
This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Matteo Baldoni; Cristina Baroglio; Federico Capuzzimati. A
Commitment-based Infrastructure for Programming Socio-Technical
Systems. ACM TRANSACTIONS ON INTERNET TECHNOLOGY. 14 (4)
pp: 23:1-23:23.
DOI: 10.1145/2677206

The publisher's version is available at:
http://dl.acm.org/citation.cfm?doid=2699996.2677206

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/151904

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/301960614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

39

A Commitment-based Infrastructure for Programming
Socio-Technical Systems

MATTEO BALDONI, Università degli Studi di Torino, Dipartimento di Informatica
CRISTINA BAROGLIO, Università degli Studi di Torino, Dipartimento di Informatica
FEDERICO CAPUZZIMATI, Università degli Studi di Torino, Dipartimento di Informatica

Socio-Technical Systems demand an evolution of computing into social computing, with a transition from
an individualistic to a societal view. As such, they seem particularly suitable to realize multi-party, cross-
organizational systems. Multi-Agent Systems are a natural candidate to realize Socio-Technical Systems.
However, while Socio-Technical Systems envisage an explicit layer that contains the regulations that all
parties must respect in their interaction, and thus preserve the agents’ autonomy, current frameworks and
platforms require to hard-code the coordination requirements inside the agents. We propose to explicitly
represent the missing layer of Socio-Technical Systems in terms of social relationships among the involved
parties, i.e. in terms of a set of normatively defined relationships among two or more parties, subject to
social control by monitoring the observable behaviour. In our proposal, social relationships are resources,
available to agents, who use them in their practical reasoning. Both agents and social relationships are
first-class entities of the model. The work also describes 2COMM4JADE, a framework that realizes the
proposal by extending the well-known JADE and CArtAgO. The impact of the approach on programming is
explained both conceptually and with the help of an example.

Categories and Subject Descriptors: I.2.11 [Distributed Artificial Intelligence]: Multiagent systems;
I.2.11 [Distributed Artificial Intelligence]: Languages and structures

General Terms: Design, Infrastructures

Additional Key Words and Phrases: Interaction protocols, commitments, social relations, middleware, arti-
facts, sociotechnical systems

ACM Reference Format:
Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati, 2014. Programming and Reasoning about So-
cial Relationships: a Commitment-based Infrastrcture. ACM Trans. Internet Technol. 9, 4, Article 39 (March
2010), 23 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Modern, complex information technology systems require new software engineering
techniques in order to scale adequately and to reduce risks of undesired, unpredictable
behaviours [Sommerville et al. 2012]. In particular, traditional approaches do not fit
the needs of large-scale, multi-party, cross-organizational systems, especially those
needs which concern the design of interaction and distributed computation.

A different way of imagining and of engineering applications that fit the described
setting is via socio-technical systems (STS for short) [Cherns 1976; Trist 1981]. These
are systems where several, autonomous actors (people who use or interact with other

Author’s addresses: M. Baldoni, C. Baroglio, F. Capuzzimati, Dipartimento di Informatica, Università degli
Studi di Torino c.so Svizzera 185, I-10149 Torino (Italy).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2010 ACM 1533-5399/2010/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 M. Baldoni, C. Baroglio, F. Capuzzimati

system components) use resources to achieve individual or shared goals. They sup-
port human users by mechanizing processes and by aiding stakeholders in interacting
with each other, e.g. for contending resources, asking for co-working activities, or for
assigning sub-units of work.

STS demand an evolution of computing [Whitworth and Ahmad 2013] into social
computing [Dalpiaz et al. 2011], with a transition from an individualistic to a societal
view, where notions like social structure, role and norm come into play. They can be
conceived as a set of stacked layers [Sommerville et al. 2012], the lowest concerning
physical resources, the others concerning higher and higher abstractions and function-
alities (e.g. communication, application, business process). The topmost layer concerns
the laws and the regulations that govern the operation of the system (the society).
This level provides the coordination mechanisms that are necessary to the functioning
of the system as well as the expected observable behavior of the system. As such, it
supplies a base for the reasoning and for the deliberative activities of the participants
and a tool for monitoring the correctness of the evolution of the system. In this way, a
set of autonomous actors, which are decoupled by nature, can work and interact in a
shared environment, realizing a form of self-governance [Singh 2014].

