDF graphs and matching

XML documents is that while extracting entire subtrees from an XML
document is a very common task, extracting entire RDF subgraphs
from an RDF graph is less frequently used, since this may often result
in the whole RDF graph being returned. Therefore, the default vari-
able binding mechanism in Xcerpt

RDF is not subgraph extraction but
label extraction. Therefore, the most common form of variables used
in Xcerpt

RDF query terms are node and predicate variables. Node and

78 versatile use cases

Table 2: Query term simulation with different scopes for without

query term simulating terms non-simulating

a{{ without (b→) c }} a{ d→ c} a{ b → c}

a{ b → e, d→c } a{ b → d, b→ c }

a{ b → d }

a{{ without (b→ c) }} a{ } a{ b → c }

a{ b → d } a{ b → d, b→ c }

a{{ b → without c }} a{ b → d } a{ b → c }

a{ e → c, b→ f } a{ }

a{{ b → without c {{ a{ b → c } a{ b → c{ d→ e } }

d→ e }} }} a{ b → c{ d→ f } } a{ }

a{{ b → (without c) {{ a{ b → f{ d→ e } } a{ b → f }

d→ e }} }} a{ b → c }

predicate variables are written using the keyword var. A node (predi-
cate) variable binds to a single node (arc) of the queried graph. graph
variables are identified by the keyword graphVar and bind – similarly to
XcerptXML term variables – to entire subgraphs. Finally, CBD-variables
(identified by the keyword cbdVar) bind to concise bounded descrip-
tions13.

Another difference is that once an RDF node in an RDF graph has
been identified by a query and has been bound to a variable, the very
same node can be easily recovered in a subsequent query, since both URI
nodes and blank nodes are uniquely named in an RDF graph, whereas
an XML Document may very well contain multiple nodes having the
same tag name and even the same content. XQuery and Xcerpt 2.0
deal with this problem by introducing node identity for XML elements
and attributes, thereby allowing the comparison of variable bindings
not only by deep equality, but also by shallow equality [Fur08a]. This
distinction is not necessary in RDF processing, since the value of a node
is already a global (in the case of resources) or local (in the case of blank
nodes) identifier.

For the representation of complex values, however, the simplistic
data model of RDF graphs as sets of triples is not well-suited. Here,
blank nodes are used to group atomic attributes of a node together
to form a complex attribute. Often, these complex attributes shall be
selected together and collected in a single variable binding. This need
has been addressed by the W3C consortium with the introduction of
a concept known as Concise Bounded Descriptions. Xcerpt

RDF supports
concise bounded descriptions by providing a special kind of variable
which does not bind to the value of a node, nor to the subgraph rooted
at the node, but to the concise bounded description associated with
that node. Table 3 gives an example driven overview of the different
types of variables in Xcerpt

RDF and their binding mechanisms.
Rows 1 and 2 show the simulation of a simple Xcerpt

RDF variable in
subject and object position. Compare the binding of the graph variable

13 http://www.w3.org/Submission/CBD/

http://www.w3.org/Submission/CBD/

4.2 querying rdf with xcerpt: examples and patterns 79

Table 3: Query term simulation with variables for nodes, predicates, graphs
and concise bounded descriptions.

query term data term substitution set

var X a{ b → c } { { X 7→ a } } (1)

a{{ b → var O }} a{ b → c, b→ _:X } { { O 7→ c }, { O 7→ _:X } } (2)

a{{ var P→ var O }} a{ b → c, b→ e } { { P 7→ b, O 7→ c },

{ P 7→ b, O 7→ e } } (3)

graphVar G a{ b → c } { { G 7→ a{ b→ c } } } (4)

graphVar G as g{{ }} a{ b → c} { { } } (5)

a{{ graphVar G }} a{ b { a }, c } { { G 7→ b{ a { b, c } } } } (6)

graphVar G a{ b → c} { { G 7→ a{ b→ c },

as var L L 7→ a } } (7)

cbdVar G _:X{ b → c{ d→ e } } { { G 7→ _:X{ b→ c } } } (8)

cbdVar G _:X{ b → _:Y{ d→ e } } { { G 7→

_:X{ b → _:Y{ d→ e } } } }

} } (9)

G in row 4 with the one of the label variable X in row 1 under simulation
with the same data term. Row 3 shows a variable in predicate position,
row 5 a graph variable with a restriction, which has the same semantics
as in XcerptXML (since the label g of the restriction does not appear
within the data, the substitution set is empty).

An interesting case is row 6. Since the queried graph d is not a tree,
but a graph, the binding for variable G is not a subterm of d, but a
subgraph.

Row 7 shows the contemporary use of a graph and label variable, and
rows 8 and 9 illustrate the semantics of variables for concise bounded
descriptions.

Table 4 shows the syntax of Xcerpt
RDF query terms as a context free

grammar with terminal symbols in single quotes and the usual seman-
tics of the meta-symbols * + ? and |. The nonterminal symbols uriW3C,
attvalueW3C and qnameW3C correspond to the syntactic definition of
URIs, attribute values and qualified names in the W3C recommen-
dation for XML[BPSM+

06]. The non-terminal symbol rpe denotes an
Xcerpt

RDF regular path expression, whose definition is omitted in this
contribution for the sake of brevity.

4.2.3 Xcerpt
RDF Construct Terms and Rules

Consisting of a query part and a construct part, pure Xcerpt
RDF rules

serve to transform RDF data. The query part is used to extract data
from an RDF graph into sets of sets of variable bindings, also called
substitution sets, and the construct part is used to reassemble these

80 versatile use cases

Table 4: Syntax of Xcerpt
RDF query terms

term ::= ’desc’? node | ’desc’? node ’{{’ arc (’,’ arc)* ’}}’ |

’desc’? reification

node ::= blank | uri | literal | qname | variable | graphVar | cbdVar

variable ::= ’var’ varname

varname ::= [A-Z][A-Za-z0-9*]

graphVar ::= ’graphVar’ varname | ’graphVar’ varname as term

cbdVar ::= ’cbdVar’ varname | ’cbdVar’ varname as term

arc ::= uri ’→’ term | rpe ’→’ term | container | collection

blank ::= attvalueW3C

literal ::= ’"’ char* ’"’ | "’" char* "’"

uri ::= ’!’ uriW3C

qname ::= qnameW3C

collection ::= bag | sequence | alternative

container ::= ’listOf’ ’{{ }}’ | ’listOf’ ’{{’ term (’,’ term)* ’}}’

bag ::= ’bagOf’ ’{{ }}’ | ’bagOf’ ’{{’ term (’,’ term)* ’}}’

sequence ::= ’seqOf’ ’{{ }}’ | ’seqOf’ ’{{’ term (’,’ term)* ’}}’

alternative ::= ’altOf’ ’{{ }}’ | ’altOf’ ’{{’ term (’,’ term)* ’}}’

reification ::= ’<’ term ’>’

variable bindings within construct patterns, substituting bindings for
variables.

Table 5 describes how substitution sets are applied to Xcerpt
RDF

construct terms to yield Xcerpt
RDF data terms. Apart from the different

kinds of variable bindings allowed in Xcerpt
RDF substitution sets, the

algorithm differs from the application of XcerptXML substitution sets to
XcerptXML terms in the following ways:

• In accordance with the most famous RDF query languages such
as SPARQL [SP08] and RQL [KMA+

04, BK04], URIs are treated
as unique identifiers within an RDF graph and do not have any
object identity besides the identity given by the URI itself. This
convention has as an implication that a substitution set applied
to different construct terms may result in semantically equivalent
data terms. To see this consider rows 1 and 5 in Table 5. Although
the Xcerpt

RDF construct terms are syntactically different, the data
terms resulting from the application of the substitution set are
equivalent RDF graphs. As a result, the use of all within construct
terms made up of URIs only does not change the semantics of a
rule.

• Just as RDFLog [BFLL07, BFL+
08a], but unlike SPARQL and other

RDF query languages, Xcerpt
RDF supports arbitrary construction

of blank node identifiers. While the majority of RDF query lan-
guages does not allow blank node construction at all or only blank
nodes depending on all universally quantified variables of a rule
(see [BFL+

08a] for details), Xcerpt
RDF and RDFLog support also

4.2 querying rdf with xcerpt: examples and patterns 81

construction of blank nodes that depend only on some or none of
the universally quantified variables of a rule. RDFLog does this
by explicit quantifier alternation, Xcerpt

RDF on the other hand
achieves the same goal by using Xcerpt’s all grouping construct.
To see the difference consider rows 2 and 6 in Table 5. In row 2

the construct contains the free variable var O, whereas in row 6

the construct term does not contain any free variable. Thus in
the first case, the substitution set is divided into two substitution
sets according to the binding of variable var O, and each of the
substitution sets is applied to the construct term. In the second
case, however, the substitution set is not divided at all, but applied
as a whole to the construct term.

Table 5: Application of substitution sets to Xcerpt
RDF construct terms

substitution set construct term Xcerpt
RDF result

{ { O 7→ c }, { O 7→ d } } a{ b → var O } a{ b → c }

a{ b → d } (1)

{ { O 7→ c }, { O 7→ d } } _:X{ b → var O } _:X1{ b → c }

_:X2{ b → d } (2)

{ { S 7→ c }, { S 7→ d} } var S{ b → a } c{ b → a }

d{ b → a } (3)

{ { S 7→ c }, { S 7→ d} } var S{ b → _:X } c{ b → _:X1 }

d{ b → _:X2 } (4)

{ { O 7→ c }, { O 7→ d } } a{ all b → var O } a{ b → c, b→ d } (5)

{ { O 7→ c }, { O 7→ d } } _:X{ all b → var O } _:X{ b → c, b→ d } (6)

{ { O 7→ c }, { O 7→ d } } a{ b → var O{ e→ f } } a{ b → c{ e→ f } }

a{ b → d{ e→ f } } (7)

{ { G 7→ a{ b→ c } } } graphVar G a{ b → c } (8)

{ { G 7→ a{ b→ c } } } d{ e → graphVar G } d{ e → a{ b→ c } } (9)

Special care must be taken that the result of the application of a
substitution set to an Xcerpt

RDF construct term is again an RDF graph.
Guaranteeing that pure Xcerpt

RDF programs convert RDF graphs into
valid RDF graphs allows easy composition of Xcerpt programs.

Providing the same input and output format for a language is a
feature of many modern query languages and is usually referred to
as answer closedness. Popular XML query languages in general are only
weakly answer closed – which means that they allow for easy authoring
of programs that again produce valid XML documents, but that it still
is possible to generate non-XML data. A notable exception to this rule
is XcerptXML, which is strongly answer closed in the sense that every
outcome of an XcerptXML program is an XML fragment. On the other
hand, the W3C languages XPath, XQuery and XSLT can also be used to

82 versatile use cases

output non-XML content such as PDF, Postscript, or comma separated
values.

Definition 13 (Answer Closedness). A web query language is called an-
swer closed, if the following conditions are fulfilled:

1. data in the queried format can be used as queries

2. the result of queries is again in the same format as the data

A web query language is called weakly answer closed, if condition (2)
is possible; it is called strongly answer closed, if condition (2) is always
enforced.

The assurance of answer closedness in Xcerpt
RDF must take the

following two thoughts into account:

• Abidance of RDF triple constraints. The evaluation of query terms
may bind node variables to literals or blank nodes. RDF graphs,
however, do not allow literals in subject or predicate position or
blank nodes in predicate position.

• Abidance of RDF graph constraints. Xcerpt
RDF supports four differ-

ent kinds of variables: node variables, predicate variables, graph
variables and concise bounded description variables. In general, it
is only safe to substitute variables in construct terms by bindings
of variables of the same type. Depending on the data, bindings for
node, graph and concise bounded description variables may de-
generate to plain URIs, and therefore it may be safe to substitute
them for predicate or node variables.

With the above two restrictions in mind, there are three different
possibilities for implementing answer closedness in Xcerpt

RDF.

• Static Checking of Bindings: Before an Xcerpt
RDF program is run,

it is checked that predicate variables in the construct term are also
used as predicate variables in the query term, and the same for
graph variables, node variables and CBD variables. To be more
precise, the semantics of graph and CBD variables only differ
within the query term, and thus a CBD variable binding may be
substituted for a graph variable in the construct term. Moreover,
the binding of a predicate variable may be substituted for a label
variable in the construct term, since predicate variables always
bind to URIs. On the other hand, bindings of node variables, may
not be substituted for predicate variables. While static checking of
variable bindings ensures that all terms constructed by Xcerpt

RDF

programs are valid RDF graphs, certain tasks, such as using URIs
of nodes of a source graph in predicate position in the target
graph, are impossible to achieve with this technique.

• Dynamic Checking of Variable Bindings: Dynamic checking of vari-
able bindings is a sensible choice if there is reason to assume
that the query author has some knowledge about the data to be
queried. It is more flexible than static checking in the sense that a
larger number of tasks can be realized, but is less reliable in the
sense that runtime errors may occur.

4.2 querying rdf with xcerpt: examples and patterns 83

• Casting of Variable Bindings unites the best of static checking of
variable bindings (i.e. no runtime errors) and dynamic checking of
variable bindings (i.e. a higher degree of flexibility). Consider the
sources of runtime errors that may occur with dynamic checking
of variable bindings – examples for each case are given in Table 6.

– A literal or blank node bound to a node variable is substi-
tuted for a predicate variable in a construct term. Such triples
are simply omitted from the resulting RDF graph.

– A subgraph bound to a CBD or graph variable is substituted
for a node variable in a construct term. In this case the
subgraph rooted at the occurrence of the node variable in the
construct term and the binding of the variable are merged.

– A subgraph g rooted at a URI u and bound to a graph
variable is substituted for a predicate variable in a construct
term. The graph g is cast to u.

– A subgraph g rooted at a blank node b and bound to a graph
variable or CBD variable is substituted for a predicate vari-
able. Since blank nodes may not appear in subject positions,
the resulting triple is not included in the Xcerpt

RDF result.
– A literal lit is substituted for a node variable L appearing

in subject position in the construct term. In this case a fresh
blank node B is substituted for the variable instead of the
literal. If L additionally appears in object position, also the
literal itself is substituted for L, but the triples containing lit
in subject position are omitted.

Since the last alternative gives an operational semantics to programs
which would be either considered invalid under the first approach or
would throw runtime errors under the second, Xcerpt

RDF favors the
casting of variable bindings. We acknowledge, however, that the first
approach may make more sense for unexperienced users in that it is
easier to understand, and that the second approach may uncover errors
in the authoring of Xcerpt

RDF programs, which would pass unnoticed
by the third approach.

84 versatile use cases

Table 6: Application of substitution sets to Xcerpt
RDF construct terms with

casting of variable bindings.

substitution set construct term Xcerpt
RDF result

{ { V 7→ _:X } } a{ var V→ b }

{ { V 7→ _:X } } a{ var V→ b, c→ d } a{ c → d }

{ { V 7→ ’literal1’ } } a{ var V→ b, c→ d } a{ c → d }

{ { G 7→ a{ b→ c } } } graphVar G{ d→ e } a{ b → c, d→ e }

{ { G 7→ a{ b→ c } } } d{ var G→ e } d{ a → e }

{ { G 7→ _:X{ b→ c } } } d{ var G→ e } _:X{ b → c }

{ { L 7→ ’literal1’ } } a{ b → { var L{ c→ d } } a{ b → _:X { c→ d },

b → ’literal1’ }

4.3 glueing rdf and xml with rules

Having introduced queries for both XML and RDF data, this section
combines both features to realize the truly versatile use case already
sketched in Section 4.1. Starting out from the result pages for the terms
“LinkedIn Munich” of a popular Web search engine, links to relevant
LinkedIn profile pages are extracted by the use of rich XML query
patterns with logical variables. In a second step, the profile pages
are retrieved and semantic microformat information is exploited to
gather reliable information about the users. Finally, in a third step, this
information is enriched by semantic information from FOAF profiles in
RDF format using the RDF processing capabilities of Xcerpt.

In this use case Xcerpt’s capability of handling XML query terms
and RDF construct terms in the same rule (and the other way around)
comes in particularly handy. As in pure XML querying and in pure
RDF querying, the interface between querying and construction is a
substitution set. Substitution sets generated by XML query terms differ
in the allowed variable types from substitution sets generated by RDF
query terms. As a result, there must either be a way to transform
XML substitution sets to RDF substitution sets and reversely, or the
application of XML substitution sets to RDF construct terms and the
application of RDF substitution sets to XML construct terms must
be defined. While both ways are feasible, we present here the first
alternative, since it is less involved.

4.3.1 XcerptXML Query Terms and Xcerpt
RDF Construct Terms and vice

versa in the Same Rule

Note that it is Xcerpt’s underlying principle of clear separation of
querying and construction that allows for, e.g, an XML query term
in a rule body and an RDF construct term in the head of the same
rule. The applicability of this design principle remains untouched if
further types of query and construct terms are introduced (e.g. for
topic maps or queries aimed at specific microformats or at pages of a

4.3 glueing rdf and xml with rules 85

Semantic Wiki). The only requirement for these new types of queries
and construct terms are the definition of the following four algorithms:
(1) a simulation algorithm matching queries with data and returning a
substitution set (a set of set of variable bindings),14 (2) an application
algorithm for substitution sets that fills in bindings for logical variables
occuring in a construct term15, (3) a mapping from variable bindings
in the new format to variable bindings in the other formats (until now
only XML and RDF) and finally (4) a mapping from XML and RDF
variable bindings to variable bindings in the new format.

The following list defines informally the mapping of XML bindings
to RDF and reversely.

• The Xcerpt
RDF URI !http://www.example.org/#foo is mapped to

the XcerptXML qualified name eg:#foo with the namespace prefix
eg bound to the namespace http://www.example.org/. We adopt the
convention that the Xcerpt

RDF URI is split into namespace and
local name at the last ’/’, but other methods are also conceivable.

• The Xcerpt
RDF blank node _:B is mapped to the XcerptXML ele-

ment name _:B.

• The Xcerpt
RDF literal “some literal” maps to the XcerptXML text

node “some literal”16.

• The Xcerpt
RDF qualified name eg:anna is mapped to the XcerptXML

qualified name eg:anna. An appropriate namespace binding is
added to the XcerptXML term. Implementations may choose to
expand the qualified name to a URI u, and map u instead.

• The Xcerpt
RDF term a{ b → c } maps to the XcerptXML term

a{ b{ c } } in correspondance to past work on querying XML se-
rializations of RDF with Xcerpt [Bol05]. Similarly, the Xcerpt

RDF

term _:X{ a → b{ c → ‘‘another literal’’ } } is mapped to the
XcerptXML term _:X{ a { b { c { ‘‘another literal’’ } } } }.

• The Xcerpt
RDF shorthand notation ex:name{ is [ex:Person -> ex

:Name] } is expanded to its corresponding unabbreviated term
as introduced in Section 4.2. Then this longer notation is mapped
to an XcerptXML term as described above.

• The Xcerpt
RDF reification term a{ believes → _:S{ < b{ c → d

} } is mapped to the XcerptXML term a { believes _:S { xcrdf

:reification { b { c { d } } } } } with the namespace prefix
xcrdf bound to http://www.xcerpt.org/xcrdf.

• The Xcerpt
RDF term _:X { bagOf { a, b, c } } is mapped to the

XcerptXML term _:X { xcrdf:bag { a, b, c } }. Expansion to the
normalized RDF syntax and applying the standard mapping to
XcerptXML terms could also be introduced. The choice of the con-
version is, however, not of primary importance, as long as all in-
formation present in the Xcerpt

RDF term is preserved. Additional
transformation rules can be easily written to change the XML out-
come and be provided as an XcerptXML module (See [ABB+

07] for

14 See Tables 2 and 3 for an informal description of this algorithm for Xcerpt
RDF

15 Table 5 gives the relevant ideas for this algorithm in Xcerpt
RDF

16 We leave the details of treating typed RDF literals and literals with a language tag as
future work.

http://www.xcerpt.org/xcrdf

86 versatile use cases

more about Xcerpt modules). Xcerpt
RDF sequences, alternatives

and lists are treated in the same manner.

• The XcerptXML qualified name eg:a is mapped to the Xcerpt
RDF

qualified name eg:a and the binding for the namespace prefix eg

is preserved.

• The XcerptXML unqualified name a from an Xcerpt term without
default namespace is mapped to the Xcerpt

RDF qualified name
xcxml:a with the namespace prefix xcxml bound to the namespace
http://www.xcerpt.org/xcxml. Note that the RDF graph data
model does not allow for local names other than blank nodes.
The unqualified name is not mapped to a blank node to avoid
naming conflicts with other resources that may be contained in
the resulting RDF Graph.

• The XcerptXML unqualified name a from an Xcerpt term with
default namespace d is mapped to the Xcerpt

RDF URI reference
da, where da is the concatenation of d and a.

• The XcerptXML term eg:a[eg:b, eg:c] is mapped to the Xcerpt
RDF

term eg:a{ xcxml:child → eg:b, xcxml:child → eg:c }, and the
binding for the namespace prefix eg is preserved. Note that since
RDF graphs are always considered to be unordered, Xcerpt

RDF

does not provide square brackets, and the information about the
order is lost in this mapping. Encodings of XML terms as RDF
graphs that preserve the order are conceivable.

• The XcerptXML term eg:a(id="2"){ eg:b } is converted to the
Xcerpt

RDF term eg:a{ xcxml:child → eg:b }, i.e. XML attributes
are not mapped to Xcerpt

RDF terms. Attribute names and values
may, however, also be inserted into an RDF graph by binding
them to label variables. Also in this case, a different kind of map-
ping may be chosen, but it turns out that for the applications
considered in this report, this simple mapping suffices.

4.3.2 Transforming LinkedIn embedded Microformat information to DOAC
and FOAF

Reconsider the XcerptXML query term in Listing 4.4. It extracts bindings
for the variables FirstName, LastName and Duration. It is easy to construct
RDF data from those variable bindings with an Xcerpt rule featuring
the construct term in Listing 4.9.

Listing 4.9: An RDF construct term for aggregation of information collected
from XML documents

declare namespace doac "http://ramonantonio.net/doac/0.1/"

declare namespace foaf "http://xmlns.com/foaf/0.1/"

_:Person {

rdf:type → foaf:Person,

foaf:firstName → var FirstName,

foaf:surname → var LastName,

all doac:experience → _:Exp {

doac:title → "Research Assistant",

doac:duration → var Duration

}

http://www.xcerpt.org/xcxml

4.3 glueing rdf and xml with rules 87

} �
Note the semantics of the all construct in Listing 4.9. The all construct

serves to collect a set of variable bindings within a data term to be
constructed. The number of data terms generated for construct term c

preceded by an all construct depends on the set of free variables inside
of c, and the substitution set which is applied to the construct term. A
variable v is free within a term t, if it does not occur within the scope of
an all construct inside of t. Thus the variable Duration is free within the
term doac:duration ..., but not inside of the entire construct term of
Listing 4.9. The set of free variables in the term c :=doac:experience →
_:Exp { ... } following the all keyword is the unary set {Duration}.

The substitution set applied to the construct term is thus separated
according to the bindings of the variable Duration only. Then each of the
resulting substitution sets is applied to c independently and included as
a subterm of the outermost foaf:Person label. Whenever a substitution
set is applied to a term with a blank node, a new instantiation of this
blank node is created, as showcased in Table 5. This is a major difference
to application of substitution sets to terms starting with URIs.

Alternatively, one might want to create a single RDF bag enumerating
the working relationships a person has had. This could be achieved by
the following Xcerpt

RDF construct term:

_:Person {

rdf:type → foaf:Person,

foaf:firstName → var FirstName,

foaf:surname → var LastName,
_:Experiences {

bagof {

all _:Exp {

doac:title → var Title,

doac:duration → var Duration

}

}

}

} �
Once the microformat information from the LinkedIn page is trans-

formed to the more precise RDF representation at the aid of this rule, it
can be combined with RDF data located anywhere on the Web. These
FOAF documents can be discovered in a very similar fashion as has
been done for the LinkedIn profile pages in Section 4.1.

Since LinkedIn does not provide the hash sums of email-addresses or
other globally unique identifiers for persons within their profile pages,
combining the extracted RDF information will rely on simple joins over
the names of people, which is not particularly reliable – see [Kla07] for
an overview of the problems that may occur.

With OpenID [RR06] becoming the de facto standard for distributed
authentication and single-sign-on on the Web and with the largest cor-
porations involved in online activities such as Google, Yahoo, Microsoft,
etc already joining the bandwagon, it seems likely that also LinkedIn
will provide an open identifier within its profiles. Also the extension of
the FOAF vocabulary to provide for OpenIDs within FOAF profiles is
already discussed. In the presence of this information, the combination
of the collected microformat data and other RDF resources can easily
and reliably achieved using Xcerpt

RDF.

5XCERPTRDF S Y N TA X A N D S I M U L AT I O N

Contents
5.1 Compound RDF data structures in Xcerpt

RDF 89
5.2 A Model Theory for RDF Containers, Collections and Reifica-

tion 92
5.2.1 RDFS+ Model Theory and Entailment Rules 92

5.2.2 RDFCC Model Theory and Entailment Rules 94

5.2.3 RDFR Model Theory and Entailment Rules 100

5.3 Abstract Syntax of Xcerpt
RDF 102

5.4 Xcerpt
RDF Declarative Semantics: Term Simulation 109

5.5 Xcerpt
RDF Queries, Facts, Rules and Programs 116

Xcerpt
RDF terms, rules and programs have been informally intro-

duced in Section 4.2. This chapter is split into four sections: Section 5.1
informally introduces the remaining Xcerpt

RDF querying capabilites
for RDF containers, collections and reification. Section 5.2 introduces
an extension of the RDFS model theory that formalizes the intuitive
semantics of RDF containers, collections and reification. Although these
constructs are proposed and described in the RDF primer, to the best
of our knowledge no model theory has yet been conceived to formalize
their semantics. Section 5.3 introduces the abstract syntax of Xcerpt

RDF,
and shows how Xcerpt

RDF syntactic sugar notation helps in authoring
RDF graphs that are valid under the RDF model theory for containers,
collections and reifications. Section 5.4 describes the formal seman-
tics of Xcerpt

RDF query terms by simulation, and addresses how RDF
specifities such as multiple roots within an RDF graph, blank nodes and
reifications are handled in graph simulation. Moreover, the relationship
between simple RDF entailment and Xcerpt

RDF term simulation is
described. Section 5.5 defines the syntax of pure Xcerpt

RDF programs,
i.e. Xcerpt programs that deal only with RDF data.

5.1 compound rdf data structures in xcerpt
rdf

As in any other data description formalism, also in RDF there is a need
for describing not only single valued, atomic resources, but groups
of resources or complex, structured objects. This need is in conflict Complex data

structures in RDFwith one of the most basic design principles of RDF, namely the one of
encoding any information within simple statements made up of atomic
subjects, predicates and objects. RDF solves this conflict by a canonical
encoding of complex structures (such as sets or lists) in RDF triples, at
the cost of sacrificing their “intuitive” semantics. This section introduces
the representation of complex data structures in RDF and shows how
Xcerpt

RDF shorthand notation helps to not construct invalid complex
objects.

89

90 xcerpt
rdf

syntax and simulation

containers and collections in rdf and xcerpt
rdf . RDF

supplies a predefined vocabulary for RDF Containers and Collections.
An RDF container is either a bag, sequence or a set, and is represented
by a set of triples involving the predicates rdfs:member, rdf:_1, rdf:_2,
rdf:_3, . . . , and the classes rdf:Bag, rdf:Seq or rdf:Alt. RDF sequences
have the intuitive semantics of being ordered, RDF bags are unordered
and may contain the same element more than once, whereas RDF alter-
natives are also unordered, but should not have duplicate elements. The
RDF model theory [Hay04], however, does not enforce this semantics.
Therefore, an RDF resource (i) may be typed as an RDF bag and an
RDF sequence at the same time, (ii) may contain multiple statements
involving the predicate rdf:_i for some integer i, or (iii) may be typed
as an RDF alternative, but include the same element more than once,
and there would be still valid RDF interpretations for the RDF graph
containing this resource.

In Xcerpt
RDF we (1) provide convenient syntax for containers and

collections, and (2) enforce the intuitive semantics of theses concepts.
However, the user can vote not to use these syntactic sugar notations. In
this way, RDF graphs violating the intuitive semantics of RDF containers
and collections, can still be represented.

A shopping cart with the entries eg:milk and eg:coffee represented
by an RDF bag is given by the following triples, and the equivalent
short hand notation in Xcerpt

RDF:

eg:cart123 rdf:type rdf:Bag .

eg:cart123 rdf:_1 eg:milk .

eg:cart123 rdf:_2 eg:milk .

eg:cart123 rdf:_3 eg:coffee . �
eg:cart123{ bagOf{ eg:milk, eg:milk, eg:coffee } } �

RDF sets and sequences are written in the same way with the key-
words seqOf and setOf. Xcerpt

RDF not only provides shorthand no-
tations for representing RDF graphs including containers, but also for
querying such graphs.

eg:cart123{ bagOf{{ var Item }} } is a query that binds each item in
the shopping cart to the variable Item. The query matches with the
data above and yields the bindings eg:milk, and eg:coffee. Substituting
double curly braces by single ones in the query would result in a query
that only matches with RDF bags containing a single item.

RDF Containers may only be used to state that some resource rm
is member of some other resource rc, but cannot be used to state that
there are no other members ro of rc.

In contrast, RDF collections are used to model data that is completely
specified, i.e. closed, and are written as RDF statements involving the
vocabulary rdf:List, rdf:first and rdf:rest. The Xcerpt

RDF term in
Listing 5.1 corresponds to Fig. 16 of [MM04] and asserts that Amy,
Mohamed and Johann are the only students of the course 6.001.

Again, the RDF model theory does not enforce the intuitive semantics
of closedness of RDF collections. An RDF graph may contain a node
that is subject of multiple statements with the predicate rdf:first

or rdf:rest, and a container may also be unclosed. A model theory
that formalizes the intuitive semantic extensions brought to RDF by
containers and collections has, to the best of our knowledge, not yet
been specified (see Section 5.2 for a proposal).

5.1 compound rdf data structures in xcerpt
rdf

91

Listing 5.1: Shorthand notation for RDF lists in Xcerpt numbers

eg:courses/6.001 {

eg:students/vocab/#students{

listOf [

eg:students/Amy,

eg:students/Mohamed,

eg:students/Johann] } } �
Listing 5.2: Finding all Lists with eg:Mohamed

desc var List as listOf[[eg:students/Mohamed]] �
In accordance with the intuitive semantics of RDF containers and

collections, Xcerpt
RDF only allows one of the keywords bagOf, setOf,

seqOf and listOf as a child of a term. Moreover, if one of these keywords
is used to describe a resource, there must not be any other statements
describing the same resource and involving the vocabulary rdf:Bag,
rdf:Set, rdf:Seq, rdf:List, rdf:_1, rdf:_2, etc. Hence the term a{ bagOf

{ b }, rdf:type→ c} is not a valid Xcerpt
RDF term. As a result of this

convention, any RDF graph that can be represented as an Xcerpt
RDF

term making use only of the syntactic sugar key words for representing
RDF containers and collections, is guaranteed to respect the intuitive
semantics. Nevertheless, there is still the possibility of representing
arbitrary RDF graphs by writing the RDF triples that make up a con-
tainer or a collection directly as an Xcerpt

RDF term, thereby doing
without the keywords. Listing 5.2 shows an Xcerpt

RDF query that
matches with all RDF graphs containing an RDF list with the entry
eg:students/Mohamed.

representation and querying of reified triples Reification
is an RDF mechanism to encode information about statements, in other
words to make RDF meta statements. For this purpose, RDF provides
a reification vocabulary consisting of the RDF predicates rdf:subject,
rdf:predicate and rdf:object and the RDF resource rdf:Statement. The
Xcerpt

RDF term in Listing 5.3 states that bob believes that anna likes
him. Listing 5.4 gives the corresponding shorthand notation. The query
below selects all reified statements with the predicate eg:likes.

Listing 5.3: RDF reification

eg:bob{ eg:believes→ _:St{

rdf:type→ rdf:Statement,

rdf:subject→ eg:anna,

rdf:predicate→ eg:likes,

rdf:object→ eg:bob

} �
Listing 5.4: Reification shorthand

eg:bob{ eg:believes→ _:St{ <eg:anna{ eg:likes→ eg:bob }> } } �
desc var Statement {{ < var _ {{ eg:likes→ var _ }} }} �

Just as with the RDF container and collection vocabulary, the RDF
model theory does not associate any formal semantics with the reifica-
tion vocabulary. The intuitive semantics suggests that there must not be
two distinct statements with the predicate rdf:subject, rdf:predicate, or

92 xcerpt
rdf

syntax and simulation

rdf:object originating from the same node of an RDF graph. Secondly,
if a node is subject of a statement with one of these three properties,
it must also be subject of statements with the other two properties
and be typed as an rdf:Statement. Third, all resources appearing as
the object of a statement with predicate predicate must be of type rdf:

Property. While RDF graphs that do not agree with these conventions
are perfectly valid under the RDF model theory, they cannot be repre-
sented by Xcerpt

RDF terms that use the Xcerpt
RDF shorthand syntax

for reification. In other words, every Xcerpt
RDF term that only uses

the shorthand syntax for asserting reified statements agrees with the
intuitive semantics of RDF reification. Still, arbitrary RDF graphs can
be encoded in Xcerpt

RDF making use of the unabbreviated syntax.

5.2 a model theory for rdf containers , collections and

reification

In this section we introduce two extensions of the RDFS model theory;
RDFCC for RDF containers and collections, and RDFR for RDF reifica-
tion. While RDF containers, collections and reification are introduced in
the well known RDF Primer [MM04], to the best of our knowledge, no
model theoretic nor any other formal semantics has been specified for
these RDF vocabularies. Interpretations valid under the RDFCC model
theory respect the intuitive semantics of RDF containers and collections,
interpretations valid under the RDFR model theory respect the intu-
itive semantics of RDF reification. Both extensions are orthogonal to
each other, in the sense that interpretations that are valid under both
RDFCC and RDFR respect the intuitive semantics for both containers
and collections on the one hand and RDF reification on the other. More-
over, RDFCC and RDFR are orthogonal to the RDFS extension for data
types. In Section 5.3 we show that all Xcerpt

RDF data terms respect the
RDFCC and RDFR model theory, provided that the Xcerpt

RDF short-
hand notation for RDF containers, collections and reification is used
instead of direct usage of the RDF container, collection and reification
vocabulary.

5.2.1 RDFS+ Model Theory and Entailment Rules

The RDFS entailment rules have been shown to be incomplete in [ter05b]
for the following reason: Given two RDF properties p1 and p2 with
p1 subproperty of p2, one can derive that for a triple (a,p1,b) also
the triple (a,p2,b) must hold (RDFS entailment rule rdfs7). Moreover,
given a property p with domain u, and an RDF triple (v,p,w), the triple
(v, type,u) is entailed (RDFS entailment rule rdfs2). Now consider the
following RDF graph:

G = {(friend, subPropertyOf, _:Knows), (5.1)

(_:Knows, domain, Person),

(john, friend, chuck)}

The graph G in Equation 5.1 RDFS-entails the triple (john, type,
Person), but this triple cannot be derived by the entailment rules rdfs2

and rdfs7, since it would require an intermediate triple with a blank
node in predicate position, which is forbidden in RDF. As a solution

5.2 a model theory for rdf containers, collections and reification 93

[ter05b] proposes the notion of generalized RDF graphs, which are RDF
graphs that allow blank nodes in predicate position.

In this contribution, we take a different approach. We argue that the
RDFS semantics is unintuitive in one respect: It does not transfer the
domain and range specifications from super-properties to subproperties.
To see this, consider the RDF graph H in Equation 5.2. It is the same as
G except that for the blank node _:Knows, we use a URI knows, serving
both as a resource and a predicate name. While it is clear that H RDFS-
entails the triples (john,knows, chuck) and (john, type,Person), does
H also RDFS-entail the triple (friend,domain,Person)?

H = {(friend, subPropertyOf, knows), (5.2)

(knows, domain, Person),

(john, friend, chuck)}

According to the RDFS model theory, it does not. However, it is
intuitive that the domain of a subproperty p1 is a subclass of the
domain of the corresponding superproperty p2, since the RDFS model
theory requires that IEXT(I(p1)) ⊆ IEXT(I(p2)). Moreover, altering
the RDFS model theory such that domain and range specifications are
inherited from superproperties to subproperties, results in no additional
entailments other than just this inheritance. To see this, consider the
graph RDFS(H) which is the closure of H under the RDFS entailment
rules:1

RDFS(H) = {(friend, subPropertyOf, knows),

(knows, domain, Person),

(john, friend, chuck),

(john, knows, chuck),

(john, type, Person)}

Adding the triple (friend,domain,Person) would once again allow
the derivation of (john, type,Person), but no other additional triples.
This is easy to see, since domain and range appear as premises only in
the RDFS entailment rules rdfs2 and rdfs3.2

We thus propose to add to the Definition of RDFS interpretations the
semantic condition in 14 and to the RDFS entailment rule Equations 5.3
and 5.4.

Definition 14. An RDFS+ interpretation is an RDFS interpretation with
the following additional semantic conditions:3

• If (p1,p2) ∈ IEXT(I(subPropertyOf)) and (p2,C) ∈ IEXT(I(domain))

then (p1,C) ∈ IEXT(I(domain)).

• If (p1,p2) ∈ IEXT(I(subPropertyOf)) and (p2,C) ∈ IEXT(I(range))
then (p1,C) ∈ IEXT(I(range)).

1 We omit blank nodes introduced by the RDF entailment rules.
2 Obviously, this reasoning is based on the correctness and completeness of the RDFS

entailment rules.
3 Namespace prefixes are omitted for the sake of brevity.

94 xcerpt
rdf

syntax and simulation

Analogously to the other RDF entailment relationships, we say that
an RDF graph H RDFS+-entails an RDF graph G, iff all RDFS+ inter-
pretations of H are also RDFS+ interpretations of G.

(p1, subPropertyOf,p2), (p2, domain,C)

(p1, domain,C)
(5.3)

(p1, subPropertyOf,p2), (p2, range,C)

(p1, range,C)
(5.4)

We denote the union of the set of RDFS entailment rules from [Hay04]
and Equations 5.3 and 5.4 as the set of RDFS(+) entailment rules.

Theorem 1 (Completeness and Complexity of the RDFS+ entailment).

Given two RDF graphs H and G, H RDFS+-entails G, if and only if an
instance of G is in the RDFS(+) closure of H. RDFS+ entailment is NP-
complete in general, but in P if H is ground.

Proof. Theorem 1 is based on the completeness of the RDFS entailment
rules from [Hay04] apart from the exception identified by [ter05b] for
blank nodes in predicate position. To see that the RDFS+ extension
eliminates the problem of intermediate triples with blank nodes in
predicate position, note that the RDFS entailment rule rdfs7 is the only
one which may derive such invalid triples. Moreover, take notice that
the RDFS(+) closure of the graph G in Equation 5.1 contains the triple
(john, type,Person).

NP-hardness of RDFS+ entailment is a direct consequence of NP-
hardness of RDFS entailment [ter05b]. RDFS+ entailment is inNP, since
the RDFS(+) closure RDFS(+)(H) of H can be computed in polynomial
time, if the axiomatic triples for the _i predicates are restricted to the
ones occurring in H. Entailment can then be checked by guessing the
right assignment φ of URIs in H to blank nodes of the entailed graph G,
and testing the subset relationship φ(G) ⊆ RDFS(+)(H) in linear time.
For ground graphs, φ need not be guessed, because it is the empty
mapping.

5.2.2 RDFCC Model Theory and Entailment Rules

In this section, we introduce the RDFCC extension of RDFS, i.e. the
formalization of the intuitive semantics of RDF containers and collec-
tions as specified in [MM04], [Hay04] and [McB04]. Moreover we give
a sound and complete set of entailment rules as a purely syntactical
characterization of RDFCC entailment.

The RDF container vocabulary consisting of the names Bag, Seq, Alt,
List, first, rest, nil, _1, _2, . . . must be used with care in order to
respect its intuitive semantics:

Definition 15 (RDFCC interpretation). An RDFCC interpretation is an
RDFS interpretation (see Definition 9) which satisifes the following condi-
tions:

1. (x,y) ∈ IEXT(_i), i ∈N⇒ x ∈ ICEXT(Container)4

4 This semantic condition is stronger than the RDFS axiomatic triples stating that the
domains and ranges of the numbered container membership properties (NCMPs for
short) _1, _2, etc. are simply Resource.

5.2 a model theory for rdf containers, collections and reification 95

2. (x,y) ∈ IEXT(member)⇒ x ∈ ICEXT(Container)

3. (x,y), (x, z) ∈ IEXT(_i), i ∈N, x ∈ ICEXT(Seq)⇒ y = z.5

4. (x,y) ∈ IEXT(first) ∪ IEXT(rest)⇒ x ∈ ICEXT(List).6

5. (x,y), (x, z) ∈ IEXT(first)⇒ y = z.

6. (x,y), (x, z) ∈ IEXT(rest)⇒ y = z.

7. x ∈ ICEXT(List)⇒ x = I(nil) ∨

(∃y, z ∈ IR . (x,y) ∈ IEXT(first) ∧ (x, z) ∈ IEXT(rest)).

8. (x,y) ∈ IEXT(_i), i ∈N⇒ ∃ y1, . . . yi−1 ∈ IR . (x,yj) ∈ IEXT(_j)
∀ 1 6 j 6 i.