This work proposes a framework for realizing STS that builds upon Multi-Agent
Systems (MAS) – a conceptual choice supported, among the others, by [Bresciani and
Donzelli 2004; Porello et al. 2013; Singh 2014]. Agents represent stakeholders and
act on their behalf, they are autonomous as far as the system allows them, always
respecting the criteria and the preferences of the stakeholders they represent. Agent-
oriented software engineers can choose from a substantial number of agent platforms
[Mascardi et al. 2004; Bordini et al. 2006; Fisher et al. 2007; Baldoni et al. 2010]. The
choice is related to very different and heterogeneous factors, like: scope and purpose of
the system; formal model the platform is based on; richness of the agent programming
language, if devised; platform support, maintenance and update; (graphical) tools for
supporting design and development; simplicity of integration with other (agent) pro-
gramming languages. Platforms and frameworks like JADE [Bellifemine et al. 2005],
TuCSoN [Omicini and Zambonelli 1998], DESIRE [Brazier et al. 1997], JIAC [Thiele
et al. 2009], all provide coordination mechanisms and communication infrastructures
[Bordini et al. 2006]. We claim, however, that none of the current infrastructures for
MAS is adequate to the purpose of realizing STS because none of them explicitly ac-
counts for the topmost layer of STS, thus forcing the projection of the regulations di-
rectly inside the behaviors of the agents. As a consequence, MAS infrastructures do not
really preserve autonomy and do not fit the high degree of decoupling which charac-
terizes the participants of an STS. On the contrary, an explicit account of the topmost
layer would clearly separate the agent specification from the coordination specification,
not requiring any “hard-coding” of the regulations of the system inside the activities of
the participants.

To overcome the limits of current MAS platforms, we propose to explicitly represent
the topmost layer of STS in terms of social relationships among the involved partic-
ipants, i.e. in terms of normatively defined relationships among two or more partici-
pants, that are subject to social control by monitoring their observable behavior. For
supplying a normative characterization of social relationships, we propose to rely on
commitments, which feature a social and observational semantics [Singh 2000], and in
order to represent the coordination requirements we propose to rely on commitment-
based protocols [Yolum and Singh 2002].

We also claim that the social relationships and commitment-based protocols should
be integrated in the system in the form of resources because this allows participants
to dynamically recognize, accept, manipulate, reason on them, and decide whether
to conform to them. In particular, in a STS it is fundamental that the participants

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Programming and Reasoning about Social Relationships 39:3

explicitly accept the regulations, that are encode by them, because by this act they
allow all the other participants, as well as the system, to have expectations on their
behavior. This supplies a basis for coordination [Conte et al. 1999]. In other words, the
topmost level of STS should be realized by way of first-class objects.

The framework that we propose, 2COMM4JADE, uses JADE as basic agent plat-
form, which provides a FIPA compliant communication framework and an agent-
developing middleware. In order to reify the social relationships we rely on the Agents
& Artifacts meta-model (A&A) [Weyns et al. 2007; Omicini et al. 2008], which provides
abstractions for environments and artifacts, that can be acted upon, observed, per-
ceived, notified, and so on. When embodied inside artifacts, social relationships can be
examined by the agents (to take decisions about their behavior), as advised in [Chopra
and Singh 2009], used (which entails that agents accept the corresponding regula-
tions), constructed, e.g., by negotiation, specialized, composed, and so forth. Last but
not least, the use of artifacts enables the implementation of monitoring functionalities
for verifying that the on-going interactions respect the commitments and for detecting
violations and violators.

Summarizing, this work proposes to realize the society layer of STS as a set of social
relationships, captured as commitments (Section 2). The normative characterization of
the social relationships allows to decouple the programming of agents from the design
of their interaction, and allows agents to reason on each other’s expected behavior. So-
cial relationships are actual resources, implemented through artifacts, that are made
available to the agents, and are first-class entities of the model, as well as agents. The
framework 2COMM4JADE (Section 3) realizes the proposal based on an extension of
JADE and of CArtAgO. We show the impact of the proposal on programming by means
of an example (Section 4).

2. MODELING SOCIAL RELATIONSHIPS: TOWARDS THE REALIZATION OF STS
In the 50’s, the Tavistock Institute of Human Relations developed a new model of work
organization, characterized by the assignment of responsibilities, the decentralization
of work structures, the grouping of employees into mindful teams. This model is called
socio-technical design of socio-technical systems [Trist 1981]. Different design prin-
ciples were proposed as basis for socio-technical design. One of them is particularly
relevant for the design of modern systems [Cherns 1976], the Minimal Critical Spec-
ification: only the essential must be specified. In his work the author, member of the
Tavistock Institute, highlights how in the organization design the focus is traditionally
put on how rather than on what. Quote: “In any case, it is a mistake to specify more
than is needed because by doing so options are closed that could be kept open. This
premature closing of options is a pervasive fault in design.”.