9. for any bijective mapping π : {1, . . . , n }→ {1, . . . , n } holds:

(x,y1) ∈ IEXT(_1), . . . , (x,yn) ∈ IEXT(_n), x ∈ ICEXT(Alt) ⇒
(x,yπ(i)) ∈ IEXT(_1), . . . , (x,yπ(n)) ∈ IEXT(_n)

10. The class extensions of bags, lists, sequences and alternatives are dis-
junct: C,D ∈ {Bag, Seq, Alt, List} ∧ C 6= D⇒
ICEXT(C) ∩ ICEXT(D) = ∅

Conditions 7 and 8 of Definition 15 possibly require the existence of
certain elements of the domain. Care must be taken to ensure that these
conditions do not cause an infinite number of derivations in conjunction
with other RDF statements, such as RDFS statements. Condition 7 is
of disjunctive nature, and would only require the existence of new
elements in the domain, if x 6= I(nil). However, in RDF there is no
way of asserting that a resource is distinct from another resource. Thus
Condition 7 is harmless. Condition 8 requires the existence of a constant
number of additional elements of the domain. But the model theory
does not require that any of these elements are in π1(IEXT(_l)) with
π1 denoting the projection of a relation on the first element, and l a
natural number. If it did, an infinite number of triples could be derived.
Hence also Condition 7 is harmless.

RDF provides both the unnumbered container membership property
(short UCMP) member and the numbered container membership proper-
ties _1, _2, . . . (NCMPs). Since the intuitive semantics of alternatives is
independent of the order of its elements, the member property suggests
itself for their specification. However, RDF bags and alternatives are
mostly specified using numbered container membership properties, as
in the RDF Primer. Condition 9 above ensures that an RDF alternative
entails all reorderings of its elements, as Example 10 illustrates.7

Example 10 (Semantics of NCMPs in RDF alternatives and sequences).

Condition 9 states that an RDF alternative RDFCC-entails any reordering
of the alternative, such that the RDF graphs in Equations 5.5 and 5.6 entail
each other.

5 This semantic condition is equivalent to stating that the numbered container membership
properties are all functional properties (owl:FunctionalPoperty in OWL).

6 This semantic condition is in line with the RDFS axiomatic triples stating that the domain
of first and rest is List.

7 RDF bags are discussed later on in this section.

96 xcerpt
rdf

syntax and simulation

{(eg:alt, type, Alt), (eg:alt, _1, eg:a), (eg:alt, _2, eg:b)} (5.5)

{(eg:alt, type, Alt), (eg:alt, _1, eg:b), (eg:alt, _2, eg:a)} (5.6)

There is no equivalent semantic condition for RDF sequences, since for se-
quences, the order is relevant, and thus two sequences with the same members
but different order must be interpreted as two different elements in IR. Thus
the RDF graph in Equation 5.7 does not RDFCC-entail the RDF graph in
Equation 5.8 nor the other way around. This is reflected in the RDFCC model
theory in that there are RDFCC interpretations for 5.7 and 5.8 which are not
RDFCC interpretations for 5.8 and 5.7, respectively.

{(eg:alt, type, Seq), (eg:alt, _1, eg:a), (eg:alt, _2, eg:b)} (5.7)

{(eg:alt, type, Seq), (eg:alt, _1, eg:b), (eg:alt, _2, eg:a)} (5.8)

Example 11 (Openness/Closedness of RDF Containers/Collections).
The RDFCC model theory formalizes the intuitive notion of openness of RDF
containers and closedness of RDF collections given in [MM04]. To see this,
consider the RDF graphsH1,H2,G1 andG2 below. While the graphsH1 and
H2 are always compatible, G1 and G2 are only compatible under the assump-
tion that eg:a denotes the same resource as eg:b. Therefore the membership of
eg:x is fixed, once it is given an first and a rest predicate.

H1 = {(eg:x, type, Alt), (eg:x, member, eg:a)}

H2 = {(eg:x, member, eg:b), (eg:x, member, eg:c)}

G1 = {(eg:x, type, List), (eg:x, first, eg:a)}

G2 = {(eg:x, first, eg:b), (eg:x, rest, nil)}

The specification of RDF bags is problematic with the currently
available RDF vocabulary. On the one hand, RDF bags are unordered
like RDF alternatives, and thus an RDF bag should entail any reordering
of its elements. On the other hand, multiple occurrences of the same
element within a bag do matter – the bag (or multi-set) {a,a} is different
from the bag {a}. Entailment of all reorderings would thus loose the
information about the cardinality of elements in a bag.

Specificiation of RDF bags with the UCMP member does not solve the
problem either, since the model theory is set-based. A clean solution
to this dilemma would be the introduction of URIs card_1, card_2 . . . ,
which are used to specify the cardinality of an element within an RDF
bag.

Definition 16 gives a formalization of the intuitive semantics of RDF
bags, if the cardinality of elements within a bag are specified via the
predicates card_1, card_2.

Definition 16 (Formalization of RDF bags). An RDFCC interpretation is
an RDFCCBag interpretation, if the following additional semantic conditions
hold:

1. if (x,y) ∈ IEXT(card_i) for some natural number i > 0, then x ∈
ICEXT(Bag).

2. if (x,y) ∈ IEXT(card_i) and (x,y) ∈ IEXT(card_j) for two natural
numbers i, j > 0 then i = j.

5.2 a model theory for rdf containers, collections and reification 97

Condition 1 in Definition 16 ensures that the cardinality properties
are only used for the specification of RDF bags. Condition 2 ensures that
the cardinality of an element within an RDF bag is uniquely determined.
Since this formalization of RDF bags introduces new vocabulary and
requires a redefinition of the merge of an RDF graph, it is not part of
the RDFCC model theory.

With the RDFCC model theory requiring the disjointness of the class
extensions of RDF bags, sequences, alternatives and lists, there are RDF
graphs that have no interpretation under the RDFCC semantics. One
such graph is {(a, type, Bag), (a, type, Alt)}. We call this situation an
RDFCC clash. In the RDFS extension for datatypes, similar cases can
occur: The graph

{(_:x, type, xsd:string), (_:x, type, xsd:decimal)}

has no interpretation under the datatype extension of RDFS. This
situation is referred to as a datatype clash.

RDFCC entailment is analogous to RDF simple entailment, RDF
entailment and RDFS entailment: We say that an RDF graph G1 entails
an RDF graph G2 under the RDFCC semantics (written G1 |=RDFCC
G2), iff all RDFCC interpretations of G1 are also RDFCC interpretations
of G2.

The model theoretic characterization of RDFCC implies the following
triples8 and syntactic entailment rules, which are valid in the sense of
Definition 10.9

(_i, domain, Container) ∀i ∈N (5.9)

(member, domain, Container) (5.10)

(first, domain, Container) (5.11)

(rest, domain, Container) (5.12)
(a, type, List),a 6= nil

(a, first, _:X), (a, rest, _:Y)
(5.13)

(a, _i,b)
(a, _j, _:Z_j) ∀1 6 j < i

(5.14)

(a, _i,b)
(a, member,b)

∀i ∈N (5.15)

(a, _i,b), (a, type, Alt)
(a, _j,b)

∀1 6 j 6 i (5.16)

Note that in Equation 5.13 we assume the unique name property
for the URI nil. While in general, the unique name assumption is
insensible for a distributed environment like the Web, in this particular
case we can argue that anybody who uses (and thus knows) the URI
List should also know (and thus use) the URI nil for referencing the
empty RDF list.

For an RDF graph G, RDFCC(G) is the closure of G under the RDFCC
and the RDF and RDFS entailment rules. Unfortunately, the RDFCC
entailment rules are not complete in the sense that they allow to de-
rive all graphs G ′ RDFCC-entailed by an RDF Graph G. In particular,
G1 |=RDFCC G2 ⇔ RDFCC(G1) |=RDFS RDFCC(G2) is not true for
arbitrary RDF graphs G1 and G2 as Example 12 shows.

8 triples can obviously be considered as entailment rules with an empty condition
9 _:X, _:Y, _:Z_1, . . . denote fresh blank node identifiers.

98 xcerpt
rdf

syntax and simulation

Example 12 (Incompleteness of the RDFCC entailment rules). Consider
the RDF graphs g1 and g2 below. Clearly g1 RDFCC-entails g2, but g2 is
not in the RDFCC closure of g1. The missing entailment rules are borrowed
from OWL, and given in Definition 17.

g1 = {(eg:a, _1, eg:b), (eg:a, _1, eg:c), (eg:c, type, foaf:Person)}

g2 = {(eg:b, type, foaf:Person)}

To complete the RDFCC entailment rules, the owl:functionalProperty

and owl:sameAs properties are necessary for the formulation of entail-
ment rules reflecting Condition 3 of Definition 15. These additional
entailment rules are given together with the RDFCC axiomatic triples
ACC in Definition 17.

Definition 17 (RDFCC(+) closure). The set ACC is the following set of
RDFCC axiomatic triples:

• (_1, type, owl:functionalProperty)

• (_2, type, owl:functionalProperty)

• . . . ,

• (first, type, owl:functionalProperty)

• (rest, type, owl:functionalProperty)

• (owl:sameAs, type, owl:symmetricProperty)

The RDFCC+ entailment rules are as follows:

(p, type, owl:functionalProperty), (a,p,b), (a,p, c)
(a, owl:sameAs, c)

(5.17)

(a, owl:sameAs,b), (a,pred,obj)
(b,pred,obj)

(5.18)

(a, owl:sameAs,b), (subj,a,obj)
(subj,b,obj)

(5.19)

(a, owl:sameAs,b), (subj,pred,a)

(subj,pred,b)
(5.20)

(p, type, owl:symmetricProperty), (a,p,b)
(b,p,a)

(5.21)

With RDFCC(+) we refer to the union of the RDFCC entailment rules
and the RDFCC+ entailment rules. Given an RDF graph G, RDFCC(+)(G)

denotes the closure of G ∪ ACC ∪ ARDFS under the RDFCC(+) and RDF
and RDFS entailment rules.

Theorem 2 (Soundness and Completeness of RDFCC(+)). Given two
RDF graphsG1 andG2 which are free of RDFCC clashes, (G1∪ACC) |=RDFCC
(G2 ∪ACC) iff RDFCC(+)(G1) |=RDFS RDFCC(+)(G1).

The correctness of Theorem 2 can be seen by the following assignment
of entailment rules to the semantic conditions in Definition 15.

• Conditions 1 and 2 are reflected by entailment rules 5.9 and 5.10,
respectively.

5.2 a model theory for rdf containers, collections and reification 99

• Condition 3 is reflected by the RDFCC+ entailment rules 5.17,
5.18, 5.19 and 5.20 together with the axiomatic triples (_i, type,
owl:functionalProperty) for i ∈N, i > 0.

• Condition 4 is reflected by the rules 5.11 and 5.12.

• Conditions 5 and 6 are reflected by the RDFCC+ rules 5.17,
5.18, 5.19 and 5.20, together with the axiomatic triples (first, type,
owl:functionalProperty) and (rest, type, owl:functionalProperty),
respectively.

• Condition 7 is reflected by rule 5.13.

• Condition 8 is reflected by rule 5.14.

• Condition 9 is reflected by rule 5.16.

• Condition 10 is ensured by the assumption that the graphs are
free of RDFCC clashes.

Lemma 9 (Interpolation Lemma for RDFCC). Given two RDF graphs H
and G free of RDFCC clashes, H∪ACC |=RDFCC G∪ACC, iff an instance
of G is a subset of the RDFCC(+) closure of H.

Lemma 9 is a direct consequence of the RDFS entailment lemma
and Theorem 2. It gives rise to the following complexity results about
RDFCC entailment:

Theorem 3 (Complexity of RDFCC entailment). Given two RDF graphs
H and G, deciding H |=RDFCC G is NP-complete, and in P if G is ground.

Proof. NP-hardness of RDFCC entailment is inherited from simple
entailment [ter05b], whose NP-hardness has been shown by a reduc-
tion from the Clique problem. That proof does not make use of any
vocabulary that is further constrained in the RDFCC model theory.

Polynomial time RDFCC entailment for ground target graphs would
be immediate if the RDFCC closure of an RDF graph were of polynomial
size. Unfortunately, this is not the case because for the following three
reasons: (i) Both the set of RDFS axiomatic triples, and the set of
RDFCC axiomatic triples are infinite. (ii) Rule 5.14 adds an apriori
unknown number of triples to the closure, and (iii) Rule 5.16 considers
an exponential number of permutations. These issues are solved as
follows: (a) Only those RDFS and RDFCC axiomatic triples for the
predicates _i are considered in the computation of the closure that
are actually relevant for the graph – i.e. the predicate must occur
somewhere in the graph. (b) When syntactically deciding entailment,
Rule 9 need not be applied for the computation of the closure. Instead
a simple integer comparison can check if for a triple (a, _i,b) in the
entailed graph, there is some triple (a, _j,b) with i < j in the entailing
graph. (c) We replace all numbered container membership properties
(NCMP) used for RDF alternatives with the unnumbered container
membership property (UCMP) member. Moreover, we include only the
RDFS axiomatic triples for those NCMPs which are used in the entailing
graph, as detailed in [ter05b]. With these three restrictions, the size of
RDFCC closure of an RDF graph G is polynomial in G. Since for
ground target graphs, checking entailment reduces to checking the
subset relationship, this implies the second part of Theorem 3.

As for RDFS(+) entailment, RDFCC entailment for non-ground
graphs is in NP, since we may guess a mapping φ from the blank nodes

100 xcerpt
rdf

syntax and simulation

in the entailed graph G to the vocabulary of the entailing graph H, and
subsequently check that φ(G) ⊆ RDFCC(+)(H), where RDFCC(+)(H)

is computed with restrictions (a), (b) and (c) above.

5.2.3 RDFR Model Theory and Entailment Rules

In this section we introduce the RDFR extension of RDFS, i.e. the for-
malization of the intuitive semantics of RDF reification. We distinguish
a cautious reification semantics that allows different occurrences of the
same reified statement, and a brave reification semantics, that assumes
that the identity of a reified statement is given only by the values of its
subject, predicate and object properties. As for RDFCC, we give a
sound and complete set of entailment rules for the syntactical character-
ization of RDFR entailment, and we show that RDFR entailment is NP
complete for arbitrary graphs, and in P if the target graph is ground.

Definition 18 gives a formal meaning to the RDF reification vocabu-
lary Statement, subject, predicate and object.

Definition 18 (Cautious RDFR interpretations). An RDFR interpreta-
tion is an RDFS interpretation satisfying the following conditions and the
axiomatic triples in Definition 19.

1. If (x,y), (x, z) ∈ IEXT(p) for p ∈ {subject, predicate, object} then x =

z. In other words, subject, predicate, and object are functional prop-
erties.

2. If (x,y) ∈ IEXT(p) for p ∈ {subject, predicate, object} then
x ∈ ICEXT(Statement).

3. If x ∈ ICEXT(Statement) then ∃s,p,o ∈ IR . (x, s) ∈ IEXT(subject),
(x,p) ∈ IEXT(predicate) and (x,o) ∈ IEXT(object).10

Definition 19 (RDFR axiomatic triples). The RDFR axiomatic triples
ARDFR are the following:

1. (subject, tpe, owl:functionalProperty)

2. (predicate, tpe, owl:functionalProperty)

3. (object, tpe, owl:functionalProperty)

4. (subject, domain, Statement)

5. (predicate, domain, Statement)

6. (object, domain, Statement)

7. (owl:sameAs, type, owl:symmetricProperty)

Example 13 (Infinite derivations). Consider the RDF graph G:

G = {(_:X, type,Statement), (object, range,Statement)}

10 This semantic condition is stronger than the RDFS axiomatic triples stating that the
domains of subject, predicate, and object are Statement. Together with these
axiomatic triples, this condition ensures that any resource with an subject has also an
predicate and object (and vice versa).

5.2 a model theory for rdf containers, collections and reification 101

Since _:X is typed as an RDF statement, the RDFR model theory requires
the existence of some resource that is the object of the statement. Hence G
entails a triple (_:X,object, _:Y) for some blank node _:Y. The RDFS model
theory, on the other hand, requires that _:Y is itself a Statement, since G
includes the triple (object, range,Statement). Hence G entails the triples
(_:Y, type,Statement), (_:Y,object, _:Z), (_:Z, type,Statement), etc.11

To avoid such infinite derivations, the notion of RDFR clashes is introduced.

Definition 20 (RDFR clash). An RDF graph containing any of the triples

(rdfs:subject, rdfs:range, rdfs:Statement)

(rdfs:predicate, rdfs:range, rdfs:Statement)

(rdfs:object, rdfs:range, rdfs:Statement)

is said to contain an RDFR clash.

Definition 21 (Brave RDFR interpretations). A cautious RDFR interpreta-
tion is a brave RDFR interpretation, iff it additionally satisifies the following
condition:

• if (x, s) ∈ IEXT(I(subject)) and (y, s) ∈ IEXT(I(subject)) and
(x,p) ∈ IEXT(I(predicate)) and (y,p) ∈ IEXT(I(predicate)) and
(x,o) ∈ IEXT(I(object)) and (y,o) ∈ IEXT(I(object)) then x = y.

Cautious and brave RDFR entailment are defined analogously to
RDFS entailment.

Definition 22 (RDFR Entailment Rules). The RDFR entailment rules
include the RDFCC entailment rules 5.17, 5.18, 5.19 and 5.20. Rule 5.22
makes the set of RDFR entailment rules complete: 12

(a, type, Statement)
(a, subject, _:S), (a, predicate, _:P), (a, object, _:O)

(5.22)

The RDFR closure RDFR(G) of an RDF graph G is the closure of (G ∪
ARDFR) under the RDFR and the RDF/S entailment rules.

Theorem 4 (Soundness, Completeness and Complexity of RDFR). Given
two RDF graphs H and G, H |=RDFR G iff RDFR(H) |=RDFS RDFR(G).
RDFR entailment is NP-complete for arbitrary graphs and in P, if the target
graph is ground.

The validity of the RDFR entailment rules is substantiated by the
following association of entailment rules and axiomatic triples to the
semantic conditions of RDFR interpretations:

• Axioms 1, 2 and 3 together with the entailment rules 5.17, 5.18,
5.19 and 5.20 are valid due to Condition 1 in Definition 18.

• Axioms 4, 5 and 6 are valid due to Condition 2 of RDFR interpre-
tations.

• Entailment rule 5.22 is valid due to Condition 3 in Definition 18.

11 Since distinct blank node identifiers are not required to be distinct,G has both an infinite
number of finite models and an infinite model.

12 _:S, _:P and _:O are fresh blank node identifiers.

102 xcerpt
rdf

syntax and simulation

The RDFR entailment rules are complete, since the semantic condi-
tions of Definition 18 are orthogonal to each other, and because the
semantic conditions on the interpretations are spelt out by the entail-
ment rules according to the association given above.

The complexity results are proven in the same way as for RDFS(+).

5.3 abstract syntax of xcerpt
rdf

Definition 23 (Xcerpt
RDF Variable). An Xcerpt

RDF variable is either a
graph variable, an arc variable, a node variable, a predicate variable, or a con-
cise bounded description variable. Formally, an Xcerpt

RDF variable V has a
name n and an associated type t(V) ∈ {graph,arc,node,predicate,CBD}.

Definition 24 (Xcerpt
RDF Term). The set TRDF of Xcerpt

RDF terms is
recursively defined as follows:

• The set of atomic Xcerpt
RDF terms is the union of the set of URIs,

qualified names, RDF literals, RDF blank nodes and Xcerpt
RDF vari-

ables minus the set of Xcerpt
RDF predicate and arc variables.

• An Xcerpt
RDF predicate is either a URI, a qualified name or an

Xcerpt
RDF predicate variable.

• If p is an Xcerpt
RDF predicate and t is an Xcerpt

RDF term, then
the pair (p, t) is an Xcerpt

RDF arc. When serialized, an Xcerpt
RDF

arc (p, t) is written p → t. Also an Xcerpt
RDF arc variable is an

Xcerpt
RDF arc.

• If t1, . . . , tn with n > 0 are Xcerpt
RDF terms, then listOf{t1, . . . , tn},

listOf{{t1, . . . , tn}}, listOf[t1, . . . , tn], listOf[[t1, . . . , tn]], bagOf{
t1, . . . , tn}, bagOf{{ t1, . . . , tn }}, seqOf{t1, . . . , tn}, seqOf{{t1, . . . ,
tn }}, seqOf[t1, . . . , tn], seqOf[[t1, . . . , tn]], altOf{t1, . . . , tn}, and
altOf{{t1, . . . , tn}} are Xcerpt

RDF lists, bags, sequences and alter-
natives, respectively. The set of Xcerpt

RDF containers is the union of
the sets of Xcerpt

RDF bags, sequences and alternatives. In agreement
with common RDF nomenclature, an Xcerpt

RDF list is also called an
Xcerpt

RDF collection.

• If sub is a blank node or URIs, pred is a URI, and obj a blank node,
URI or RDF literal, then < subj{pred → obj} > is an Xcerpt

RDF

reified statement.

• If p is in the set RPL of conditional RDF path expressions, and t is an
Xcerpt

RDF term, then the pair (p, t) is an Xcerpt
RDF arc.

• An Xcerpt
RDF subject term is either a node variable, a URI, a quali-

fied name or a blank node.

• Let a1, . . . ,an with n > 0 be Xcerpt
RDF arcs, containers, collections,

or reified statements, with at most one of the ai a container or collec-
tion, at most one of the ai a reified statement, and s an Xcerpt

RDF

subject term. Then s{a1, . . . ,an} and s{{a1, . . . ,an}} are compound
Xcerpt

RDF terms.

• If t is an Xcerpt
RDF term, then without t, desc t, and optional t

are negated, descendant and optional Xcerpt
RDF terms, respec-

tively. desc, without and optional are called term modifiers. An
Xcerpt

RDF term beginning with a term modifier is a modified Xcerpt
RDF

term. Modified terms must satisfy the following conditions:

5.3 abstract syntax of xcerpt
rdf

103

– The modifiers optional and without cannot be applied to the
same term – i.e. optional without t and without optional t
are invalid Xcerpt

RDF terms. They may, however, occur in the
same term at different levels, as in the term optional a{{ b →
without c }}.

– If the modifiers optional and desc are applied to the same term,
then the optional modifier must precede the desc modifier.

– Similarly, the without modifier must precede the desc modifier
when applied to the same Xcerpt

RDF term.

• If a is an Xcerpt
RDF arc, and v1, . . . , vn are Xcerpt

RDF variables,
then all a and all a group by { v1, . . . , vn } are also Xcerpt

RDF

arcs. Arcs of the form all all a are not allowed. As in XcerptXML,
all is called a grouping construct. all in combination with group-by

is called an explicit grouping construct.

• If a is an Xcerpt
RDF arc, container, collection or reified statement,

thenwithout a, optional a and desc a are Xcerpt
RDF arcs. Not all

combinations of the term modifiers without, optional and desc can
b applied to the same the same construct a. Instead, the same conditions
apply as for the application of term modifiers to Xcerpt

RDF terms.

Atomic and compound Xcerpt
RDF terms are simply named Xcerpt

RDF Xcerpt
RDF arc

constructors, ground
Xcerpt

RDF terms
terms in the following. Xcerpt

RDF arcs and predicates are not consid-
ered as Xcerpt

RDF terms since they cannot occur by themselves, but
are mere building blocks. The keywords listOf, bagOf, seqOf and
altOf are Xcerpt

RDF arc constructors, and are used to represent RDF
containers and collections within Xcerpt

RDF data terms and to query
RDF containers and collections when used within Xcerpt

RDF query
terms. An Xcerpt

RDF term is called ground, if it does not contain any
variables or blank node identifiers.

Example 14. Consider the following Xcerpt
RDF term t:

_:X { listOf[a, b, c], < a{ b → c} > }

It states that there is some resource x represented by the blank node _ : X,
that is both an RDF collection, and a reified statement. Since the RDFCC and
RDFR model theories are independent of each other, and do not, in particular,
demand that the RDFS classes rdfs:Statement and rdf:List are disjunct, t
has an RDFR interpretation that is also an RDFCC interpretation. The col-
lection in t happens to have the subject, predicate and object of the statement
as elements. Also this is no problem under the RDFR and RDFCC semantics.

Let t be an Xcerpt
RDF term, a = (p, t ′) an Xcerpt

RDF arc, and c Notation for
Xcerpt

RDF term
access

an Xcerpt
RDF container or collection. subj(t) denotes the subject of

t, arcs(t) the arcs nested in t and cc(t) the containers or collection
nested in t – if present. An arc or term is called negative (optional),
if it is preceded by the keyword without (optional). An arc or term
that is neither negative nor optional is positive. arcs+(t), arcs−(t),
and arcs? denote the positive, negative and optional arcs nested in t,
respectively. pred(a) denotes the predicate p of a and obj(a) the object
term t ′ of a. terms(c) denotes all subterms of c. terms+(c), terms−(c)

and terms?(t) denotes the positive, negative and optional subterms
of c, respectively. For some syntactic Xcerpt

RDF element e, blanks(e),
uris(e) and vars(e) denotes the set of blank node identifiers, URIs, and
variables in e, respectively.

104 xcerpt
rdf

syntax and simulation

Definition 25 (Xcerpt
RDF data term). An Xcerpt

RDF data term is a
compound Xcerpt

RDF term that does not contain any term modifiers, double
braces, conditional RDF path expressions, variables or grouping constructs.
Moreover curly braces do not appear in combination with the seqOf and
listOf keywords. We denote the set of all Xcerpt

RDF data terms by TRDFD .

a note on node identity in rdf graphs and xml trees .
Xcerpt has originally been invented for querying XML, and semi-
structured data in general. In semi-structured data, nodes carry labels
which are distinct from their identities. In RDF graphs, on the other
hand, the identity of a node is given by its URI, which is, at the same
time, its label. While the same XML or HTML tag appears within
an XML document at different locations, RDF graphs contain a given
URI only once (though often multiple times in RDF graph serializa-
tions). For referencing the same XML element twice in a document, the
ID/IDREF [BPSM+

06] mechanism for intra-document referencing and
XLink [OMD01] for inter-document referencing have been invented.
There is no need for intra-graph or inter-graph linking between nodes of
RDF graphs. Nevertheless, the serialization of a two dimensional struc-
ture such as RDF graphs in a one-dimensional sequence of characters
requires some referencing mechanism, and thus URIs and blank node
identifiers are allowed to appear multiple times within an Xcerpt

RDF

data term. For the sake of readability, and for the sake of compatibility
with XcerptXML, we adopt the convention that Xcerpt

RDF data terms
have only one defining occurrence of URIs (the first one in subject or
object position), and all subsequent occurrences must be referencing
only. A defining occurrence of a URI may have subterms, referenc-Normal form for

Xcerpt
RDF data

terms
ing ones must not. Thus, the term a{p → a} is allowed, but the term
a{b → a{c → d}} is not. The second term is equivalent to its normal
form a{b→ a, c→ d}. In the following, we will assume all Xcerpt

RDF

data terms to be in normal form.

Definition 26 (Mapping from Xcerpt
RDF data terms to RDF graphs).

Let d be an Xcerpt
RDF data term. The RDF graph ρ(d) corresponding to

d is given by the mutually recursive mappings ρ, α, γ, γalt, γbag, γseq,
γlist:

• ρ(d) =
⋃
a∈arcs(d) α(subj(d),a)∪ γ(subj(d), cont(d))

• α(s,a) = (s,pred(a), subj(obj(a)))∪ ρ(obj(a))

• The mappping γ serves the translation of Xcerpt
RDF containers and

reifications:

γ(s,d) =

γalt(s,d) if d is an Xcerpt
RDF alternative

γbag(s,d) if d is an Xcerpt
RDF bag

γseq(s,d) if d is an Xcerpt
RDF sequence

γlist(s,d) if d is an Xcerpt
RDF list

γreif(s,d) if d is an Xcerpt
RDF reification

• γalt(s,d) = {(s, rdf:type, rdf:Alt)}∪
⋃
16i6n{(s, rdfs:member, ti)}

with terms(d) = t1, . . . tn.

5.3 abstract syntax of xcerpt
rdf

105

• γbag(s,d) = {(s, rdf:type, rdf:Bag)}∪
⋃
16i6n{(s, rdfs:member, ti)}

with terms(d) = t1, . . . tn.

• γseq(s,d) = {(s, rdf:type, rdf:Seq)}∪
⋃
16i6n{(s, rdf : _i, ti)}

with terms(d) = t1, . . . tn.

• γlist(s,d) = {(s, rdf:type, rdf:List), (s, rdf:first, t1), (s, rdf:rest,b1)} ∪⋃
26i6n{(bi−1, rdf:rest,bi), (bi−1, rdf:first, ti)}

with terms(d) = t1, . . . tn, and b1, . . . bn−1 fresh blank node identi-
fiers.

• γreif(s,d) = { (s, rdf:type, rdfs:Statement), (s, rdf:subject, s),
(s, rdf:predicate,p), (s, rdf:object,o) } where d = < s{p→ o} >.

Example 15 (Representation of RDF graphs as data terms). While any
Xcerpt

RDF data term can be converted into an RDF graph, the inverse is not
true, simply because RDF graphs may be disconnected or have multiple roots.
Consider the RDF graphs G1 = (a,b, c), (d, e, f) and G2 = (a,b, c), (d, e, c).
Neither G1 nor G2 can be encoded as an Xcerpt

RDF data term, but only as
sets of Xcerpt

RDF data terms. For this simple reason, Xcerpt
RDF term

simulation in Section 5.4 is not defined on pairs of query terms and data
terms, but on pairs consisting of a query term and a set of Xcerpt

RDF data
terms.

Definition 27 (Xcerpt
RDF named graphs). An Xcerpt

RDF named graph
N is a tuple (u, D) where u is a URI, and D is a set of Xcerpt

RDF data
terms. The URI u is assumed to be unique. The RDF graph corresponding N

is given by
⋃
d∈D(ρ(d)). To avoid ambiguity we adopt the same restrictions

concerning defining and consuming occurrences for URIs and blank nodes as
for Xcerpt

RDF data terms: For each URI u and blank node b in N there must
exactly one defining occurrence, which is at the same time the first occurrence.

Xcerpt
RDF named graphs correspond to named graphs as described

in [PFH06] and [CBHS05b]. Xcerpt
RDF named graphs can be thought

of as Xcerpt
RDF data terms with a virtual root note given by its URI u.

All data terms d ∈ D of the named Xcerpt
RDF graph must then be di-

rectly nested within u. In this way ground Xcerpt
RDF simulation could

be defined between Xcerpt
RDF query terms and Xcerpt

RDF named
graphs. In [CBHS05b] named graphs are used to track provenance in-
formation of RDF triples in order to better estimate the reliability of
information. In [PFH06] named graphs are introduced to justify and
promote the concept of scoped negation as failure. With named graphs at
hand, reasoning about provenance information is possible in Xcerpt,
and scoped negation allows the formulation of otherwise not express-
ible queries.

Atomic Xcerpt
RDF terms are not considered as Xcerpt

RDF data
terms, since all Xcerpt

RDF data terms must correspond to RDF graphs.
A single URI, literal or blank node is, however, not a valid RDF graph
(see Definition 43). Example 16 illustrates the transformation of an
Xcerpt

RDF data term into an RDF graph:

Example 16 (Transformation of an Xcerpt
RDF data term into an RDF

graph). Consider the Xcerpt
RDF data term d in Listing 5.5. It corresponds

to the RDF graph G in Equation 5.23.

Listing 5.5: An Xcerpt
RDF data term.

eg:bob{

106 xcerpt
rdf

syntax and simulation

eg:believes → eg:l{

rdf:type → rdf:List,

rdf:first → _:X {

<xsd:integer{ rdfs:label → "Integer" }> },

rdf:rest → _:B1 {

rdf:first → _:Y {

<xsd:string{ rdfs:label → "String"}>,

rdf:rest → rdf:nil

}

}

}

} �
G = {(eg:bob, eg:believes, eg:l), (eg:l, rdf:type, rdf:List) (5.23)

(eg:l, rdf:first, _:X), (eg:l, rdf:rest, _:B1),

(_:B1, rdf:first, _:Y), (_:B1, rdf:rest, rdf:nil),

(_:X, rdf:subject, xsd:integer), (_:X, rdf:predicate, rdfs:label),

(_:X, rdf:object, "Integer"), (_:X, rdf:type, rdfs:Statement)

(_:Y, rdf:subject, xsd:string), (_:Y, rdf:predicate, rdfs:label),

(_:Y, rdf:object, "String"), (_:Y, rdf:type, rdfs:Statement)}

Theorem 5 (Satisfiability of Xcerpt
RDF data terms). Xcerpt

RDF data
terms using solely the shorthand notation for construction of RDF contain-
ers and collections are satisfiable under the RDFCC semantics. Xcerpt

RDF

data terms using solely the shorthand notation for construction of RDF reified
statements are satisfiable under the RDFR semantics. Xcerpt

RDF data terms
using solely the shorthand notation for construction of RDF conainters, col-
lections and reified statements have a valid RDFS interpretation that is both
an RDFCC interpretation and an RDFR interpretation.

As data terms, construct terms are used to construct RDF graphs,
and must therefore also be compound:

Definition 28 (Xcerpt
RDF construct term). An Xcerpt

RDF construct
term is a compound Xcerpt

RDF term that does not contain any term mod-
ifiers, double braces, or conditional RDF path expressions. Ground construct
terms must not include any grouping constructs.13 We denote the set of all
Xcerpt

RDF construct terms by TRDFC .

Definition 29 (Xcerpt
RDF query term). An Xcerpt

RDF query term is
an Xcerpt

RDF term without grouping constructs. We denote the set of all
Xcerpt

RDF query terms by TRDFQ .

While all data terms can be translated to RDF grpahs, query terms
do not correspond to RDF graphs, but specify that (i) some triples
are mandatory – must be present in the queried graph –, (ii) some
triples are negated – i.e. must not be present –, and (iii) some triples are
optional – i.e. may or may not be present in the queried graph and may
yield additional variable bindings. Indeed, the semantics of a query
term q involving the constructs double curly braces ({{ and }}), atomic

13 One could just as well allow ground construct terms with grouping constructs, but
their semantics would be equivalent to their versions without grouping constructs (see
Definition 37). To avoid redundancy and confusion, grouping constructs in ground
construct terms are disallowed.

5.3 abstract syntax of xcerpt
rdf

107

negation (without over a single triple, a without spanning more than
one triple is referred to as compound negation), optional, reification,
and atomic variables only, can be precisely encoded in three sets of
independent triples ρm(q), ρn(q) and ρo(q) denoting the mandatory,
negated and optional statements, respectively. Moreover, this fragment
correponds roughly to SPARQL query patterns without filter clauses,
and allows the translation of SPARQL query patterns to Xcerpt

RDF

and vice versa. Unfortunately, the other constructs – single curly braces,
listOf, seqOf, bagOf, altOf, variables for concise bounded descriptions,
arcs and graphs, and compound negation cannot be encoded in these
three sets of triples. We denote the set of Xcerpt

RDF query terms
not making use of constructors for containers and collections, with
atomic negation, and double curly braces only, as the set T

{{{}},¬a,?
Q . The

semantics of abritrary Xcerpt
RDF query terms is more involved, and

cannot be translated to these three sets of triples. When translated to
some extension of conjunctive queries or some fragment of first order
logic, the required formalism must provide disjunction, negation and
and existential quantification over sets of triples. The precise semantics
of arbitrary Xcerpt

RDF query terms is given in the following section by
(ground) Xcerpt

RDF term simulation.

Example 17 (Transformation of an Xcerpt
RDF query term to triple sets).

Consider the Xcerpt
RDF query term q in Listing 5.6

Listing 5.6: An Xcerpt
RDF query term with atomic negation and optional parts.

eg:bob{{

eg:believes → var List {{

rdf:type → rdf:List,

rdf:first → var First {{

<xsd:integer{{ rdfs:label → "Integer" }}> }},

optional rdf:rest → var Second {{

rdf:first → _:Y {{

<xsd:string{{ rdfs:label → "String"}}>,

rdf:rest → rdf:nil

}}

}}

}}

without foaf:knows → eg:anna

}} �
Note that there is no possibility of expressing the same Xcerpt

RDF query
only with the shorthand notation for RDF containers, collections and reifica-
tion. In fact, q may return non-empty substitution sets even on RDF graphs
that do not respect the RDFR and RDFCC intuitive semantics. On the other
hand, Xcerpt

RDF query terms making use of the shorthand notation only,
will return the empty substitution set (i.e. false), on graphs that have not RD-
FCC or RDFR interpretation. The RDF container and reification vocabulary
in Listing 5.5 is used just as any other URI without a predefined semantics.
The sets of mandatory, optional, and negated triples corresponding to q are as
follows:

108 xcerpt
rdf

syntax and simulation

ρm(q) = {(eg:bob, eg:believes, var List), (var List, rdf:type, rdf:List),

(var List, rdf:first, var First),

(var First, rdf:type, rdfs:Statement),

(var First, rdf:subject, xsd:integer),

(var First, rdf:predicate, rdfs:label),

(var First, rdf:object, "Integer")}

ρn(q) = {(eg:bob, foaf:knows, eg:anna)}

ρo(q) = {(var List, rdf:rest, var Second), (var Second, rdf:first, _:Y),

(_:Y, rdf:type, rdfs:Statement), (_:Y, rdf:subject, xsd:string),

(_:Y, rdf:predicate, rdfs:label), (_:Y, rdf:subject, "String"),

(var Second, rdf:rest, rdf:nil), }

The remaining constructs listOf, bagOf, altOf, seqOf, compound negation,
variables for arcs, concise bounded descriptions and graphs cannot be encoded
in ρm(q), ρn(q) and ρo(q) for the following reasons:

• listOf{a,b} is (almost) equivalent to the following union of conjunc-
tive queries. However, it cannot be expressed as a single conjunctive
query, since there are two possibilities for encoding an RDF list with
two elements. Both these possibilities must be reflected in the query.
Still, since SPARQL allows unions of graph patterns, it could be en-
coded in SPARQL. Note that the triple-encoding of listOf{a,b} will
still match with graphs invalid under the RDFCC semantics, while
the original query listOf{a,b} does not. For the precise semantics see
Definition 32. This precise semantics cannot be encoded as a SPARQL
query.

∃l,b1. ((l, rdf:type, rdf:list), (l, rdf:first,a),

(l, rdf:rest,b1), (b1, rdf:type, rdf:list),

(b1, rdf:first,b), (b1, rdf:rest, rdf:nil))

∨((l, rdf:type, rdf:list), (l, rdf:first,b),

(l, rdf:rest,b1), (b1, rdf:type, rdf:list),

(b1, rdf:first,a), (b1, rdf:rest, rdf:nil))

Still more complicated is the query listOf{{a,b}}, it allows for an ar-
bitrary number of elements in the list to be queried, as long as the two
elements a and b are contained. Translation to a conjunctive query or a
SPARQL graph pattern would require an infinte disjunction of triples.
We do not even attempt the translation but refer to Definition 32.

• When translating the remaining constructors bagOf, altOf, seqOf, one
experiences essentially the same difficulties as with listOf. Again, the
precise semantics of these constructs (Definition 32) cannot be expressed
as finite conjunctive queries or SPARQL query patterns.

• Compound negation such as a{{b → c, without d → {{e → f}} }}

could be expressed as the following conjunctive query with negation:

(a,b, c) ∧ ¬((a,d, e) ∧ (d, e, f))

5.4 xcerpt
rdf

declarative semantics: term simulation 109

Note that the negation spans two triples. A graph including only one of
the triples would still match the query. In SPARQL, this query would
have to be encoded using multiple optional graph patterns and multiple
filter-clauses with the unbound operator, such that the query would
become quite involved.

• Xcerpt
RDF treats variables for arcs, concise bounded descriptions and

graphs differently from atomic variables, in that arc variables may only
appear within predicate position, and concise bounded description vari-
ables and graph variables only in subject or object position. Moreover,
the bindings for these variables are not single URIs, Literals or blank
nodes, but entire subgraphs of the queried graph. Obviously this bind-
ing mechanism cannot be encoded in a conjunctive query language that
is missing these types of variables nor within SPARQL. An extension
of SPARQL in this direction seems to be, however, straightforward and
feasible.

In contrast to Xcerpt
RDF data and construct terms, Xcerpt

RDF query
terms include atomic Xcerpt

RDF terms. A query term consisting of the
single URI u (a qualified name q) simply returns true on all RDF graphs
which contain u (the expansion of q) in subject or object position. Since
Xcerpt

RDF adopts the same view as SPARQL of blank nodes in queries
– i.e. the one of an undistinguished variable – a query term consisting of
a single blank node b returns true on all but the empty RDF graph. In
contrast, a query term consisting of a single node variable vn evaluated
over an RDF graph G yields the substitution set mapping vn to each
of the nodes of G. The semantics of these atomic Xcerpt

RDF query
terms and of compound Xcerpt

RDF query terms is formalized in the
following section by graph simulation in a similar way as the semantics
of XcerptXML terms.

5.4 xcerpt
rdf

declarative semantics : term simulation

The declarative semantics of Xcerpt programs is based on the notion
of ground term simulation. In [Sch04a] ground term simulation is
defined on TQ × TQ, i.e. on pairs of ground query terms. This is more Signature of Xcerpt

term simulationthan is needed for the specification of the fixpoint semantics of stratified
Xcerpt programs and also for the well-founded-semantics introduced
in this work (Section 7), which extends the semantics to non-stratified
programs. Instead, ground simulation as a function on TQ × TD, i.e.
between query terms and data terms is sufficient. Note, however, that
term simulation between query terms is helpful for showing that the
subsumption relationship between Xcerpt query terms is decidable (see
Section 8). In order to extend the semantics from XcerptXML programs
to Xcerpt

RDF programs, ground term simulation must be specified for
Xcerpt

RDF terms. To not carry out any superfluous work, Xcerpt
RDF

ground term simulation is indeed specified only between pairs of
ground query terms and data terms.

Ground Xcerpt
RDF simulation (Definition 30) is defined in a similar

way as ground XcerptXML simulation. Due to the problem of multiple
roots in RDF graphs (see Example 15), term simulation in Xcerpt

RDF

cannot be specified on TQ×TD, but must be specified on pairs of query
terms and sets of data terms – i.e on TQ ×P(TD).

110 xcerpt
rdf

syntax and simulation

Moreover, special attention must be payed to the simulation of arcs
(Definition 31), containers and collections (Definition 32) and of reified
statements (Definition 33).