In parallel with real-world work organization cases, socio-technical design princi-
ples were adapted to software and systems engineering [Sommerville et al. 2012]. The
idea is to model complex software systems based on the interactions among their com-
ponents, whose coordination (either collaborative or competitive) is the fundamental
pillar. Besides interactions, norms and policies for resource usage are also provided.
Inspire by [Sommerville et al. 2012], we see STS as structured into three architec-
tural layers (Figure 1): infrastructure, functionalities, and society. The first concerns
the (hardware) equipment, software and data management; the second organizes ac-
tivities, involving actors and components; the third regulates and norms how actors
can use the system, their constraints and the laws of the system.

The introduction of the agent metaphor, though having a different origin, repre-
sents a paradigm shift that moves along the lines of socio-technical design: from a
control-flow-based organization of software (typical of the functional and the object-
oriented paradigms) to a message-based one, shaped around message exchanges among

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:4 M. Baldoni, C. Baroglio, F. Capuzzimati

Infrastructure

Functionalities

Society

Hardware Operating Systems

Application softwareData Management

Business Processes

Norms
Regulations

Usage Policy

Component Behaviours

Laws

Social Relationships

Fig. 1. Architectural macro-levels in a STS.

autonomous, computational entities. However, with reference to the architecture pro-
posed in Figure 1, most of the existing Multi-Agent frameworks and platforms mix
the third level with the second, rather than explicitly accounting for a social layer
of the interaction and, thus, spread the coordination logic across the agents’ imple-
mentations. Consider, for instance, the well-known JADE [Bellifemine et al. 2007] and
Jason [Bordini et al. 2007], which respectively rely on the object-oriented and on the
declarative paradigms, and consider the way they manage a simple interaction like
the one captured by the FIPA Contract Net Protocol (CNP). In the JADE example im-
plementation [Bellifemine et al. 2007, Sec. 5.4, page 100-107], agents execute one of
two behaviours, named respectively ContractNetInitiator and ContractNetResponder,
that are the projections of the two roles of FIPA CNP. These include the interaction
rules and contain all the checks related to the flow of messages, implemented based on
finite state machines (FSMBehaviour). These behaviours are provided by the package
jade.proto. In Jason [Bordini et al. 2007, Sec. 6.3, page 130], the interaction rules are
again split into the behaviours of the interacting agents. Also in this case, and despite
the declarative nature of Jason, each behaviour contains a collection of plans, one for
each of the interaction steps of the protocol (like cfp and propose).

We propose to explicitly represent the third layer of STS by representing social re-
lationships among the agents. By social relationships we mean normatively defined
relationships, and the expected patterns of interaction, between two or more agents,
resulting from the enactment of roles, and subject to social control. We envisage both
agents and social relationships as first-class entities that interact in a bi-directional
manner. Social relationships are created by the execution of interaction protocols and
provide expectations on the agents’ behaviour. It is, therefore, necessary to provide the
agents the means to create and to manipulate, and to observe, to monitor, to reason and
to deliberate on social relationships so to take proper decisions about their behaviour.
We do so by exploiting properly defined artifacts, that reify both interaction protocols,
defined in terms of social relationships, and the sets of social relationships, created
during protocol execution. Such artifacts are made available to agents as resources.

The advantage of our proposal, compared to previously existing approaches, is that
it clearly decouples the interaction design from the agent design, using artifacts to en-
code the coordination logic. Protocols provide a means of coordination, based on the
notification of social events, e.g. the creation of a commitment. Interacting agents use
artifacts to coordinate and interact, depending on the roles they play and on their ob-
jectives. One further advantage is that, thanks to artifacts and to commitments and
to their normative value, it is possible to realize monitoring functionalities of the in-
teraction, without imposing any specific behaviour. As such, our proposal respects the

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Programming and Reasoning about Social Relationships 39:5

Minimal Critical Specification principle advocated for STS, and preserves the agents’
autonomy. Traditional approaches, on the contrary, do not support the decoupling of
the design of agents and of the design of their interactions, which would be necessary
in a cross-organizational setting: either the proper interactive capabilities are hard-
coded in the implementation of the agents’ behaviours (thus realizing no decoupling)
or it is necessary to adopt off-the-shelf behaviours, which fully implement the specifi-
cation but that are “injected” and that hide, in an external component, what should be
the proactivity of the agent. This is, for instance, the case of JADE.