Finally, blank nodes within Xcerpt
RDF terms must be treated as

existentially quantified variables, and thus occupy a special role in
Xcerpt

RDF term simulation. On the one hand, extending simulationTreatment of blank
nodes in term
simulation

from ground Xcerpt
RDF terms (without blank nodes) to Xcerpt

RDF

terms that contain blank nodes, but no variables, can be handled in
the same way as extending ground Xcerpt

RDF term simulation to
arbitrary Xcerpt

RDF term simulation (i.e. also to terms with variables).
This observation suggests to handle blank nodes in the very same
way as Xcerpt

RDF variables. On the other hand, blank nodes (but not
variables) may appear within the results of Xcerpt

RDF programs (i.e.
within RDF graphs), or within intermediate results of an Xcerpt

RDF

program. Thus, RDF graphs containing blank nodes must be seen as
part of the Herbrand Universe in the specification of the declarative
semantics. Ground query term simulation for graphs without blank
nodes would thus be insufficient for the specification of the stratified
fixpoint procedure and the well-founded semantics.

The definition of ground term simulation in Xcerpt
RDF is split into

several parts. Defintions 30, 31, 32 and 33 are mutually dependant and
define the ground simulation of terms, arcs, containers and collections,
and reifications, respectively.

Definition 30 (Ground Xcerpt
RDF term simulation). Let t1 be some

ground Xcerpt
RDF query term, and D some set of Xcerpt

RDF data terms.
t1 simulates into D (short t1 � D) iff one the following conditions hold:

• t1 is some URI or RDF Literal, and t1 occurs in the RDF graph⋃
d∈D(ρ(d)) corresponding to D (see Definition 26).

• t1 is of the form l1{t
1
1, . . . tn1 } and some data term d ∈ D contains some

subterm t2 of the form l2{t
1
2, . . . tm2 } with l1 = l2 and ti1 � π(ti1) for

some total, surjective mapping π : arcs(t1)→ arcs(t2).1415

• t1 is of the form l1{{t
1
1, . . . tn1 }} (note the double braces) and some data

term d ∈ D contains some subterm t2 of the form l2{t12, . . . tm2 } satisfy-
ing l1 = l2 and ti1 � π(ti1) for some total mapping π : arcs+(t1) →
arcs(t2) (since t2 is a data term, there are no negated arcs within
t2). Furthermore there is no pair (ti1, tj2) ∈ arcs

−(t1) × (arcs(t2) \

img(π)) such that ti1 � t
j
2. Finally, if there is some (negated) con-

tainer, collection or reification c1 nested in t1, then there is some (is
no) container, collection or reification c2 in t2 with t1 � t2.

Definition 31 (Ground simulation of Xcerpt
RDF arcs). Let a1 = p1 →

t1 and a2 = p2 → t2 be two ground Xcerpt
RDF arcs. a1 simulates into a2

iff p1 � p2 and ref(t1) � ref(t2).16

14 Note that there will be at most one subterm t2 satisfying the above conditions, since
for any URI or blank node, there is only one defining occurrence within an Xcerpt

RDF

graph.
15 We assume there are no negative arcs or containers within a term with single braces. If

there are, they can simply be ignored.
16 The function ref is for reference resolution: if t1 is a referencing occurrence of a URI,

then ref(t1) yields the referenced term. Otherwise, ref(t1) = t1. Note that reference
resolution is not needed for arcs in Definition 30, since the same URI may appear multiple
times as a predicate in an RDF graph.

5.4 xcerpt
rdf

declarative semantics: term simulation 111

Definition 32 (Ground simulation of containers and collections). Let
c1 and c2 be two Xcerpt

RDF containers. c1 simulates into c2 iff one of the
following conditions hold.

1. c1 = bagOf{t11, . . . , tn1 } and c2 = bagOf{t12, . . . , tm2 } are Xcerpt
RDF

bags, and the term t1 := s{p → t11, . . . ,p → tn1 } simulates into the
term t2 := s{p→ t12, . . . ,p→ tm2 } for two fresh URIs s and p.

2. c1 = bagOf{{t11, . . . , tn1 }} and c2 = bagOf{t12, . . . , tm2 } (note the
double braces) are Xcerpt

RDF bags, and the term t1 := s{{ p → t11,
. . . , p → tn1 }} simulates into the term t2 := s{p → t12, . . . ,p → tm2 }

for two fresh URIs s and p.

3. c1 and c2 are Xcerpt
RDF alternatives, and the same conditions hold

as for Xcerpt
RDF bags.

4. c1 = listOf{t11, . . . , tn1 } and c2 = listOf[t12, . . . , tn2] are Xcerpt
RDF

lists, and the same conditions as for case 1 are fulfilled.

5. c1 = listOf{{t11, . . . , tn1 }} and c2 = listOf[t12, . . . , tm2] are Xcerpt
RDF

lists, and the same conditions as for case 2 are fulfilled.

6. c1 = listOf[t11, . . . , tn1] and c2 = listOf[t12, . . . , tn2] are Xcerpt
RDF

lists, and ref(t1i) � ref(t
2
i)

16 ∀1 6 i 6 n.

7. c1 = listOf[[t11, . . . , tn1]] and c2 = listOf[t12, . . . , tm2] are Xcerpt
RDF

lists, and there is some monotone and injective mapping π : terms+(c1)

→ terms+(c2) with ref(ci) � ref(π(ci)) ∀ti ∈ terms+(c1). Fur-
thermore, π is not extensible to any monotone mapping π ′ : terms+(c1)

∪ {ti1}→ terms+(c2) for some ti1 ∈ terms
−(c1) such that ref(pos(ti1))

� ref(π ′(ti1))
16 and π ′(ti1) ∈ (terms+(c2) \ img(π)).

8. c1 and c2 are two Xcerpt
RDF sequences, and the same conditions as

for Xcerpt
RDF lists are fulfilled.

Example 18. Consider the following examples for ground simulation of con-
tainers and collections.

• listOf[[a, c]] and listOf{a, c,d,b} simulate into listOf[a,b, c,d], but
listOf[a, c], seqOf[[a, c]], bagOf{{a, c}}, and altOf{{a, c}} do not.

• for q1,q2 in {listOf[], seqOf[],bagOf{},altOf{}} holds q1 � q2 ⇔
q1 = q2.

Definition 33 (Ground simulation of Xcerpt
RDF reifications). Let r1 =

st1 < subj1{pred1 → obj1} > and r2 = st2 < subj2{pred2 → obj2} >

be two Xcerpt
RDF reifications. r1 simulates into r2 iff st1 � st2, subj1 �

subj2, pred(r1) � pred(r2), and obj(r1) � obj(r2).

Example 19 (On sibling injectivity in Xcerpt
RDF). In XcerptXML and

Xcerpt
RDF, the simulation relationship between two terms must be injec-

tive on the siblings of the query term, which means that the term q =

var Element{{b,b}} does not simulate in the term d = a{b} (See Chap-
ter 7 for the precise definition of XcerptXML term simulation). In this way,
one can find all XML elements that contain more than one subterm of a
given name, or more than one arbitrary subterm (e.g. with the query term
var Element{{var First, var Second}}). Since URIs are unique within an RDF
graph (in contrast to XML labels, which are not unique within an XML doc-
ument), and since RDF graphs are sets (not multi-sets) of RDF triples this
observation is not true for Xcerpt

RDF querying: An Xcerpt
RDF term such

as q ′ = a{{b→ c,b→ c}} is simply unsatisfiable.

112 xcerpt
rdf

syntax and simulation

Example 20 (Ground simulation and multiple URI occurrences). Con-
sider the Xcerpt

RDF query term q = a{b→ a{c→ d}} and the Xcerpt
RDF

data term d = a{b → a, c → d}. Does q simulate into d? On the one
hand, a bijective mapping is impossible since there is only one arc explicitely
nested in q, and d contains two arcs. On the other hand, the node a in q
does have two distinct arcs, specified at different places. To avoid confusions
of this kind, we adopt the same kind of normal forms for Xcerpt

RDF query
terms as for Xcerpt

RDF data terms: For a given URI u, its first occurrenceNormal form for
Xcerpt

RDF query
terms

in subject or object position within a term is defining (may have subterms),
and all subsequent occurrences are referring only (must not have subterms).
The normal form for q is d and obviously, d simulates into itself. Note that
occurrences of URIs in predicate position are never defining. Occurrences of
URIs in predicate position correspond to edges in an RDF graph.

Example 21 (The necessity for reference resolution). Consider the query
term q = a{{b → c{{b → a}} }} and the data term d = c{b → a{b → c}}.
From Definition 30 an algorithm for deciding term simulation can be almost
immediately derived, which works as follows on q and d (multiple occurrences
of the same name in q and d are distinguished by indices):

a1{{b→ c{{b→ a2}} }} � c1{b→ a{b2 → c2} } (5.24)

a1{{b→ c{{b→ a2}} }} � a{b2 → c2} (5.25)

b→ c{{b→ a2}} � b2 → c2 (5.26)

c{{b→ a2}} � ref(c2) (5.27)

c{{b→ a2}} � ref(c2) (5.28)

c{{b→ a2}} � c{b→ a{b→ c}} (5.29)

b→ a2 � b→ a{b→ c} (5.30)

a2 � a{b→ c} (5.31)

> (5.32)

Ground term simulation is an assymmetric relation between the
set of ground Xcerpt

RDF query terms and ground Xcerpt
RDF data

terms. As described above, ground term simulation does not suffice for
the specification of the declarative semantics of Xcerpt

RDF programs,
because ground RDF graphs and ground Xcerpt

RDF terms do not
contain blank nodes, but ordinary RDF graphs generally do. But how
are blank nodes supposed to be treated in term simulation? Consider
the Xcerpt

RDF data term d = _:C{ eg:hasfather _:F }, stating that two
persons c, f (or some other type of creature) exist, such that c is child of
f. Given the queries q1 = _:Z and q2 = eg:bob, are q1 and q2 supposed
to simulate into d? Note that while q1 and q2 are not valid data or
construct terms, they are valid Xcerpt

RDF query terms. This is a major
difference to SPARQL, where the smallest query possible is a single
triple. We consider q1 as the question if there exists something in the
universe. Thus any RDF interpretation (see Definition 8) with at least
one element in IRwould satisfy q1. q2, on the other hand, is interpreted
as the question if the graph G that is queried contains some information
about the resource denoted by eg : bob, i.e. if for a valid interpretation
I = (IR, IP, IEXT ,LV , IS, IL,LV) of G I(eg : bob) is in IR. Obviously, this
is the case if and only if the URI eg : bob occurs within G. Thus we
adopt the view that q1 simulates into d, but q2 does not. With the same
reasoning we come to the conclusion that _:A{ b → c} simulates into
a{ b → c }, but not the other way around.

5.4 xcerpt
rdf

declarative semantics: term simulation 113

Figure 1: Example terms for the illustration of blank node simulation.

_:X

_:Y

_:Z

b

a

q

p

p

p

p

r

r a

b

p

d1

a

b _:W

p r

d2

Definition 34 (Term simulation with blank nodes). Let q be an Xcerpt
RDF

query term without variables, but possibly with blank nodes. Let D be some
set of Xcerpt

RDF data terms possibly containing blank nodes. q simulates
into D iff there is some mapping µ : blank(q) → blank(D) ∪ uris(D)

such that for all mappings τ : blank(D) → {u1, . . . ,un} with u1, . . . ,un
fresh URIs, τ(µ(q)) simulates into τ(D). 17

Example 22 (Term simulation with blank nodes). Let q :=

_:X{{

p → _:Y{{

p → a{{ p → _:Y, p → b }},

r → _:Z

}},

p → b {{ r → _:Z, p → a }}

}} �
, d1 := b{ p → a { p → b } } and d2 := b{ p → a { p → b, r → _:W{

r → a } } } as illustrated in Figure 1

• q does not simulate into d1 since there is no mapping from the blank
nodes of q to the URIs in d1 (there are no blank nodes in d1) such that
q simulates into d1.

• q does simulate into d2 for the following reason: for the mapping µ :=

{_ : X→ a, _ : Y → b, _Z→: W}, µ(q) = d2. Hence the conditions of
Definition 34 are (almost trivially) fulfilled.

Theorem 6 (Simulation versus simple entailment). Let G1 and G2 be two
RDF graphs. If G1 entails G2 then all subgraphs of G2 represented as query
terms with double curly braces simulate into term(G1), where term(G1) is
the representation of G1 as a set of Xcerpt

RDF data terms.

Theorem 6 is a consequence of the Interpolation Lemma 5.
It would be nice to have a decision procedure for simple entailment

based on term simulation. Unfortunately we can only have such a
decision procedure for the negative case, i.e. we can show that a graph
g1 does not entail a graph g2 by query term simulation based on the
observation in Theorem 6. For the postive case we would need Theorem
6 to hold in both directions. To see that the “if” condition in Theorem
6 is not an “if and only if” condition consider the two RDF graphs
g1 := {(a,p, _:X), (b,p, _:X)} and g2 := {(a,p, _:Y), (b,p, _:Z)}. All query
terms corresponding to subgraphs of g1 simulate into g2, however, g2

17 µ(q) denotes the query term obtained from q by substituting all blank nodes according
to µ, and analogously for τ(µ(q)) and τ(D).

114 xcerpt
rdf

syntax and simulation

does not entail g1. To obtain a characterization of simple entailment
in terms of simulation, Xcerpt

RDF terms would have to be extendend
by reverse predicates, such that we could represent g1 as a single term
_:X{{p← a,p← b}}. Alternatively, simulation could be defined between
sets of Xcerpt

RDF query terms and sets of Xcerpt
RDF data terms. Both

these extensions are straightforward, and thus omitted for the sake of
brevity.

In the remainder of this section, ground term simulation is extended
to the non-ground term simulation between the set of all query terms
and the set of all construct terms in a similar way the extension to terms
with blank nodes. While simulation of Xcerpt

RDF terms containing
blank nodes suffices for the specification of the stratified fix-point
semantics and the well-founded semantics for Xcerpt

RDF programs,
for backward chaining the simulation of possibly non-ground query
terms with possibly non-ground construct terms must be evaluated –
i.e. bindings for the variables in both terms must be calculated. This
section does not deal with the operational semantics of Xcerpt

RDF

programs, but it gives a declarative semantics for non-ground term
simulation, since non-ground term simulation is important for the
evaluation of Xcerpt

RDF programs. Often, the simulation of a query
term with a construct term yields constraints besides variable bindings.
These constraints can be used to optimize backward chaining. This
section does not elaborate on these constraints.

In contrast to the bindings for blank nodes, the bindings for variables
in Xcerpt

RDF are of interest to the author of a query term, and thus
the notions of (typed) variable bindings, substitutions, substitution-
sets, equivalence classes for substitution sets and the application of
substitution sets to non-ground Xcerpt

RDF terms are introduced. This
procedure is in line with the definition of term simulation for XcerptXML

terms, but extends XcerptXML simulation by the notions of well-typed
bindings, substitutions and substitution sets. Variable types are intro-
duced in Xcerpt

RDF to avoid the construction of invalid RDF graphs,
such as graphs that contain a triple in subject position or a blank node
in predicate position. Moreover, Xcerpt

RDF simulation is different from
XcerptXML simulation in that it must treat blank nodes as existentially
quantified variables.

Definition 35 (Xcerpt
RDF Binding, Substitution, Substitution Set). An

Xcerpt
RDF binding is a pair (V , T) where V is an Xcerpt

RDF variable or
blank node and t is an Xcerpt

RDF Term. An Xcerpt
RDF binding (V , t) is

well-typed if the following conditions hold:

• If V is a blank node, then t must be a URI or Literal or blank node itself.

• If V is a variable with type t(V) = node – i.e. V is a node variable –
then t must be an atomic Xcerpt

RDF term.

• If t(V) = arc – i.e. V is an arc variable – then tmust be an Xcerpt
RDF

arc.

• If t(V) = predicate – i.e. V is a predicate variable – then t must be
an Xcerpt

RDF predicate.

• If t(V) = graph – i.e. V is a graph variable – then t must be an
Xcerpt

RDF term.

5.4 xcerpt
rdf

declarative semantics: term simulation 115

• If t(V) = cbd – i.e. V is a concise bounded description variable –
then t must be an Xcerpt

RDF term representing a concise bounded
description.

An Xcerpt
RDF substitution over a set of Xcerpt

RDF variables V is a
set of bindings s = {(v1, t1), . . . , (vn, tn)} such that V ⊇ {v1, . . . , vn}.
{v1, . . . , vn} is called the domain dom(s) of s, {t1, . . . , tn} its range range(s).
An Xcerpt

RDF substitution is well-typed, if each of its bindings is well-
typed. An Xcerpt

RDF substitution set over a set of variables V is a set
of Xcerpt

RDF substitutions over V. An Xcerpt
RDF substitution set S is

well-typed if each of its substitutions is well-typed and for all substitutions
si, sj ∈ S and each variable v ∈ dom(si)∩ dom(sj) the type of v in si and
sj coincides.

Definition 36 (Equivalence Classes for Substitution Sets). Let S be
an Xcerpt

RDF substitution set and V a set of Xcerpt
RDF variables. The

equivalence classes of S with respect to V is the set of substitution sets
Σ(S, V) = {s ⊆ S | ∀si, sj ∈ S

(
∀v ∈ V

(
si(v) = sj(v)

))
∧ s is maximal}.

Equivalence classes are introduced for grouping variable bindings Free variables, bound
variables, groupingwithin Xcerpt

RDF construct terms according to the involved grouping
constructs. As in [Sch04a] in the case of implicit grouping constructs,
equivalence classes are computed with respect to the free variables of
a term FV(t). In the case of explicit grouping, equivalence classes are
computed with respect to the free variables in a term plus the set of
explicitely mentioned variables in the group-by clause. A variable X is
free within a term t, if it does not appear within a grouping construct
in t.

Definition 37 (Application of a substitution set to Xcerpt
RDF terms).

Let S be an Xcerpt
RDF substitution set, and q an Xcerpt

RDF query term. S
is applicable to q iff

• S is well-typed

• all non-optional variables in q are in
⋂
s∈S dom(s)18

• for all variables v in q, the types of v in S and q coincide.

If S is not applicable to q, then the application S(q) of S to q results in the
empty set. Otherwise, S(q) results in a multi-set of Xcerpt

RDF query terms
defined as follows:

• if |Σ(S, FV(q))| > 1 then S(q) = {S ′(q) | S ′ ∈ Σ(S, FV(q))}.

• if |Σ(S, FV(q))| = 1 then

– if q is an Xcerpt
RDF variable, then S(q) is the binding for q in

S (by assumption there is only one binding for q).
– if q is a URI, blank node identifier or RDF literal, then S(q) = {q}

– if q is of the form all q ′ then S(q) is S(q ′).19

– if q is a compound term of the form label{{t1, . . . , tn}} or label{
t1, . . . , tn} with subterms (i.e. arcs, containers or collections)
t1, . . . , tn then S(q) = label{{ S(t1), . . . , S(tn)}} and label{
S(t1), . . . , S(tn)}, respectively.

18 optional, negative and positive variables are defined as in [Sch04a].
19 Note that the set of free variables FV(q) is in general a subset of FV(q ′). Hence, the

substitution set S ′ will be separated into equivalence classes before it is applied to q ′.

116 xcerpt
rdf

syntax and simulation

Definition 38 (Non-ground Xcerpt
RDF simulation). Let q be an Xcerpt

RDF

query term and c an Xcerpt
RDF construct term. q simulates into c iff there

is some substitution φ and some substitution set Φ such that φ(q) and all
terms in Φ(c) are ground and φ(q) � t for some t ∈ Φ(c).

A substitution µ is a unifier for q and c, iff for all grounding substitution
sets Σ, and for all t1 ∈ Σ(µ(q)) there is some t2 ∈ Σ(µ(c)) with t1 � t2.

Example 23. Consider the query term q = a{{ var X → var X }} and the
construct term c = a{ var Y → d }. q simulates into c since for φ = {X →
d} and Φ = {{Y → d}}, φ(q) = a{{ d → d }} simulates into the only ele-
ment a{ d → d } in Φ(c).

Example 24. Let q = a{{ arcVar X, arcVar Y }} and c = a { all arcVar

Z }. q simulates into c since for φ = {X → (b → d), Y → (d → e)} and
Φ = {{Z→ (b→ d)}, {Z→ (d→ e)}}, φ(q) is a{{ b → d, d → e }} and
simulates into the only element a{ b → d, d → e } of Φ(c).

5.5 xcerpt
rdf

queries , facts, rules and programs

With the semantics of single Xcerpt
RDF terms fixed in the previous

section, this section builds upon Xcerpt
RDF to build queries (Definition

39), facts (Definition 40), rules (Definition 41) and programs (Definition
42), which are defined in-line with the same notions for XcerptXML.

Xcerpt
RDF queries serve to express sophisticated conditions on RDF

graphs available on the Web, on the local computer, or on graphs
constructed as an intermediate result via a rule in the rule program.
Xcerpt

RDF queries can be formed based on Xcerpt
RDF terms via

conjunctions, disjunctions, negations and resource specifications. All
Xcerpt

RDF queries can be brought into disjunctive normal form, i.e.
with disjunctions appearing only on the outermost level, not within one
of the other constructors for queries. Therfore disjunctions are mere
syntactic sugar notation for multiple rules with the same body. For the
purpose of evaluation, the disjunctive normal form of queries can save
considerable implementation efforts.

Definition 39 (Xcerpt
RDF queries). Xcerpt

RDF queries are recursively
defined as follows:

• any Xcerpt
RDF query term is an Xcerpt

RDF query

• if q is an Xcerpt
RDF query and u is a URI, then in{ resource{ u ,

q } } is an Xcerpt
RDF query.

• if q1, . . . qn are Xcerpt
RDF queries, then and(q1, . . . ,qn) is an Xcerpt

RDF

query, also called a conjunction.

• if q1, . . . ,qn are Xcerpt
RDF queries, then or(q1, . . . ,qn) is an Xcerpt

RDF

query, also called a disjunction.

• if q is an Xcerpt
RDF query, then not(q) is the negation of q, and also

an Xcerpt
RDF query.

Xcerpt
RDF facts are essentially equivalent to Xcerpt

RDF named
graphs and Xcerpt

RDF data terms. Facts serve to specify the data that
is known, or that is provided by some resource. In a forward chaining
evaluation of Xcerpt

RDF programs, facts are produced as intermedi-
ate results and saved in main memory as possible justifications for

5.5 xcerpt
rdf

queries , facts, rules and programs 117

future rule applications. Any RDF graph on the Web20 can be seen as
an Xcerpt

RDF fact, but to be accessible, graphs on the Web must be
queried with the resource construct of Definition 39. In this way, the set
of facts of Xcerpt programs is manageably small. If a graph that is not
available on the Web or as a file is to be queried, it must be included
between the Xcerpt key words CONSTRUCT and END.

Definition 40 (Xcerpt
RDF facts). If g is an Xcerpt

RDF graph, and d is
an Xcerpt

RDF data term, then CONSTRUCT g END and CONSTRUCT d END are
Xcerpt

RDF facts.

Construct terms within Xcerpt
RDF rules serve to construct interme-

diate results. These results may be single terms, Xcerpt
RDF graphs in

the case of multiple root nodes, or Xcerpt
RDF named graphs, if prove-

nance information is to be encoded. Xcerpt
RDF rules and goals are

constructed from Xcerpt
RDF queries and heads. In a forward chaining

evaluation of Xcerpt
RDF programs, the presence of Xcerpt

RDF goals
is not necessary, whereas a backward chaining evaluation requires the
presence of exactly one goal. Goals serve to specify the information
that a query author is interested in and can save their specification
can save a considerable amount of computations, since they allow the
goal-directed backward search for answers. In many circumstances, one
is not interested in some fraction of information derivable from a given
set of rules, but in the entire closure specified by the rules. Use cases for
this situation are trueth maintenance systems, online analytical process-
ing or the computation of the RDFS closure of an RDF graph. In these
cases, forward chaining is the method of choice, and the Xcerpt

RDF

programs will not include any goals.

Definition 41 (Xcerpt
RDF rules). If c1, . . . , cn are Xcerpt

RDF construct
terms and u is an URI, then c1, RDFGRAPH { c1, . . . , cn } and RDFGRAPH u

{ c1, . . . , cn } are Xcerpt
RDF rule heads. If h is an Xcerpt

RDF rule head
and q is an Xcerpt

RDF query, then CONSTRUCT h FROM q END is called an
Xcerpt

RDF rule, and GOAL h FROM q END is called an Xcerpt
RDF goal.

Definitions 39 and 41 do not include the syntax of versatile rules, i.e.
those rules which query XML and RDF data at the same time, or convert
XML to RDF or conversely. Versatile rules are obtained when allow-
ing (i) XML query terms in Xcerpt

RDF queries, (ii) Xcerpt
RDF query

terms within XcerptXML queries, (iii) XcerptXML construct terms within
Xcerpt

RDF rules, or (iv) Xcerpt
RDF construct terms within XcerptXML

rules. For case (i) and (ii) equivalence between bindings for variables
of different types must be defined – e.g. for the bindings of Xcerpt

RDF

node or predicate variables and XcerptXML label variables. For (iii) a
mapping from Xcerpt

RDF substitution sets to XcerptXML substitution
sets must be defined, and for (iv) bindings for XcerptXML variables must
be converted in a standard way to bindings for Xcerpt

RDF variables.
The syntax of Xcerpt

RDF programs is defined in the very same way as
the one of XcerptXML programs.

Definition 42 (Xcerpt
RDF programs). Let p be an XML namespace prefix

[BHLT06], and u a URI. Then ns-prefix p = "u" is a namespace declara-
tion and ns-prefix = "u" is a default namespace declaration. If d1 . . . ,dl
are namespace declarations with at most one default namespace declaration,

20 Or on the Internet – the set of protocols available to the resource construct is not limited,
but implementation dependent.

118 xcerpt
rdf

syntax and simulation

f1, . . . , fm are Xcerpt
RDF facts and r1, . . . , rn are Xcerpt

RDF rules or
goals (with at most one goal), then d1, . . . ,dl, f1, . . . , fm, r1, . . . , rm is an
Xcerpt

RDF program. Namespace prefixes must precede facts and rules, but
rules may also appear before facts.

6T H E XCERPTRDF R E G U L A R PAT H L A N G U A G E R P L

Contents
6.1 Design Goals of RPL 119
6.2 RPL by Example 120
6.3 Syntax of RPL 123
6.4 Compositional Semantics of RPL 124
6.5 Restrictions and Extensions of RPL 127
6.6 RPL compared to Lorel, SPARQLeR and nSPARQL 129
6.7 Further Complexity Results 132
6.8 Compilation of RPL to Prolog 135

Graph traversal operators play a crucial role in query languages The importance of
path query languages
for semi-structured
data

for semi-structured data and for RDF query languages in particular.
This need bas been acknowledged by the development of languages
like Versa[Ogb05] SPARQLeR[KJ07] and nested regular expressions
(NRE) [PAG08] and underlined in [AGH04]. Moreover, the need for
traversal of semi-structured data in general, and XML in particular is
underscored by the huge success of XPath, arguably the most prominent
XML query language.

Xcerpt
RDF regular path expressions (RPEs) come in three flavors: Three flavors of RPL

node-restricting, edge-restricting and path-restricting, identified by the key-
words NODES, EDGES, PATH, respectively. Node-restricting (edge-restricting)
path expressions only place restrictions on the nodes (edges) appear-
ing within a path. Path-restricting expressions may place restrictions
on both, nodes and edges. RPEs evaluate to sets of pairs of nodes –
i.e. binary relations over the set N of nodes of an RDF graph. The
three unrestrictive RPEs [PATH _*], [EDGES _*] and [NODES _*] evaluate
to N×N.

In this section we present the design goals of RPEs (Section 6.1), infor- Overview of this
sectionmally introduce their semantics by example (6.2) and formally define

their syntax (Definition 45) and compositional semantics (Definition 49).
Moreover we show that RPL can be evaluated in polynomial time in
the size of the query and the data (Section 6.7), compare RPL to other
path query languages (Section 6.6), show the intractability of RPL (and
path query lanugages in general) extended by unordered paths (Section
6.5), and briefly describe an implementation of RPL by a translation to
XSB Prolog (Section 6.8).

6.1 design goals of rpl

The Regular Path Language (RPL) was conceived with the following
design goals in mind:

• Usability and Intuitiveness: Good language design includes the
reuse of established and successful querying formalisms, and the
precise reflection of the data model a user has in mind. Arguably,

119

120 the xcerpt
rdf

regular path language rpl

the most popular formalism for matching sequences of characters
are regular expressions, and the data model of RDF are unordered,
edge- and node-labeled directed graphs. RPEs build upon these
concepts and are thus easy to learn for users acquainted with
regular expressions and RDF.

• Conciseness: While regular expressions allow the concise descrip-
tion of sequencing, alternation and closure, URIs in path ex-
pressions may be abbreviated by qualified names. Namespace
prefixes must be defined outside of the RPE, e.g. by a surrounding
SPARQL or Xcerpt

RDF program.

• Expressiveness: While RPEs are designed as an extension to SPARQL
graph patterns and Xcerpt

RDF query terms, they are quite ex-
pressive on their own. Restrictions can be placed on the paths
themselves, on each of the edges or nodes on the path via regular
expressions1 or functions, and non-locally on the edges or nodes
connected to one of the nodes on a path via nested path expressions.

• Versatile navigation: RDF queries taking into account the RDF
Schema semantics, such as finding all direct and indirect instances
of a given rdfs:Class or rdfs:Property ignore the nodes on the
traversed path, but are only interested in the traversed predicates.
Therefore SPARQLeR path expressions [KJ07] only consist of
predicate names. Moreover RDF Schema queries require reverse
navigation, i.e. navigation from the objects triples with predicate
rdf:type, rdfs:subClassOf or rdfs:subPropertyOf to their subjects.
RPEs allow both: navigation along predicates or nodes only, and
navigation along paths consisting of predicates and nodes.

• Easy integration: RPEs are an independent sublanguage of Xcerpt
RDF,

that can be used independently or in conjunction with other RDF
query languages such as SPARQL. But only in conjunction with
Xcerpt

RDF, they share its nice properties such as strong answer
closedness and graph construction facilities.

6.2 rpl by example

Before introducing RPL, we define the notions of RDF triples, graphs,
and paths in RDF graphs.

Definition 43 (RDF triple, graph). Let U, B, L be three disjoint sets of
URIs, blank node identifiers and RDF literals. Then t = (s,p,o) ∈ U∪ B×
U×U ∪ B ∪ L is an RDF triple, and tg ∈ U×U×U ∪ L is a ground
RDF triple. s, p, o are the subject, predicate and object of t, respectively.
A (ground) RDF graph is a set of (ground) RDF triples. The set of nodes
N of an RDF graph G are all elements in U∪B∪ L that appear in subject or
object position of a triple in G.

Definition 44 (Path in an RDF graph). Let G be an RDF graph. The
sequence n1, . . . ,nk is a path in G, iff the triples (n1,n2,n3), (n3,n4,n5),
. . . , (nk−2,nk−1,nk) are in G.

Example 25. [PATH _ _ (eg:/.*/ _)* rdf:type]: All pairs (n1,n2) of nodes
connected over intermediate nodes of the namespace eg. Additionally, the last

1 While regular expressions and RPEs share many syntactic notations, they are clearly
separated by delimiters

6.2 rpl by example 121

edge on the connecting path must correspond to the qualified name rdf:type.
This first example demonstrates the following points:

• RPEs come in three flavors, indicated by the keywords NODES, EDGES
and PATH, and lay restrictions on the nodes, edges or nodes and
edges appearing on a path in an RDF graph, respectively.

• As in SPARQL, XPath, XQuery, XSLT and Xcerpt
RDF, URIs may

be abbreviated by qualified names.

• Wildcards (_) and regular string expressions2 (e.g. /.*/) play an
important role within RPEs. Together with qualified names, URIs
and literals, they constitute the atomic building blocks of RPEs,
called atomic RPEs.

• From atomic RPEs, compound RPEs can be built via sequencing
(denoted by whitespace), alternation (|), Kleene closure (* and +),
optionality (?), and negation (not(...)). If the RPE e evaluates to
the binary relation r over the RDF graph G with node set N, then
the RPE e* evaluates to the transitive-reflexive closure of r, e+ to
the transitive closure of r, and e? to r∪ {(n,n) | n ∈ N}.

• Path flavored RPEs are expected to start with a subexpression
that describes (amongst others) the initial node on the path, and
expected to end with a subexpression that describes the last edge
on the path. The first and third subexpression (and all other
subexpression at an even position) describe a node on the path.

Example 26. The expression [PATH _ eg:p (_[not(PATH eg:p1)] eg:p)*]

collects all pairs of nodes connected over a path with at least one predicate
with URI eg:p. All intermediate nodes must not have an outgoing eg:p1

edge. Thus, evaluated over the RDF graph G in Figure 2, this expression
would yield the set of tuples {(n0,n1), (n1,n2), (n1,n3), (n2,n3)}, but not
the tuples (n0,n2) or (n0,n3).

Figure 2: An example RDF graph

n0 n1 n2 n3
eg :p eg :p eg :p

n5 n6 n7

eg :p1 eg :p2 eg :p3

This second example introduces path predicates and demonstrates the
following points:

• Path expressions may be nested via path predicates, which roughly
correspond to XPath predicates. While URIs, qualified names or
regular expressions within RPEs represent local restrictions only,
predicates allow the specification of non-local restrictions, i.e., re-
strictions that are not directly enforced on nodes or edges on

2 We use the term regular string expressions to differntiate ordinary regular expressions from
regular path expressions.

122 the xcerpt
rdf

regular path language rpl

the path, but on nodes or edges connected via a nested path ex-
pression. Predicates may be made up of positive expresssions that
require the existence of some nodes or predicates not directly on
the path connecting the returned nodes, or of negative expressions
that require the absence of certain branches in the graph.

• The expression e1 := (_[not(EDGES eg:p1)] eg:p) evaluates to all
pairs of nodes (n1,n2) such that n1 does not have an outgoing
path starting with predicate eg:p1, and n1 is connected to n2 over
an edge named eg:p. The expression e2 := (_[not(EDGES eg:p1)

] eg:p)* evaluates to the transitive-reflexive closure of e1. The
purely transitive closure is obtained by using + instead of *.

Example 27. The edge-flavored query [EDGES rdf:type (rdfs:subClassOf)

*] evaluates to all pairs of nodes connected via one rdf:type edge and zero or
more rdfs:subClassOf edges (in this order).

This query determines the direct or indirect class membership of
resources under the RDFS semantics. Note that also for many other RDF
queries, only the edges along a path are relevant. The reverse relation
is obtained by the query [EDGES (<rdfs:subClassOf)* <rdf:type].

Example 28. The node-flavored expression [NODES (eg:a eg:b)] finds all
pairs of nodes that are connected over nodes eg:a and eg:b (in this order),
with arbitrary predicates on the path. The query [NODES (eg:/.*/ | foaf

:/.*/)*] on the other hand, finds all pairs of nodes connected over a path of
length zero or more which contains only intermediate nodes belonging to the
namespaces eg or foaf. The predicates on the path are irrelevant, as indicated
by the keyword NODES.

Example 29 (RDFS querying with RDFLog augmented by RPL). This
example shows how RDF rule languages can be augmented by RPL path
expressions to immitate the RDFS semantics.

Due to its simplicity, we choose RDFLog [BFL+08a] as the rule language
to be extended. But similar embeddings can be given for most RDF rule lan-
guages, including the various SPARQL extensions with rules [Pol07, SS04,
BFL+09b]. The RDFLog rule3

∀x p y p1 z . (x p y)← (x p1 z), (p1 [EDGES sp*] y) (6.1)

can be used to materialize the extension of the predicate p under the RDFS
semantics. In a backward chaining evaluation of an RDFLog program, ma-
terialization is only carried out on demand, and is thus more efficient than
computing the RDFS closure of the queried graph. If only single rules or
queries are allowed (such as in SPARQL), then the body of Equation 6.1 can
simply be used in the query at the place of p.

The extension of predicates with a special semantics under the RDFS modelQuerying RDF
graphs under the
RDFS semantics at
the aid of RPL

theory deserve special treatment. E.g the extension of rdf:type is computed
by the following RDFLog rules with RPL predicates:

∀x y . (x type y)← (x [EDGES type sc*] y)

∀x y p1 z. (x type y)← (x p1 z), (p1 [EDGES sp* dom sc*] y)

∀x y p1 z. (x type y)← (z p1 x), (p1 [EDGES sp* range sc*] y)

3 rdf:type, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:range, and rdfs:
domain are abbreviated by type, sc, sp, range and dom, respectively.

6.3 syntax of rpl 123

It can be shown that also extensions of the remaining RDFS predicates
subclassOf, subPropertyOf, domain and range can be encoded as RDFLog or
SPARQL rule bodies augmented with RPL. The encoding is analogous to the
one presented in [PAG08] and is omitted here for the sake of brevity.

Example 30 (RQL query primitives translated to RPL). As a final exam-
ple, we show that all RQL query primitives (except for the nearest common
ancestor relation) presented in Section 3.4 can be easily expressed in RPL.

• direct subclasses: PATH Artist <rdfs:subClassOf _

• direct and indirect subclasses: PATH Artist (<rdfs:subClassOf _)+

• direct subproperties: PATH paints <rdfs:subPropertyOf _

• direct and indirect subproperties:
PATH paints (<rdfs:subPropertyOf _)+

• direct superclasses: PATH Artist rdfs:subClassOf _

• direct and indirect superclasses: PATH Artist (rdfs:subClassOf _)+

• direct superproperties: PATH paints rdfs:subPropertyOf _

• direct and indirect superproperties:
PATH paints (rdfs:subPropertyOf _)+

• leaf classes: PATH _[not(EDGES >rdfs:subClassOf)]

• top classes: PATH _[not(EDGES rdfs:subClassOf)]

• leaf properties: PATH _[not(EDGES >rdfs:subClassOf)]

• top properties: PATH _[not(EDGES rdfs:subClassOf)]

6.3 syntax of rpl

Definition 45 (Abstract syntax of RPEs). The abstract syntax of RPL is
recursively defined as follows:

• A URI u, regular expression re, qualified name q, literal l and wild
card _ is an atomic RPE. Moreover, a qualified name prefix:localpart
where localpart is a regular expression, is an atomic RPE.

• If p is an atomic path expression, then p, < p, > p and ˆp are directed
path expressions.

• if p1 is an atomic RPE, and q1, . . . qn are RPL predicates (see below),
then p1 and p1[q1] . . . [qn] are predicated RPEs.

• If p is a predicated or concatenated RPE, then p, p∗, p+ and p? are
adorned RPEs.

• If p1, . . . pn are adorned or disjunctive (see below) RPEs, then (p1 . . . pn)

with n > 1 is a concatenated RPE.

• If p1, . . . pn are concatenated RPEs, then (p1 | . . . | pn) with n > 1 is
a disjunctive RPE.

• If p is a concatenated RPE, PATH p, EDGES p, NODES p are
flavored RPEs. They are called path-restricting, edge-restricting and
node-restricting expressions, respectively.

124 the xcerpt
rdf

regular path language rpl

Figure 3: Relationships among subexpressions of RPEs

atomic directed predicated adorned

predicate flavored concatenated disjunctive

1 1 1

∗

1

+

+

+1

1

• If p is a flavored RPE, then p and not(p) are RPL predicates.

Figure 3 summarizes the relationships between the different types
of subexpressions in RPL. An arrow labeled with 1, + or ∗ from type
A to type B means that expressions of type B are made up of exactly
one, at least one, or zero or more expression of type A, respectively. It
holds that any atomic RPL expression is also a directed subexpression,
which are in turn also predicated subexpressions, which are in turn
adorned subexpressions. As in XQuery, a concatenated expression
(called sequence in XQuery) of one element is equivalent to the element
itself. Also a disjunctive RPE of one element is equivalent to the element
itself.

The following remarks clarify Definition 45.

• Atomic RPEs correspond to the building blocks of ground RDF
graphs with the following exceptions: (i) qualified names are
allowed as shorthand notations for URIs, (ii) regular expressions
are allowed as a means for matching URIs and Literals4, (iii) the
local part of a qualified name may be expressed by a regular
expression, (iv) wildcards can be used to match any blank node,
URI or literal.

• RPEs do not provide any means for selecting RDF literals based
on their types or based on their language tags, other than using a
regular expression for this purpose.

• Just as with ordinary regular (string) expressions, parentheses
are used to influence operator precedence. The operators Kleene
star (*), Kleene plus (+), optionality (?) are mutually exclusive and
have precedence over all other operators. The concatenation oper-
ator (denoted by whitespace) binds stronger than the disjunctive
operator |, i.e. a b | c is equivalent to (a b) | c. Parentheses may
be omitted, if they do not alter operator precedence.

6.4 compositional semantics of rpl

The intuitive presentation of the RPEs is now formalized by a composi-
tional semantics, which is given by the function [[·]] and its four helper
functions [[·]]P for path-restricting expressions, [[·]]E for edge-restricting
expressions, [[·]]N for node-restricting expressions and [[a]]V for atomic
expressions a that are evaluated in vertex position. While the functions

4 matching blank nodes with regular expressions is not allowed, since this would mean
syntactic matching of RDF graphs, i.e. the semantics of an RPE would be dependent on
the syntactic representation of the RDF graph that is being queried.

6.4 compositional semantics of rpl 125

[[·]], [[·]]P , [[·]]E and [[·]]N evaluate to subsets of N×N, i.e. binary relations
on the set N of nodes of the queried RDF graph, the function [[·]]V
evaluates to subsets of N.

In order to present the semantics in an easily digestible manner,
we split the entire definition according to the flavor of the RPE to
be formalized. Definition 46 gives the semantics for edge-restricting
RPEs, Definitions 47, 48 and 49 add the necessary equations for node-
restricting, path-restricting and arbitrary RPEs, respectively. The three
flavors of RPEs differ in the way subexpressions are concatenated. In
contrast, most equations for evaluating atomic RPEs, alternatives and
Kleene closures are independent of the flavor and are only given once.