2.1. Social Relationships as Commitments
When modeling complex domains, with stakeholders belonging to different organiza-
tions or units of work, system engineers and analysts usually adopt the same for-
malism to describe behaviour of a particular component (a system resource and/or
stakeholder) and interactions between components. BPMN is the preferred language;
it allows to specify in detail what the expected behaviour of a resource (e.g. a printer,
a web service, a web application) is, as well as that of an actor (e.g. the receptionist
answering a call, the support team managing an help desk). It provides a graphical,
intuitive means to organize tasks for achieving some result.

Problems arise when BPMN is used to design interactions between different stake-
holders, each with its own set of business processes. Think, for example, to a health
care system, whose purpose is to manage remote assistance to elder people and, if re-
quired, to send a medical support. Such system is a service integrator; it interrelates
services provided by different entities when needed. Specifying how, for example, the
physician will administer cures is out of its scope. The system only has to shape re-
lationship between the physician and the patient who requested assistance. By using
BPMN, one would build a multi-actor business process, where the tasks to be accom-
plished would be expressed in a procedural manner, and the interaction between the
stakeholders (physician and patient) would be expressed as the sending and receiv-
ing of messages. This procedural view makes it difficult, for the involved actors, to be
proactive or to adapt to variations in the environment, unless the business process is
redesigned. This is basically due to the imposition of (often) unnecessary orderings. In
other words, this approach does not suit the representation of business processes that
are inherently destructured, as it is often the case in cross-organizational settings, and
where seldom authority is centralized or clearly associated to a single stakeholder, but,
rather, the involved actors are all peers that act in an autonomous way respecting an
agreed regulation.

Pesic and van der Aalst [2006] proposed a shift of paradigm, passing from a procedu-
ral representation, leading to an over-constrained, non-realistic organization of work,
to a declarative representation. In our opinion, this shift of paradigm satisfies the
Minimal Critical Specification requirement illustrated before: specify “what” should
occur rather than “how” making it occur. The question to answer, then, becomes: how
to model interactions between autonomous entities without considering them as non-
autonomous ones? We adopt the basic ideas used, among others, in [Telang and Singh
2011], where interactions and Cross-Organizational Business Processes are modeled
in terms of regulated relations between entities, and where the founding element of a
relation is a commitment.

Commitments define the agents normative context. In our proposal, they constitute
the top level of a socio-technical system, the one which accounts for societal regula-
tions [Sommerville 2010]. Commitments [Singh 1999] are represented with the nota-
tion C(x, y, r, p), capturing that the agent x commits to the agent y to bring about the
consequent condition p when the antecedent condition r holds. Antecedent and con-
sequent conditions generally are conjunctions or disjunctions of events and commit-

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 M. Baldoni, C. Baroglio, F. Capuzzimati

ments. When r equals >, we use the short notation C(x, y, p) and the commitment is
said to be active. Commitments have a regulative nature, in that debtors are expected
to behave so as to satisfy the engagements they have taken. This practically means
that an agent is expected to behave so as to achieve the consequent conditions of the
active commitments of which it is the debtor.

The stakeholders share a social state that contains commitments. Stakeholders af-
fect the social state while performing their activities. Specifically, the manipulation
of commitments is done by means of the standard operations create, cancel, release,
discharge, assign, delegate. As in [Singh 1999], we postulate that discharge is per-
formed concurrently with the actions that lead to the given condition being satisfied
and causes the commitment to not hold. Delegate and assign transfer commitments re-
spectively to a different debtor and to a different creditor. For details see [Singh 1999;
Yolum and Singh 2002; Chopra 2009].

The next question to answer is how to integrate, inside the outlined agent and ar-
tifact setting, the rules that regulate the process by which social relationships are
created and manipulated. In our proposal, this is done by relying on the notion of
commitment-based interaction protocol. This kind of protocol consists of a set of ac-
tions (process activities), whose semantics is shared, and agreed upon, by all of the
participants to the interaction [Yolum and Singh 2002; Chopra 2009]. The semantics
of the social actions is given in terms of the operations which allow the modification of
the social state and that have already been described.

Along the line of [Telang and Singh 2010], we propose to start protocol modeling
by identifying the necessary social relationships, that are, then, represented as com-
mitments. Only afterwards the focus shifts to identifying the activities that make
them evolve during the interaction. This represents an inversion w.r.t. the traditional,
activity-centric design phase: the evolution of commitments guides the definition of the
activities, needed by the interacting parties. This is also a difference with the normal
use of commitment protocols where commitments just give semantics to the protocol
actions: here, commitments are the focus, they are first-class objects in the deliberative
activity of the agents, and can be manipulated by means of the protocol actions.

From an organizational perspective, a protocol is structured into a set of roles. Roles
and agents are different entities, and we assume that roles cannot live autonomously:
they exist in the system in view of the interaction, because agents, for interacting,
use artifacts and execute actions on them. We follow the ontological model for roles
proposed in [Boella and van der Torre 2007], and brought inside the object-oriented
paradigm in [Baldoni et al. 2007], which is characterized by three aspects: (1) Foun-
dation: a role must always be associated with the institution it belongs to and with its
player; (2) Definitional dependence: the definition of the role must be given inside the
definition of the institution it belongs to; (3) Institutional empowerment: the actions
defined for the role in the definition of the institution have access to the state of the
institution and of the other roles, thus, they are called powers; instead, the actions
that a player must offer for playing a role are called requirements.

2.2. Social Relationships as Resources
Following [Conte et al. 1999], we need social relationships to be recognized as having a
normative force (so that they will provide social expectations on the stakeholders’ be-
haviour), to be accepted explicitly by the participants to the interaction, to be inspected
so as to allow stakeholders to decide whether conforming to them. To this aim, we pro-
pose to explicitly model social relationships as resources, that are made available to
the interacting peers, in the very same way as other kinds of resources. Moreover, in a
system made of autonomous and heterogeneous actors, social relationships cannot but
concern the observable behaviour [Dastani et al. 2009].

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Programming and Reasoning about Social Relationships 39:7

Given that stakeholders and social relationships are both first-class entities, that in-
teract in a bi-directional manner, how to model these two elements in the Multi-agent
paradigm? This provides a single first-class entity, the agent, which is not suitable for
representing inspectable elements because an agent’s internal state is not available to
external entities by definition. To solve this issue, we adopt the Agents and Artifacts
(A&A) meta-model [Weyns et al. 2007; Omicini et al. 2008], that extends the agent
paradigm with another primitive abstraction, the artifact. An artifact is a computa-
tional, programmable system resource, that can be manipulated by agents, residing at
the same abstraction level of the agent abstraction class. The A&A paradigm provides
ways for defining and organizing workspaces, i.e. logical groups of artifacts, that can be
joined by agents at runtime and where agents can create, use, share and compose ar-
tifacts to support individual and collective, cooperative or antagonistic activities. The
environment is itself programmable, and encapsulates services and functionalities.
For their very nature, artifacts can encode a mediated, programmable and observable
means of communication and coordination between agents. Following [Baldoni et al.
2011], we rely on artifacts to realize the topmost layer of STS.

We interpret the fact that an agent uses an artifact as the explicit acceptance, by the
agent, of the regulation encoded by that artifact, and modeled by the interaction proto-
col that the artifact reifies. This is an important aspect because it allows the interact-
ing parties to perform practical reasoning, based on expectations: participants expect
that the debtors of commitments behave so as to satisfy the corresponding consequent
conditions; when this does not happen, a violation is raised. Relying on artifacts allows
also other kinds of manipulation, including (but not limited to) an agent playing a role
in the interaction, and an agent observing the interaction that is being carried on.

A role represents a way of manipulating the social state and belongs to the artifact
which reifies its protocol. In other words, roles are supplied by protocols and, in turn,
supply actions that enable interaction through the artifacts, that reify such protocols.
They are powers for modifying the social state, e.g. by creating commitments. On the
other hand, the agents that will be the role players need to satisfy the related require-
ments: specifically, in order to play a role an agent needs to have the capabilities of
satisfying the related commitments – capabilities which can be internal of the agent
or supplied as powers as well. For example, in order to play the role Initiator of the
Contract Net Protocol (used later in the paper), an agent needs to be able to satisfy the
commitment of assigning tasks to some of the participants.

Finally, in our proposal, the artifact maintains both the social state, with all the
commitments, and further elements that contribute to the state of the interaction, and
that are stored in a blackboard-style memory, that we call communication state. For
instance, in the CNP case, the description of the task for which the call is issued, is
recorded in this area. Agents, playing roles, can inspect the state of the interaction or
be notified when events of interest occur.