In the following, let G be an RDF graph over the vocabulary U∪B∪L,
u a URI, l an RDF Literal, re a regular expression, a an atomic RPE, pe
a predicated RPE, f1, . . . fk flavored RPEs, and e, e1, . . . , ek arbitrary
RPEs.

Definition 46 (Semantics of edge-restricting RPEs). The semantics of
edge-restricting RPEs is given by the function [[·]]E defined as follows:

[[u]]E,P = {(n1,n2) | (n1,u,n2) ∈ G} (6.2)

[[_]]E,P = {(n1,n2) | ∃p . (n1,p,n2) ∈ G} (6.3)

[[/re/]]E,P = {(n1,n2) | (6.4)

∃p ∈ L(re) . (n1,p,n2) ∈ G} (6.5)

[[>pe]]X = [[pe]]X for X ∈ {E,P} (6.6)

[[<pe]]X = {(n2,n1) | (6.7)

(n1,n2) ∈ [[>pe]]X} for X ∈ {E,P} (6.8)

[[e1 . . . ek]]
E = {(n1,nk−1) | ∃n2, . . . nk ((6.9)

∀1 6 i 6 k ((ni,ni+1) ∈ [[ei]]
E)) } (6.10)

[[(e1 | . . . | ek)]]
X = [[e1]]

X ∪ . . .∪ [[ek]]
X for X ∈ {P,E,N} (6.11)

[[a[f1] . . . [fk]]]
E =

⋃
a ′∈[[a[f1]...[fk]]]V

[[a ′]]E (6.12)

[[ε]]E,P = {(n,n) | n ∈ N} (6.13)

[[e+]]X = [[e]]X ∪ [[e e+]]X for X ∈ {P,E,N} (6.14)

[[e∗]]X = [[ε]]∪ [[e+]]X for X ∈ {P,E,N} (6.15)

[[e?]]X = [[ε]]∪ [[e]]X for X ∈ {P,E,N} (6.16)

The centerpiece of Definition 46 is Equation 6.9. It states that the
semantics of a sequence of edge-restricting RPEs is a binary relation of
nodes (n1,n2) such that there is a path from n1 to n2 over arbitrary
intermediate nodes n2, . . . nk−1 such that these intermediate nodes are
connected via the subexpressions e1, . . . , ek.

The other equations in Definition 46 do not only hold for edge-
restricting RPEs, but also for path-restricting ones, and some hold also
for node-restricting expressions, as indicated by X.

Equations 6.2, 6.3 and 6.4 establish that a URI u evaluates to the pairs
of nodes connected via a predicate of name u, the wildcard character
to all pairs of nodes connected via an arbitrary predicate, and a regular
string expression re to those pairs of nodes which are connected via a
predicate that is in the language L(re) defined by re. Note that when
part of a node-restricting expression, the semantics of URIs, wildcards
and regular string expressions is different (see Definition 47).

Equations 6.6 and 6.7 formalize the specification of edge traversal in
forward or reverse direction with the directions < and >. If no direction

126 the xcerpt
rdf

regular path language rpl

is given, then Equations 6.2, 6.3 and 6.4 hold, i.e. forward traversal is
assumed.

Equations 6.13, 6.14, 6.15 and 6.16 define the semantics of the Kleene
star, Kleene plus and optional parts of RPEs.

Formalizing the semantics of predicates within edge-restricting ex-
pressions, Equation 6.12 references Definition 47. Here the idea is to also
allow the formulation of queries that use the same URI in predicate and
subject or object position. An example for such queries from [PAG08]
is finding all pairs of cities that are connected via some transportation
service, given a hierarchy of transportation services and connections
among cities using instances of this hierarchy.

Definition 47 (Semantics of node-restricting RPEs). The semantics for
node-restricting RPEs is defined as follows:

[[_]]V = N (6.17)

[[/re/]]V = N∩L(re) (6.18)

[[u]]V = {u}∩N (6.19)

[[l]]V = {l}∩N (6.20)

[[pe]]N = {(n,n) | n ∈ [[pe]]V } (6.21)

[[a[f1] . . . [fk]]]
V = [[a]]V ∩ {n1 | ∃n2 . (n1,n2) ∈ [[f1]]}∩ (6.22)

. . .∩ {n1 | ∃n2 . (n1,n2) ∈ [[fk]]} (6.23)

[[e1 . . . ek]]
N = {(n1,n2k) | (6.24)

∃n2, . . . n2k−1,p1, . . . ,pk−1 .

∀1 6 i 6 k ((n2i−1,n2i) ∈ [[ei]]
N) ∧

∀1 6 i 6 k− 1 ((n2i,pi,n2i+1) ∈ G)}

While many RDFS queries only respect the predicates on a path be-
tween two resources and are therefore best expressed as edge-restricting
RPEs, some path queries may only be interested in the traversed nodes
and are better expressed as node-restricting RPEs. An example for this
type of query is finding all pairs of persons in a social graph that are
somehow connected over the resources anna and new_york. This query
could be answered by the RPE NODES (anna new_york)| (new_york anna).
Definition 47 formalizes node-restricting RPEs.

In this setting, a URI, regular string expression, wildcard or qualified
name is evaluated in node position (Equation 6.21), and is thus treated
differently from the evaluation within edge-restricting RPEs (Equation
6.2).

The core of Definition 47 is the formalization of node concatenation in
Equation 6.24. Concatenations may involve arbitrary RPEs, i.e. atomic,
predicated, directed, alternatives, Kleene closures and concatenations
themselves. While the nodes on the path described by a node-restricting
concatenation are given by the subexpressions of the concatenation, the
predicates are arbitrary. Equation 6.24 makes use of the binary helper
function [[·]]N defined on subexpressions, and the unary function [[·]]V ,
which is part of the formalization of path-restricting RPEs.

Path-restricting RPEs are needed whenever constraints shall be laid
both on the predicates and nodes on a path within an RDF graph.
Equation 6.26 is the centerpiece of Definition 48. Path-restricting RPEs
are expected to start and end with restrictions on the first and last edge
of an RDF graph, because they are designed for easy integration with

6.5 restrictions and extensions of rpl 127

RDF query languages such as SPARQL and Xcerpt
RDF where they are

used at the place of RDF predicates. If the first and/or last restriction is
laid on a node instead, this must be indicated with a ‘ˆ’ symbol, and
Equations 6.27 and 6.28 apply.

Definition 48 (Semantics of path-restricting RPEs). The semantics of
path-restricting RPEs is defined as follows:

[[ˆa]] = [[a]]V (6.25)

[[e1 . . . ek]]
P = {(n1,nj) | ∃n2, . . . ,nj−1 . (6.26)

(n1,n2) ∈ [[e1]]
P ∧n2 ∈ [[e2]]

V ∧

. . .∧nj−1 ∈ [[ek−1]]
V ∧ (nj−1,nj) ∈ [[ek]]

P}

[[p̂e e]]P = {(n1,n2) ∈ [[e]]P | n1 ∈ [[pe]]V } (6.27)

[[e p̂e]]P = {(n1,n2) ∈ [[e]]P | n1 ∈ [[pe]]V } (6.28)

Definition 49 (Semantics of flavored RPEs).

[[PATH e]] = [[e]]P (6.29)

[[EDGES e]] = [[e]]E (6.30)

[[NODES e]] = {(n1,n4) | ∃n2,n3,p1,p2 . (6.31)

(n2,n3) ∈ [[e]]N ∧ (n1,p1,n2), (n3,p2,n4) ∈ G}

[[not(u)]] = [[_]] \ [[u]] (6.32)

6.5 restrictions and extensions of rpl

In order to compare RPL to other regular path languages over ordinary
graphs and RDF graphs, and to study the complexity of RPL fragments,
we introduce the following set of sublanguages:

Definition 50 (RPL sublanguages). Besides the operators +, ? and *, RPL
makes use of the following features:

• regular string expressions (denoted by RSE)

• the EDGE keyword (denoted by→)

• the NODE keyword (denoted by ◦)

• the PATH keyword (denoted by 99K)

• predicates (denoted by [])

• concatenation (denoted by /)

• disjunction (denoted by |)

• predicate negation (denoted by ¬)

• direction modifiers (denoted by µ)

RPLf1,...,fk with f1, . . . , fk ∈ {RSE,→, ◦, 99K, [], /, |, ¬,µ} denotes the sub-
language of RPL making use of the operators +, ?, and * and the features
f1, . . . , fn only.

Languages such as XPath and Xcerpt allow queries to be incompletely
specified in depth, or with respect to order. Incompleteness in depth is
specified via the descendant axis in XPath and via the desc keyword in
Xcerpt. Incompleteness with respect to order is the default querying

128 the xcerpt
rdf

regular path language rpl

mode in XPath and can be overridden by using the << operator; in
Xcerpt it is specified via curly braces.

An obvious extension of RPL is thus to introduce unordered and
incomplete paths. While the order in Xcerpt query terms is enforced/re-
laxed with respect to the sibling axis of an XML document, the order
in RPEs may be relaxed with respect to the paths traversed, i.e. the
descendant axis. Also the concept of incomplete specification of siblings
in Xcerpt query terms may be transferred to the descendant axis by
allowing double brackets within RPL. We denote the extensions of the
sublanguages of RPL by unordered paths, incomplete paths and both
by adding the symbols {}, [[]] or both to the feature list of the sublan-
guage. The RPL expression NODES { x y z } thus evaluates to all pairs
of nodes that are connected by a path containing only the intermediate
nodes x, y, and z in an arbitrary order. The RPL expression NODES [[x y

]] on the other hand evaluates to all pairs of nodes that are connected
via a path that contains the nodes x and y with x appearing before
y, and an arbitrary number of nodes before x, between x and y and
following y.

The semantics of {} is formalized by the functions [[·]]UN, [[·]]UE, and
[[·]]UP for unordered node-flavored, edge-flavored and path-flavored
expressions, respectively. The semantics of [[]] is given by the functions
[[·]]IN, [[·]]IE, and [[·]]IP.

Definition 51 (Semantics of unordered and incomplete RPEs).

[[e]]UN =
⋃

p∈Perm(e)

[[p]]N (6.33)

[[e]]UE =
⋃

p∈Perm(e)

[[p]]E (6.34)

[[e]]UP =
⋃

p∈Perm(e)

[[p]]P (6.35)

[[e]]IN =
⋃

c∈Comp(e)

[[c]]N (6.36)

[[e]]IE =
⋃

c∈Comp(e)

[[c]]E (6.37)

[[e]]IP =
⋃

c∈Comp(e)

[[c]]P (6.38)

A completion of a sequence e := e1, . . . , en is a sequence c that contains
all elements of e plus an arbitrary number of wildcards. A completion of e
is called order-respecting, iff for ei, ej ∈ e with i < j, ei appears in c
before ej. Perm(e) and Comp(e) denotes the set of all permutations and
order respecting completions of e, respectively.

Both extensions of RPL – to unordered paths and to incomplete paths
– are mere syntactic sugar. The RPE NODES { x y } can be rewritten
to the equivalent RPE NODES (x y)| (y x) and the RPE NODES [[x y

]] can be rewritten to NODES _* x _* y _*. Observe that whereas the
rewriting of incomplete path expressions is linear in the size of the
original expression, the rewriting of unordered paths is exponential in
the size of the original expression. We chose not to include incomplete
RPEs in standard RPL, since one can easily do without them. On the
other hand we chose not to include unordered RPEs in standard RPL,

6.6 rpl compared to lorel, sparqler and nsparql 129

because it would make evaluation of RPL NP-hard as shown in Section
6.7.

The semantics of RPEs that are both unordered and incomplete
(denoted by {{ }}) is easily defined at the aid of non-order-respecting
permutations. For the sake of brevity, we omit this extension of RPL.

6.6 rpl compared to lorel, sparqler and nsparql

[ABE09] extends SPARQL by regular expression patterns which may
occur at the place of predicates in RDF graphs. These regular expres-
sion patterns include amongst others Kleene closure, disjunction, con-
catenation, but not predicate negation and regular string expressions.
Moreover, node labels are are not considered part of the path to be
matched by the regular expression pattern.

The Lorel query language [AQM+
97] is an offspring of the XML

database system Lore, but can be used to query all kinds of semi-
structured data. It has received considerable attention in the research
community, partially due to its incorporation of regular path expres-
sions.

RPEs compare to Lorel path expressions as follows:

• The data model of Lorel is an edge-labeled graph, without node
labels. Therefore Lorel does not distinguish the three flavors of
RPEs.

• Both languages provide the unary operators Kleene plus (+),
Kleene star (*) and optionality (?), and the binary operators con-
catenation (denoted by ’.’ in Lorel), and alternative.

• Lorel allows the use of the character ’%’ to match 0 or more
characters within a label. RPL on the other hand allows regular
string expressions. Wildcards for entire labels are denoted by ’#’
in Lorel and ’_’ in RPL.

• Lorel allows the extraction of values from traversed paths by
so-called path variables. RPEs do not use variables since they
may be embedded in RDF query language such as SPARQL or
Xcerpt

RDF, that provide themselves variables.

• RPEs allow the restriction of paths based on path predicates, Lorel
does not. Hence Example 26 is not expressible in Lorel.

In [MW95] the evaluation of regular expressions over the alphabet
σ of an edge-labeled graph g is studied. Compared to RPEs, [MW95]
considers the labels of edges to be atomic, i.e. they do not consider
regular string expressions on node or edge-level. Moreover, non-local
restrictions on paths (i.e. predicates) and traversal in reverse direction
are not expressible. Since nodes in the queried graphs are unlabelled,
only the edge labels are relevant, i.e. the path expressions in [MW95]
correspond to a subset of edge-flavored RPEs.

[MW95] considers the problems Regular Simple Path, Fixed Regular
Path (R), and Regular Path. The problem Regular Simple Path takes a
regular expression e, a graph g over the same alphabet Σ, and a pair of
nodes (x,y) as input, and returns true iff g contains a directed simple
path from x to y that satisfies e. A path is called simple, if it does not
contain the same vertex twice. The problem Fixed Regular Path is the

130 the xcerpt
rdf

regular path language rpl

same as regular simple path, but e is not considered as input. Regular
Path is the same as Regular Simple Path, but the path is not required
to be simple.

[MW95] show that Fixed Regular Simple Path is NP-complete and
Regular Simple Path is NP-hard by a simple reduction from the prob-
lems Even Path and Disjoint Paths treated in [LP84] and [FHW78],
respectively. Regular Path, however, is decidable in polynomial time
in the size of the data and query (combined complexity) – shown by
the construction of a product automaton of the NFA of a regular path
expression and the database graph interpreted as a NFA. In RPL we
choose to accept arbitrary paths, including non-simple paths as possi-
ble connections among two nodes. RPEs are more expressive than the
regular path expressions of [MW95] in three respects: (i) They allow
the specification of predicates on nodes, (ii) regular expressions for
matching edge and node labels, and (iii) in that they take into account
also the labels of nodes. Therefore, the results of [MW95] leave the ques-
tion, if there is a polynomial time algorithm for the evaluation problem
of RPEs, open. The following result for the complexity of RPL→,/,|,µ

expressions is a direct consequence of the complexity Regular Path.

Corollary 1. RPL→,/,|,µ can be evaluated in time O(|E| |G|), where |E| is the
size of the path expression and |G| is the size of the queried RDF graph.

[PAG08] propose the regular path language nested regular expres-
sions (NRE) with the following syntax:

exp := axis | axis::a (a ∈ U) | axis::[exp] | exp/exp | exp |exp | exp∗

(6.39)

where axis ∈ {self,next,next−1,node,node−1, edge, edge−1} and
U denotes the set of URIs. The axes next, edge and node are used to
navigate from one node in an RDF graph to an adjacent one, from a
node to one of its outgoing edges and from an edge to its sink. If the
starting node is left unspecified, next, edge and node can be interpreted
as binary relations over an RDF graph G. Node tests following the axes
next, edge and node constrain the label of a traversed edge, the object
of an arc, and the subject, respectively. The semantics of the predicates
[], alternatives |, Kleene star ∗, and concatenation / are as expected.

In this section we briefly give an intuitive semantics of NRE by
translating Examples 25, 26, 27 and 28 to NREs.

We abbreviate URIs in a NRE by qualified names to shorten the
examples.

Example 31 (Nested regular expressions). • Example 25 is contained
in the NRE (next)∗/next::rdf:type. An exact translation is not possible
due to the absence of regular string expressions for matching nodes or
edges of RDF graphs.

• Example 26 is contained in the NRE (next::eg:p)+. An exact transla-
tion is not possible due to the absence of negation in NRE predicates.

• Example 27 is equivalent to next::rdf:type/(next::rdfs:subClassOf)∗.

• The first RPL expression in Example 28 is equivalent to the NRE
next/self::eg:a/next/self::eg:b.

6.6 rpl compared to lorel, sparqler and nsparql 131

• The NRE

next::a/(next::[next::a/self::b])∗/(next::[node::b] | next::a)+ (6.40)

from [PAG08] is contained in the RPE [EDGES a(_[PATH a b]) ∗ _].
An exact translation to an RPE is not possible, since RPEs always
evaluate to pairs of nodes of an RDF graph. In contrast, NREs may
also evaluate to pairs of edges and nodes, as the subexpression "node::b"
of Expression 31 does. Expression 31 can, however, be translated to
an equivalent Xcerpt

RDF query term or SPARQL query pattern that
makes use of a single RPE.

Given an NRE exp, an RDF graph G, and a pair of nodes (n1,n2),
the problem whether there is a path from n1 to n2 matching exp within
G, can be decided in O(|G| · |exp|).

Corollaries 2 and 3 shed light on the expressive relationship between
fragments of RPL and NREs. An immediate consequence of corollary 2

is corollary 4.

Corollary 2. Any RPE r ∈ RPL→,◦,99K,[],/,|,µ can be translated to an equiv-
alent NRE of length O(|r|).

Proof. The translation function from RPL→,◦,99K,[],/,|,µ to nested regular
expressions (NRE) is given in Listing 6.1. Obviously, the size of to
_nSPARRQL(exp) is linear in the size of exp for any RPL expression in
RPL→,◦,99K,[],/,|,µ.

Listing 6.1: Translation from RPL to NREs

to _NRE(EDGES exp) = to _NRE(exp , edges)
to _NRE(NODES exp) = next/to _NRE(exp , nodes) /next
to _NRE(PATH exp) = to _NRE(exp , path)
to _NRE(exp * , mode) = to _NRE(exp , mode) *
to _NRE(exp + , mode) = to _NRE(exp , mode) +
to _NRE(exp ? , mode) = s e l f | to _NRE(exp , mode)

to _NRE(_ , edges) = next
to _NRE(u , edges) = next : : u
to _NRE(>u , edges) = next : : u
to _NRE(<u , edges) = next−1 : : u
to _NRE(u [p1] . . . [pn] , edges) =

next : : u [to _NRE(p1)] . . . [to _NRE(pn)]
to _NRE(exp1 | . . . | expn , mode) =

to _NRE(exp1 , mode) | . . . | to _NRE(expn , mode)
to _NRE(exp1 . . . expn , edges) =

to _NRE(exp1 , edges) / . . . / to _NRE(expn , edges)

to _NRE(_ , nodes) = s e l f
to _NRE(u , nodes) = s e l f : : u
to _NRE(exp1 . . . expn , nodes) =

to _NRE(exp1 , nodes) /next / . . . / next/to _NRE(expn , nodes)
to _NRE(a [p1] . . . [pn] , nodes) =

s e l f : : a [to _NRE(p1)] . . . [to _NRE(pn)]

to _NRE(^a , path) = s e l f : : a
to _NRE(>a , path) = next : : a
to _NRE(<a , path) = next−1 : : a
to _NRE(exp1 . . . exp_n , path) =

to _NRE(exp1 , edges) /to _NRE(exp2 , nodes) / . . . /
to _NRE(expn−1 , nodes) /to _NRE(expn , edges)

132 the xcerpt
rdf

regular path language rpl

NREs do not support the Kleene optionality operator ?. Nevertheless
RPL expressions with ? can be translated to a NRE by using the self

axis without a node test, which has the same semantics as the empty
path expression in RPL.

Note that some syntactically correct RPL expressions are not given a
semantics in Section 6.4. Among these expressions are EDGES ^a, NODES
>a, NODES <a or PATH >a >b. Similarly, these expressions are not handled
by the translation function. For implementations, there are two possible
ways of treating such expressions: Raising a syntax error at parse time,
or evaluation to the empty relation over all possible input graphs.

Corollary 3. Any NRE pn excluding the axes node, node−1, edge, and
edge−1 can be translated to an equivalent RPE pc of length O(|pn|).

Proof. For the translation of nested regular expression (NRE) including
only the axes next,next−1 and self, the expression is first normalized
by inserting steps along the self axis without node tests. The resulting
expression e does not contain consecutive steps along the axes next
and next−1, but the axis next and next−1 on the one hand and the
axis self on the other hand alternate. This transformation is done for
both the expression itself and for any subexpression appearing within
a predicate. For example the NRE

next−1::b/next[next::a/next::b]/next−1::c

is normalized to

next−1::b/self/next[next::a/self/next::b]/self/next−1::c .

Obviously, this transformation preserves the semantics of the expres-
sion. Subsequently, the transformed expression is translated to RPL
according to the function to_rpl in Listing 6.2. Obviously size of the
resulting expression is linear in the size of the original.

Listing 6.2: Translation of NREs to RPL.

to _ r p l (s tep1 / . . . / stepn) = PATH to _ r p l (s tep1) . . . to _ r p l (
s tepn)

to _ r p l (next) = >_
to _ r p l (next : : a) = >a
to _ r p l (next−1) = <_
to _ r p l (next−1 : : a) = <a
to _ r p l (s e l f) = ^_
to _ r p l (s e f l : : a) = ^a

Corollary 4. A RPE pc in RPL→,◦,99K,[],/,|,µ can be evaluated in O(|G| ·
|pc|).

6.7 further complexity results

The comparison of RPL to related path query languages in the last sec-
tion has already brought up some complexity results for sublanguages
of RPL. In this section we establish the tractability of RPL as a whole
and the intractability of RPL with unordered paths.

6.7 further complexity results 133

Theorem 7 (Tractability of RPL and NRERSE,¬). RPL and the exten-
sion of NRE by regular string expressions and predicate negation (denoted by
NRERSE,¬) can be evaluated in time O(|exp| · |G|).

Proof. (Sketch) Theorem 7 builds upon Corollary 4, that establishes that
the evaluation of RPL→,◦,99K,[],/,|,µ is in O(|exp| · |G|). The only features
missing in RPL→,◦,99K,[],/,|,µ when compared to full RPL are predicate
negation (¬) and regular string expressions (RSE). The evaluation of
regular string expressions by deterministic finite automata (DFAs) is
linear. However, conversion of a regular string expression r into a DFA
may yield a DFA whose size is exponential in the size of r. If r does not
contain any * and ? operators (but may contain + operators), r can be
directly converted into a DFA in linear time. Thus, defining the size of
an RDF graph as the total length of the characters appearing within its
nodes and edges, the complexity remains in O(|exp| · |G|) when regular
string expressions (without * and ?) are added to the language.

Showing that predicate negation has no effect on evaluation complex-
ity is a little more tricky: Consider the proof of the tractability of NRE
in [PAG08]. It involves the construction of product automata G×Ap
for each predicate p appearing in the expression exp to be evaluated.
We can extend NRE to NRE¬ by allowing predicate negation in the
same way as RPL allows predicate negation. A RPE pc with predicate
negation can then be translated to an NRE¬ expression pn in linear
time, such that the size of pn remains linear in the size of pc.

It remains to be shown that NRE¬ is in O(|exp| · |G|). For this end, we
adapt the algorithm LABEL(G, exp) from [PAG08] to label both positive
and negative predicates appearing in exp. For each negative predicate
not(p) we introduce the label notp which is attached to each node n
in G not matching with p. Then, for each negative predicate not(p)
in exp, we replace not(p) by notp, thereby obtaining an ordinary
NRE expression exp+. exp+ evaluates to true over G with the adapted
labeling algorithm if and only if exp evaluates to true over G with the
original labeling algorithm.

Theorem 8 (NP-Completeness of RPL◦,/,{}). The evaluation problem of
RPL◦,/,{} is NP-complete.

Proof. Obviously the evaluation problem for RPL◦,/,{} is in NP. We show
its NP-hardness by a reduction from the directed Hamiltonian path
problem. Let G be an arbitrary RDF graph with nodes {n1, . . . ,nk}.
Then G has a directed Hamiltonian path if and only if the RPE { NODES

n1, . . . nk } has a non-empty solution over G.

Theorem 9. The evaluation problem for RPL→,/,{} is in O(n ·σw · e) where
n is the number of nodes of the RDF graph, e the number of edges, σ the
number of edge labels, and w is the length of the path expression.

Corollary 5. The evaluation problem for RPL→,/ is in O(e ·w) where w is
the length of the regular path expression and e is the number of edges in the
RDF graph.

Proof. Theorem 9 only gives an upper bound for the evaluation of
RPL→,/,{}, therefore it suffices to give an algorithm that runs in O(n ·
σw · e) time.

Let G be an RDF graph, and p ∈ RPL→,/,{}. The idea of the algorithm
is to view G as a non-deterministic finite automaton, and p as a word

134 the xcerpt
rdf

regular path language rpl

to be checked by the automaton. p is checked from the first element to
the last, and the set of valid states in the automaton is remembered in
each step, starting out from the set of all nodes in the RDF graph. For
RPL→,/ (i.e. only ordered edge-flavored expressions), this view gives
us an algorithm in O(e ·w), where e is the number of edges in G, and
w is the length of p (Corollary 5).

For unordered edge-flavored path expressions, a naive implemen-
tation would compute all possible permutations, and check the RDF
graph for correspondence with each of these permuations. Since there
w! permutations for a path of length w, this procedure has a complexity
of O(w! · e). The following algorithm is more efficient:

Again, the RDF graph G is viewed as a finite automaton, which is
traversed using symbols occurring in the path expression p. In step i
of the computation, each node n in G is labeled with all paths p of
length i such that n is reachable over p from some other node m in G.
Initially, all nodes are labeled with the empty path ε. After w steps (or
earlier), the algorithm terminates and exactly the set of labeled nodes
in G is reachable over p. In Listing 6.3 we use set notation to represent
paths, since the order of traversal is irrelevant; however we must think
of paths as multisets, because the same edge label may occur multiple
times in p. For this reason, the set difference operator \ and the union
operator ∪ in Listing 6.3 are the set difference and the union operator
for multisets, not sets, respectively.

Listing 6.3: Evaluation algorithm for expressions in RPL→,/,{}

for each node n in G do labels(n) = {ε} end

for i = 1 to w do // w is the length of path p

for each e in E do // follow every edge

for each l in labels(source(e)) do

if label(e) is in p \ l then

labels(sink(e)).add({l}∪ label(e))
end

end

end

remove all labels of length i− 1

end �
In the i-th iteration of the outermost loop of Listing 6.3, the set of

labels for the nodes in G is bounded by σi · |n|. Thus, the number of
edge traversals in step i is bounded by σi · |n|. The total number of edge
traversals is thus σw+1 · |n| (geometric series).

Theorem 10 (NP-Completeness of RPL→,/,{}). The evaluation problem of
RPL→,/,{} is NP-complete.

Proof. For the proof of Theorem 10 we use a reduction from the Hamil-
tonian Cycle Problem. The idea of the proof is illustrated in Figure 4.
Let G = (V ,E) be a directed labeled graph with nodes {1, . . . , k}. G has a
Hamiltonian Cycle if and only if the RPE { EDGES 1in, 1out, . . . ,kin,kout
} has a non-empty solution over the edge expansion graph of G, which

is defined as follows:

Definition 52 (Edge expansion graph). Let G = (V ,E) with V = 1, . . . ,k
be a graph. The edge expansion graph F = (V ′,E ′,µ) of G is an edge
labeled graph with the following properties:

• V ⊆ V ′

6.8 compilation of rpl to prolog 135

• For each edge (u, v) ∈ E there is some node n in V ′ and edges (u,n), (n, v) ∈
E ′ with µ(u,n) = uout and µ(n, v) = vin. There are no other edges
in E ′ involving n.

• These are all nodes and edges in F.

The edge expansion graph F of a given Graph G with v vertices and e edges
contains v+ e vertices and 2 · e edges. Obviously, F can be constructed from
G in polynomial time.

Figure 4: Reduction from the Hamilton Cycle Problem to RPL→,/,{} evaluation

1

2

3

4

5

1

·

· ·

2

· 3

4

·

5·

·

1out

2in

2out

5in

1out

3in

3out

4in

3out

5in

5out
3in

4out

5in

6.8 compilation of rpl to prolog

In this section we show how RPL can be easily and efficiently imple-
mented by a compilation to Prolog. Before giving the translation, we
first hihglight three challenges that must be met by the translation
process.

1. Since regular expressions make intense use of the kleene closure
operators + and *, which must be translated to recursive rules
in Prolog, non-termination must be avoided. Non-termination of
transitive closure computations in Prolog can often be resolved
by term permutation in rule bodies, or clause permutation in
programs. But in the presence of cyclic data, transitive closure
computations may still not terminate, due to infinitely many paths
between nodes. There are two ways of dealing with this issue: (a)
keeping track of the path that is traversed during the computation
of the transitive closure or (b) tabling of the predicates that are
used for transitive closure computation. Solution (b) eases the
translation process, but requires evaluation by a Prolog engine
that supports tabling such as XSB.

2. A second challenge in the translation process arises from the use
of regular string expressions in RPL. This challenge is most easily
met by translation to a Prolog engine that takes care of regular
expression matching such as Ciao Prolog or XSB Prolog.

3. A third challenge arises from the fact that most Prolog engines
are not prepared to dealing with RDF data, with the notable ex-
ception of SWI Prolog. Again, there are (at least) two solutions

136 the xcerpt
rdf

regular path language rpl

for dealing with this situation: (a) use SWI Prolog or (b) assume
that RDF graphs are encoded as ternary terms with some distin-
guished predicate name such as triple. This assumption is not as
farfetched as it might seem, since the well-known N-Triples serial-
ization of RDF is simply a collection of triples, and can be easily
imported into Prolog engines. Moreover, there are conversion
utilities from RDF/XML, Notation3 or Turtle to N-Triples.

We deal with the issues 1 and 2 by a translation to XSB Prolog and
resolve issue 3 by assuming a native Prolog encoding of RDF graphs as
ternary atoms with predicate name triple.

Let u be a URI, pr1, . . . RPL predicates, a1, . . . adorned or disjunctive
RPEs, and c a concatenated or predicated RPE. The translation of
RPL expressions to Prolog is given by the following function to_prolog.
Each translation rule yields at least one Prolog rule, and may recursively
call other translation rules. The predicate name of the head of the rule
to be generated is given as an argument to the translation function.

to_prolog(flavor c,p) =

edges(c,p) if flavor = EDGES.

path(c,p) if flavor = PATH.

nodes(c,p) if flavor = NODES.

(6.41)

edges(u,p) = p(X,Y) :- triple(X, u, Y). (6.42)

edges(<u,p) = p(X,Y) :- p1(Y, X). R (6.43)

with p1 a fresh predicate name and edges(u,p1) = R. Predicated RPL
expressions are translated by Equations 6.44 and 6.45.

edges(u[pr1] . . . [prn],p) = (6.44)

p(X,Y) :- triple(X,u,Y), p1(u,_), . . . , pn(u,_). R1 . . . Rn

with pi fresh predicate names and edges(pri,p1) = Ri for 1 6 i 6 n.
The corresponding rule for <u is obtained by switching X and Y in the
term triple(X,u,Y).

edges(_[pr1] . . . [prn],p) = (6.45)

p(X,Y) :- triple(X,P,Y), p1(P,_), . . . , pn(P,_). R1 . . . Rn

with pi fresh predicate names and toprolog(pri,pi) = Ri for 1 6 i 6
n. The corresponding rule for a regular expression re instead of an
underscore is obtained by inserting the term re_match(re, P, _, _,
_) after the term triple(X, P, Y) into the rule defining p. Note that
this translation only works for XSB Prolog when the module regmatch

is included. Again, the corresponding rules for the reverse edges < _
or < re is obtained by switching X and Y in the term triple(X,u,Y).

nodes(u[pr1] . . . [prn],p) = (6.46)

p(u,u) :- node(u), p1(u,_), . . . , pn(u,_). R1 . . . Rn

6.8 compilation of rpl to prolog 137

with p1, . . . ,pn fresh predicate names, and to_prolog(pri) = Ri for
1 6 i 6 n. Wildcards and literals at the place of u are translated in the
same way. A regular expression re at the place of u requires binding
the node n to a variable, and testing if n is in the language defined by
re with the XSB predicate re_match as follows:

nodes(u[pr1] . . . [prn],p) = (6.47)

p(P,P) :- node(P), re_match(re, P, _, _, _), p1(P,_), . . . , pn(P,_).

R1 . . . Rn

edges(c?,p) = p(X,X) :- node(X). p(X,Y) :- p1(X,Y). R (6.48)

with p1 a fresh predicate name and edges(c,p1) = R, and the predicate
node defined by the following rules:

node(X) :- triple(X, _, _). node(X) :- triple(_, _, X). (6.49)

edges(c+,p) = (6.50)

p(X,Y) :- p1(X,Y). p(X,Y) :- p1(X,Z), p(Z,Y). R

with p1 a fresh predicate name and edges(c,p1) = R. The kleene star
operator * is translated in a very similar fashion.

edges((a1 . . . an),p) = (6.51)

p(X,Y) :- p1(Z0,Z1), . . . , pn(Zn−1,Zn). R1 . . . Rn

with p1, . . . pn fresh predicate names and edges(ai,pi) = Ri for 1 6
i 6 n.

nodes((a1 . . . an),p) = (6.52)

p(X,Y) :- p1(Z0,Z1), triple(Z1, _, Z2), . . . ,

triple(Z2n−2, _, Z2n−1), pn(Z2n−1,Z2n).R1 . . . Rn

with p1, . . . pn fresh predicate names and nodes(ai,pi) = Ri for 1 6
i 6 n.

path((a1 . . . an),p) = (6.53)

p(X,Y) :- p1(Z0,Z1), . . . , pn(Zn−1,Zn). R1 . . . Rn

with p1, . . . pn fresh predicate names and edges(ai,pi) = Ri for odd i
and nodes(ai,pi) = Ri for even i in {1, . . . ,n}.

edges((c1 | . . . | cn),p) = (6.54)

p(X,Y) :- p1(X,Y). . . . p(X,Y) :- pn(X,Y). R1 . . . Rn

with p1, . . . pn fresh predicate names and edges(ci,pi) = Ri for 1 6 i 6
n. Disjunctive RPEs within edge- and path-flavored RPEs are translated
in exactly the same way.

to_prolog(not(f),p) = p(X,Y) :- not p1(X,Y). R (6.55)

where p1 is a fresh predicate name and to_prolog(f,p1) = R.

Part III

X C E R P T M U LT I - R U L E S E M A N T I C S A N D
T E R M S U B S U M P T I O N

7X C E R P T T E R M S I M U L AT I O N A N D M U LT I - R U L E
S E M A N T I C S

Contents
7.1 Simulation as the Foundation for Versatile Querying 141
7.2 Simulation and Negation: Local Stratification 146
7.3 Well-Founded Semantics for Xcerpt 150
7.4 Grouping versus Negation Stratification 156

7.4.1 Elimination of Single Grouping Constructs 157

7.4.2 Elimination of Nested Grouping Constructs 159

Having given an informal, example-driven introduction to the lan-
guage Xcerpt, its evaluation principles and intuitive semantics in the
preceding sections, this section introduces the precise semantics for
Xcerpt query terms through a formal definition of query term simula-
tion (Section 7.1), and programs through an iterative fixpoint procedure
(Section 7.2). Previous publications on the semantics of Xcerpt have
considered the class of stratifiable Xcerpt programs only. Section 7.2 also
extends the semantics of Xcerpt programs to the class of locally stratifi-
able programs, which is a true superset of the set of stratifiable Xcerpt
programs, and which is inspired by the notion of local stratification in
logic programming [CB94]. In Section 7.3 the well-founded semantics
for general logic programs is adapted to Xcerpt, thereby also giving
a semantics to programs that are not locally stratified. Although not
formally proven, we conjecture that locally stratifiable Xcerpt programs
have a two-valued well-founded model which coincides with the model
computed by the iterative fixpoint procedure over its local stratification.

While this section transfers the notion of local stratification and well-
founded semantics to Xcerpt only, the proposed method can be applied
to any other rule language that has a term-based model theory, and a
notion of assymetric matching between queries and data. In particular,
this semantics also applies to Xcerpt

RDF.1

7.1 simulation as the foundation for versatile querying

Simulation between Xcerpt terms is inspired by rooted graph simulation
[Mil71, HHK95], but is by far more involved since Xcerpt terms feature
constructs for specifying incompleteness in depth, breadth, and order,
allow variables, regular expressions and negated subterms. This section
formally defines a subset of XcerptXML2 variables, descendant con-
structs, subterm negation, incompleteness in breadth and with respect

1 Although Xcerpt
RDF allows blank nodes in rule heads, this semantics is not a general

semantics for RDF rule languages with blank nodes in rule heads. In particular, this
semantics does not deal with leanness and simple RDF entailment. Instead it is based on
the term-based semantics of Xcerpt.

2 Chapter 4 introduces both Xcerpt
RDF and XcerptXML query, construct and data terms.

In this section we concentrate on XcerptXML terms, but most of the results and design
principles also apply to Xcerpt

RDF terms. We write "Xcerpt term" to denote the abstract

141

142 xcerpt term simulation and multi-rule semantics

to order, multiple variables, multiple occurrences of the same variable,
and variable restrictions. In comparison to full XcerptXML query terms
as described in [Fur08a, Sch04a] and for the sake of brevity, this defi-
nition does not include term identifiers and references, non-injective
subterm specifications, optional subterms, qualified descendants, la-
bel variables, and the new syntax for XML attributes. Based on this
definition of XcerptXML query, construct and data terms, ground and
non-ground query term simulation is defined as the formal semantics
for the evaluation of XcerptXML query terms on semi-structured data.

Definition 53 (XcerptXML query term). Query terms over a set of labels N,
a set of variables V, and a set of regular expressions R are inductively defined
as follows:

• for each label l ∈ N, l{{ }}, l{ }, l[] and l[[]] are atomic query
terms. l is a short hand notation for l{{ }}.

• for each variable X ∈ V, var X is a query term

• for each regular expression r ∈ R, /r/{{ }}, /r/{ }, /r/[[]] and
/r/[] are query terms. /r/ is a shorthand notation for /r/{{ }}

. With L(r) we denote the set of labels matched by r, i.e. the
language defined by the regular expression.

• for each variable X ∈ V and query term t, var X as t is a query
term. t is called a variable restriction for X.

• for each query term t, desc t is a query term and called depth-
incomplete or incomplete in depth.

• for each query term t, without t is a query term and called a
negated subterm.

• for each query term t optional t is an optional query term.

• for each label or regular expression l and query terms t1, . . . , tn
with n > 1,

q1 = l{{ t1, . . ., tn }}

q2 = l{ t1, . . ., tn }

q3 = l[[t1, . . ., tn]]

q4 = l[t1, . . ., tn]

are query terms. q1 and q3 are said to be specified incompletely
in breadth, or simply breadth-incomplete, whereas q2 and q4 are
specified completely in breadth, or simply breadth-complete. q1 and
q2 are specified incomplete with respect to order or simply order-
incomplete, whereas q3 and q4 are order-complete.

A variable X is said to appear positively in an XcerptXML query term
q, if it is included in q not in the scope of a without construct. It
appears negatively within q if it is included within the scope of a without

construct. Note that the same variable may appear both positively and
negatively within q – e.g. X within a{{ var X, without var X }}.

concept of terms in both Xcerpt
RDF and XcerptXML, and "XcerptXML term" to refer to

XcerptXML terms only.

7.1 simulation as the foundation for versatile querying 143

Definition 54 (XcerptXML data terms). An XcerptXML data term is a
ground XcerptXML query term that does not contain the constructs without,
optional, desc, regular expression and double braces or double brackets.

Definition 55 (XcerptXML construct terms). XcerptXML construct terms
over a set of variables V and a set of labels N are defined as follows:

• an XcerptXML data term d over N is a construct term

• for each variable X ∈ V, var X is a construct term

• for a construct term c, all c is a construct term

• for a construct term c, optional c is a construct term

• for a construct term c, and a sequence of variables X1, . . . ,Xk ∈ V

all c group by {X1, . . . ,Xk} is a construct term

• for a label l ∈ N and set of construct terms c1, . . . , cn, l{c1, . . . , cn} is
a construct term.

In the following, we let D and Q denote the set of all XcerptXML data
and query terms, respectively.

A query term and a data term are in the simulation relation, if
the query term “matches” the data. Matching XcerptXML query terms
with data terms is very similar to matching XPath queries with XML
documents – apart from the variables and the injectivity requirement in
query terms. The formal definition of simulation of a query term with
semi-structured data is somewhat involved. To shorten the presentation,
we first introduce some notation:

Definition 56 (Injective, bijective and monotone mappings). 3

Let I := {t11, . . . , t1k}, J := {t21, . . . , t2n} be sets of query terms and π : I⇒ J

be a mapping.

• π is injective, if all t1i , t1j ∈ I satisfy t1i 6= t1j ⇒ π(t1i) 6= π(t1j).

• π is bijective, if it is injective and for all t2j ∈ J there is some t1i ∈ I
such that π(t1i) = t2j .

• π is monotone, if for all t1i , t1j ∈ I with i < j, π(t1i) = t2k and
π(t1j) = t2l holds k < l.

We use the following abbreviations to reference parts of a query term
q:

l(q) : the string or regular expression used to build the query term. For
a variable v, l(v) is undefined.

childt(q) : the set of direct subterms of q

childt+(q) : the set of positive direct subterms (i.e. those direct sub-
terms which are not of the form without . . .),

3 This definition of injectivity and bijectivity concerns the subterms – or nodes – of a query
term only. Therefore it is also referred to as node injectivity. In previous publications about
Xcerpt, we have used position injectivity instead, which concerns the edges between parent
and child terms. In the absence of references (as in Definition 55), however, node and
position injectivity are semantically equivalent. Therefore, and for the sake of simplicity,
we use node injectivity in this contribution.

144 xcerpt term simulation and multi-rule semantics

childt−(q) : the set of negated direct subterms (i.e. the direct subterms
of the form without . . .),

desc(q) : the set of direct descendant subterms of q (i.e. those of the
from desc . . .),

subt(q) : the direct or indirect subterms of q, i.e. all direct subterms as
well as their subterms.

ss(q) : the subterm specification of q. It can either be complete (single
curly braces) or incomplete (double curly braces).

vars(q) : the set of variables occurring somewhere in q.

pos(q) : q ′, if q is of the form without q ′, q otherwise.

Definition 57 (Label subsumption). A term label l1 subsumes another
term label l2 iff l1 and l2 are strings and l1 = l2, or l1 is a regular expression
and l2 is a string such that l1 matches with l2, or l1 and l2 are both regular
expressions and l1 matches with any label that l2 matches with.

Theorem 11 (Decidability of Label Subsumption). Label subsumption is
decidable.

Proof. The only interesting case is the one with the two labels being
both regular expressions. For any two regular expressions e1 and e2,
a regular expression e that accepts the union L(e1) ∪ L(e2) of the
languages of e1 and e2 is given by e1 | e2. Any regular expression e can
be converted to a deterministic finite automaton that accepts the same
language (see e.g. [HU79][Section 3.2.3] for a proof). This conversion
involves the construction of a deterministic finite automaton from a
non-deterministic one, which may result in an exponential blow up.
For two deterministic finite automatons one can test their equivalence
with the table filling algorithm (see [HU79][Section 4.4.2]). Obviously
e1 subsumes e2 iff the deterministic finite automatons of e1 and e1 | e2
are equivalent.

Definition 58 (Ground query term simulation). Let q be a ground query
term4 and d a data term. A relation S ⊆ (SubT(q)∪ {q})× (SubT(d)∪ {d})

is a simulation of q into d if the following holds:

• q S d

• if q := l1{{q1, . . . ,qn}} S l2{d1, . . . ,dm} =: d then l1 must sub-
sume l2, and there must be an injective mapping π : ChildT+(q) →
ChildT+(d) such that qi S π(qi) for all i ∈ ChildT+(q). More-
over, there must not be a qj ∈ ChildT−(q) and dl ∈ ChildT+(d) \

range(π) such that pos(qj) � dl (note the recursive reference to ‘�’
here).

• if q := l1[[q1, . . . ,qn]] S l2[d1, . . . ,dm] =: d then l1 must sub-
sume l2, and there must be monotone mapping π : ChildT+(q) →
ChildT+(d) such that qi S π(qi) for all i ∈ ChildT+(q). More-
over, there must not be a qj ∈ ChildT−(q) and dl ∈ ChildT+(d) \

range(π) such that pos(qj) � dl (note the recursive reference to ‘�’
here) and the extension of π with the pair (qj,dl) is monotone.

4 For the sake of brevity we assume that q does not contain optional subterms.

7.1 simulation as the foundation for versatile querying 145

• if q := l1{q1, . . . ,qn} S l2{d1, . . . ,dm} =: d then l1 must sub-
sume l2, and there must be a bijective mapping π : ChildT+(q) →
ChildT+(d) such that qi S π(qi) for all i ∈ ChildT+(q). We impose
no further requirements on the set ChildT−(q) of negated direct sub-
terms of q. The totality of π already ensures that there is no extension
of π to some element qj ∈ ChildT−(q) such that pos(qj) � dl
for some dl ∈ ChildT+(d) \ range(π). Therefore the semantics of
query terms is independent from the presence of negated direct sub-
terms within breadth-complete query terms.

• if q := l1[q1, . . . ,qn] S l2[d1, . . . ,dm] =: d then l1 must subsume
l2, and qi S di for all qi ∈ ChildT+(q).

• S does not contain any pair (q,d) such that q is order-complete and d
is order-incomplete.

• if q = desc q ′ S d then q ′ S d or q ′ S d ′ for some subterm d ′ of d.

We say that q simulates into d (short: q � d) if and only if there is a
relation S that satisfies the above conditions. To state the contrary we write
q � d.

Since every XcerptXML data term is also a query term, the above
definition of simulation between a query term and a data term can
be extended to a relation between pairs of query terms. For the sake
of brevity this full definition of extended ground query term simulation is
given in the appendix of [BFL07].

The existence of a ground query term simulation states that a given
data term satisfies the conditions encapsulated in the query term. Many
times, however, query authors are not only interested in checking the
structure and content of a document, but also in extracting data from
the document, and therefore query terms may contain logical variables.
To formally specify the data that is extracted by matching a query term
with a data term, the notion of non-ground query term simulation
is introduced (Definition 59). Substitutions are defined as usual, and
the application of a substitution to a query term is the consistent
replacement of the variables by their images in the substitution.

Definition 59 (Non-ground query term simulation). Let v be a variable
with restriction r. A substitution σ respects r, iff r � σ(v). A query term
q with variables simulates into a data term d iff there is a substitution σ :

Vars(q) → D such that qσ simulates into d and such that σ respects the
variable restrictions of all variables in q.

In some cases query terms are not expressible enough or inconvenient
for specifying a query in the body of a rule. Conjunctions of query
terms are needed if more than one resource is queried and the results
are to be joined. Disjunctions of query terms are convenient to extract
data from different resources and wrap them into a common XML
fragment or RDF graph. Finally the absence of data simulating with a
given query term is tested by query negation. The notion of a query
combines conjunctions, disjunctions and negations of query terms:

Definition 60 (Xcerpt query). Xcerpt queries are recursively defined as
follows:

• an Xcerpt query term is an Xcerpt query

146 xcerpt term simulation and multi-rule semantics

• for a set of Xcerpt queries q1, . . . ,qn, the conjunction C := and(

q1, . . . ,qn), the disjunction D := or(q1, . . . ,qn) and the negation N :=

not(q1) are Xcerpt queries. If a variable X appears positively within a
qi (1 6 i 6 n) then it also appears positively within C and D, but
negatively within N. If X appears negatively within qi, it also appears
negatively within C, D and N.

Definition 61 (Xcerpt rule, goal, fact, program). Let q be a query over a set
of labels L, a set of variables V and a set of regular expressions R and c a con-
struct term over L and V. Then CONSTRUCT c FROM q END is an Xcerpt rule,
GOAL c FROM q END is an Xcerpt goal, and CONSTRUCT c END is an Xcerpt
fact. An Xcerpt program is a sequence of range-restricted Xcerpt rules,
goals and facts.5

The construct term c is called the head of an Xcerpt rule or goal,
the query q is called its body. An Xcerpt fact can also be written as
an Xcerpt rule with an empty body. An Xcerpt rule, goal or fact is
called range restricted, if all variables that appear in its head also appear
positively in its body. In a forward chaining evaluation of a program,
the distinction between goals and facts is unnecessary. In a backward
chaining evaluation, however, the goals are the starting point of the
resolution algorithm. In contrast to Logic programming, goals are not
a single term only, but an entire rule to ensure answer closedness of
Xcerpt programs. Especially for the task of information integration on
the Web, answer closedness is indispensable.

7.2 simulation and negation: local stratification

While Section 7.1 defines the semantics of single query terms and
queries, this section defines the semantics of Xcerpt rules and programs.
Special attention is laid on the interplay between simulation unification
and non-monotonic negation in rule bodies.

The problem of evaluating rule based languages with non-monotonic
negation has received wide-spread attention throughout the logic pro-
gramming community (See [AB94] and [BEE+

07] for surveys). A mul-
titude of semantics have been proposed for such languages (program
completion semantics, stable-model semantics [GL88], well-founded
semantics [vRS91b], inflationary semantics [KP88]). Especially the well-
founded and stable-model semantics have been found to comply with
the intuition of program authors and are therefore implemented by
logic programming engines such as XSB [SSW93] and DLV [EFK+

00].
Several classes of logic programs have been defined for which some
of the above mentioned semantics coincide. Among these classes are
definite programs, stratifiable programs, locally stratifiable programs
[Prz88] and modularly stratifiable programs [Ros90]. The well-founded
semantics and the stable model semantics coincide on the class of locally
stratifiable programs.

In the following we introduce stratifiable and locally stratifiable
Xcerpt programs. In adapting these concepts to Xcerpt, one has to
pay close attention to the differences introduced by the richer kind of
unification employed.

5 Since facts and goals are a kind of rules, we refer to Xcerpt programs as a sequence of
rules in the following.

7.2 simulation and negation: local stratification 147

Figure 5: Social graph corresponding to the facts in Listing 7.1

Anna Chuck

Bob

Definition 62 (Stratification). A stratification of an Xcerpt program P

consisting of the rules r1, . . . rn is a partitioning of r1, . . . rn into strata
S1, . . . ,Sk, such that the following conditions hold:

• All terms asserted by facts in P are in S1.

• If a rule r1 contains a positive query term q that simulates with the
construct term c of another rule r2, then r1 positively depends on r2,
and r1 is in the same or a higher stratum than r2.

• If a rule r1 contains a negated query term not q such that q simulates
with the construct term c of another rule r2, then r1 negatively depends
on r2 and is in a strictly higher stratum than r2.

Given the stratification of a program P, its semantics can be de-
fined by the iterative fixpoint procedure suggested for general logic
programs. For finite programs, stratification is decidable. However,
there are Xcerpt programs, such as the one in Listing 7.1, that are not
stratifiable, but which may be evaluated bottom up.

Listing 7.1 is a formulation of the single source shortest path problem
over a directed social graph, which is given by the facts (lines 1 to 5) in
Listing 7.1 and which is depicted in Figure 5. The program computes
for each node n in a directed graph the shortest distance to some source
node s, in this case anna.

This program uses a slight extension of Xcerpt’s term syntax. The
term

Acquaintance[anna, 6 i]

simulates with the data terms Acquaintance[anna, j] if and only if i and
j are natural numbers and j 6 i. Furthermore, the terms Acquaintance

[anna, 6 i] and Acquaintance[anna, i] simulate with Acquaintance[

anna, > j] if and only if i > j. The symbol ‘>’ can be interpreted as
a hint by the programmer to the evaluation engine, that a rule can
only be used to derive atoms with integer values greater than a certain
natural number. The example in Listing 7.1 serves to illustrate the
problems and challenges for defining the semantics and evaluation of
possibly recursive rule programs with non-monotonic negation and
rich unification. These challenges are encountered independent of the
specific kind of rich unification, be it SPARQL query evaluation, Xcerpt
query term simulation, or XPath query evaluation.

To see that Program P in Listing 7.1 is not stratifiable, consider the
negated query term not q, with q = Acquaintance [var P, 6 var D

] in the body of the only rule of P. q simulates with the head h =

Acquaintance [var P, D + 1 > 0] of the same rule. Thus the rule should
be in a strictly higher stratum than itself, which is a contradiction.

Listing 7.1: Single source shortest path problem for the source node ’anna’

148 xcerpt term simulation and multi-rule semantics

CONSTRUCT knows[anna, bob] END

CONSTRUCT knows[bob, chuck] END

CONSTRUCT knows[anna, chuck] END

CONSTRUCT knows[chuck, anna] END

CONSTRUCT Acquaintance[anna, 0] END

CONSTRUCT

Acquaintance[var P, var D + 1]

FROM

and (

Acquaintance[var P’, var D],

knows[var P, var P’],

not (Acquaintance[var P, 6 D])

END �
To see that P can nevertheless be evaluated in a bottom up manner,

consider a ground instance g of the recursive rule in Listing 7.1. The
term constructed by the head of g contains an integer value i which is
exactly by one larger than the integer values of terms that may simulate
with (negated or positive) query terms in the body of g. Thus, in a
bottom up evaluation of the program, we may first compute the fixpoint
of the program considering only terms containing the integer value
zero, followed by the fixpoint computation for terms with the value
1, and so on. Since a valid rule application will only construct terms
containing the value n+ 1 using terms with values n, it may never
be the case that the body of a rule once found true is invalidated by
the derivation of a fact at a later point in time. Figure 6 visualizes the
resulting stratification.

Figure 6: Local stratification for Listing 7.1

Acquaintance[anna,1]

knows[chuck,anna]

Acquaintance[chuck,0]

Acquaintance[anna,≤0]

Acquaintance[bob,1]

Acquaintance[anna,0]

knows[anna,bob] Acquaintance[bob,≤0]

+ -

+

+
-

Acquaintance[bob,2]

+

+ -

Acquaintance[bob,≤1]

+

 +

P1

P2

P3

+

+

With the concept of local stratification we distinguish the class of lo-
cally stratifiable Xcerpt programs, which is a true superset of the class
of stratifiable Xcerpt programs, and thereby introduce a more general
characterization of Xcerpt programs that guarantees that these pro-
grams can be evaluated by an iterative fixpoint procedure in a bottom
up manner. A local stratification partitions the Herbrand universe of an
Xcerpt program rather than the rules of the program into strata.

Definition 63 (Xcerpt Herbrand universe, Xcerpt Herbrand base, Xcerpt
Herbrand instantiation). The Herbrand universe of an Xcerpt program
P are all Xcerpt data terms that can be constructed over the vocabulary of
P.6 Since Xcerpt programs consist only of terms without predicate symbols,

6 The vocabulary of P is the set of labels appearing in P.

7.2 simulation and negation: local stratification 149

the Herbrand base of P is defined to be the same as the Xcerpt Herbrand
universe.

Let r be a rule in P. A rule r ′ obtained from r by consistently replacing
variables in r by terms of the Herbrand Universe of P is a Herbrand instan-
tiated rule of P. The Herbrand instantiation of P is the set of all Herbrand
instantiated rules of P.

Note that the above definition deviates from the Herbrand universe
for logic programs as follows: While Prolog function symbols have
always an associated arity, Xcerpt labels may be used to construct terms
with arbitrary many children. Thus a program over the vocabulary
V = {a} has the Herbrand universe { a{ }, a{ a }, a{ a{ a } }, a{ a, a

} . . .}. In the following discussion of the well-founded semantics we
will, however, not consider the entire Herbrand universe for computing
unfounded sets, but restrict them to the terms that occur in ground
instances of the rules.

Definition 64 (Local stratification of Xcerpt programs). A local stratifi-
cation of an Xcerpt program P is a partitioning of the Herbrand universe of
P into strata such that the following conditions hold:

• All facts of P are in stratum 1.

• If a term q appears positively in the body of a rule r with head c in
the Herbrand instantiation of P, then q must be in the same or a higher
stratum than c.

• If a term q appears negatively within the body of a rule r with head c in
the Herbrand instantiation of P, then q is in a strictly higher stratum
than c.

• If a term q simulates into a term c, then q is in the same or in a higher
stratum than q.

The definition of local stratification of Xcerpt programs coincides
with the definition of local stratification for general logic programs in
the first three points. The fourth condition is necessitated by the richer
unification relation induced by simulation unification in Xcerpt. While
in logic programming two ground terms unify if and only if they are
syntactically identical, this is not true for Xcerpt terms (consider e.g.
the terms a{{ }}, a[[]] and a{ b }).

Example 7.2 underlines the necessity of the fourth condition in Def-
inition 64: By Definition 64, Program P in Listing 7.2 is not locally
stratifiable, but it would be, if the last condition were not part of the
definition. In fact, the semantics for P is unclear, and it cannot be evalu-
ated by an iterative fixpoint procedure. Figure 7 shows the dependency
graph for Listing 7.2, which contains a cycle including a negative edge.
The dependency graph for a ground Xcerpt program simply includes
all rule heads and body literals as nodes, and all simulation relations
between query and construct terms and negative and positive depen-
dencies of rule heads on their body literals. The dependency graph for
a non-ground Xcerpt program is the dependency graph of its Herbrand
Instantiation. An Xcerpt program P is locally stratifiable, if its depen-
dency graph does not contain any negative cycles (i.e. cycles including
at least one negative edge).

150 xcerpt term simulation and multi-rule semantics

Figure 7: Dependency graph for Listing 7.2

a{ b }

c[b]

c{{ desc b }}

a{{ }}

−

+

��

Listing 7.2: An Xcerpt program that is not locally stratifiable

CONSTRUCT a{ b } FROM not(c{{ desc b{{ }} }}) END

CONSTRUCT c[b] FROM a{{ }} END �
Since Listing 7.2 is not locally stratifiable, its semantics cannot be

defined by a fixpoint procedure over its stratification. Similar programs
– except for the simulation relation – have been studied in logic program-
ming. For example, the logic program {(a← ¬c), (c← a)} is not locally
stratifiable, still the well-founded semantics of the program is given by
the empty interpretation {}. To give Xcerpt programs a semantics, no
matter if they are locally stratified or not, we adapt the well-founded
semantics to Xcerpt programs in the Section 7.3.

7.3 well-founded semantics for xcerpt

For the sake of simplicity this section only considers Xcerpt programs
without the grouping constructs all – Section 7.4 proposes a way to
reduce grouping stratification to negation stratification, giving rise for
an integrated semantics for Xcerpt programs containing both grouping
constructs and negation. Moreover, in this section queries are assumed
to be either simple query terms, negations of query terms or conjunc-
tions of positive or negated query terms. In the absence of grouping
constructs or aggregate functions, a rule involving a disjunction in
the rule body can be rewritten into an equivalent set of rules that are
disjunction free. Also negations of conjunctions can be rewritten to
conjunctions with only positive or negative query terms as conjuncts.7

Definition 65 (Xcerpt literal). An Xcerpt literal is either an Xcerpt data
(in this case it is called a positive literal) term or the negation not d of
some Xcerpt data term d (i.e. a negative literal). For a set S of Xcerpt literals,
pos(S) denotes the positive literals in S, neg(S) the negative ones.

Definition 66 (Consistent sets of Xcerpt literals). For a set of Xcerpt liter-
als S we denote with ¬ · S the set of terms obtained by negating each element
in S. Let p and n =not d be a positive and negative literal, respectively, and
let S be a set of literals. p and S are consistent, iff not p is not in S. n and S
are consistent iff d is not in S. S is consistent, if it is consistent with each of
its elements.

Definition 67 (Partial Xcerpt interpretations (adapted from [vRS91a])).

Let P be an Xcerpt program, and HB(P) its Herbrand base. A partial inter-
pretation I is a consistent subset of HB(P)∪¬ ·HB(P).

7 This normalization of Xcerpt rules is similar to finding the disjunctive normal form of
logical formulae.

7.3 well-founded semantics for xcerpt 151

Definition 68 (Satisfaction of Xcerpt terms). Let I be a partial interpreta-
tion for a program P. The model relationship between I and an Xcerpt term is
defined as follows.

• Let q be a positive query term.

– I satisfies q (I � q) iff there is some data term d ∈ pos(I) with
q � d

– I falsifies q (I 2 q) iff for all data terms d ∈ HBP holds q � d⇒
d ∈ neg(I).

– Otherwise, q is undefined in I.

• Let q = not q ′ be a negative query term.

– I satisfies q (I � q) iff for all data terms d holds q ′ � d ⇒ d ∈
neg(I).

– I falsifies q (I 2 q) iff there is some data term d ∈ pos(I) with
q ′ � d.

– Otherwise, q is undefined in I.

Definition 69 (Satisfaction of Xcerpt queries). Let I be a partial inter-
pretation and q a conjunction of Xcerpt terms. I satisfies q if I satisfies each
conjunct in q.8

Definition 70 (Xcerpt Unfounded Sets (adapted from [vRS91a])). Let P
be an Xcerpt program, HBP its Herbrand base, and I a partial interpretation.
We say A ⊆ HBP is an unfounded set of P with respect to I if each atom
p ∈ A satisfies the following condition. For each instantiated rule R of P with
head p and body Q at least one of the following holds:

1. For some positive literal q ∈ Q holds that for all d ∈ HBP holds
q � d⇒ d ∈ A∨ d ∈ neg(I).

2. Some negative literal q ∈ Q is satisfied in I.

The greatest unfounded set of P with respect to an interpretation I is the
union of all unfounded sets of P with respect to I.

Definition 71 (Well-founded semantics of an Xcerpt program). The well-
founded semantics of an Xcerpt program P is defined as the least fixpoint
of the operator WP(I) := TP(I) ∪¬ ·UP(I) where UP and IP are defined as
follows:

• a postive Xcerpt literal l is in TP(I) iff there is some ground instance
Rg of some rule R in P with construct term l and query Q such that
I � Q.

• UP(I) is the greatest unfounded set of P with respect to I.

Consider the program P in Listing 7.3. Its Herbrand base is HB(P) =

{a{ }}. Starting with the empty interpretation I0, TP(I0) = ∅, UP(I0) =

∅, and I1 := WP(I0) = ∅ = I0. Thus the well-founded semantics of P is
∅.

Listing 7.3: Simple Negation through recursion and simulation (A)

CONSTRUCT a{ } FROM not(a{{ }}) END �
8 Xcerpt rules are assumed to be in disjunctive normal form. Therefore disjunctions need

not be considered here. Satisfaction of negations is treated in Definition 68 above.

152 xcerpt term simulation and multi-rule semantics

Listing 7.4: Simple Negation through recursion and simulation (B)

CONSTRUCT a{ } FROM not(a{{ }}), not(b{ }) END

CONSTRUCT a{ b } END �
As a second example, consider program Q in Listing 7.4 with Her-

brand base HB(Q) = { a{ b }, a{ }, b{ }}. We obtain the following fix
point calculation:

• I0 = ∅

• TQ(I0) = { a{ b } }

• UQ(I0) = { a{ }, b{ } }

• I1 = WQ(I0) = { a{ b }, not a{ }, not b{ } }

• TQ(I1) = { a{ b } }

• UQ(I1) = { a{ }, b{ } }

• I2 = WQ(I1) = { a{ b }, not(a{ }), not(b{ }) } = I1

As a final example, consider the stratified and locally stratified pro-
gram R in Listing 7.5 with Herbrand universe HB(R) = { b{ }, a{ b },
a{ }, c{ c } }.

Listing 7.5: Simple Negation through recursion and simulation (C)

CONSTRUCT b{ } FROM not(a{{ }}) END

CONSTRUCT a{ b } FROM not(c{{ }}) END

CONSTRUCT a{ } FROM not(c{{ }}) END

CONSTRUCT c{ c } END �
We obtain the following fixpoint calculation:

• I0 = ∅

• TR(I0) = { c{ c } }

• UR(I0) = ∅

• I1 = WR(I0) = { c{ c } }

• TR(I1) = { c{ c } }

• UR(I1) = { a{ }, a{ b } }

• I2 = WR(I1) = { c{ c }, not(a{ }), not(a{ b }) }

• TR(I2) = { c{ c }, b{ } }

• UR(I2) = { a{ }, a{ b } }

• I3 = WR(I2) = { c{ c }, b{ }, not(a{ }), not(a{ b }) }

• TR(I3) = TR(I2)

• UR(I3) = UR(I2)

• WR(I3) = WR(I2)

It is immediate that the well-founded semantics of R coincides with
the fixpoint calculated over the stratification of R – a fact that is true for
every locally stratified Xcerpt program.

7.3 well-founded semantics for xcerpt 153

Theorem 12. For a locally stratified Xcerpt program P, the well-founded
semantics of P is total and coincides with the fixpoint calculated over the local
stratification of P.

In [PP90] the class of weakly stratified logic programs is introduced,
which is a true superset of the class of locally stratified programs
and has a well-defined, two-valued intended semantics. Put briefly, to
decide whether a logic program is locally stratifiable one considers the
dependency graph constructed from the entire Herbrand instantiation
of the logic program. In contrast, the decision for weak stratification is
based on the absence of negative cycles within the dependency graph
constructed from a subset of the Herbrand interpretation. This subset
excludes instantiated rules containing literals of extensional predicate
symbols that are not given in the program. The standard example
for a program that is weakly stratified but not locally stratified is the
following:

win(X) : −move(X, Y) ∧ ¬win(Y)

A position X is a winning position of a game, if there is a move from
X to position Y and Y is a losing position. As mentioned above, weak
stratification depends on the extension of extensional predicate symbols
(move in the above example), and the program above is only weakly
stratifiable in the case that move has an acyclic extension. With Xcerpt
not distinguishing between predicate symbols and function symbols,
weak stratification cannot be direclty transferred to Xcerpt. Still, some
term t in the Herbrand universe of an Xcerpt program can only be
constructed extensionally (as facts), but not intentionally (by rules),
since there may not be a rule with head h such that the outermost
label of h and t coincide. We call such terms, in analogy with logic
programming, as extensionally defined, and terms constructed by rules
intentionally defined.

Weak stratification for Xcerpt is defined just as local stratification for
Xcerpt programs, with the small deviation that not the entire Herbrand
instantiation is considered in the construction of the dependency graph,
but only those rules of the Herbrand instantiation which are valid, in
the sense that they do not contain extensional atoms that are not given
as facts of the program. We call this set of rules the Reduced Herbrand
Instantiation of an Xcerpt program P.

Definition 72 (Reduced Herbrand Instantiation). Let P be an Xcerpt pro-
gram, HP ist Herbrand instantiation and r ∈ HP. Then r is in the reduced
Herbrand instantiation of P, if and only if all extensional atoms in the body
of r also occur as facts in P.

Definition 73 (Weak stratification of Xcerpt programs). A weak stratifi-
cation of an Xcerpt program P is a partitioning of the Herbrand universe of
P into strata such that the following conditions hold:

• All facts of P are in stratum 1.

• If a term q appears positively in the body of a rule r with head c in the
reduced Herbrand instantiation of P, then q must be in the same or a
higher stratum than c.

• If a term q appears negatively within the body of a rule r with head
c in the reduced Herbrand instantiation of P, then q is in a strictly
higher stratum than c.

154 xcerpt term simulation and multi-rule semantics

• If a term q simulates into a term c, then q is in the same or in a higher
stratum than q.

A logic program with rich unification, which is weakly stratifiable,
but not locally stratifiable is the program S in Listing 7.6. It computes
the longest path relationship between the nodes in a social network
and the source node anna. The recursive rule in S can be read as “The
longest path from anna to a person P is n(D) if and only if there is
some other person P1 who knows P, and whose longest path from anna
is D, and if there is no longer path from anna to P than n(D)”. The
terms n(0),n(n(0)), . . . are interpreted as the natural numbers 1, 2,

Listing 7.6: The longest path problem as a logic program with rich unification.

longest_path(anna, 0).

knows(anna, bob). knows(bob, chuck). knows(anna, chuck).

longest_path(P, n(D)) ←
knows(P1, P), longest_path(P1, D), not(longest_path(P, > n(D))). �

Figure 8: Weak stratification for Listing 7.6

lp(a, 0) lp(b, 0) lp(a,n(0)) lp(b,n(0)) lp(a,n(n(0))) lp(b,n(n(0)))

lp(c,n(0)) lp(c,n(n(0))) lp(c,n(n(n(0)))) . . .

lp(c,> n(0)) lp(c,> n(n(0))) lp(c,> n(n(n(0)))) . . .

. . .¬
¬

¬
�

�

�

+ + + + + +

Unification of terms in Listing 7.6 is defined as standard Prolog
unification with the following semantics for the ‘>’ symbol: a query
a(> i) unifies with a term a(j) if and only if i, j are natural numbers
with j > i. By Definition 71, the well-founded semantics of Listing 7.6
is indeed the longest-path relationship with source anna, as Figure 9

shows.
Program S is not locally stratified, because in the presence of cycles

in the data – e.g. a fact knows(anna, anna) – the dependency graph of
S contains a cycle through negation. However, in the case of cycles in
the data, also the intuitive semantics of S is unclear, as paths may be
infinitely long. For all acyclic knows relationships, S is weakly stratified.

Listing 7.7 shows part of the reduced Herbrand instantiation of
Listing 7.6. It shows only rules where terms of the form n(n(. . . 0 . . .))

are substituted for D, and only the atomic terms anna, bob and chuck
are substituted for the variables P and P1. But also in consideration of
such non-intended rules, the program remains weakly stratifiable.

Listing 7.7: Reduced Herbrand instantiation of Listing 7.6

longest_path(anna, 0).

knows(anna, bob). knows(bob, chuck). knows(anna, chuck).

longest_path(chuck, n(0)) ←
knows(anna, chuck), longest_path(anna, 0),

not(longest_path(chuck, > n(0))).

longest_path(chuck, n(n(0))) ←

7.3 well-founded semantics for xcerpt 155

Figure 9: Computation of the well-founded semantics for the program S in
Listing 7.6

I0 = ∅
TS(I0) = {k(a,b),k(b, c),k(a, c), lp(a, 0)}

US(I0) = {lp(a,n(0)), lp(a,n(n(0))), . . . ,

lp(b, 0), lp(b,n(0)), lp(b,n(n(0))), . . . ,

lp(c, 0), lp(c,n(0)), lp(c,n(n(0))), . . . ,k(b,a), k(c,a),k(c,b)}

WS(I0) = {k(a,b), k(b, c),k(a, c), lp(a, 0),

not(lp(a,n(0))),not(lp(a,n(n(0)))), . . . ,

not(lp(b, 0)),not(lp(b,n(0))), . . . ,

not(lp(c, 0)),not(lp(c,n(0))), . . . ,

not(k(b,a)),not(k(c,a)),not(k(c,b))} = I1

TS(I1) = {k(a,b),k(b, c),k(a, c), lp(a, 0), lp(b,n(0)), lp(c,n(0))}

US(I1) = {lp(a,n(0)), lp(a,n(n(0))), . . . ,

lp(b, 0), lp(b,n(n(0))), lp(b,n(n(n(0)))), . . . ,

lp(c, 0), lp(c,n(n(0))), lp(c,n(n(n(0)))), . . . ,

k(b,a),k(c,a),k(c,b)}

WS(I1) = {k(a,b),k(b, c),k(a, c), lp(a, 0), lp(b,n(0)), lp(c,n(0))

not(lp(a,n(0))),not(lp(a,n(n(0)))), . . . ,

not(lp(b, 0)),not(lp(b,n(n(0)))),not(lp(b,n(n(n(0))))), . . . ,

not(lp(c, 0)),not(lp(c,n(n(0)))),not(lp(c,n(n(n(0))))), . . . ,

not(k(b,a)),not(k(c,a)),not(k(c,b))} = I2

TS(I2) = {k(a,b),k(b, c),k(a, c), lp(a, 0), lp(b,n(0)), lp(c,n(0)),

lp(c,n(n(0)))}

US(I2) = {lp(a,n(0)), lp(a,n(n(0))), . . . ,

lp(b, 0), lp(b,n(n(0))), lp(b,n(n(n(0)))), . . . ,

lp(c, 0), lp(c,n(n(n(0)))), . . . ,

k(b,a),k(c,a),k(c,b)}

WS(I2) = {k(a,b),k(b, c),k(a, c), lp(a, 0), lp(b,n(0)), lp(c,n(0)),

lp(c,n(n(0))),

not(lp(a,n(0))),not(lp(a,n(n(0)))), . . . ,

not(lp(b, 0)),not(lp(b,n(n(0)))),not(lp(b,n(n(n(0))))), . . . ,

not(lp(c, 0)),not(lp(c,n(n(n(0))))), . . . ,

not(k(b,a)),not(k(c,a)),not(k(c,b))} = I3

TS(I3) = {k(a,b),k(b, c),k(a, c), lp(a, 0), lp(b,n(0)), lp(c,n(n(0)))}

US(I3) = {lp(a,n(0)), lp(a,n(n(0))), . . . ,

lp(b, 0), lp(b,n(n(0))), lp(b,n(n(n(0)))), . . . ,

lp(c, 0), lp(c,n(0)), lp(c,n(n(n(0)))), . . . ,k(b,a),k(c,a),k(c,b)}

WS(I3) = TS(I3)∪¬ ·US(I3)
WS(I4) = WS(I3)

156 xcerpt term simulation and multi-rule semantics

knows(anna, chuck), longest_path(anna, n(0)),

not(longest_path(chuck, > n(n(0)))).

. . .

longest_path(bob, n(0)) ←
knows(anna, bob), longest_path(anna, 0),

not(longest_path(bob, > n(0))).

longest_path(bob, n(n(0))) ←
knows(anna, bob), longest_path(anna, n(0)),

not(longest_path(bob, > n(n(0)))).

. . .

longest_path(chuck, n(0)) ←
knows(bob, chuck), longest_path(bob, 0),

not(longest_path(chuck, > n(0))).

longest_path(chuck, n(n(0))) ←
knows(bob, chuck), longest_path(bob, 0),

not(longest_path(chuck, > n(n(0)))).

. . .

The most interesting section of the dependency graph of program
S is shown in Figure 8 – the terms lp(b,> n(0)), lp(b,n(n(0))), . . .,
the facts knows(a,b),knows(b, c),knows(a, c) and their dependencies
with other literals are omitted for the sake of conciseness. Also only
rule instantiations which are valid under the given extensional data are
reflected in the graph, as weak stratification suggests. Even under these
restrictions, the dependency graph of Listing 7.6 has an infinite weak
stratification, and does not have a lowest stratum, which makes the
program unamenable to an iterated fixpoint calculation over the strata.
Nevertheless, the well-founded semantics for Listing 7.6 is well-defined
and coincides with its intuitive semantics. The well-founded semantics
being declarative, we leave the search for an operational semantics of
weakly stratified programs with an infinite stratification as an open
question.

7.4 on the relation of grouping stratification with nega-
tion stratification

The Xcerpt grouping constructs all and some are used to collect sets of
bindings for the same variable within a term. Grouping constructs are
useful for constructing all kinds of collections, such as the list of all Euro-
pean capitals from a binary relation containing the capitals of countries
as in Example 32. According to the fixpoint semantics given in [Sch04a],
Example 32 entails the Xcerpt data term capitals{Berlin,Paris,Rome},
but it does not entail the data term capitals{Berlin,Paris}.

Example 32 (A simple Xcerpt program with a grouping construct).

captitals{all var City}← capital[var Country, var City].

capital[Germany,Berlin].

capital[France,Paris].

capital[Italy,Rome].

As pointed out in [Sch04a], grouping constructs allow the specifi-
cation of programs whose semantics is unclear or unintended by the
query author. To exclude such programs and to determine the correct
order of evaluation of rule programs, grouping stratification has been
introduced as a syntactic criterion for asserting that the semantics of

7.4 grouping versus negation stratification 157

a program is clear. Moreover, the semantics of an Xcerpt program P

with grouping constructs is iteratively defined over the stratification
of P. Any Xcerpt program that is grouping stratifiable is guaranteed
to have a well-defined meaning. There are, however, Xcerpt programs
that are not grouping stratifiable, and still have a well defined meaning.
In [Est08] the set of locally grouping stratifiable programs is introduced,
which generalizes the set of grouping stratifiable programs, and a se-
mantics for this class of programs is given which coincides with the
semantics of [Sch04a] on the class of grouping stratifiable programs.

In this section we show that (i) grouping stratification is in fact
the same thing as negation stratification, (ii) that Xcerpt programs
with grouping constructs can be mapped to Xcerpt programs without
grouping constructs, but with negation, such that the evaluation of the
transformed program, and a canonical transformation of the results is
equivalent to the evaluation of the program with grouping constructs.
In practice, this transformation immediately gives rise to an evaluation
algorithm for Xcerpt programs that is easier to implement, since it does
not depend on the notion of grouping stratification.

7.4.1 Translation of Programs with Single Grouping Constructs to Grouping-
free Xcerpt Programs

We start out by evaluating a simple Xcerpt program P with a single all
construct by a translation to an Xcerpt program T(P) without grouping
constructs, evaluation of T(P) to obtain the result Eval(T(P)), and in-
verse transformation of Eval(T(P)) to T−1(Eval(T(P))). T−1(Eval(T(P)))

yields the same result as the direct evaluation Eval(P) of P.

Example 33. A simple Xcerpt program P with the grouping construct all

g{all var X}← f{X}.

f{a}. f{b}. f{c}.

Consider the Xcerpt program P in Example 33. First we consider
direct evaluation of P: the rule body f{X} is unified with all facts of the
program (f{a}, f{b}, and f{c}), yielding the following substitution set σ.

σ = {{X 7→ a}, {X 7→ b}, {X 7→ c}}

σ is then applied to the head of the rule, yielding the term g{a,b, c}.
With indirect evaluation, P is first translated to T(P) (Example 34),
which is evaluated to Eval(T(P)) in Example 7, and finally the result is
transformed back to T−1(Eval(T(P))), yielding the final result g{c,b,a},
which is simulation-equivalent to g{a,b, c}, obtained by the direct eval-
uation.

The idea of the transformation in the first step is not to compute the
maximum instantiation of a rule head h with grouping constructs at
once, but to iteratively compute larger instantiations of the head until
the maximum instantiation is reached. For this end, we use recursive
list structures of the form list[F,R] where F is an Xcerpt term, and R is
either itself a compound list or the empty list nil. In this representation,
the term g{a,b, c} appears as g{list[a, list[b, list[c,nil]]]}. In contrast to
flat collections of terms, list terms have a fixed arity of 2, but can also
contain arbitrary numbers of elements.

158 xcerpt term simulation and multi-rule semantics

Since we are only interested in the maximum instantiation of the
rule head g{all var X}, a helper label helper is used to compute the
intermediate results. Finally, only the largest atom with outermost
label helper is transformed to the same atom with outermost label
g. To avoid confusion with the vocabulary of the original programs,
the vocabulary list, nil and helper should be prefixed by a reserved
namespace, e.g. the Xcerpt namespace http://www.xcerpt.org.

The literals not(helper{desc F}) and not(helper{list[var _, var R]})

ensure that newly added elements are not already contained in a list,
and that list tails are only used once in the construction. In this way,
an order over the elements in the list is fixed. The rewritten program
additionally contains a fact helper{nil} as the minimally instantiated
rule head to initiate the iterative construction of the result.

Example 34. Grouping-free rewriting T(P) of the program P in Example 33

helper{list[var F, var R]}←
f{varF},helper{var R},not(helper{desc F}),

not(helper{list[var_, var R]}).

f{a}. f{b}. f{c}.

helper{nil}.

g{var List}← helper{var List},not(helper{list[var _, var List]}).

The evaluation of the above program proceeds as in Table 7: on the
left hand side, the substitution sets obtained from evaluating rule bodies
are shown, the right hand side shows the result of the application of
these substitution sets to the respective rule heads.

Table 7: Evaluation of the program T(P) in Example 34

{var F 7→ a, var R 7→ nil} ⇒ helper{list[a,nil] }

{var F 7→ b, var R 7→ list[a,nil] } ⇒ helper{list[b, list[a,nil]] }

{var F 7→ c, var R 7→ list[b, list[a,nil]] } ⇒ helper{list[c, list[b, list[a,nil]]] }

{var List 7→ list[c, list[b, list[a,nil]]] } ⇒ g{list[c, list[b, list[a,nil]]] }

After the transformed program is evaluated, all but the maximal
instantiated rule head m = g{list[c, list[b, list[a,nil]]]} are discarded,
and m is transformed back into the ordinary Xcerpt term notation
g{c,b,a} without lists.

With the method informally described by the above example, Xcerpt
rules with single grouping constructs can be evaluated without deter-
mination of the grouping stratification of the program. For the sake
of brevity, we leave the determination of a general transformation
algorithm for Xcerpt programs with simple grouping constructs to
grouping-free Xcerpt programs as future work. Moreover we do not
cover the question about how Xcerpt rules containing both negation and
grouping constructs are translated to grouping-free Xcerpt programs.
In fact, the semantics of such rules has been left unspecified in [Sch04a],Rewriting of rules

with grouping
constructs and
negation

and the approach taken in this section seems to be a promising way for
achieving a unified negation- and grouping-semantics for Xcerpt.

7.4 grouping versus negation stratification 159

7.4.2 Translation of Programs with Nested Grouping Constructs to Grouping-
free Xcerpt Programs

Grouping constructs are often used in a nested manner as in Example
35, which groups cities according to the countries they are located in,
and wraps the result in a single Xcerpt term with root label db (for
database). The semantics of nested grouping constructs in Xcerpt is
non-trivial, but in line with grouping in Xcerpt

RDF (Definition 37). This
subsection shows how rules with nested grouping constructs can be
translated to rules with simple, unnested grouping constructs, retaining
the semantics of the original program. Together with the algorithm
sketched in the previous subsection, both techniques allow the rewriting
of arbitrary Xcerpt programs to Xcerpt programs without grouping
constructs.

Example 35 (An Xcerpt program Q with nested grouping constructs).

db{all country{var Country, cities{all var City} } }←
located_in[var City, var Country].

located_in[Barcelona,Spain].

located_in[Madrid,Spain].

located_in[Warsaw,Poland].

Evaluation of Q yields the Xcerpt term

Eval(Q) = db{country{Spain, cities{Barcelona,Madrid} },

country{Poland, cities{Warsaw} } }

Xcerpt rules with nested grouping constructs can be rewritten to
sequences of rules without nested grouping constructs as follows: Let
r be a rule with nested grouping constructs contained in an Xcerpt
program P. Let lh be the outermost label of the head of r. Let r1 be
the rule obtained from r by omitting the outermost grouping construct,
and substituting the outermost label by a fresh label l1.9 Let r2 be a
rule of the form of Equation 7.1. Then the result of the evaluation of
the program P ′ which is obtained from P by substituting the rule r by
the sequence of rules r1, r2 restricted to the vocabulary of P.

lh{all var Item}← l1{var Item} (7.1)

Example 36 (Rewriting nested grouping constructs to simple grouping
constructs). The program Q of example 35 is rewritten to the following
Xcerpt program R(Q). Observe that R(Q) does not contain nested grouping
constructs.

item{country{var Country, cities{all var City}}}←
located_in[var City, var Country].

db{all var Item}← item{var Item}

located_in[Barcelona,Spain].

located_in[Madrid,Spain].

located_in[Warsaw,Poland].