Summary. We claim that an agent-based framework for realizing STS should satisfy
the following requirements. First of all, there is the need of an explicit representation
of the social relationships that are created and that evolve along the interaction. Such
relationships should have a normative force: thus, they will allow agents to have expec-
tations on the behavior of their parties. We decided to use commitments to represent
social relationships and to rely on commitment-based protocols to represent the way
in which social relationships evolve. Then, we believe that social relationships should
be first-class objects, which can be used for programming the agent behavior. For this
reason, we decided to make social relationships actual resources, made available to the
agents through artifacts, and manipulable through interaction protocols.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 M. Baldoni, C. Baroglio, F. Capuzzimati

3. 2COMM4JADE: A COMMITMENT-BASED INFRASTRUCTURE FOR SOCIAL
RELATIONSHIPS

After providing the background, we describe the developed implementation frame-
work, that we named 2COMM4JADE. The focus is to provide adequate support for pro-
gramming social relationships by exploiting a declarative, interaction-centric approach
and by relying on existing technologies as far as possible. Specifically, the implemen-
tation framework combines two well-known platforms: JADE [Bellifemine et al. 2005]
and CArtAgO [Ricci et al. 2011]. JADE agents represent stakeholders, commitment-
based interaction protocols are realized as CArtAgO artifacts.

JADE is a popular and industry-adopted agent framework. It offers to developers a
Java middleware that is FIPA-compliant [Foundation for Intelligent Physical Agents
2002]. Its robustness and well-proven reliability makes JADE a preferred choice in
developing MAS. A JADE-based system is composed of one or more containers, each
grouping a set of agents in a logical node and representing a single JADE runtime.
The overall set of containers is called a platform, and can spread across various phys-
ical hosts. The resulting architecture hides the underlying layer, allowing support for
different low-level frameworks (JEE, JSE, JME, etc.). JADE provides communication
and infrastructure services, allowing agents, that have been deployed in different con-
tainers, to discover and interact with each other.

CArtAgO is a framework based on the A&A meta-model [Weyns et al. 2007; Omicini
et al. 2008]. It extends the agent programming paradigm with the first-class entity of
artifact: a resource that an agent can use, and that models working environments. It
provides a way to define and organize workspaces, that are logical groups of artifacts,
that can be joined by agents at runtime. The environment is itself programmable and
encapsulates services and functionalities. CArtAgO provides an API to program arti-
facts that agents can use, regardless of the agent programming language or the agent
framework used. This is possible by means of the agent body metaphor: CArtAgO pro-
vides a native agent entity, which allows using the framework as a complete MAS
platform as well as it allows mapping the agents of some platform onto the CArtAgO
agents, which, in this way, becomes a kind of “proxy” in the artifacts workspace. The
former agent is the mind, that uses the CArtAgO agent as a body, interacting with
artifacts and sensing the environment. An agent interacts with an artifact by means
of public operations, which can be equipped with guards: conditions that must hold in
order for operations to produce their effects. When guards do not hold, actions can still
be performed but without consequences.

2COMM4JADE is organized as follows. JADE supplies standard agent services, i.e.
message passing, distributed containers, naming and yellow pages services, agent mo-
bility. When needed, an agent can enact a protocol role, which provides a set of oper-
ations by means of which agents participate in a mediated interaction session. Proto-
col roles are provided by communication artifacts, that are implemented by means of
CArtAgO. Each communication artifact corresponds to a specific protocol enactment
and maintains an own social state and an own communication state.

Figure 2 reports an excerpt of the 2COMM4JADE UML class diagram1. Let us get
into the depths of the implementation:

— CommunicationArtifact (CA for short) provides the basic communication operations
in and out for allowing mediated communication. by means of which agents respec-
tively ask to play or to give up playing a role. CA extends an abstract version of the
TupleSpace CArtAgO artifact: briefly, a blackboard that agents use as a tuple-based

1The source files of the system and examples are available at the URL http://di.unito.it/2COMM.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Programming and Reasoning about Social Relationships 39:9

Observable Properties
socialState: SocialState

<< Artifact >>
ProtocolArtifact

Artifact Operations

create (commit: Commitment)
discharge (commit: Commitment)
cancel (commit: Commitment)
release (commit: Commitment)
assign (commit: Commitment, role: Role)
delegate (commit: Commitment, role: Role)
assertFact (fact: LogicalExpression)

commitments: Commitment [0…*]
facts: SocialFact [0…*]
context:
 CommitmentCommunicationArtifact

SocialState

+ getFacts (): SocialFact[]
+ getCommitments(): Commitment []
+ addFact (fact: SocialFact)
+ addCommitment (commit: Commitment)
+ removeFact (fact: SocialFact)
+ removeCommitment (commit: Commitment)
+ getContext():
CommitmentCommunicationArtifact

creditor: Role
debtor: Role
antecedent: SocialFact [1…*]
consequent: SocialFact [1…*]
status : enum {created, discharged, ...}