9 Freshness of the label l1 can be ensured by using a reserved namespace such as http:

//www.xcerpt.org.

http://www.xcerpt.org
http://www.xcerpt.org

160 xcerpt term simulation and multi-rule semantics

R(Q) is evaluated as shown below. All terms with outermost label item
are only intermediate results and can be discarded after the evaluation. The
term with outermost label db is considered as the final result and coincides
with the direct evaluation of Q.

σ1 = { {City 7→ Barcelona,Country 7→ Spain},

{City 7→Madrid,Country 7→ Spain},

{City 7→Warsaw,Country 7→ Poland} }

⇒item{country{Spain, cities{Barcelona,Madrid} } },

item{country{Poland, cities{Warsaw} } }

σ2 = { {Item 7→ country{Spain . . .} },

{Item 7→ country{Poland . . .} } }

⇒db{country{Spain . . .}, country{Poland . . .} }

As for the rewriting of simple grouping constructs to grouping-free
Xcerpt programs, we do not give a general algorithm for the task of
rewriting nested grouping constructs to simple grouping constructs.
Yet the specification of such an algorithm seems to be straightforward.

Once all nested grouping constructs have been eliminated, the result-
ing rule set can be rewritten to an Xcerpt program completely free of
grouping constructs as shown in Section 7.4.1.

Example 37 (Grouping-free version of Example 35). Example 35 can
be rewritten to the following (almost) equivalent program without grouping
constructs:

helper1{country{var Country, cities{list[var City, var Rest] } } }←
located_in[var City, var Country],

helper1{country{var Country, cities{var Rest} } },

not(helper1{country{var Country,desc var City} }),

not(helper1{country{var Country, cities{list[var _, var Rest] } } }).

helper1{country{var Country, cities{nil} } }←
located_in[var _, var Country].

item{country{var Country, cities{var List} } }←
helper1{country{var Country, cities{var List} } },

not(helper1{country{var Country, cities{list[var _, var List] } } })

helper2{list[var Item, var Rest] }←
item{var Item},helper2{var Rest},not(helper2{desc var Item}),

not(helper2{list[var _, var Rest] }).

helper2{nil}.

db{var List}← helper2{var List},not(helper2{list[var _, var List] })

located_in[Barcelona,Spain].

located_in[Madrid,Spain].

located_in[Warsaw,Poland].

Figure 10 shows the dependency graph of the program above. While Q is a
grouping stratifiable program, its transformation to a grouping-free program
yields an Xcerpt program with negation that is not negation-stratifiable. It is,
however, weakly negation stratifiable.

7.4 grouping versus negation stratification 161

Figure 10: Dependency graph of the grouping-free transformation of Q

item located_in db

−

+

+
−

++

While the transformation of the Xcerpt program with nested group-
ing constructs in 35 results in a weakly grouping stratifiable program,
this might not always be the case. We leave this question open for future
work.

8X C E R P T Q U E RY T E R M S U B S U M P T I O N

Contents
8.1 XcerptXML Query Terms and Simulation 165
8.2 Simulation Subsumption 165
8.3 Simulation Subsumption by Rewriting 167
8.4 Properties of the Rewriting System 170

8.4.1 Subsumption Monotonicity and Soundness 170

8.4.2 Completeness 172

8.4.3 Decidability and Complexity 173

8.5 Complexity for Xcerpt Fragments 174
8.6 Future Work in the Area of Xcerpt Query Term Subsump-

tion 185

This section deals with the subsumption relationship between Xcerpt
query terms. Deciding subsumption has traditionally been an important
means for optimizing multiple queries against the same set of data
and can be used for improving termination of Xcerpt programs in a
backward chaining evaluation engine.

Xcerpt query terms (Definition 53) are an answer to accessing Web
data in a rule-based query language. Like most approaches to querying
Web data (or semi-structured data, in general), Xcerpt query terms
differ from relational query languages such as SQL by a set of query
constructs specifically attuned to the less rigid, often diverse, or even
entirely schema-less nature of Web data. As Definitions 53 (Xcerpt
Query Term) and 58 suggest, Xcerpt terms are similar to normalized
forward XPath (see [OMFB02]) but extended with variables, deep-equal,
a notion of injective match and regular expressions. Thus, they achieve
much of the expressiveness of XQuery without sacrificing the simplicity
and pattern-structure of XPath.

When used in the context of Xcerpt, query terms serve a similar role
to terms of first-order logic in logic languages. Therefore, the notion
of unification has been adapted for Web data in [Sch04a], there called
“simulation unification”. Simulation for XcerptXML terms is recapitu-
lated in Definition 59. This form of unification is capable of handling
all the extensions of query terms over first-order terms that are needed
to support Web data: selecting terms at arbitrary depth (desc), distin-
guishing partial from total terms, regular expressions instead of plain
labels, negated subterms (without), etc.

The notions of query term, simulation and substitution sets are
exemplified in Section 4.1 and formally defined in 7.1. In this section,
we consider query containment between two Xcerpt terms.

Subsumption or containment of two queries (or terms) is an estab-
lished technique for optimizing query evaluation: a query q1 is said to
be subsumed by or contained in a query q2 if every possible answer to
q1 against every possible data is also an answer to q2. Thus, given all

163

164 xcerpt query term subsumption

answers to q2, we can evaluate q1 only against those answers rather
than against the whole database.

For first-order terms, subsumption is efficient and employed for
guaranteeing termination in tabling (or memoization) approaches to
backward chaining of logic [TS86, CW96]. However, when we move
from first-order terms to Web queries, subsumption (or containment)
becomes quickly less efficient or even intractable. Xcerpt query terms
have, as pointed out above, some similarity with XPath queries. Con-
tainment for various fragments of XPath is surveyed in [Sch04b], both
in absence and in presence of a DTD. Here, we focus on the first set-
ting, where no additional information about the schema of the data is
available. However, Xcerpt query terms are a strict super-set of (nav-
igational) XPath as investigated in [Sch04b]. In particular, the Xcerpt
query terms may contain (multiple occurrences of the same) variables.
This brings them closer to conjunctive queries (with negation and deep-
equal), as considered in [WL03] on general relations, and in [BMS07]
for tree data. Basic Xcerpt query terms can be reduced to (unions of)
conjunctive queries with negation. However, the injectivity of Xcerpt
query terms (no two siblings may match with the same data node) and
the presence of deep-equal (two nodes are deep-equal iff they have
the same structure) have no direct counterpart in conjunctive query
containment. Though [Klu88b] shows how inequalities in general affect
conjunctive query containment, the effect of injectivity (or all-distinct
constraints) on query containment has not been studied previously. The
same applies to deep-equal, though the results in [Koc05] indicate that
in absence of composition deep-equal has no effect on evaluation and
thus likely on containment complexity.

For Xcerpt query terms, subsumption is, naturally, of interest for the
design of a terminating, efficient Xcerpt engine. Beyond that, however,
it is particularly relevant in a Web setting. Whenever we know that
one query subsumes another, we do not need to access whatever data
the two queries access twice, but rather can evaluate both queries
with a single access to the basic data by evaluating the second query
on the answers of the first one. This can be a key optimization also
in the context of search engines, where answers to frequent queries
can be memorized so as to avoid their repeated computation. Even
though today’s search engines are rather blind of the tree or graph
structure of HTML, XML and RDF data, there is no doubt that some
more or less limited form of structured queries will become more and
more frequent in the future (see Google scholar’s “search by author,
date, etc.”). Query subsumption, or containment, is key to a selection
of queries, the answers to which are to be stored so as to allow as
many queries as possible to be evaluated against that small set of data
rather than against the entire search engine data. Thus, the notion of
simulation subsumption proposed in this chapter can be seen as a
building block of future, structure-aware search engines.

Therefore, we study in this section subsumption of Xcerpt query
terms. The main building blocks of this section are the following.

• we introduce and formalize a notion of subsumption for Xcerpt
query terms, called simulation subsumption, in Section 8.2. To the
best of our knowledge, this is the first notion of subsumption for
queries with injectivity of sibling nodes and deep-equal.

8.1 xcerpt
xml

query terms and simulation 165

• we show, also in Section 8.2, that simulation on ground query
terms is equivalent to simulation subsumption.1 This shows that
ground query term simulation as introduced in [Sch04a] captures
the intuition that a query term that simulates into another query
term subsumes that term.

• we define, in Section 8.3, a rewriting system that allows us to
reduce the test for subsumption of q in q ′ to finding a sequence
of syntactic transformations that can be applied to q to transform
it into q ′.

• we show, in Section 8.4, that this rewriting system gives rise to
an algorithm for testing subsumption that is sound and complete
and can determine whether q subsumes q ′ in time O(n!n). In
particular, this shows that simulation subsumption is decidable.

8.1 xcerpt
xml

query terms and simulation

Query terms are an abstraction for queries that can be used to extract
data from semi-structured trees. In contrast to XPath queries, they may
contain (multiple occurrences of the same) variables and demand an
injective mapping of the child terms of each term. For example, the XPath
query /a/b[c]/c demands that the document root has label a, and has
a child term with label b that has itself a child term with label c. The
subterm c that is given within the predicate of b can be mapped to
the same node in the data as the child named c of b. Therefore, this
XPath query would be equivalent to the query term a{{b{{c}}}}, but not
to a{{b{{c, c}}}}. Simulation could be, however, easily modified to drop
the injectivity requirement.

8.2 simulation subsumption

In this section, we first introduce simulation subsumption (Definition
74), then for several query terms we discuss whether one subsumes the
other to give an intuition for the compositionality of the subsumption
relationship. Subsequently, the transitivity of the subsumption relation-
ship is proven (Lemma 1), some conclusions about the membership in
the subsumption relationship of subterms, given the membership in
the subsumption relationship of their parent terms are stated. These
conclusions formalize the compositionality of simulation subsumption
and are a necessary condition for the completeness of the rewriting
system introduced in Section 8.3.

In tabled evaluation of logic programs, solutions to subgoals are saved
in a solution table, such that for equivalent or subsumed subgoals, these
sets do not have to be recomputed. As mentioned before, this avoidance
of re-computation does not only save time, but can, in certain cases
be crucial for the termination of a backward chaining evaluation of
a program. In order to classify subgoal as solution or look-up goals,
boolean subsumption as specified by Definition 74 must be decided.
Although Xcerpt query terms may contain variables, n-ary subsumption
as defined in [Sch04b] would be too strict for our purposes. To see this,
consider the Xcerpt query terms q1 := a{{var X}} and q2 := a{{c}}.

1 With small adaptions of the treatment of regular expressions and negated subterms in
query term simulation.

166 xcerpt query term subsumption

Although all data terms that are relevant for q2 can be found in the
solutions for q1, q1 and q2 cannot be compared by n-ary containment,
because they differ in the number of their query variables.

Definition 74 (Simulation Subsumption). A query term q1 subsumes an-
other query term q2 if all data terms that q2 simulates with are also simulated
by q1.

Example 38 (Examples for the subsumption relationship). Let the query
terms q1, . . . q5 be given by:

• q1 := a{{}}

• q2 := a{{desc b,desc c,d}}

• q3 := a{{desc b, c,d}}

• q4 := a{{without e}}

• q5 := a{{without e{{without f}}}}

Then the following subsumption relationships hold:

• q2 subsumes q3 because it requires less than q3: While q3 requires
that the data has outermost label a, subterms c and d as well as a
descendant subterm b, q2 requires not that there is a direct subterm c,
but only a descendant subterm. Since every descendant subterm is also
a direct subterm, all data terms simulating with q3 also simulate with
q2.

But the subsumption relationship can also be decided in terms of sim-
ulation: q2 subsumes q3, because there is a mapping π from the direct
subterms ChildT(q2) of q2 to the direct subterms ChildT(q3) of q3,
such that qi subsumes π(qi) for all qi in ChildT(q2).

• q3 does not subsume q2, since there are data terms that simulate with
q2, but not with q3. One such data term is d := a{b, e{c},d}.

Again, the subsumption relationship between q3 and q2 (in this order)
can be decided by simulation. There is no mapping π from the direct
subterms of q3 to the direct subterms of q2, such that a simulates into
π(a).

• q1 subsumes q4 since it requires less than q4. All data terms that
simulate with q4 also simulate with q1.

• q4 does not subsume q1, since the data term a{{e}} simulates with q1,
but does not simulate with q4.

• q5 subsumes q4, but not the other way around.

Proposition 1. The subsumption relationship between query terms is transi-
tive, i.e. for arbitrary query terms q1, q2 and q3 it holds that if q1 subsumes
q2 and q2 subsumes q3, then q1 subsumes q3.

Proposition 1 immediately follows from the transitivity of the subset
relationship. Query term simulation and subsumption are defined in a
way such that, given the simulation subsumption between two query
terms, one can draw conclusions about subsumption relationships that
must be fulfilled between pairs of subterms of the query terms. Lemma
10 formalizes these sets of conclusions.

8.3 simulation subsumption by rewriting 167

Lemma 10 (Subterm Subsumption). Let q1 and q2 be query terms such
that q1 subsumes q2. Then there is an injective mapping π fromChildT+(q1)

to ChildT+(q2) such that qi1 subsumes π(qi1) for all qi1 ∈ ChildT
+(q1).

Furthermore, if q1 and q2 are breadth-incomplete, then there is a (not
necessarily injective) mapping σ from ChildT−(q1) to ChildT−(q2) such
that pos(σ(q

j
1)) subsumes pos(qj1) for all qj1 ∈ ChildT

−(q1).
If q1 is breadth-incomplete and q2 is breadth-complete then there is no qj1

in ChildT−(q1) and qk2 ∈ ChildT
+(q2) \ range(π) such that pos(qj1) �

qk2 .

Lemma 10 immediately follows from the equivalence of the subsump-
tion relationship and the extended query term simulation (see Lemma
15 in the appendix).

8.3 simulation subsumption by rewriting

In this section, we lay the foundations for a proof for the decidability
of subsumption between query terms according to Definition 74 by
introducing a rewriting system from one query term to another, which
is later shown to be sound and complete. Furthermore, this rewriting
system lays the foundation for the complexity analysis in Section 8.4.3.

The transformation of a query term q1 into a subsumed query term
q2 is exemplified in Figure 8.3.

Definition 75 (Subsumption monotone query term transformations).
Let q be a query term. The following is a list of so-called subsumption
monotone query term transformations.

• if q has incomplete subterm specification, it may be transformed to the
analogous query term with complete subterm specification.

a{{q1, . . . ,qn}}

a{q1, . . . ,qn}
,

a[[q1, . . . ,qn]]

a[q1, . . . ,qn]
(8.1)

• if q has unordered subterm specification, it may be transformed to the
analogous query term with ordered subterm specification.

a{{q1, . . . ,qn}}

a[[q1, . . . ,qn]]
,

a{q1, . . . ,qn}

a[q1, . . . ,qn]
(8.2)

• if q is of the form desc q ′ then the descendant construct may be elimi-
nated or it may be split into two descendant constructs separated by the
regular expression /.*/, the inner descendant construct being wrapped
in double curly braces.

desc q
q

,
desc q

desc /. ∗ /{{desc q}}
(8.3)

• if q has incomplete-unordered subterm specification, then a fresh vari-
able X may be appended to the end of the subterm list. A fresh variable
is a variable that does not occur in q1 or q2 and is not otherwise intro-
duced by the rewriting system.

X fresh⇒ a{{q1, . . . ,qn}},
a{{q1, . . . ,qn, var X}}

(8.4)

168 xcerpt query term subsumption

a{{

b{c, var X},

desc d,

without e{{ f }}

}} �

a{{ b{c, var X},

desc d,

without e{{ f }},

var Y

}} �
a{{ b{var X, c},

/.*/{{ desc d }},

without e{{ f }},

var Y

}} �

a{{ b{var X, c},

g{{ desc d }},

var Y,

without e{{ f }}

}} �
a{{ b{var X, c},

g{{ /.*/{{

desc d }} }},

var Y,

without e{{ f }}

}} �

a{{ b{var X, c},

g{{ h{{ d }} }},

var Y,

without e{{ f }}

}} �
a{ b{var X, c},

g{{ h{{ d }} }},

var Y,

without e{{ f }}

} �

a{ b{var X, c},

g{{ h{{ d }} }},

i{ },

without e{{ }}

} �

Equation 8.4

Equations 8.3, 8.6, 8.9

Equations 8.10, 8.6

Equation 8.3

Equation 8.10

Equation 8.1

Equation 8.8, 8.11, 8.9

• if q has incomplete-ordered subterm specification, then a fresh variable
may be inserted at the beginning, at the end, or in between two subterms
of q:

X fresh, i ∈ {1, . . . ,n}⇒
a[[q1, . . . ,qn]],

a[[q1, . . . ,qi, var X,qi+1, . . . ,qn]]
(8.5)

• if q has unordered subterm specification, then the subterms of q may be
arbitrarily permuted.

π ∈ Perms({1, . . . ,n})⇒ a{{q1, ..., qn}}

a{{qπ(1), ..., qπ(n)}}
(8.6)

π ∈ Perms({1, . . . ,n})⇒ a{q1, ..., qn}

a{qπ(1), ..., qπ(n)}
(8.7)

• if q contains a variable var X, which occurs in q at least once in a pos-
itive context (i.e. not within the scope of a without) then all occurrences
of var X may be substituted by another Xcerpt query term.

X ∈ PV(q), t ∈ QTerms⇒ q

q{X 7→ t}
(8.8)

8.3 simulation subsumption by rewriting 169

This rule may only be applied, if q contains all occurrences of X in q1.
Furthermore, no further rewriting rules may be applied to the replace-
ment term t.

If a variable appears within q only in a negative context (i.e. within the
scope of a without), the variable cannot be substituted by an arbitrary
term to yield a transformed term that is subsumed by q. The query
terms a{{ without var X }} and a{{ without b{ } }} together
with the data term a{ c } illustrate this characteristic of the subsump-
tion relationship. For further discussion of substitution of variables in
a negative context see Example 39.

• if q has a subterm qi, then qi may be transformed by any of the trans-
formations in this list except for Equation 8.8 to the term t(qi), and
this transformed version may be substituted at the place of qi in q, as
formalized by the following rule: 2 3

qi

t(qi)
⇒ a{{q1, . . . ,qn}}

a{{q1, . . . ,qi−1, t(qi),qi+1, . . . qn}}
(8.9)

• if the label of q is a regular expression e, this regular expression may be
replaced by any label that matches with e, or any other regular expres-
sion e ′ which is subsumed by e (see Definition 57).2

e ∈ RE, e subsumes e’⇒ e{{q1, . . . ,qn}}

e ′{{q1, . . . ,qn}}
(8.10)

• if q contains a negated subterm qi = without r and r ′ is a query term
such that t(r ′) = r (i.e. r ′ subsumes r) for some transformation step t,
then qi can be replaced by q ′i := without r ′.4

(qi = without r) ∧
r ′

r
∧ (q ′i = without r ′)

⇒ a{{q1, . . . ,qi, . . . ,qn}}

a{{q1, . . . ,q ′i, . . . qn}}
(8.11)

• if q is breadth-complete and contains a negated subterm, this subterm
may simply be omitted:5

(qi = without r), i ∈ {1, . . . ,n}

⇒ a{q1, . . . ,qi, . . . ,qn}

a{q1, . . . ,qi−1,qi+1 . . . qn}
(8.12)

2 The respective rules for complete-unordered subterm specification, incomplete-ordered
subterm specification and complete-ordered subterm specification are omitted for the
sake of brevity.

3 The exclusion of Equation 8.8 ensures that variable substitutions are only applied to entire
query terms and not to subterms. Otherwise the same variable might be substituted by
different terms in different subterms.

4 The respective transformation rule for ordered-incomplete query terms is omitted for
the sake of brevity. Since negated subterms in complete query terms are irrelevant, we
assume complete subterms to not contain negated subterms. Alternatively, these terms
can be transformed by Rule 8.12

5 The respective rule for ordered-complete query term specification is omitted for the sake
of brevity.

170 xcerpt query term subsumption

• if q is breadth-incomplete and contains two negated subterms s1 =

without s ′1 and s2 = without s ′2 such that s ′1 = t(s ′2) for some trans-
formation step t, then s1 can be omitted from q.

8.4 properties of the rewriting system

In this section, we show that the rewriting system introduced in the
previous section is sound (Section 8.4.1) and complete (Section 8.4.2).
Furthermore, we study the structure of the search tree induced by
the rewriting rules, show that it can be pruned without losing the
completeness of the rewriting system and conclude that simulation
subsumption is decidable. Finally we derive complexity results from
the size of the search tree in Section 8.4.3.

8.4.1 Subsumption Monotonicity and Soundness

Lemma 11 (Monotonicity of the transformations in Definition 75). All of
the transformations given in Definition 75 are subsumption monotone, i.e. for
any query term q and a transformation from Definition 75 which is applicable
to q, q subsumes t(q).

The proof of Lemma 11 is straight-forward since each of the transfor-
mation steps can be shown independently of the others. For all of the
transformations, inverse transformation steps t−1 can be defined, and
obviously for any query term q it holds that t−1(q) subsumes q.

Lemma 12 (Transitivity of the subsumption relationship, monotonic-
ity of a sequence of subsumption monotone query term transforma-
tions). For a sequence of subsumption monotone query term transformations
t1, . . . , tn, and an arbitrary query term q, q subsumes t1 ◦ . . . ◦ tn(q1).

The transitivity of the subsumption relationship is immediate from
its definition (Definition 74) which is based on the subset relationship,
which is itself transitive.

As mentioned above, the substitution of a variable X in a negative
context of a query term q by a query term t, which is not a variable,
results in a query term q ′ := q[X 7→ t] which is in fact more general
than q. In other words q[X 7→ t] subsumes q for any query term q if
X only appears within a negative context in q. On the other hand, if
X only appears in a positive context within q, then q ′ is less general
– i.e. q subsumes q ′. But what about the case of X appearing both in
a positive and a negative context within q? Consider the following
example:

Example 39. Let q := a{{ var X, without b{{ var X }} }}. It may
be tempting to think that substituting X by c[] to give q ′ = a{{ c[],

without b{{ c[] }} }} makes the first subterm of q less general, but the
second subterm of q more general. In fact, the subterm b[d] within the
data term d := a[b[d]] would cause the subterm without b{{ var X

}} of q to fail, but the respective subterm of q ′ to succeed, suggesting that
there is a data term that simulation unifies with q ′, but not with q, meaning
that q does not subsume q ′. However, there is no such data term, which is
due to the fact that the second occurrence of X within q is only a consuming
occurrence. When this part of the query term is evaluated, the variable X is
already bound.

8.4 properties of the rewriting system 171

In Definition 76 the normalized form for Xcerpt query terms is
introduced, because for an unnormalized query term q1 that subsumes
a query term q2 one cannot guarantee that there is a sequence of
subsumption monotone query term transformations t1, . . . , tn such
that tn ◦ . . . ◦ t1(q1) = q2. To see this, consider example 40.

Example 40 (Impossibility of transforming an unnormalized query
term). Consider q1 := a{{var X as b{{c}}, var X as b{{d}}}} and q2 :=

a{{b{{c,d}},b{{c,d}}}}. q2 subsumes q1, in fact both terms are even simu-
lation equivalent. But there is no sequence of subsumption monotone query
term transformations from q2 to q1, since one would have to omit one sub-
term from both the first subterm of q2 and from the second one. But such a
transformation would in general not be subsumption monotone.

Besides opening up the possibility of specifying restrictions on one
subterm non-locally, duplicate restrictions for the same variable also
allow the formulation of unsatisfiable query terms, as the following
example shows:

Example 41 (Unsatisfiable query terms due to variable restrictions).
Consider the query terms q1 := a{{var X as b, var X as c}} and q2 := b{{}}.
It is easy to see that q1 is unsatisfiable, and thus q2 subsumes q1. However,
there is no transformation sequence from q2 to q1.

Also single variable restrictions may in some cases be problematic, be-
cause they allow the specification of infinite, or at least graph structured
data terms as example 42 shows:

Example 42 (Nested variable restrictions). Consider the query terms
q1 := a{{var X as b{{var X}} }} and q2 := a{{var Y as b{{b{{var Y}} }} }}.
Both q1 and q2 simulate (among others) with the graph structured data terms
d1 := a{ &1^b { &1 } }, d2 := a{ &1^b { b{ &1 } } }, etc. Xcerpt data
terms and query terms as defined in [BS02] may include defining occurrences
of subterms (such as &1^b{ }) and referring ones (such as &1), and thus rep-
resent true graph structures. In the absence of such graph structured data
terms (as considered in this thesis) and in the absence of infinite data terms,
q1 and q2 are simply unsatisfiable, and thus useless. Therefore we assume
Xcerpt query terms to be free of such cyclic variable restrictions. Cyclic vari-
able restrictions may also slightly harder to recognize such as in the query
term q3 := a { var X as b{ var Y }, var Y as c{ var X } }.

To overcome these issues, query terms are assumed to be in normal-
ized form (Definition 76). In fact, almost all Xcerpt query terms can be
transformed into normalized form.

Definition 76 (Query terms in normalized form). A query term that
contains only a single variable restriction for each variable, and that is free
of cyclic variable restrictions, is a query term in normalized form. A query
term which can be converted into an equivalent query term in normalized
form is said to be normalizable.

Not all Xcerpt query terms are normalizable, as Example 43 shows:

Example 43 (Unnormalizable Xcerpt query terms). Consider the Xcerpt
query term q := a { var X as b{{ c }}, var X as b[[d, e]] }. The first variable
restriction for X requires that the binding for X has a subterm with label c. The
second variable restriction for X requires its binding to have two subterms d
and ewith d preceding e. The term r := a { var X as b{{ c, d , e }}, var X } is

172 xcerpt query term subsumption

more general than q since it does not specify that dmust precede e in the bind-
ing of X. On the other hand, the term s := a { var X as b[[c, d , e]], var X }

is less general than q, since it fixes an order between the pairs (c,d) and (c, e).
While q is equivalent to the query6 in Listing 8.1 there is no query term
with a single variable restriction that is equivalent to q.

Listing 8.1: A disjunction of normalized query terms equivalent to q

or{

a { var X as b[[c, d , e]], var X },

a { var X as b[[d, c , e]], var X },

a { var X as b[[d, e , c]], var X }

} �
Unsatisfiability of query terms makes the decision procedure for

subsumption more complex, and thus it is to be avoided whenever
possible. Allowing the specification of unsatisfiable query terms does
not add expressive power to a query language, and should thus be
disallowed. Apart from the normal form, also subterm injectivity is a
means for preventing the user of the Xcerpt query language from
specifying unsatisfiable queries.

Example 44 (Unsatisfiability due to non-injectivity). In this example we
use triple curly braces to state that the mapping from the siblings enclosed
within the braces need not be injective. With this notation queries become less
restrictive as the number of braces in the subterm specification increases. Let
q1 := a{{{b, without b}}}. Since q1 both requires and forbids the presence
of a subterm with label b, it is clearly unsatisfiable. Let q2 := b{{}}. Although
q2 subsumes q1, we cannot find a subsumption monotone transformation
sequence from q2 to q1.

The above example shows that the the proof for the decidability of the
subsumption relationship given in this section relies on the injectivity
of the subterm mapping. Since there is no injectivity requirement for
multiple consecutive predicates in XPath, the proof cannot be trivially
used to show decidability of subsumption of XPath fragments.

8.4.2 Completeness

Theorem 13 (Subsumption by transformation). Let q1 and q2 be two
query terms in normalized form such that q1 subsumes q2. Then q1 can
be transformed into q2 by a sequence of subsumption monotone query term
transformations listed in Definition 75.

Proof. We distinguish two cases:

• q1 and q2 are subsumption equivalent (i.e. they subsume each
other)

• q1 strictly subsumes q2

The first case is the easier one. If q1 and q2 are subsumption equiva-
lent, then there is no data term t, such that t simulates with one, but not
the other. Hence q1 and q2 are merely syntactical variants of each other.
Then q1 can be transformed into q2 by consistent renaming of variables
(Equation 8.9), and by reordering sibling terms within subterms of q

6 Recall that a query is a conjunction, disjunction or negation of query terms.

8.4 properties of the rewriting system 173

(Equation 8.6). This would not be true for unnormalized query terms
as Example 40 shows.

The second is shown by structural induction on q1.
For both the induction base and the induction step, we assume that

q1 subsumes q2, but that the inverse is false. Then there is a data term
d, such that q1 simulates into d, but q2 does not. In both the induction
base and the induction step, we give a distinction of cases, enumerating
all possible reasons for q1 simulating into d but q2 not. For each of these
cases, a sequence of subsumption monotone transformations t1, . . . tn
from Definition 75 is given, such that q ′1 := tn ◦ tn−1 ◦ . . . ◦ t1(q1)
does not simulate into d. By Lemmas 11 and 12, q ′1 still subsumes q2.
Hence by considering d and by applying the transformations, q1 is
brought “closer” to q2. If q ′1 is still more general than q2, then one
more dataterm d ′ can be found that simulates with q ′1, but not with q2,
and another sequence of transformations to be applied can be deduced
from this theorem. This process can be repeated until q1 has been
transformed into a simulation equivalent version of q2. For the proof,
see the appendix of [BFL07].

8.4.3 Decidability and Complexity

In the previous section, we establish that, for each pair of query terms
q1,q2 such that q1 subsumes q2, there is a (possibly infinite) sequence
of transformations t1, . . . , tk by one of the rules in Section 8.3 such that
tk ◦ . . . ◦ t1(q) = q2.

However, if we reconsider the proof of Theorem 13, it is quite ob-
vious that the sequence of transformations can in fact not be infinite:
Intuitively, we transform at each step in the proof q1 further towards
q2, guided by a data term that simulates in q1 but not in q2. In fact,
the length of a transformation sequence is bounded by the sum of the
sizes of the two query terms. As size of a query term we consider the
total number of its subterms.

Proposition 2 (Length of Transformation Sequences). Let q1 and q2 be
two Xcerpt query terms such that q1 subsumes q2 and n the sum of the sizes
of q1 and q2. Then, there is a sequence of transformations t1, . . . , tk such
that tk ◦ . . . ◦ t1(q1) = q2 and k ∈ O(n).

Proof. We show that the sequences of transformations created by the
proof of Theorem 13 can be bounded by O(n+m) if computed in a
specific way: We maintain a mapping µ from subterms of q1 to subterms
of q2 indicating how the query terms are mapped. µ is initialized with
(q1,q2). In the following, we call a data term d discriminating between
q1 and q2 if q1 simulates in d but not q2.

(1) For each pair (q,q ′) in µ, we first choose a discriminating data
term that matches case 1 in the proof of Theorem 13. If there is such
a data term, we apply Equation (8.10), label replacement, once to q
obtaining t(q) and update the pair in µ by (t(q),q ′). This step is
performed at most once for each pair as (t(q),q ′) have the same label
and thus there is no more discriminating data term that matches case 1.

(2) Otherwise, we next choose a discriminating data term that matches
case 2.a.i or 2.b.i. In both cases, we apply Equation (8.4), variable in-
sertion, to insert a new variable and update the pair in µ. This step is
performed at most |q2| − |q1| 6 n times for each pair.

174 xcerpt query term subsumption

(3) Otherwise, we next choose a discriminating data term that matches
case 2.a.ii and apply Equation (8.1), complete term specification and
update the pair in µ. This step is performed at most once for each pair.

(4) Finally, the only type of discriminating data term that remains
is one with the same number of positive child terms as q2. We use an
oracle to guess the right mapping σ from child terms of q1 to child
terms of q2. Then we remove the pair from µ and add (c,σ(c)) to µ for
each child term of q1. This step is performed at most once for each pair
in µ.

Since query subterms have a single parent, we add each subterm only
once to µ in a pair. Except for case 2, we perform only a constant number
of transformations to each pair. Case 2 allows up to n transformations
for a single pair, but the total number of transformations (over all pairs)
due to case 2 is bound by the size of q2. Thus in total we perform at
most 4 · n transformations where n is the sum of the number of the
sizes of q1 and q2.

Though we have established that the length of a transformation
sequence is bound by O(n), we also have to consider how to find such
a transformation sequence. The proof of Proposition 2, already spells
out an algorithm for finding such transformation sequences. However,
it uses an oracle to guess the right mapping between child terms of
two terms that are to be transformed. A naive deterministic algorithm
needs to consider all possible such mappings whose number is bound
by O(n!). It is worth noting, however, that in most practical cases the
actual number of such mappings is much smaller as most query terms
have fairly low breadth and the possible mappings between their child
terms are severely reduced just by considering only mappings where
the labels of child terms simulate. However, in the worst case the O(n!)
complexity for finding the right mapping may be reached and thus we
obtain:

Theorem 14 (Complexity of Subsumption by Rewriting). Let q1 and
q2 be two Xcerpt query terms. Then we can test whether q1 subsumes q2 in
O(n!n) time.

Proof. By proposition 2 we can find a O(n) length transformation se-
quence in O(n!n) time and by Theorem 13 q1 subsumes q2 if and only
if there is such a sequence.

8.5 complexity of subsumption for various less expressive

fragments of xcerpt

In this section we consider the Xcerpt query term fragment with de-
scendant axis, incompleteness in breadth and label wild cards. We
denote this fragment by Xcerpt({{}},desc, ∗) and show that subsump-
tion for this fragment is CoNP-hard, and CoNP-complete if simulation
for Xcerpt({{}}) is in P. Along the lines, we derive several complex-
ity results for other, mostly less expressive fragments, of Xcerpt. The
proof is inspired, and in large parts analogous to [MS02], which con-
siders XP[],∗,//, i.e. the fragment of XPath containing branching, the
descendant axis and label wildcards. Xcerpt({{}},desc, ∗) is equivalent
to XP[],∗,// except for two points: (i) the injectivity requirement for
Xcerpt subterms and (ii) the consideration of unordered data in Xcerpt
term simulation.

8.5 complexity for xcerpt fragments 175

The proof requires the notion of canonical models for Xcerpt query
terms. Since the definition of subsumption is based on simulation
between query terms and the set of all data terms, it does not give
rise to an algorithm for testing subsumption. For a given query term
q, the set of canonical models of q is a subset of all data terms that is
tested for simulation with another query term q ′ in order to decide if
q ′ subsumes q. To minimize computation, we are generally interested
in minimal canonical models. In some cases, the set of canonical models
is finite when q ′ is known, but infinite when q ′ is unknown. If the set
of canonical models of a query term is finite, we immediately obtain an
algorithm for query term subsumption.

Definition 77 (Canonical models of a query term). Given two query
terms q and q ′, a set of data terms M(q) is a set of canonical models of
q with respect to q ′, if the following condition holds: q is subsumed by q ′ if
and only if q ′ � d ∀d ∈M(q). M(q) is a minimal set of canonical models
for q with respect to q ′, if there is no smaller set D which is a set of canonical
models of q with respect to q ′.

Example 45 (Canonical models for Xcerpt({{}})). Consider the query term
q1 := a{{b, c,b}}. Can we fix a set of canonical models M(q1) for q1 such
that we can reduce subsumption between q1 and some arbitrary query term
q (not necessarily in Xcerpt({{}})) to simulation between q2 and M(q1)?
Intuitively, the data term d := a{b, c,b} encodes exactly the minimal infor-
mation that is required by q1. Hence, any other query term that simulates
with d should subsume q1. Obviously, q2 := a{{b, c}} simulates with d and
also subsumes q1. On the other hand q3 := a{{b, c{{d}} }}, q4 := a{{b, c,d}}
and q5 := a{{c, c}} do neither simulate into d nor contain q1. d is equivalent
to d ′ := a{c,b,b} and any data term that is obtained from d by subterm per-
mutation. So instead of fixing the set M(q1) as the singular set {d} we could
just as well take {d ′}. Obviously, {d} is a minimal set of canonical models for
q1.

One might expect that the set of canonical models for a query term
with unordered subterm specification must also include ordered data
terms. We know, however, that if some unordered query term simulates
with an unordered data term, then it will also simulate with its ordered
version. Hence there is no need for ordered data terms in the set of
canonical models for unordered queries.

Corollary 6 (Canonical models for Xcerpt({{}})). Let q be an Xcerpt query
term in Xcerpt({{}}). Then the singular set {d} where d is obtained from q by
substituting single curly braces for double ones, is a minimal set of canonical
models for q.

Xcerpt({{}}) is a very restricted version of Xcerpt query terms, but it
is not the simplest one. Xcerpt({}), i.e. the set of ground Xcerpt query
terms with only unordered, complete term specification is even easier
to handle for subsumption. The set of canonical models for an Xcerpt
query term q ∈ Xcerpt({}) is the unary set {q}.7 Simulation between an
Xcerpt query term in Xcerpt({}) and an Xcerpt data term in Xcerpt({})
is the same problem as tree isomorphism for node-labeled trees, a problem
which has been shown to be solvable in linear time in [AHU74]. Also
simulation between an Xcerpt query term in Xcerpt({}) and an Xcerpt
data term in Xcerpt([]) is equivalent to tree isomorphism.

7 Since q does not contain any constructs specific to query terms, q is also a data term.

176 xcerpt query term subsumption

Also Xcerpt([]), i.e. the set of Xcerpt query terms with only ordered,
complete subterm specification is an easier fragment than Xcerpt({{}}).
Simulation between Xcerpt([]) query terms and Xcerpt([]) data terms
can be decided in linear time, e.g. by a simultaneous depth first traver-
sation of both terms, comparing node labels and node depth at each
step. As a result, also subsumption between Xcerpt([]) query terms is
in O(n). We thus have:

Corollary 7 (Subsumption for simple breadth complete Xcerpt query
terms). Subsumption for Xcerpt([]) and Xcerpt({}) can be decided in linear
time.

After this short intermezzo on the complexity of subsumption for
less expressive fragments of Xcerpt query terms, let us return back to
the discussion of Xcerpt({{}}) subsumption.

Corollary 6 gives us a reduction from Xcerpt({{}}) subsumption to
Xcerpt query term simulation. Since the mapping from Xcerpt query
terms in Xcerpt({{}}) to their single canonical models is bijective, we can
also reduce simulation between an Xcerpt query term q ∈ Xcerpt({{}})
and an Xcerpt data term d ∈ Xcerpt({}) to Xcerpt({{}}) subsumption:
Let µ be the mapping from query terms in Xcerpt({{}}) to their canonical
models. Then q simulates into d if and only if q contains µ−1(d). Thus
we obtain Corollary 8.

Corollary 8 (Complexity of Subsumption for Xcerpt({{}})). Subsump-
tion for Xcerpt({{}}) is in the same complexity class as Simulation between
Xcerpt({{}}) query terms and Xcerpt({}) data terms.

Unfortunately, the complexity of Simulation between Xcerpt({{}})
query terms and Xcerpt({}) data terms has not yet been determined.
Let Xcerpt({{}}, |Σ| = 1) be the set of Xcerpt query terms with breadth
incomplete subterm specification constructed over a single label only.
Subsumption for Xcerpt({{}}, |Σ| = 1) – and also Simulation between
Xcerpt({{}}, |Σ| = 1) query terms and Xcerpt({}) data terms – is equiv-
alent to the subtree isomorphism problem, which has been known to be
in P for quite some time, and which has been shown to be solvable in
O(k1.376 · n) where k is the number of nodes in the embedded tree,
and n the number of nodes in the embedding tree [ST97].

Corollary 9 (Complexity of Xcerpt({{}}, |Σ| = 1)). Simulation and sub-
sumption of Xcerpt({{}}, |Σ| = 1) query terms can be decided inO(k1.376 ·n)

where k is the size of the query term and n is the size of the data.

Subtree isomorphism has also been examined for ordered trees. [M8̈9]
obtains an O(n+m) bound for finding an ordered bottom-up subtree
of size m in an ordered tree of size n by rewriting trees of arity k
to binary trees and comparing the Zaks sequence representation of
pattern and data tree. A bottom-up subtree tb of a tree t is a subtree
such that for all nodes x and y in t, if x is in tb and y is a child of
x, then also y must be in tb. Ordered bottom-up subtree matching is
equivalent to the Xcerpt query term fragment over a singular alphabet
with complete, ordered term specification only, and with the root term
qualified as a descendant. We denote this fragment as Xcerpt([], |Σ| =

1, ↑). As a further illustration, the term desc a[a[a[], a[]], a[]] is
in Xcerpt([], |Σ| = 1, ↑), but the terms a[], desc a[[]] and desc a[b[]]

are not.

8.5 complexity for xcerpt fragments 177

Figure 11: Embeddings from [Kil92] versus Xcerpt simulation

G1

a

b c

�

6i

G2

a

b c

d

Also [Val02] considers ordered subtree isomorphism over a singular
alphabet Σ, but again with a different notion of subtrees than required
for Xcerpt([[]]) simulation: If a node nd in the data tree d is matched
by the some node np in the pattern tree p, then also all left siblings
of nd must be matched by left siblings of np in the same embedding.
These kinds of queries are expressible in Xcerpt only in the presence of
subterm negation (i.e. the without keyword). Therefore we do not give
an upper bound for the complexity of Xcerpt([[]], |Σ| = 1) simulation,
but refer to the bound for the larger fragment Xcerpt([[]]) identified
below.

Having identified the complexity of simulation and subsumption
for Xcerpt({{}}, |Σ| = 1) we now turn to the equivalent problem over
an arbitrary alphabet. [Kil92] considers ten different tree inclusion
problems, four of which are of interest for Xcerpt simulation and, for
the sake of canonical models, also for Xcerpt containment. These are
ordered path inclusion, unordered path inclusion, ordered tree inclusion and
unordered tree inclusion. Central to all these problems is the notion of
embeddings. An embedding as defined in [Kil92] from a pattern tree
p to a data tree d is an injective function from the nodes of p to the
nodes of d, that preserves labels and the ancestor relationship. If there
is an embedding from p into d, we write p 6i q. Embeddings differ
from XPath tree matching in that they are required to be injective, and
from Xcerpt term simulation in that injectivity is treated differently
in combination with the Xcerpt descendant modifier, as Figure 11

illustrates. While the Xcerpt query term a{{ desc b, desc c }} does
not simulate into the data term a{ d{ b, c } }, there is an injective
embedding from G1 to G2. Embeddings as defined in [Kil92] are also
equivalent to minor embeddings (see below). This difference between
Xcerpt term simulation and embeddings makes Xcerpt simulation
computationally cheaper, without sacrificing much expressivity.

An ordered path inclusion problem is the problem of finding an
embedding of an ordered pattern tree p into an ordered data tree d that
respects the order of subtrees in the pattern and the child relationship. Such
an embedding is called an ordered path embedding of p in d, and if there
is such an embedding, the p is ordered path included in d. In Figure 11 G1
is not ordered path included in G2, because there is no way of retaining
the child relationship in the embedding. Ordered path inclusion is
equivalent to Xcerpt([[]]) simulation over an arbitrary alphabet and can
be solved in O(m ·n).

178 xcerpt query term subsumption

Corollary 10. Simulation between an Xcerpt query term q ∈ Xcerpt([[]])
and an arbitrary Xcerpt data term d is in O(n ·m), where m is the size of q,
and n the size of d.8

Unordered path inclusion as defined in [Kil92] is the problem of
finding an embedding that respects the child relationship, but not nec-
essarily the order relationship. Unordered path inclusion is equivalent
to Xcerpt({{}}) simulation over an arbitrary alphabet and can be solved
in O(m

3
2 ·n) where m is the size of the pattern tree and n the size of

the data tree.

Corollary 11. Simulation between an Xcerpt query term q ∈ Xcerpt() and
an arbitrary Xcerpt data term d is in O(m

3
2 · n), where m is the size of q,

and n the size of d.

In combination with Corollary 8 we have that Subsumption for
Xcerpt() is in O(m

3
2 ·n), where m is the size of the subsuming pattern,

and n the size of the subsumed pattern. But what about the ordered
case? To find an upper bound for the complexity of Xcerpt([[]]) sub-
sumption, we must first introduce canonical models for query terms
in Xcerpt([[]]). We give Corollary 12 without proof. In combination
with Corollary 10 we have that Xcerpt([[]]) subsumption can be de-
cided in O(m ·n) where m and n are the sizes of query and data term,
respecitvely.

Definition 78. Given a query term q ∈ Xcerpt([[]]), the set of canonical
models of q is the singular set {d} where d is obtained from q by substituting
double square brackets by single ones.

Corollary 12. Given two Xcerpt query terms q1,q2 ∈ Xcerpt([[]]), q1
subsumes q2 if and only if q1 simulates into the single canonical model of
q2.

Having fixed the complexity of simulation and subsumption for
Xcerpt([]), Xcerpt({}), Xcerpt([[]]), Xcerpt({{}}, |Σ| = 1) and Xcerpt({{}})
we now additionally take into account the descendant axis.

Besides path inclusion problems, [Kil92] also elaborates on the com-
plexity of tree inclusion problems. In contrast to path inclusion prob-
lems, the direct children of a node np in the pattern tree mapped to a
node nd of the data tree need not be direct children of nd, but may be
descendants. (Un)fortunately, tree ordered and unordered tree inclu-
sion as defined in [Kil92] does not coincide with Xcerpt([[]],desc) and
Xcerpt({{}},desc) simulation. This is unfortunate in the sense that we
cannot transfer the complexity results from (un)ordered tree inclusion
problems to Xcerpt simulation and subsumption, but fortunate in the
sense that the unordered tree inclusion is NP-complete [KM95], and
Xcerpt({{}},desc) may fall into a lower complexity class. Indeed, simu-
lation for the fragment of Xcerpt({{}},desc) which is constructed over a
singular alphabet, is in P, as the following discussion shows.

[MT92] considers the complexity of finding graph isomorphisms,
homomorphisms and homeomorphisms for graphs with bounded tree-
width. Graphs with a maximum tree-width of 1 are ordinary trees,
and can be seen as Xcerpt query or data terms without references.
Among others, [MT92] considers the relations 6h for homeomorphic

8 Simulation between Xcerpt([[]]) and Xcerpt() is always false, and can thus be solved
in constant time.

8.5 complexity for xcerpt fragments 179

Figure 12: Homeomorphic and minor embeddings.

G1

a

b c

�h

6m

G2

a

b c

d

embedding and 6m for minor embedding. For two graphs H and G, H 6h
G holds iff G is isomorphic to a graph that can be obtained from H

by subdividing its edges. On the other hand H 6m G holds iff H is
isomorphic to a graph that can be obtained from G by contracting
edges.9 Figure 12 illustrates the difference between homeomorphic and
minor embeddings.

Note that the homeomorphic embedding in [MT92] is different from
the tree homeomorphism problem and the tree homeomorphism matching
problem considered in [GKM07]. A homeomorphic embedding is by
definition an injective function, whereas [MT92] does not have an
injectivity requirement.

There is no homeomorphic embedding of G1 in G2 in Figure 12, since
G2 cannot be obtained from G1 by subdividing edges. There is, however,
a minor embedding from G1 in G2, since G1 can be obtained from G2
by edge contraction – in this case by deleting the edge between a and
d, thereby making b and c direct children of a. Finding homeomorphic
embeddings between graphs is in P, while finding minor embeddings is
NP-complete, as shown in [MT92]. What does this tell us about Xcerpt
term simulation and subsumption?

In the following, we denote the set of Xcerpt query terms with
breadth complete, order incomplete term specification, with descendant
subterms only (i.e. each subterm must be qualified by a descendant
construct) and unary alphabet Σ by Xcerpt({},desc, |Σ| = 1).

With each Xcerpt term t (no matter if it is a query or data term) we
associate the tree tree(t): tree(t) contains a node for each subterm of
t, and there is an edge between two nodes x and y in the tree, iff the
subterm represented by y is a subterm of the term represented by x.
Note that this mapping is not bijective, since we do not distinguish
between descendant and child subterms. Thus the tree G1 in Figure
12 might represent the Xcerpt query term q := a{{ desc b, desc c }}

and the tree G2 might represent the Xcerpt data term a{ d{ b, c } }.
Due to the injectivity requirement in Xcerpt term simulation, q does
not simulate into d, which is in line with subtree homeomorphism, but
not with minor embeddings.

Corollary 13. Given an Xcerpt query term q ∈ Xcerpt({{}},desc, |Σ| = 1)

and an Xcerpt data term d ∈ Xcerpt({}), q simulates into d, iff there is a
homeomorphic embedding from the tree of q into the tree of d.

9 Loops and multiple-edges resulting from edge-contraction are deleted. In the case of
trees, neither loops nor multiple edges can be introduced.

180 xcerpt query term subsumption

With the complexity results in [MT92], we immediately obtain an
upper bound for q ∈ Xcerpt({},desc, |Σ| = 1) simulation:

Corollary 14 (Complexity of Xcerpt({{}},desc, |Σ| = 1)). Complexity of
Xcerpt({{}},desc, |Σ| = 1) simulation is in P.

This result indicates that also Xcerpt({{}},desc) simulation may be
in P, whereas the NP-hardness result for minor embeddings over trees
indicates that it might also be NP-complete. The NP-hardness proof for
minor tree embeddings is by a reduction from the satisfiability problem
and requires mappings which are not valid Xcerpt term simulations
and therefore cannot be trivially transferred to Xcerpt. We leave the
complexity of Xcerpt({{}},desc) simulation as future work and return
to the complexity of Xcerpt({{}},desc, ∗) subsumption.

Theorem 15 (Canonical models for Xcerpt({{}},desc)). Let q and q ′ be
Xcerpt query terms in Xcerpt({{}},desc).10 Let M(q) be the singular set
{d} consisting of the term d obtained from q by substituting all double curly
braces by single ones and substituting all descendant modified terms desct
by z{{t}} where z is a fresh symbol not occurring in q and q ′. Then M(q) is
a set of canonical models for q with respect to q ′.

Proof. In Lemma 15 we show that extended ground query term simula-
tion and query term subsumption are identical. Moreover we can show
that q ′ simulates into q if and only if q ′ simulates into d: In extended
ground query term simulation (Definition 80) descendant subterms of
the subsumed query must be matched by descendant subterms of the
subsuming query. In the canonical model d, descendant edges of q are
represented by subterms with label z. Since z does not occur in q ′, and
since q ′ does not include wild cards or regular expressions, subterms
with label z in d must also be matched by descendant subterms in q ′.
It follows that q ′ subsumes q if and only if q ′ simulates into d.

Since the number of nodes in a tree is one plus the number of its
edges, the size of the canonical model of a term q in Xcerpt({{}},desc)
is in O(2 · n) where n is the number of subterms in q: In the worst
case, every subterm in q is a descendant subterm, and a new subterm
with label z is introduced in the construction of d. For this reason, the
deciding subsumption for Xcerpt({{}},desc) is not much harder than
deciding simulation for this same fragment of Xcerpt. Unfortunately, a
tight complexity bound for simulation of Xcerpt({{}},desc) has not yet
been determined.

Having identified canonical models for Xcerpt query terms with
descendant modifiers, we now additionally take into account label
wild cards (∗).11 The following example shows that we cannot simply
procede in the same way as for Xcerpt({{}},desc).

Example 46 (Canonical models for Xcerpt({{}},desc, ∗)). Consider the
two query terms q1 := a{{desc b}} and q2 := a{{∗{{b}} }}. Obviously, q2
does not subsume q1. However, the set {d} with d := a{z{b} } is not a set of

10 Without loss of generality, we assume that q and q ′ are not of the form desc t. If they
are, we can reduce containment between q and q ′ to containment between a{{q}} and
a{{q ′}} for an arbitrary label a.

11 In Xcerpt label wildcards are written /.*/. We introduce the * notation to emphasize
that not arbitrary regular expressions are allowed, but only label wildcards.

8.5 complexity for xcerpt fragments 181

canonical models for q1, since with q2 containing a label wild card, it simu-
lates with d. On the contrary, the data term a{z{z{b} } }, which is matched by
q1, but not by q2, can be used to show that q2 does not contain q1.

In general, for query terms q1 ∈ Xcerpt({{}},desc, ∗) and q2 ∈
Xcerpt({{}}, ∗), a discriminating data term d of q1 and q2, i.e. a data
term that simulates with q1 but not with q2, can be obtained from
q1 as follows: Let w be the length of the longest sequence of directly
nested subterms with label ∗ in q2 – we call w the star depth of q2 (e.g.
the Xcerpt term a{{∗{{∗{{b, c}}, d}} }} has star depth 2). (i) substitute all
label wildcards (∗) in q1 by a fresh label z, (ii) substitute double curly
braces in q1 by single ones, and (iii) substitute each descendant modi-
fied subterm desc t in q1 by the subterm s := ∗{{. . . ∗ {{t}} . . .}}, where s
contains exactly w+ 1 label wildcards. In the case that q2 is also from
Xcerpt({{}},desc, ∗), i.e. may contain descendant constructs, we cannot
find singular sets of canonical models, as the following example shows.

Example 47 (Canonical models for Xcerpt({{}},desc, ∗)). Consider again
the query terms q1 := a{{desc b}}. q2 := a{{∗{{b}} }} does not subsume
q1, and we can test this by including the discriminating data term d1 :=

a{z{z{b} } } in the set of canonical models of q1. Given the third query term
q3 := a{∗{desc b} }, we see that q3 does not subsume q1, but it simulates
into d1. Hence we must include a second data term d2 := a{b} in the set of
canonical models of q1. Indeed, the set {d1,d2} is a set of canonical models
for q1 with respect to any other query term that has star depth at most 1.

Theorem 16 (Canonical models for Xcerpt({{}},desc, ∗)). Let q,q ′ ∈
Xcerpt({{}},desc, ∗) be Xcerpt query terms. Let s = s1, . . . , sj be the longest
sequence of subterms in q ′ such that all si are labeled with a * and such that
si+1 is a direct subterm of si, and all si are not modified by the descendant
construct desc. Let z be a symbol not occurring in q or q ′ and d the num-
ber of descendant edges in q. Furthermore, given a sequence of d integers
u1, . . . ,ud ∈ {1, . . . , j+ 1} let m[u1, . . . ,ud](q) denote the data term ob-
tained from q by substituting the ith descendant modifier by a sequence of u1
intermediate child terms labeled z, by substitution of z for any label wildcard
in q, and by substitution of single curly braces for double ones. Then

M(q,q ′) = {m[u1, . . . ,ud] | u1, . . . ,ud ∈ {1, . . . , j+ 1}}

is a set of canonical models of q with respect to q ′.

The proof is analogous to the one in [MS02]. Note that these canon-
ical models for Xcerpt({{}},desc, ∗) are not guaranteed to be minimal
– i.e. there may be subsets of M(q,q ′) that are sufficient for checking
subsumption of q by q ′, as in Example 47. To check that an Xcerpt
query term q ′ does not subsume q, we can guess the d numbers
u1, . . . ,ud, construct m[u1, . . . ,ud](q), and verify that q ′ does not
simulate with m[u1, . . . ,ud](q). Hence we have that if simulation of
Xcerpt({{}},desc, ∗) is in P, then subsumption for Xcerpt({{}},desc, ∗)
is in Co-NP.

We say that p is subsumed by the union of q1, . . . ,qn, if for any data
term d with p � d, there is an i ∈ {1, . . . ,n} such that qi � d.

Lemma 13 (Subsumption by unions of terms). Let p,p1, . . . ,pn be
Xcerpt query terms in Xcerpt({{}},desc, ∗). Then there exist query terms
q,q ′ ∈ Xcerpt({{}},desc, ∗) such that p ⊆ p1, . . . ,pn if and only if q ⊆ q ′.

182 xcerpt query term subsumption

The proof of Lemma 13 is analogous to the one in [MS02]. Just note
that each node in the patterns q and q ′ constructed in [MS02] has
siblings with distinct labels, such that injectivity is not an issue in the
proof.

Theorem 17 (Co-NP hardness of Subsumption for Xcerpt({{}},desc, ∗)).
Given two query terms q1,q2 ∈ Xcerpt({{}},desc, ∗), deciding if q2 sub-
sumes q1 is Co-NP hard.

Again, the proof is analogous to [MS02]. Observe that each node
in the patterns A and Ci constructed in this proof has siblings with
distinct labels, enforcing an injective mapping of the child subterms of
the patterns to subterms of the data.

Theorem 18 (NP Completeness of Simulation for Xcerpt({{}},LV) and
Xcerpt({{}}, ref)). The Xcerpt query term fragments Xcerpt({{}},LV) with
double curly braces and label variables, and Xcerpt({{}}, ref) with double
curly braces and references is NP-complete.

Proof. We first show NP-completeness for simulation of Xcerpt({{}},LV)

with Xcerpt({}) data terms.

in np : Let d ∈ Xcerpt({}) be an Xcerpt data term with unordered term
specification only, and q ∈ Xcerpt({{}},LV) an Xcerpt query term
with unordered incomplete term specification and label variables.
If q simulates into d, then we can guess a mapping from the
variables in q to the nodes of d. Then σ(q) is ground and we can
check in polynomial time if σ(q) simulates into d.

np-hard: We show NP hardness of Xcerpt({{}},LV) simulation by a
reduction from the Clique problem. Let G = (V ,E) with E ⊆
V × V a symmetric relation, be an undirected unlabeled graph.
We construct an Xcerpt({}) data term d(G) from G as follows: the
root of d(G) is labeled r. For each node n in V , d(G) has a direct
subterm s with label n. If (x,y) is in E, then the subterm with
label x in d(G) has a subterm with label y, which has no children.
These are all subterms of d(G). This construction is exemplified
in Figure 13.

Now G has a clique of size 3, if and only if the query term

q := r{{ var X1{{ var X2{{ }}, var X3{{ }} }},

var X2{{ var X1{{ }}, var X3{{ }} }},

var X3{{ var X1{{ }}, var X2{{ }} }}

}} �
simulates with d(G). In general, G contains a clique of size n
if the query term q(n) simulates with d(G) where q(n) is the
term r{{X1{{X \ X1}}, . . . ,Xn{{X \ Xn}}, where X \ Xi denotes the
sequence of query terms X1{{}}, . . . ,Xi−1{{}},Xi+1{{}}, . . . ,Xn{{}}.
d(G) contains |V | + 2 |E| + 1 subterms, and q(n) contains O(n2)

subterms.

Since the simulation of an unordered query term qwith an unordered
data term d is the same as simulation of q with the ordered version of d,
also simulation between Xcerpt({{}},LV) and Xcerpt([]) is NP-complete.

To complete the proof of Theorem 18, we now show that simulation
between Xcerpt({{}}, ref) query terms and Xcerpt({}, ref) data terms is
NP-complete. This is achieved by a reduction to and from the subgraph
isomorphism problem.

8.5 complexity for xcerpt fragments 183

Figure 13: Representation of an undirected graph as an Xcerpt({}) data term
for the proof of Theorem 18

e

d

a

c

b
r { a{ b, c, e },

b{ a, c },

c{ a, b, d, e },

d{ c }, e{ a, c } } �
np-hard: Given an arbitrary directed graph G, we can obviously

encode this graph as a data term d in Xcerpt({}, ref), where the
edge (x,y) is in E, if and only if the subterm of d corresponding
to y is a child of the subterm of d corresponding to x. Moreover,
given an undirected graph, we can encode it as an Xcerpt({}, ref)
data term by duplicating edges. We can encode unlabeled graphs
by simply giving each subterm in d the same label σ. Given a
second undirected graph H we can encode it as a query term q

in Xcerpt({{}}, ref) in the same manner. Now q simulates into d if
and only if H is isomorphic to a subgraph of G.

in np: Simulation between Xcerpt({{}}, ref) and Xcerpt({}, ref) is re-
duced to subgraph isomorphism in a very similar manner. Ob-
serve that there is a one-to-one correspondance of Xcerpt terms
in Xcerpt({}, ref) or Xcerpt({{}}, ref) over a singular alphabet and
unlabeled directed graphs. Moreover, there is a one-to-one corre-
spondance of Xcerpt terms in Xcerpt({}, ref) or Xcerpt({{}}, ref)
over an arbitrary alphabet and labeled directed graphs. Hence
a query term q in Xcerpt({{}}, ref) simulates into a data term d

in Xcerpt({}, ref) if and only if the directed labeld graph corre-
sponding to q is isomorphic to a subgraph of the directed, labeled
graph corresponding to d. Also directed subgraph isomorphism
is NP-complete [AHU74], and thus in NP.

Alternatively, one can encode simulation between Xcerpt({{}}, ref)
query terms and Xcerpt({}, ref) data terms in first order logic. By
Fagin’s theorem (see e.g. [Imm83]) we can conclude that this kind
of simulation is in NP.

Again, NP completeness holds also for simulation between query
terms in Xcerpt({{}}, ref) and Xcerpt([], ref) for the same reason as
above.

Table 8 summarizes the complexity results for Xcerpt query term
simulation and subsumption presented above. Note that simulation and
subsumption for Xcerpt({{}},desc) is in the same complexity class and
subsumption for Xcerpt({{}},desc) is Co-NP complete, if simulation for
this fragment is in P.

184 xcerpt query term subsumption

Figure 14: Simulation for Xcerpt({{}})

a

f b

g

a

b

c h

f

g

Table 8: Complexity of Simulation and Subsumption for Xcerpt fragments. (m
is the size of the query term; n is the size of the data for simulation
and the size of the subsumed query term for subsumption.)

Fragment Simulation Subsumption

Xcerpt({}) O(n) O(n)

Xcerpt([]) O(n) O(n)

Xcerpt([], |Σ| = 1, ↑) O(n+m) O(n+m)

Xcerpt({{}}, |Σ| = 1) O(m1.376 ·n) O(m1.376 ·n)

Xcerpt({{}}) O(m3/2 ·n) O(m3/2 ·n)

Xcerpt([[]]) O(m ·n) O(m ·n)

Xcerpt({{}},desc) ? ?

Xcerpt({{}},desc, ∗) ? CoNP-hard

Xcerpt({{}},LV) NP-complete NP-hard

Xcerpt({{}}, ref) NP-complete NP-hard

8.6 future work in the area of xcerpt query term subsumption 185

8.6 future work in the area of xcerpt query term subsump-
tion

Starting out from the problem of improving termination of logic pro-
gramming based on rich kinds of simulation such as simulation uni-
fication, this section investigates the problem of deciding simulation
subsumption between query terms. A rewriting system consisting of
subsumption monotone query term transformations is introduced and
shown to be sound and complete. By convenient pruning of the search
tree defined by this rewriting system, the decidability of simulation
subsumption is proven, and an upper bound for its complexity is
identified. Subsequently upper and lower bounds for the complexity
of subsumption for various less expressive fragments of Xcerpt are
studied.

Future work includes (a) a proof-of-concept implementation of the
rewriting system, (b) the development of heuristics and their incorpo-
ration into the prototype to ensure fast termination of the algorithm
in the cases when it is possible, (c) further study of the complexity of
the problem in absence of subterm negation, descendant constructs,
deep-equal, and/or injectivity, (d) the implementation of a backward
chaining algorithm with tabling, which uses subsumption checking
to avoid redundant computations and infinite branches in the resolu-
tion tree, and (e) the adaptation of the rewriting system to XPath in
order to decide subsumption and to derive complexity results for the
subsumption problem between XPath queries.

9S U M M A RY A N D F U T U R E W O R K

This work describes how rule languages must be adapted to allow
user-friendly and format-versatile integration, transformation and de-
duction of semi-structured data on the Web. It describes Xcerpt

RDF as
an example of a format-versatile rule language with rich unification,
presents a model-theoretic formalization of RDF containers, collections
and reifications, introduces the expressive, yet efficient RDF path query
language RPL, and sketches use-cases for format versatile querying.
Moreover it provides a three-valued well-founded semantics for rule
languages with rich unfication and Xcerpt in particular, establishes
the decidability of subsumption between Xcerpt query terms in gen-
eral, and the complexity for simulation and subsumption for several
fragments of Xcerpt query terms.

Future work is centered around the following topics:

implementation of xcerpt
rdf : Both a subsumption based evalua-

tion algorithm for rule languages with rich unification[Pop] and
the RDF path query language RPL are thoroughly implemented.
Nevertheless, many aspects of Xcerpt

RDF have only been partially
realized. While there is a parser for Xcerpt

RDF, the language still
lacks a full-fledged evaluation-engine, including an implementa-
tion of Xcerpt

RDF simulation unification.

rich unification languages: This thesis extends Xcerpt to the
format versatile language Xcerpt

RDF. In the last years, microfor-
mats have quickly spread over many web sites, especially over
social networking sites. Therefore query and construct patterns for
microformats should be integrated into Xcerpt

RDF to obtain an
even more powerful language. For querying Wikipedia, patterns
for directly querying Wikipedia pages (instead of their HTML
serializations) markup would be useful.

use cases : There seems to be an infinite number of use-cases for
format versatile querying on the Web. A particularly interesting
use-case is the transformation of RDF information from the In-
foboxes on Wikipedia pages to plain RDF data, as has been done
for the DBPedia project[ABK+

08].

xcerpt query term subsumption : Several theoretical questions
centered around the complexity of subsumption between Xcerpt
fragments remain open, and practical aspects (heuristics, imple-
mentation) deserve further attention and promise interesting re-
search results. These ideas are sketched in Section 8.6.

semantics of xcerpt programs: As mentioned in Section 7.4,
the semantics for Xcerpt programs with both grouping constructs
and negation has not yet been formally specified. Still, the reduc-
tion of grouping constructs to negation seems to be an intuitive
and promising approach to such a unified semantics. For this aim
a general transformation algorithm for elimination of grouping
constructs could be specified. Subsequently the results of this

187

188 summary and future work

algorithm should be checked for compliance with the intuitive
semantics for several example programs.

Part IV

A P P E N D I X

AP R O O F S R E L AT E D T O X C E R P T Q U E RY T E R M
S U B S U M P T I O N

a.1 non-ground simulation between xcerpt
xml

query terms

For the proof of Theorem 13 the simulation relation between pairs
of query terms and data terms is extended to pairs of query terms
(Definition 80). Furthermore the transitivity of this extended simulation
relation is shown (Lemma 14). From the transitivity of extended simula-
tion follows the equivalence of subsumption and extended simulation
(Lemma 15).

Extended query term simulation is defined to mirror the subsumption
relationship – in fact Lemma 15 shows their equivalence. In extending
query term simulation to allow entire query terms to the right of the
� symbol, we have to take into account negated subterms, descendant
constructs and incompleteness in breadth. The idea is that negated
subterms in the first term must be mapped to negated subterms in
the second term, such that the positive version of the image subterm
subsumes the positive version of the original subterm. Moreover, the
mappings must be descendant preserving in addition to being injective
or bijective.

Definition 79 (Descendant preserving mappings). Let q1 and q2 be
query terms. A mapping π from Child(q1) to Child(q2) is descendant
preserving, if for all qi1 ∈ Child(q1) holds: if π(qi1) is of the form desc . . .,
then also qi1 is of the form desc

Definition 80 (Extended ground query term simulation). Let q1 and q2
be query terms. q1 simulates into q2 (short q1 � q2) if there is a relation S

that satisifies the following conditions:

1. q1 S q2

2. If q S q ′ then L(l(q ′)) ⊆ L(l(q))1.

3. If q S q ′ and ss(q) = complete then ss(q ′) = complete.

4. If q S q ′ and q is not of the form desc q ′′, then there is an injective,
descendant preserving mapping π : Child+(q) → Child+(q ′) such
that for all qi ∈ Child+(q) holds qi S π(qi).

Depending on the subterm specification of q and q ′, the following ad-
ditional requirements must be fulfilled:

a) If ss(q) = complete, then the mapping π must be bijective.
b) If ss(q) = incomplete and ss(q) = complete, there must not

be a a qi ∈ Child−(q) and a qj ∈ Child+(q ′) \ range(π) such
that pos(qi) � qj.

c) If ss(q) = incomplete and ss(q ′) = incomplete, then, be-
sides the mapping π, there must be a (not necessarily injective)
mapping σ fromChild−(q) toChild−(q ′) such that pos(σ(qi))

� pos(qi) for all qi ∈ Child−(q).
1 As in Section 8, l(q) denotes the label of the query term q, and L(e) the language

defined by the regular expression e

191

192 proofs related to xcerpt query term subsumption

5. if q = desc q1 S q ′ then q1 S q ′ or q1 S q2 for some q2 ∈
SubT+(q ′). Note that q ′ may itself be a query term with a descen-
dant modifier.

Extended ground query term simulation is extended to extended
non-ground query term simulation by taking into account variables.

Definition 81 (Extended non-ground query term simulation). Let q1
and q2 be query terms. q1 simulates into q2 if there is a substitution σ :

Vars(q1) → Q, such that for all substitutions τ : Vars(q2) → D, σ ◦
τ(q1) � τ(q2).

Lemma 14 (Transitivity of extended ground query term simulation).
Extended ground query term simulation is transitive.

Proof. Let q1, q2 and q3 be query terms such that q1 � q2 by a
relation S1,2 and q2 � q3 by a relation S2,3. For the transitivity of �
we have to show q1 � q3. We show that the relation S1,3 := {(a, c) |

a S1,2 b ∧ b S2,3 c} fulfills the requirements from Definition 80.
The proof is by structural induction over q1.

induction hypothesis : � is transitive.

induction base : q1 is of the from a{{ }}, a{ }, desc a{{ }} or
desc a{ }.

1. Since q1 S1,2 q2 and q2 S2,3 q3, q1 S1,3 q3.

2. L(q3) ⊆ L(q1) follows from the transitivity of the subset relation-
ship.

3. if ss(q1) is complete then ss(q2) must be complete and hence
also ss(q3) is complete.

4. This requirement is trivially fulfilled, since q1 does not have
any children. The empty mapping is, of course, injective and
descendant preserving.

a) the empty mapping is also bijective
b) Child−(q1) is empty.
c) σ is the empty mapping and trivially fulfills pos(σ(qi)) �
pos(qi)

5. If q1 is of the form desc . . . then q1 S1,2 q
s
2 for some subterm

qs2 of q2. Analogously, qs2 is mapped to some subterm qs3 of q3.
Hence q1 S1,3 q

s
3 holds.

induction step : We assume that the induction hypothesis holds
for the children of q1. We distinguish by the subterm specifications of
q1, q2 and q3. From ss(q1) = complete follows ss(q2) = complete

and from ss(q2) = complete follows ss(q3) = complete. Hence the
only possible combinations are the following:

1. ss(q1) = ss(q2) = ss(q3) = complete

2. ss(q1) = incomplete, ss(q2) = ss(q3) = complete

3. ss(q1) = ss(q2) = incomplete, ss(q3) = complete

4. ss(q1) = ss(q2) = ss(q3) = incomplete

A.2 proof of completeness of the rewriting system 193

We only prove the first and the last, most complex combination. The
others can be shown analogously.

Assume ss(q1) = ss(q2) = ss(q3) = complete.

1. Conditions 1, 2, 3 are shown as in the induction base.

2. Condition 4: Since q1 � q2 there is an injective mapping π1,2
from Child+ (q1) to Child+ (q2), and a bijective mapping π2,3
from Child+(q2) to Child+(q3). The mapping π2,3 ◦π1,2 is both
bijective and descendant preserving and by induction hypothesis,
qiSπ2, 3 ◦ π1,2(qi) holds for all qi ∈ Child+(q1).

3. Condition 5 is shown as in the induction base.

Now assume ss(q1) = ss(q2) = ss(q3) = incomplete.

1. Conditions 1 and 2 are shown as in the induction base.

2. Condition 3 does not apply.

3. The first part of condition 4 is shown as in the case for ss(q1) =

ss(q2) = ss(q3) = complete, by stating that the composition of
two injective, descendant-preserving mappings is itself injective
and descendant-preserving.

Additionally, one must show (c), the existence of a (not necessarily
injective) mapping σ from Child−(q1) to Child−(q3) that fulfills
pos(σ(qi)) � pos(qi) for all qi ∈ Child−(q1). By induction hy-
pothesis, the mapping σ2,3 ◦ σ1,2 fulfills this condition.

4. Condition 5 is shown as in the induction base.

Lemma 15 (Equivalence of ground query term simulation and sub-
sumption). Let q1 and q2 be two ground query terms. q1 � q2 if and only
if q1 subsumes q2.

Proof. ⇒: Let q1 and q2 be query terms such that q1 � q2. Let q ′ be
an arbitrary query term such that q2 � q ′. From the transitivity of �
follows that q1 � q ′. Hence q1 subsumes q2.
⇐: Let q1 and q2 be query terms such that q1 subsumes q2. Then for
all data terms q ′ with q2 � q ′ holds q1 � q ′. From the reflexivity of �
follows q2 � q2 and hence q1 � q2.

a.2 proof of completeness of the rewriting system

Before giving the formal proof, some notation is introduced to abbrevi-
ate the presentation and improve readability:

• |q| is a shorthand for |Child(q)|

• |q|+ is a shorthand for |Child+(q)|

• |q|− is a shorthand for |Child−(q)|

• A simulating mapping π from a set of terms S to a set of terms T
satisfies tp � π(tp) for all positive terms tp in S and cannot be
extended to a mapping π ′ : S→ T such that pos(tn) � π ′(tn) for
some negated term in S.

194 proofs related to xcerpt query term subsumption

induction hypothesis: If q1 subsumes q2, then there is a se-
quence of subsumption monotone query term transformations that
transforms q1 into q2.

induction base: q1 does not have any subterms, i.e. q1 is of the
form a{{ }} or a{ }. If q1 is of the form a{ } then it does not subsume any
other query term and the induction hypothesis is trivially fulfilled with
the empty transformation sequence. Let q1 therefore be of the form
a{{ }}.

1. label(q2) � label(d). Substitute label(q1) := label(q2) (Equa-
tion 8.10). Note that since q1 subsumes q2, label(q1) must sub-
sume label(q2), and therefore the substitution of label(q2) for
label(q1) in q1 is a subsumption monotone query term transfor-
mation.

2. label(q1) � label(d)

a) ss(q2) = complete.

i. |d| > |q2|. Then set ss(q1) := complete (Equation 8.1).
ii. |d| 6 |q2|. Then insert Child+(q2) as children into q1 by

Equations 8.4 and 8.8.

b) ss(q2) = incomplete

i. There is no injective simulating mapping π from Child+

(q2) to Child+(d). Then insert Child+(q2) as children
into q1 by Equations 8.4 and 8.8.

ii. There is an injective simulating mapping π from Child+

(q2) to Child(d), but it can be extended to a mapping
π ′ : Child(q2) → Child(d) such that pos(qi2) � π

′(qi2)
for some qi2 ∈ Child

−(q2). Then insert qi2 as child into
q1 (Equations 8.4 and 8.8).

induction step: Now we assume that the assumption holds for
all children of q2 and prove that it then holds for q2 itself. Let again
q1 and q2 be two query terms such that q1 subsumes q2 and d a data
term such that q1 � d, but q2 � d.

1. label(q2) � label(d). Apply the same transformation as in the
corresponding case of the induction base.

2. label(q2) � label(d).

a) ss(q2) = complete

i. |d| < |q2|. Then insert variables into q1 until |q1|
+ = |q2|.

ii. |d| > |q2|. Then set ss(q1) := complete.
iii. |d| = |q2|. Since q2 does not simulate into d, there is no

bijective mapping π from Child+(q2) to Child(d) such
that qi2 � π(qi2) for all qi2 ∈ Child

+(q2).
A. ss(q1) = complete. Then there is a bijective map-

ping σ from Child+(q1) to Child+(q2) such that qi1
subsumes σ(qi1) for all qi1 ∈ Child

+(q1) (Lemma
10). Then replace all qi1 ∈ Child+(q1) in q1 by
σ(qi1). This step is valid by induction hypothesis
and Equation 8.9. The resulting query term q ′1 no
longer simulates into d.

A.2 proof of completeness of the rewriting system 195

B. ss(q1) = incomplete. Then there is an injective map-
ping σ from Child+(q1) to Child+(q2) such qi1 sub-
sumes σ(qi1) for all qi1 ∈ Child

+(q1) (Lemma 10).
Then replace all qi1 ∈ Child

+(q1) in q1 by σ(qi1)

and insert variables until |q2|
+ = |q1|

+. This step is
valid by induction hypothesis and Equations 8.9 and
8.4. The resulting query term q ′1 no longer simulates
into d.

b) ss(q2) = incomplete

i. |d| < |q2|
+. See the corresponding case for ss(q2) =

complete.
ii. |d| = |q2|

+.
A. There is no injective, simulating mapping π from

Child+(q2) to Child(d). Since q1 subsumes q2 there
is an injective mapping σ from Child+(q1) to Child+

(q2) such that qi1 subsumes σ(qi1) for all qi1 ∈ Child
+

(q1) (Lemma 10). Then replace the subterms in q1
by their images under σ.

B. There is an injective, simulating mapping π from
Child+(q2) to Child(d), but this mapping can be
extended to π ′ such that pos(qi2) � π

′(qi2) for some
qi2 ∈ Child

−(q2).
Since q1 subsumes q2 there is an injective mapping σ
from Child(q1) to Child(q2) such that qi1 subsumes
σ(qi1) for all qi1 ∈ Child

+(q1) and σ(qi1) subsumes
pos(qi1) for all qi1 ∈ Child

−(q1) (Lemma 10). Then
replace the subterms in q1 by their image under σ.
These transformations are subsumption monotone.

B I B L I O G R A P H Y

[AB94] Krzysztof R. Apt and Roland N. Bol. Logic program-
ming and negation: A survey. Journal of Logic Programming,
19/20:9–71, 1994. (Cited on page 146.)

[AB07] Ben Adida and Mark Birbeck. RDFa primer 1.0 embedding
RDF in XHTML. W3C working draft, W3C, October 2007.
(Cited on page 63.)

[ABB+
07] Uwe Assmann, Sacha Berger, François Bry, Tim Furche,

Jakob Henriksson, and Jendrik Johannes. Modular web
queries — from rules to stores. In Proceedings of Inter-
national Workshop on Scalable Semantic Web Knowledge Base
Systems 2007, volume 4805/2007 of LCNS, 2007. (Cited on
page 85.)

[ABCC03] Enrico Augurusa, Daniele Braga, Alessandro Campi, and
Stefano Ceri. Design and implementation of a graphical
interface to XQuery. In SAC ’03: Proceedings of the 2003
ACM symposium on Applied computing, pages 1163–1167,
New York, NY, USA, 2003. ACM. (Cited on page 66.)

[ABE09] Faisal Alkhateeba, Jean-François Baget, and Jerome Eu-
zenat. Extending SPARQL with regular expression pat-
terns. Journal of Web Semantics, pages 28–42, 2009. (Cited
on page 129.)

[ABK+
08] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,

and Z. Ives. DBpedia: A nucleus for a web of open data. In
Proceedings of 6th International Semantic Web Conference, 2nd
Asian Semantic Web Conference (ISWC+ASWC 2007), pages
722–735. November 2008. (Cited on page 187.)

[ABS00] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on
the Web: from relations to semistructured data and XML. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA,
2000. (Cited on page 64.)

[Adi08] Ben Adida. hGRDDL: Bridging microformats and RDFa.
Journal of Web Semantics, 6(1):54–60, 2008. (Cited on
page 63.)

[AGH04] Renzo Angles, Claudio Gutierrez, and Jonathan Hayes.
RDF query languages need support for graph properties.
Technical report, Universidad de Chile, 2004. (Cited on
page 119.)

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading,
Mass., 1974. (Cited on pages 175 and 183.)

[AKKP08] Waseem Akhtar, Jacek Kopecky, Thomas Krennwallner,
and Axel Polleres. XSPARQL: Traveling between the XML
and RDF worlds – and avoiding the XSLT pilgrimage. In

197

198 bibliography

Manfred Hauswirth, Manolis Koubarakis, and Sean Bech-
hofer, editors, Proceedings of the 5th European Semantic Web
Conference, LNCS, Berlin, Heidelberg, June 2008. Springer
Verlag. (Cited on pages 41, 44, and 63.)

[Apt88] Krzysztof R. Apt. Introduction to logic programming.
Technical report, University of Texas at Austin, Austin, TX,
USA, 1988. (Cited on page 5.)

[Apt92] Krzysztof R. Apt. A new definition of SLDNF-resolution.
Technical report, CWI (Centre for Mathematics and Com-
puter Science), 1992. (Cited on page 5.)

[AQM+
97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J.L.

Wiener. The Lorel query language for semistructured data.
International Journal on Digital Libraries, 1(1):68–88, 1997.
(Cited on page 129.)

[BBB+
04] Sacha Berger, François Bry, Oliver Bolzer, Tim Furche,

Sebastian Schaffert, and Christoph Wieser. Xcerpt and
visXcerpt: Twin query languages for the semantic web.
In Proceedings of 3rd International Semantic Web Conference,
Hiroshima, Japan (7th–11th November 2004), LNCS, 2004.
(Cited on pages 3 and 66.)

[BBC+
07] Scott Boag, Anders Berglund, Don Chamberlin,

Jérôme Siméon, Michael Kay, Jonathan Robie, and
Mary F. Fernández. XML path language (XPath)
2.0. W3C recommendation, W3C, January 2007.
http://www.w3.org/TR/2007/REC-xpath20-20070123/.
(Cited on pages 12 and 66.)

[BBF+
06] Sacha Berger, François Bry, Tim Furche, Benedikt Linse,

and Andreas Schroeder. Vorführung von Xcerpt und
visXcerpt, Anfragesprachen für das Web. In Stefan Brass
and Alexander Hinneburg, editors, Grundlagen von Daten-
banken, page 12. Institute of Computer Science, Martin-
Luther-University, 2006. (Cited on page 3.)

[BBFS05] James Bailey, François Bry, Tim Furche, and Sebastian
Schaffert. Web and semantic web query languages: A
survey. In Reasoning Web, First International Summer School
2005, volume 3564 of LNCS. Springer-Verlag, 2005. (Cited
on page 66.)

[BBSW03] Sacha Berger, François Bry, Sebastian Schaffert, and
Christoph Wieser. Xcerpt and visXcerpt: From pattern-
based to visual querying of XML and semistructured
data. In Proceedings of 29th Intl. Conference on Very Large
Data Bases, Berlin, Germany (9th–12th September 2003), 2003.
(Cited on page 3.)

[BC99] Angela Bonifati and Stefano Ceri. Comparative analysis
of five XML query languages. CoRR, cs.DB/9912015, 1999.
informal publication. (Cited on page 66.)

[Bec04] David Beckett. RDF/XML syntax specification (revised).
W3C recommendation, W3C, February 2004. (Cited on
pages 5, 21, 22, and 23.)

bibliography 199

[BEE+
07] François Bry, Norbert Eisinger, Thomas Eiter, Tim Furche,

Georg Gottlob, Clemens Ley, Benedikt Linse, Reinhard
Pichler, and Fang Wei. Foundations of rule-based query
answering. In Grigoris Antoniou, Uwe Aßmann, Cristina
Baroglio, Stefan Decker, Nicola Henze, Paula-Lavinia Pa-
tranjan, and Robert Tolksdorf, editors, Reasoning Web, vol-
ume 4636 of Lecture Notes in Computer Science, pages 1–153.
Springer, 2007. (Cited on pages 4, 8, and 146.)

[Ber08] Sacha Berger. Regular Rooted Graph Grammars - A Web Type
and Schema Language. Dissertation/Ph.D. thesis, Institute
of Computer Science, LMU, Munich, 2008. PhD Thesis,
Institute for Informatics, University of Munich, 2008. (Cited
on page 15.)

[BFB+
05] François Bry, Tim Furche, Liviu Badea, Christoph Koch,

Sebastian Schaffert, and Sacha Berger. Querying the Web
reconsidered: Design principles for versatile web query
languages. Journal of Semantic Web and Information Systems
(IJSWIS), 1(2), 2005. (Cited on pages 15 and 63.)