Commitment

+ getCreditor(): Role
+ setCreditor (role: Role)
+ getDebtor (): Role
+ setDebtor (role: Role)
+ getStatus (): Role
+ setStatus (status: enum)

id: RoleId
agent: AID
artid: ArtifactId
player: Behaviour

Role

+ createArtifact (artifactName: String,
artifactClass: Class<? extends Artifact>) : void
+ enact (roleName: String, artifact: ArtifactID,
agent: AID, offeredPlayerBehaviour:
Behaviour) : Role
+ deact (role: RoleId, artifact: ArtifactID, agent:
AID, offeredPlayerBehaviour: Behaviour) : void

predicate: String
arguments: Object [0…*]

SocialFact

+ getPredicate (): String
+ setPredicate (pred: String)
+ getArguments (): Object []
+ setArguments (list: Object [1…*])0…*

0…*

1…*

Observable Properties
enactedRoles: Role [1…*]
tset: TupleSet

<< Artifact >>
CommunicationArtifact

Artifact Operations
+ in(message: RoleMessage): void
+ out(): RoleMessage

#checkRoleRequirements(roleName: String,
offeredBehaviour:Behaviour)

Agent Platform A&A Platform
CArtAgO

ACLMessage

Agent

Agent
AbstractTuple

Space

<< Role >>
CARole

+ send(message:
RoleMessage)
+ receive():
RoleMessage

+

<< Role >>
PARole

+ hasCommitmentInvolving(c:
Commitment): boolean
+ socialFactExists(f:
SocialFact): boolean

...query operations on
 SocialState ...

+

2COMM4JADE

Behaviour

1...n

Artifact

<< interface >>
ProtocolObserver

+ handleEvent (event:
SocialEvent, args: Object[])

+

Fig. 2. Excerpt of the UML class diagram of 2COMM4JADE.

coordination means. In and out are, then, operations on the tuple space. CA also
traces who is playing which role by using the property enactedRoles.

— Class Role extends the CArtAgO class Agent, and contains the basic manipulation
logic of CArtAgO artifacts. Thus, any specific role, extending this super-type, will be
able to perform operations on artifacts, whenever its player will decide to do so. Role
provides static methods for creating artifacts and for enacting/deacting roles. This is
done by passing a reference to the JADE agent behaviour that will actually play the
role.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 M. Baldoni, C. Baroglio, F. Capuzzimati

— The class CARole is an inner class of CA and extends the Role class. It provides
the send and receive primitives, by which agents can exchange messages. Send and
receive are implemented based on the in and out primitives provided by CA.

— ProtocolArtifact (PA for short) extends CA and allows modeling the social layer with
the help of commitments. It maintains the state of the on-going protocol interaction,
via the property socialState, a store of social facts and commitments, that is man-
aged only by its container artifact. This artifact implements the operations needed
to manage commitments (create, discharge, cancel, release, assign, delegate). PA re-
alizes the commitment life-cycle and for the assertion/retraction of facts. Operations
on commitments are realized as internal operations, that is, they are not invokable
directly: the protocol social actions will use them as primitives to modify the social
state. We refer to modifications occurred to the social state as social events. Being
an extension of CA, PA maintains two levels of interaction: the social one (based on
commitments), and the communication one (based on message exchange).

— The class PARole is an inner class of PA and extends the CARole class. It pro-
vides the primitives for querying the social state, e.g. for asking the commit-
ments in which a certain agent is involved, and the primitives that allow an
agent to become, through its role, an observer of the events occurring in the so-
cial state. For example, an agent can query the social state to verify if it con-
tains a commitment with a specific condition as consequent, via the method
existsCommitmentWithConsequent(InteractionStateElement el). Alternatively, an
agent can be notified about the occurrence of a social event, provided that it imple-
ments the inner interface ProtocolObserver. Afterwards, it can start observing the
social state. PARole also inherits the communication primitives defined in CARole.

In order to specify a commitment-based interaction protocol, it is necessary to extend
PA by defining the proper social and communicative actions as operations on the arti-
fact itself. Actions can have guards that correspond to context preconditions: each such
condition specifies the context in which the respective action produces the described
social effect. Since we want agents to act on artifacts only through their respective
roles, when defining a protocol it is also necessary to create the roles. We do so by cre-
ating as many extensions of PARole as protocol roles. These extensions are realized as
inner classes of the protocol: each such class will specify, as methods, the powers of a
role. Powers allow agents who play roles to actually execute artifact operations. The
typical schema will be:

1 public class MyProtocolArtifact extends Protoco lArt i fac t {
2 / / . . .
3 static {
4 addEnabledRole ("Role1" , Role1 . class) ;
5 addEnabledRole ("Role2" , Role2 . class) ;
6 / / . . .
7 }
8 / / MY PROTOCOL ARTIFACT OPERATIONS
9 @OPERATION