[BFL06] François Bry, Tim Furche, and Benedikt Linse. Data model
and query constructs for versatile web query languages:
State-of-the-art and challenges for Xcerpt. In José Júlio
Alferes, James Bailey, Wolfgang May, and Uta Schwertel,
editors, PPSWR, volume 4187 of Lecture Notes in Computer
Science, pages 90–104. Springer, 2006. (Cited on page 15.)

[BFL07] François Bry, Tim Furche, and Benedikt Linse. Simulation
subsumption or déjà vu on the Web (extended version).
Technical Report PMS-FB-2008-01, University of Munich,
2007. (Cited on pages 145 and 173.)

[BFL+
08a] François Bry, Tim Furche, Clemens Ley, Benedikt Linse,

and Bruno Marnette. RDFLog: It’s like datalog for RDF.
In Proceedings of 22nd Workshop on (Constraint) Logic Pro-
gramming, Dresden (30th September–1st October 2008), 2008.
(Cited on pages 4, 30, 48, 80, and 122.)

[BFL+
08b] François Bry, Tim Furche, Clemens Ley, Benedikt Linse,

and Bruno Marnette. Taming existence in RDF querying. In
Diego Calvanese and Georg Lausen, editors, RR, volume
5341 of Lecture Notes in Computer Science, pages 236–237.
Springer, 2008. (Cited on page 4.)

[BFL08c] François Bry, Tim Furche, and Benedikt Linse. Simula-
tion subsumption or déjà vu on the Web. In Diego Cal-
vanese and Georg Lausen, editors, RR, volume 5341 of
Lecture Notes in Computer Science, pages 28–42. Springer,
2008. (Cited on page 15.)

[BFL+
09a] François Bry, Tim Furche, Benedikt Linse, Alexander Pohl,

Antonius Weinzierl, and Olga Yestekhina. Four lessons
in versatility or how query languages adapt to the web.
In Semantic Techniques for the Web, The Rewerse Perspective,
volume 5500 of Lecture Notes in Computer Science. Springer,
2009. (Cited on page 15.)

200 bibliography

[BFL+
09b] François Bry, Tim Furche, Clemens Ley, Benedikt Linse,

Bruno Marnette, and Olga Poppe. SPARQLog: SPARQL
with rules and quantification. In Roberto De Virgilio,
Fausto Giunchiglia, and Letizia Tanca, editors, Seman-
tic Web Information Management: A Model-based Perspective,
chapter 12. Springer-Verlag, 2009. (Cited on pages 34

and 122.)

[BFL09c] Francois Bry, Tim Furche, and Benedikt Linse. Model
theory and entailment rules for RDF containers, collections
and reification. forthcoming, 2009. (Cited on page 15.)

[BFL09d] Francois Bry, Tim Furche, and Benedikt Linse. The perfect
match: RPL and RDF rule languages. In Proceedings of
the third international conference on Web reasoning and rule
Systems. Springer, 2009. (Cited on page 15.)

[BFLL07] François Bry, Tim Furche, Clemens Ley, and Benedikt Linse.
RDFLog—taming existence - a logic-based query language
for RDF. Research report, University of Munich, 2007.
(Cited on pages 30 and 80.)

[BFLP08] François Bry, Tim Furche, Benedikt Linse, and Alexan-
der Pohl. XcerptRDF: A pattern-based answer to the
versatile web challenge. In Proceedings of 22nd Workshop
on (Constraint) Logic Programming, Dresden, Germany (30th
September–1st October 2008), pages 27–36, 2008. (Cited on
page 15.)

[BFLS06] François Bry, Tim Furche, Benedikt Linse, and Andreas
Schroeder. Efficient evaluation of n-ary conjunctive queries
over trees and graphs. In Angela Bonifati and Irini Fundu-
laki, editors, WIDM, pages 11–18. ACM, 2006. (Cited on
page 15.)

[BFS00] Peter Buneman, Mary F. Fernandez, and Dan Suciu. UnQL:
a query language and algebra for semistructured data
based on structural recursion. VLDB Journal: Very Large
Data Bases, 9(1):76–110, 2000. (Cited on page 66.)

[BG04] Dan Brickley and Ramanatgan V. Guha. RDF vo-
cabulary description language 1.0: RDF schema.
W3C recommendation, W3C, February 2004.
http://www.w3.org/TR/2004/REC-rdf-schema-
20040210/. (Cited on page 20.)

[BHK+
09] Harold Boley, Gary Hallmark, Michael Kifer, Adrian

Paschke, Axel Polleres, and Dave Reynolds. RIF core di-
alect. W3C working draft, W3C, July 2009. (Cited on
pages 3 and 57.)

[BHLT06] Tim Bray, Dave Hollander, Andrew Layman, and Richard
Tobin. Namespaces in XML 1.0 (second edition), 2006. W3C
Rec. 16 August 2006. (Cited on pages 22, 68, and 117.)

[BK93] Anthony J. Bonner and Michael Kifer. Transaction logic
programming. In ICLP, pages 257–279, 1993. (Cited on
page 49.)

bibliography 201

[BK04] Jeen Broekstra and Arjohn Kampman. SeRQL: An RDF
query and transformation language. August 2004. (Cited
on page 80.)

[BK09a] Harold Boley and Michael Kifer. RIF basic logic
dialect. W3C working draft, W3C, July 2009.
http://www.w3.org/TR/2008/WD-rif-bld-20080730/.
(Cited on page 57.)

[BK09b] Harold Boley and Michael Kifer. RIF framework
for logic dialects. W3C working draft, W3C,
July 2009. http://www.w3.org/TR/2008/WD-rif-fld-
20080730/. (Cited on page 57.)

[BKvH02] Jeen Broekstra, Arjohn Kampman, and Frank van Harme-
len. Sesame: A generic architecture for storing and query-
ing RDF and RDF Schema. In Proceedings of the first In-
ternational Semantic Web Conference (ISWC 2002), number
2342 in Lecture Notes in Computer Science, pages 54–68.
Springer Verlag, Heidelberg Germany, 2002. (Cited on
page 11.)

[BL98] T. Berners-Lee. Notation 3. Technical report, W3C, 1998.
(Cited on page 24.)

[BMS07] Henrik Björklund, Wim Martens, and Thomas Schwentick.
Conjunctive query containment over trees. In Marcelo
Arenas and Michael I. Schwartzbach, editors, DBPL, vol-
ume 4797 of Lecture Notes in Computer Science, pages 66–80.
Springer, 2007. (Cited on page 164.)

[Bol05] Oliver Bolzer. Towards data-integration on the semantic
web: Querying RDF with Xcerpt. Diplomarbeit/diploma
thesis, Institute of Computer Science, LMU, Munich, 2005.
(Cited on pages 15 and 85.)

[BPSM+
06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler,

and François Yergeau. Extensible markup language (XML)
1.0 (fourth edition), 2006. (Cited on pages 79 and 104.)

[BS02] François Bry and Sebastian Schaffert. The XML query lan-
guage Xcerpt: Design principles, examples, and semantics.
In Akmal B. Chaudhri, Mario Jeckle, Erhard Rahm, and
Rainer Unland, editors, Web, Web-Services, and Database
Systems, volume 2593 of Lecture Notes in Computer Science,
pages 295–310. Springer, 2002. (Cited on pages 15 and 171.)

[BvH+
04] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Hor-

rocks, Deborah L. McGuinness, Peter F. Patel-Schneider,
and Lynn Andrea Stein. OWL Web Ontology Language
Reference. Technical report, W3C, 2004. (Cited on pages 49

and 51.)

[BW01] S. Tabet H. Boley and G. Wagner. Design rationale of
RuleML: A markup language for semantic web rules. In
I. F. Cruz, S. Decker, J. Euzenat, and D. L. McGuinness, edi-
tors, Proc. Semantic Web Working Symposium, pages 381–402,
Stanford University, California, 2001. (Cited on page 55.)

202 bibliography

[CB94] Peter Cholak and Howard A. Blair. The complexity of local
stratification. Fundam. Inform., 21(4):333–344, 1994. (Cited
on page 141.)

[CBHS05a] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick
Stickler. Named graphs, provenance and trust. In WWW
’05: Proceedings of the 14th international conference on World
Wide Web, pages 613–622, New York, NY, USA, 2005. ACM.
(Cited on page 36.)

[CBHS05b] Jeremy J. Carroll, Christian Bizer, Patrick J. Hayes, and
Patrick Stickler. Named graphs, provenance and trust.
In Allan Ellis and Tatsuya Hagino, editors, WWW, pages
613–622. ACM, 2005. (Cited on page 105.)

[CCD+
98] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi,

and L. Tanca. XML-GL: a graphical language for query-
ing and restructuring XML documents. 1998. (Cited on
page 66.)

[CDD+
04] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave

Reynolds, Andy Seaborne, and Kevin Wilkinson. Jena: im-
plementing the semantic web recommendations. In WWW
Alt. ’04: Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters, pages 74–83.
ACM Press, 2004. (Cited on page 11.)

[CKW93] Weidong Chen, Michael Kifer, and David S. Warren. HiLog:
A foundation for higher-order logic programming. Jour-
nal of Logic Programming, 15(3):187–230, 1993. (Cited on
pages 3, 49, and 58.)

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal imple-
mentation of conjunctive queries in relational data bases.
In STOC, pages 77–90. ACM, 1977. (Cited on page 4.)

[CP06] Juan Carlos and Axel Polleres. SPARQL rules. Techni-
cal report, Universidad Rey Juan Carlos, 2006. (Cited on
page 41.)

[CRF00] Donald D. Chamberlin, Jonathan Robie, and Daniela Flo-
rescu. Quilt: An XML query language for heterogeneous
data sources. In Dan Suciu and Gottfried Vossen, editors,
WebDB (Selected Papers), volume 1997 of Lecture Notes in
Computer Science, pages 1–25. Springer, 2000. (Cited on
page 66.)

[CT04] John Cowan and Richard Tobin. XML Information Set
(second edition). Technical report, W3C, 2004. (Cited on
page 22.)

[CW96] Weidong Chen and David Scott Warren. Tabled evaluation
with delaying for general logic programs. Journal of the
ACM, 43(1):20–74, 1996. (Cited on page 164.)

[dav06] GRDDL primer. Technical report, W3C, 2006. (Cited on
page 63.)

bibliography 203

[DB08] Tim Berners-Lee David Beckett. Turtle - terse RDF triple
language, 2008. (Cited on page 35.)

[dB09] Jos de Bruijn. RIF RDF and OWL compatibility. W3C
working draft, W3C, jul 2009. (Cited on page 57.)

[DFF+
98] Alin Deutsch, Mary F. Fernández, Daniela Florescu, Alon Y.

Levy, and Dan Suciu. XML-QL. In QL, 1998. (Cited on
page 66.)

[Dij82] Edsger Wybe Dijkstra. On the role of scientific thought
(EWD447). In Selected Writings on Computing: A Personal
Perspective, pages 60–66. 1982. (Cited on page 71.)

[dSMPH09] Christian de Sainte Marie, Adrian Paschke, and Gary Hall-
mark. RIF production rule dialect. W3C working draft,
W3C, 2009. (Cited on page 57.)

[DSN03] S. Decker, M. Sintek, and W. Nejdl. The modeltheoretic
semantics of TRIPLE. Proceedings of the International World
Wide Web Conference, 2003. (Cited on pages 53 and 55.)

[DT01] Alin Deutsch and Val Tannen. Containment and integrity
constraints for XPath fragments. In In KRDB, 2001. (Cited
on page 13.)

[Eck08] Michael Eckert. Complex Event Processing with XChangeEQ:
Language Design, Formal Semantics and Incremental Evalua-
tion for Querying Events. Dissertation/Ph.D. thesis, Institute
of Computer Science, LMU, Munich, 2008. PhD Thesis, In-
stitute for Informatics, University of Munich, 2008. (Cited
on page 15.)

[EFK+
00] Thomas Eiter, Wolfgang Faber, Christoph Koch, Nicola

Leone, and Gerald Pfeifer. DLV - a system for declarative
problem solving. CoRR, cs.AI/0003036, 2000. informal
publication. (Cited on page 146.)

[Est08] Olga Estekhina. Well-founded semantics and local-
stratification for xcerpt, institute of computer science, lmu,
munich. Projektarbeit/project thesis, 2008. (Cited on
page 157.)

[EV03] J. Euzenat and P. Valtchev. An integrative proximity mea-
sure for ontology alignment. In A. Doan, A. Halevy, and
N. Noy, editors, Proceedings of the 1st Intl. Workshop on Se-
mantic Integration, volume 82 of CEUR, 2003. (Cited on
page 63.)

[EV04] J. Euzenat and P. Valtchev. Similarity-based ontology align-
ment in OWL-lite. In R. López de Mántaras and L. Saitta,
editors, Proceedings of the 16th European Conference on Arti-
ficial Intelligence (ECAI-04), pages 333–337. IOS Press, 2004.
(Cited on page 63.)

[FHW78] S. Fortune, J.E. Hopcroft, and J.C. Wyllie. The Directed
Subgraph Homeomorphism Problem. 1978. (Cited on
page 130.)

204 bibliography

[FLB+
06] Tim Furche, Benedikt Linse, François Bry, Dimitris Plex-

ousakis, and Georg Gottlob. RDF querying: Language
constructs and evaluation methods compared. In Reason-
ing Web, Second International Summer School 2006, volume
4126 of LNCS. 2006. (Cited on page 71.)

[Fur08a] Tim Furche. Implementation of Web Query Languages Recon-
sidered: Beyond Tree and Single-Language Algebras at (Almost)
No Cost. Dissertation/doctoral thesis, Ludwig-Maxmilians
University Munich, 2008. (Cited on pages 78 and 142.)

[Fur08b] Tim Furche. Implementation of Web Query Languages Recon-
sidered: Beyond Tree and Single-Language Algebras at (Almost)
No Costs. Dissertation/Ph.D. thesis, Institute of Computer
Science, LMU, Munich, 2008. PhD Thesis, Institute for In-
formatics, University of Munich, 2008. (Cited on page 15.)

[Gan07] Fabien Gandon. GRDDL use cases: Scenarios of extracting
RDF data from XML documents. W3C working group note
6 april 2007, W3C, 2007. (Cited on page 63.)

[GHM03] Claudio Gutiérrez, Carlos A. Hurtado, and Alberto O.
Mendelzon. Formal aspects of querying RDF databases. In
Isabel F. Cruz, Vipul Kashyap, Stefan Decker, and Rainer
Eckstein, editors, SWDB, pages 293–307, 2003. (Cited on
page 21.)

[GHM04] Claudio Gutiérrez, Carlos A. Hurtado, and Alberto O.
Mendelzon. Foundations of semantic web databases. In
Alin Deutsch, editor, PODS 04: Proceedings of the twenty-
third ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of Database Systems, pages 95–106. ACM, 2004. (Cited
on page 28.)

[GKM07] Michaela Götz, Christoph Koch, and Wim Martens. Ef-
ficient algorithms for the tree homeomorphism problem.
pages 17–31, 2007. (Cited on page 179.)

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics
for logic programming. In Proceeding of the Fifth Logic Pro-
gramming Symposium, pages 1070–1080, 1988. (Cited on
pages 5 and 146.)

[GM06] Lars Marius Garshol and Graham Moore. ISO 13250-
2: Topic Maps — Data Model. International standard,
ISO/IEC, 2006. (Cited on page 63.)

[GP91] Douglas N. Gordin and Alexander J. Pasik. Set-oriented
constructs: From rete rule bases to database systems. In
James Clifford and Roger King, editors, SIGMOD Confer-
ence, pages 60–67. ACM Press, 1991. (Cited on pages 16

and 17.)

[Hay04] Patrick Hayes. RDF semantics. Technical report, W3C,
February 2004. (Cited on pages 14, 24, 25, 26, 27, 28, 29, 90,
and 94.)

[Hen01] J. Hendler. Agents and the Semantic Web. IEEE INTELLI-
GENT SYSTEMS, pages 30–37, 2001. (Cited on page 16.)

bibliography 205

[HHK95] Monika Rauch Henzinger, Thomas A. Henzinger, and Pe-
ter W. Kopke. Computing simulations on finite and infinite
graphs. In FOCS, pages 453–462, 1995. (Cited on page 141.)

[HPSB+
04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said

Tabet, Benjamin Grosof, and Mike Dean. SWRL: A seman-
tic web rule language combining OWL and RuleML. Draft
version, DARPA DAML Program, December 2004.
http://www.daml.org/rules/proposal/. (Cited on
page 55.)

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages and Computation. Addison-Wesley,
1979. (Cited on page 144.)

[Imm83] Neil Immerman. Languages which capture complexity
classes. In STOC ’83: Proceedings of the fifteenth annual
ACM symposium on theory of computing, pages 347–354,
New York, NY, USA, 1983. ACM. (Cited on page 183.)

[Ish02] Masayasu Ishikawa. XHTML 1.0 in XML
schema. W3C note, W3C, September 2002.
http://www.w3.org/TR/2002/NOTE-xhtml1-schema-
20020902/. (Cited on page 5.)

[Kay84] Martin Kay. Functional unification grammar: A formal-
ism for machine translation. In COLING-84, pages 75–78,
Stanford, CA, 1984. (Cited on page 65.)

[Kay85] M. Kay. Parsing in functional unification grammar. In
D.R. Dowty, L. Karttunen, and A.M. Zwicky, editors, Natu-
ral Language Parsing: Psychological, Computational, and The-
oretical Perspectives, pages 251–278. Cambridge University
Press, Cambridge, 1985. (Cited on page 65.)

[Kay07] Michael Kay. XSL transformations (XSLT) version
2.0. W3C recommendation, W3C, January 2007.
http://www.w3.org/TR/2007/REC-xslt20-20070123/.
(Cited on page 66.)

[Kc06] Rohit Khare and Tantek Çelik. Microformats: a pragmatic
path to the semantic web. In WWW ’06: Proceedings of the
15th international conference on World Wide Web, pages 865–
866, New York, NY, USA, 2006. ACM Press. (Cited on
page 63.)

[Kif05] M. Kifer. Nonmonotonic reasoning in FLORA-2. Lecture
Notes in Computer Science, 3662:1, 2005. (Cited on page 49.)

[Kil92] Pekka Kilpeläinen. Tree matching problems with appli-
cations to structured text databases. 1992. (Cited on
pages xvii, 177, and 178.)

[KJ07] Krys Kochut and Maciej Janik. SPARQLeR: Extended
SPARQL for semantic association discovery. In Enrico
Franconi, Michael Kifer, and Wolfgang May, editors, ESWC,
volume 4519 of Lecture Notes in Computer Science, pages 145–
159. Springer, 2007. (Cited on pages 42, 43, 119, and 120.)

http://www.daml.org/rules/proposal/

206 bibliography

[Kla07] Vanessa Klaas. Who’s who in the world wide web: Ap-
proaches to name disambiguation. Diplomarbeit/diploma
thesis, Institute of Computer Science, LMU, Munich, 2007.
(Cited on page 87.)

[Klu88a] Anthony Klug. On conjunctive queries containing inequal-
ities. Journal of the ACM, 35(1):146–160, 1988. (Cited on
page 4.)

[Klu88b] Anthony C. Klug. On conjunctive queries containing in-
equalities. Journal of the ACM, 35(1):146–160, 1988. (Cited
on page 164.)

[KLW95a] M. Kifer, G. Lausen, and J. Wu. Logical foundations of
object-oriented and frame-based languages. Journal of the
ACM, 42(4):741–843, 1995. (Cited on page 58.)

[KLW95b] Michael Kifer, George Lausen, and James Wu. Logical
foundations of object oriented and frame based languages.
Journal of the ACM, 42(4):741–843, 1995. (Cited on page 49.)

[Kly04] J. J. Carroll G. Klyne. Resource description framework
(RDF): Concepts and abstract syntax. Technical report,
W3C, 2004. (Cited on pages 19 and 20.)

[KM95] Pekka Kilpelainen and Heikki Mannila. Ordered and un-
ordered tree inclusion. SIAM Comput., 24(2):340–356, 1995.
(Cited on page 178.)

[KMA+
98] Craig A. Knoblock, Steven Minton, José Luis Ambite,

Naveen Ashish, Pragnesh Jay Modi, Ion Muslea, Andrew
Philpot, and Sheila Tejada. Modeling web sources for in-
formation integration. In AAAI/IAAI, pages 211–218, 1998.
(Cited on page 63.)

[KMA+
04] G. Karvounarakis, A. Magkanaraki, S. Alexaki,

V. Christophides, D. Plexousakis, M. Scholl, and K. Tolle.
RQL: A functional query language for RDF. In P. M. D.
Gray, L. Kerschberg, P. J. H. King, and A. Poulovassilis,
editors, The Functional Approach to Data Management:
Modelling, Analyzing and Integrating Heterogeneous Data,
LNCS, pages 435–465. Springer-Verlag, 2004. (Cited on
pages 52 and 80.)

[Koc05] Christoph Koch. On the complexity of nonrecursive
XQuery and functional query languages on complex val-
ues. CoRR, abs/cs/0503062, 2005. informal publication.
(Cited on page 164.)

[KP88] Phokion G. Kolaitis and Christos H. Papadimitriou. Why
not negation by fixpoint? In PODS, pages 231–239. ACM,
1988. (Cited on page 146.)

[Kub04] Marek Kubale. Graph Colorings. American Mathematical
Society, 2004. (Cited on page 12.)

[Len02] Maurizio Lenzerini. Data integration: A theoretical per-
spective. In PODS ’02: Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles
of Database Systems, 2002. (Cited on page 63.)

bibliography 207

[LP84] As La Paugh and Ch Papadimitrou. The even-path prob-
lem for graphs and digraphs. Networks(New York, NY),
14(4):507–513, 1984. (Cited on page 130.)

[LS93] Alon Y. Levy and Yehoshua Sagiv. Queries independent of
updates. In VLDB ’93: Proceedings of the 19th International
Conference on Very Large Data Bases, pages 171–181, San
Francisco, CA, USA, 1993. Morgan Kaufmann Publishers
Inc. (Cited on page 4.)

[LW06] Sergey Lukichev and Gerd Wagner. G.: Visual rules model-
ing. In In: Sixth International Andrei Ershov Memorial Con-
ference Perspectives Of System Informatics, pages 467–673.
LNCS, Springer, 2006. (Cited on page 3.)

[M8̈9] Erkki Mäkinen. On the subtree isomorphism problem for
ordered trees. Information Processing Letters, 32(5):271–273,
1989. (Cited on page 176.)

[Mar04a] Massimo Marchiori. Towards a people’s web: Metalog. In
Web Intelligence, pages 320–326. IEEE Computer Society,
2004. (Cited on page 56.)

[Mar04b] M. Marx. Conditional XPath, the first order complete XPath
dialect. In Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of Database Sys-
tems, pages 13–22. ACM New York, NY, USA, 2004. (Cited
on page 48.)

[Mar05] M. Marx. Conditional XPath. ACM Transactions on Database
Systems (TODS), 30(4):929–959, 2005. (Cited on page 48.)

[May04] Wolfgang May. XPath-logic and XPathLog: A logic-
programming style XML data manipulation language.
Theory Pract. Log. Program., 4(3):239–287, 2004. (Cited on
page 6.)

[McB04] Brian McBride. Rdf vocabulary description language 1.0:
RDF schema, 2004. (Cited on pages 75 and 94.)

[Mil71] Robin Milner. An algebraic definition of simulation be-
tween programs. In IJCAI, pages 481–489, 1971. (Cited on
page 141.)

[MM04] Frank Manola and Eric Miller. RDF primer, W3C rec-
ommendation. Technical report, W3C, 2004. (Cited on
pages 14, 74, 90, 92, 94, and 96.)

[MS02] Gerome Miklau and Dan Suciu. Containment and equiv-
alence for an XPath fragment (extended anstract), 2002.
(Cited on pages 12, 174, 181, and 182.)

[MT92] Jiří Matoušek and Robin Thomas. On the complexity
of finding iso- and other morphisms for partial k-trees.
Discrete Mathematics, 108(1-3):343–364, 1992. (Cited on
pages 178, 179, and 180.)

[MT08] Jonathan Marsh and Richard Tobin. XML base (second
edition). W3C proposed edited recommendation, W3C,
March 2008. http://www.w3.org/TR/2008/PER-xmlbase-
20080320/. (Cited on page 22.)

208 bibliography

[MW95] A.O. Mendelzon and P.T. Wood. Finding Regular Simple
Paths in Graph Databases. SIAM Journal on Computing,
24:1235, 1995. (Cited on pages 129 and 130.)

[NM00] Natalya Fridman Noy and Mark A. Musen. PROMPT:
Algorithm and tool for automated ontology merging and
alignment. In AAAI/IAAI, pages 450–455, 2000. (Cited on
page 63.)

[NS02] Frank Neven and Thomas Schwentick. XPath contain-
ment in the presence of disjunction, DTDs, and variables.
In ICDT ’03: Proceedings of the 9th International Conference
on Database Theory, pages 315–329, London, UK, 2002.
Springer-Verlag. (Cited on page 12.)

[Ogb05] Chimezie Ogbuji. Versa: Path-based RDF query language,
2005. (Cited on page 119.)

[OMD01] David Orchard, Eve Maler, and Steven DeRose. XML
linking language (XLink) version 1.0. W3C recommenda-
tion, W3C, June 2001. http://www.w3.org/TR/2001/REC-
xlink-20010627/. (Cited on page 104.)

[OMFB02] Dan Olteanu, Holger Meuss, Tim Furche, and François Bry.
XPath: Looking forward. In Akmal B. Chaudhri, Rainer
Unland, Chabane Djeraba, and Wolfgang Lindner, editors,
EDBT Workshops, volume 2490 of Lecture Notes in Computer
Science, pages 109–127. Springer, 2002. (Cited on page 163.)

[PAG06] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Se-
mantics and complexity of SPARQL. In Isabel F. Cruz, Ste-
fan Decker, Dean Allemang, Chris Preist, Daniel Schwabe,
Peter Mika, Michael Uschold, and Lora Aroyo, editors,
International Semantic Web Conference, volume 4273 of Lec-
ture Notes in Computer Science, pages 30–43. Springer, 2006.
(Cited on pages 12, 33, 39, and 40.)

[PAG08] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez.
nSPARQL: A navigational language for RDF. In Amit P.
Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Di-
ana Maynard, Timothy W. Finin, and Krishnaprasad
Thirunarayan, editors, International Semantic Web Confer-
ence, volume 5318 of Lecture Notes in Computer Science,
pages 66–81. Springer, 2008. (Cited on pages 41, 119, 123,
126, 130, 131, and 133.)

[Pan04] Jeff Z. Pan. Description Logics: Reasoning Support for the
Semantic Web. PhD thesis, 2004. (Cited on page 32.)

[PBK09] Axel Polleres, Harold Boley, and Michael Kifer. RIF
datatypes and built-ins 1.0. W3C working draft, W3C,
July 2009. (Cited on page 58.)

[Pep00] Steve Pepper. The TAO of topic maps. 2000. (Cited on
page 63.)

[PFH06] Axel Polleres, Cristina Feier, and Andreas Harth. Rules
with contextually scoped negation. In York Sure and John
Domingue, editors, ESWC, volume 4011 of Lecture Notes in

bibliography 209

Computer Science, pages 332–347. Springer, 2006. (Cited on
pages 21 and 105.)

[PH03a] Jeff Pan and Ian Horrocks. RDFS(FA) and RDF MT: Two se-
mantics for RDFS. In Dieter Fensel, Katia Sycara, and John
Mylopoulos, editors, Proc. of the 2003 International Semantic
Web Conference (ISWC2003), number 2870 in Lecture Notes
in Computer Science, pages 30–46. Springer, 2003.
http://www.cs.man.ac.uk/~horrocks/Publications/

download/2003/HoPa03b.pdf. (Cited on page 31.)

[PH03b] Jeff Z. Pan and Ian Horrocks. RDFS(FA): A DL-ised sub-
language of RDFS. In International Workshop on Description
Logics 2003, pages 95–102, 2003. (Cited on page 31.)

[Poh08] Alexander Pohl. RDF Querying in Xcerpt: Language Con-
structs and Implementation. Deliverable I4-Dx2, REW-
ERSE, 2008. (Cited on pages 15 and 58.)

[Pol07] Axel Polleres. From SPARQL to rules (and back). In
Carey L. Williamson, Mary Ellen Zurko, Peter F. Patel-
Schneider, and Prashant J. Shenoy, editors, WWW, pages
787–796. ACM, 2007. (Cited on pages 36, 40, 41, 47, 48,
and 122.)

[Pop] Olga Poppe. Subsumption-based resolution for rule lan-
guages with rich unification http://www.pms.ifi.lmu.de/

publikationen/. diploma thesis, University of Munich.
(Cited on pages 5 and 187.)

[PP90] H. Przymusinska and T. C. Przymunsinski. Weakly strati-
fied logic programs. Fundam. Inf., 13(1):51–65, 1990. (Cited
on page 153.)

[Prz88] Teodor C. Przymusinski. On the declarative semantics of
deductive databases and logic programs. In Foundations of
Deductive Databases and Logic Programming., pages 193–216.
Morgan Kaufmann, 1988. (Cited on page 146.)

[PS04] Peter F. Patel-Schneider. A proposal for a SWRL extension
to first-order logic. Proposal, DARPA DAML Program,
November 2004.
http://www.daml.org/2004/11/fol/proposal. (Cited on
page 56.)

[PSF02] Peter F. Patel-Schneider and Dieter Fensel. Layering the
Semantic Web: Problems and directions. In First Interna-
tional Semantic Web Conference (ISWC2002), Sardinia, Italy,
June 2002. (Cited on page 31.)

[P0̆5] Paula-Lavinia Pătrânjan. The Language XChange: A Declar-
ative Approach to Reactivity on the Web. Dissertation/Ph.D.
thesis, Institute of Computer Science, LMU, Munich, 2005.
PhD Thesis, Institute for Informatics, University of Munich,
2005. (Cited on page 15.)

[RC97] R. Ramesh and Weidong Chen. Implementation of tabled
evaluation with delaying in prolog. IEEE Trans. Knowl.
Data Eng., 9(4):559–574, 1997. (Cited on page 5.)

http://www.cs.man.ac.uk/~horrocks/Publications/
download/2003/HoPa03b.pdf
http://www.pms.ifi.lmu.de/publikationen/
http://www.pms.ifi.lmu.de/publikationen/
http://www.daml.org/2004/11/fol/proposal

210 bibliography

[Ros90] Kenneth A. Ross. Modular stratification and magic sets
for DATALOG programs with negation. In PODS, pages
161–171. ACM Press, 1990. (Cited on page 146.)

[RR06] David Recordon and Drummond Reed. OpenID 2.0: a
platform for user-centric identity management. In DIM ’06:
Proceedings of the second ACM workshop on Digital identity
management, pages 11–16, New York, NY, USA, 2006. ACM.
(Cited on page 87.)

[SCF+
07] Jérôme Siméon, Don Chamberlin, Daniela Florescu, Scott

Boag, Mary F. Fernández, and Jonathan Robie. XQuery 1.0:
An XML query language. W3C recommendation, W3C,
January 2007. http://www.w3.org/TR/2007/REC-xquery-
20070123/. (Cited on pages 7 and 66.)

[Sch04a] Sebastian Schaffert. Xcerpt: A Rule-Based Query and Trans-
formation Language for the Web. PhD thesis, University of
Munich, 2004. (Cited on pages 15, 17, 109, 115, 142, 156,
157, 158, 163, and 165.)

[Sch04b] Thomas Schwentick. XPath query containment. SIGMOD
Record, 33(1):101–109, 2004. (Cited on pages 11, 12, 164,
and 165.)

[SD01] Michael Sintek and Stefan Decker. TRIPLE - an RDF query,
inference and transformation language. Technical report,
DFKI, 2001. (Cited on pages 53 and 54.)

[Shm87] O. Shmueli. Decidability and expressiveness aspects
of logic queries. In PODS ’87: Proceedings of the sixth
ACM SIGACT-SIGMOD-SIGART symposium on Principles
of Database Systems, pages 237–249, New York, NY, USA,
1987. ACM. (Cited on page 4.)

[SMB+
08] Andy Seaborne, Geetha Manjunath, Chris Bizer, John

Breslin, Souripriya Das, Ian Davis, Steve Harris, Kings-
ley Idehen, Olivier Corby, Kjetil Kjernsmo, and Ben-
jamin Nowack. SPARQL/Update: A language for updat-
ing RDF graphs. W3C Member Submission, W3C, July
2008. http://www.w3.org/Submission/2008/04/. (Cited
on page 41.)

[SP08] Andy Seaborne and Eric Prud’hommeaux. SPARQL query
language for RDF. W3C recommendation, W3C, Jan-
uary 2008. http://www.w3.org/TR/2008/REC-rdf-sparql-
query-20080115/. (Cited on pages 7, 35, and 80.)

[SS04] Simon Schenk and Steffen Staab. Networked graphs: A
declarative mechanism for SPARQL rules, SPARQL views
and RDF data integration on the Web. In Proceedings of the
17th International World Wide Web Conference, Bejing, China,
2008-04. (Cited on pages 41 and 122.)

[SSW93] Konstantinos F. Sagonas, Terrance Swift, and David Scott
Warren. The XSB programming system. In Workshop
on Programming with Logic Databases (Informal Proceedings),
ILPS, page 164, 1993. (Cited on page 146.)

bibliography 211

[ST97] R. Shamir and D. Tsur. Faster subtree isomorphism. In
ISTCS ’97: Proceedings of the Fifth Israel Symposium on the
Theory of Computing Systems (ISTCS ’97), page 126, Wash-
ington, DC, USA, 1997. IEEE Computer Society. (Cited on
page 176.)

[Sti05] Patrick Stickler. Concise bounded description. http://www.
w3.org/Submission/CBD/, June 2005. (Cited on pages 34

and 39.)

[ter04] Herman J. ter Horst. Extending the RDFS entailment
lemma. In Sheila A. McIlraith, Dimitris Plexousakis, and
Frank van Harmelen, editors, International Semantic Web
Conference, volume 3298 of Lecture Notes in Computer Sci-
ence, pages 77–91. Springer, 2004. (Cited on page 30.)

[ter05a] Herman J. ter Horst. Combining RDF and part of OWL
with rules: Semantics, decidability, complexity. In Yolanda
Gil, Enrico Motta, V. Richard Benjamins, and Mark A.
Musen, editors, The Semantic Web - ISWC 2005, number
3729 in Lecture Notes in Computer Science, pages 668–684,
Heidelberg, 2005. Springer Verlag. (Cited on pages 29, 30,
and 31.)

[ter05b] Herman J. ter Horst. Completeness, decidability and com-
plexity of entailment for RDF schema and a semantic ex-
tension involving the OWL vocabulary. Journal of Web
Semantics, 3(2-3):79–115, 2005. (Cited on pages 92, 93, 94,
and 99.)

[tL07] Balder ten Cate and Carsten Lutz. The complexity of query
containment in expressive fragments of XPath 2.0. In PODS
’07: Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of Database Systems, pages
73–82, New York, NY, USA, 2007. ACM. (Cited on page 12.)

[TS86] Hisao Tamaki and Taisuke Sato. OLD resolution with
tabulation. In Ehud Y. Shapiro, editor, ICLP, volume 225

of Lecture Notes in Computer Science, pages 84–98. Springer,
1986. (Cited on pages 5 and 164.)

[Ull00] Jeffrey D. Ullman. Information integration using logical
views. Theor. Comput. Sci., 239(2):189–210, 2000. (Cited on
pages 4 and 63.)

[Val02] Gabriel Valiente. Algorithms on Trees and Graphs. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2002. (Cited on
page 177.)

[VD03] Jean-Yves Vion-Dury. Xpath on left and right sides of rules:
toward compact xml tree rewriting through node patterns.
In DocEng ’03: Proceedings of the 2003 ACM symposium on
Document engineering, pages 19–25, New York, NY, USA,
2003. ACM. (Cited on page 6.)

[vRS91a] A. van Gelder, K. Ross, and J.S. Schlipf. The well-founded
semantics for general logic programs. Journal of the ACM,
18:620–650, 1991. (Cited on pages 150 and 151.)

http://www.w3.org/Submission/CBD/
http://www.w3.org/Submission/CBD/

212 bibliography

[vRS91b] Allen van Gelder, Kenneth A. Ross, and John S. Schlipf.
The well-founded semantics for general logic programs.
Journal of the ACM, 1991. (Cited on pages 5 and 146.)

[W3C07] W3C. Gleaning resource descriptions from dialects of lan-
guages (GRDDL). W3C recommendation, W3C, September
2007. (Cited on page 63.)

[WL03] Fang Wei and Georg Lausen. Containment of conjunctive
queries with safe negation. In Diego Calvanese, Maurizio
Lenzerini, and Rajeev Motwani, editors, ICDT, volume
2572 of Lecture Notes in Computer Science, pages 343–357.
Springer, 2003. (Cited on pages 4 and 164.)

[YKZ02] G. Yang, M. Kifer, and C. Zhao. Flora-2: User’s Manual. De-
partment of Computer Science, Stony Brook University, Stony
Brook, 2002. (Cited on page 49.)

[YKZ03] Guizhen Yang, Michael Kifer, and Chang Zhao. Flora-2: A
rule-based knowledge representation and inference infras-
tructure for the semantic web. In Robert Meersman, Zahir
Tari, and Douglas C. Schmidt, editors, CoopIS/DOA/OD-
BASE, volume 2888 of Lecture Notes in Computer Science,
pages 671–688. Springer, 2003. (Cited on pages 49 and 51.)

	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	1 Motivation
	1.1 Rule languages with Rich Unification
	1.2 Substitution Sets as the result of Rich Unification
	1.3 Asymmetry of Rich Unification
	1.4 Rich Unification and Subsumption
	1.5 Rich Unification and Types
	1.6 Outline and Contributions of this Thesis

	2 Preliminaries
	2.1 Introduction to Xcerpt
	2.2 RDF and the Semantic Web Vision
	2.2.1 RDF Abstract Data Model
	2.2.2 RDF/XML
	2.2.3 Notation 3

	2.3 The RDF/S Model Theory
	2.4 RDF Extensions
	2.5 Critique of the RDF/S Model Theory

	3 Related Work: Data Integration on the (Semantic) Web
	3.1 State of the Art: The SPARQL Query Language
	3.1.1 SPARQL graph patterns
	3.1.2 Blank nodes in SPARQL graph patterns
	3.1.3 Testing RDF Graphs for Equivalence in SPARQL
	3.1.4 Semantics and Complexity of SPARQL

	3.2 Extensions of SPARQL
	3.2.1 nSPARQL
	3.2.2 SPARQLeR
	3.2.3 XSPARQL
	3.2.4 SPARQL update
	3.2.5 SPARQL and Rules

	3.3 Flora-2
	3.4 RQL
	3.5 Triple
	3.6 SWRL
	3.7 Metalog
	3.8 The Rule Interchange Format

	Versatile Querying with XcerptRDF
	4 Versatile Use Cases
	4.1 Querying XML with Xcerpt: Examples and Patterns
	4.1.1 XcerptXML Data and Rules.
	4.1.2 XcerptXML Queries: Pattern-based Filtering of Search Results
	4.1.3 Mining Semantic data from Microformats embedded in personal profiles.

	4.2 Querying RDF with Xcerpt: Examples and Patterns
	4.2.1 Representation of RDF Graphs as XcerptRDF Data Terms
	4.2.2 XcerptRDF Query Terms
	4.2.3 XcerptRDF Construct Terms and Rules

	4.3 Glueing RDF and XML with Rules
	4.3.1 Versatile Rules
	4.3.2 Transforming LinkedIn embedded Microformat information to DOAC and FOAF

	5 XcerptRDF Syntax and Simulation
	5.1 Compound RDF data structures in XcerptRDF
	5.2 A Model Theory for RDF Containers, Collections and Reification
	5.2.1 RDFS+ Model Theory and Entailment Rules
	5.2.2 RDFCC Model Theory and Entailment Rules
	5.2.3 RDFR Model Theory and Entailment Rules

	5.3 Abstract Syntax of XcerptRDF
	5.4 XcerptRDF Declarative Semantics: Term Simulation
	5.5 XcerptRDF Queries, Facts, Rules and Programs

	6 The XcerptRDF Regular Path Language RPL
	6.1 Design Goals of RPL
	6.2 RPL by Example
	6.3 Syntax of RPL
	6.4 Compositional Semantics of RPL
	6.5 Restrictions and Extensions of RPL
	6.6 RPL compared to Lorel, SPARQLeR and nSPARQL
	6.7 Further Complexity Results
	6.8 Compilation of RPL to Prolog

	Xcerpt Multi-Rule Semantics and Term Subsumption
	7 Xcerpt Term Simulation and Multi-Rule Semantics
	7.1 Simulation as the Foundation for Versatile Querying
	7.2 Simulation and Negation: Local Stratification
	7.3 Well-Founded Semantics for Xcerpt
	7.4 Grouping versus Negation Stratification
	7.4.1 Elimination of Single Grouping Constructs
	7.4.2 Elimination of Nested Grouping Constructs

	8 Xcerpt Query Term Subsumption
	8.1 XcerptXML Query Terms and Simulation
	8.2 Simulation Subsumption
	8.3 Simulation Subsumption by Rewriting
	8.4 Properties of the Rewriting System
	8.4.1 Subsumption Monotonicity and Soundness
	8.4.2 Completeness
	8.4.3 Decidability and Complexity

	8.5 Complexity for Xcerpt Fragments
	8.6 Future Work in the Area of Xcerpt Query Term Subsumption

	9 Summary and Future Work

	Appendix
	A Proofs Related to Xcerpt Query Term Subsumption
	A.1 Non-ground Simulation between XcerptXML Query Terms
	A.2 Proof of Completeness of the Rewriting System

	Bibliography