10 public void op1 (. . .) {
11 / / prepare a message , i f needed ; in that case ,
12 send (message) ;
13 / / modify the s o c i a l state , e . g . create commitment , update commitment
14 }
15 / / . . .
16 / / INNER CLASSES for ROLES
17 public class Role1 extends PARole {
18 public Role1 (Behaviour player , AID agent) {
19 super ("Role1" , player , agent) ;
20 }
21 / / def ine s o c i a l act ions for Role1
22 public void action1 (. . .) {
23 doAction (this . ge tArt i fac t Id () , new Op("op1" , . . . , getRoleId ())) ;

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Programming and Reasoning about Social Relationships 39:11

24 }
25 / / . . .
26 }
27 public class Role2 extends PARole {
28 / / . . .
29 }
30 / / . . .
31 }

JADE PLATFORM

2COMM4JADE

CARTAGO PLATFORM

ProtocolArtifact

2. query/power
invocation

Communication
State

Social
State

1. enact

Role1 Role2

3. query/power
execution

1. enact 2. register
5. callback

3. observe

4. notify

Behaviour
1

Behaviour
2

AGENT 1

AGENT 2

Fig. 3. 2COMM4JADE at runtime.

Let us, now, consider Figure 3, which sketches the relationships between the var-
ious components of the platform at run-time. When a JADE agent plays a role, its
behaviour will use the powers offered by the role itself in order to act upon the social
and communicative layers, offered by the artifact which implements the interaction
protocol. In this context, the agent behaviour is extended with the powers of the role:
the agent will be free to decide if and when using its new powers, based on its own
business logic. The business logic is programmed by exploiting both knowledge which
is internal to the agent –and that is represented and managed according to the agent
model that is used–, and the social relations that are reified in the social state of the
communication artifact. This can be done:

(1) either by exploiting the query powers, supplied by the role and inherited from PA-
Role (Agent 1 in the figure);

(2) or by relying on a social event-driven approach (Agent 2 in the figure).

In case (1), the agent directly manages when probing the occurrence of social events
and manage them. In case (2), the role registers as an observer of all events occurring
in the social state (including all operations on commitments). When the interaction
protocol notifies an event to the role, this calls back the behaviour of its player, passing
the occurred event. The social event handler, defined in the behaviour, manages the
event. Let us, now, describe a methodological schema for handling a social event.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 M. Baldoni, C. Baroglio, F. Capuzzimati

ALGORITHM 1: Methodological Schema for Handling Social Events.
Data: Social event se notified to agent a
Data: Set S of social events of interest
Result: Add a behaviour to the behaviour set of a
Check whether se involves a commitment c which has a as debtor or creditor;
if se ∈ S then

b = behaviour that handles the occurred modification of c;
add b to the set of behaviours of a;

end

The proposed algorithm explains how to use the notifications performed by the pro-
tocol artifact to the agent. Depending on which social event occurs, i.e. on which com-
mitment is modified and how (e.g. added, discharged, detached), a specific behaviour
is added and scheduled for execution, competing with others already present in the
behaviour set. The agent designer can choose which social events are to be tackled by
the agent. The following is the pseudo-code of an example implementation that agrees
with the schema:

1 public class MyBehaviour extends SomeJadeBehaviour implements ProtocolObserver {
2 [. . .]
3 public void action () {
4 Art i fac t Id art = Role . c reateArt i fac t (myArtifactName , MyArtifact . class) ;
5 myRole = (SomeRole) (Role . enact (MyArtifact .ROLE NAME, art , this , myAgent . getAID ())) ;
6 myRole . startObserving (this) ;
7 / / add the i n i t i a l behaviour of the agent
8 }
9 public void handleEvent (SocialEvent e , Object . . . args) {

10 i f (e . getElementChanged () . getElType () == interactionStateElementType .COMMITMENT) {
11 Commitment c = (Commitment) e . getElementChanged () ;
12 i f (c . getLifeCycleStatus () == . . . / / e . g . LifeCycleState .DETACHED
13 && c . getDebtor () . equals (. . .) / / some role , e . g . myRole . getRoleId ()
14 && c . getCreditor () . equals (. . .) / / some ro le
15 && c . getConsequent () . equals (. . .))) / / a condition , e . g . ” accept OR r e j e c t ”
16 {
17 myAgent . addBehaviour (. . .) ; / / a behaviour to handle the case
18 } else i f (. . .) {
19 myAgent . addBehaviour (. . .) ; / / a behaviour to handle another case
20 } else
21 / / . . . / / behaviours for d i f f e r e n t cases
22 }
23 }
24 }
25 }

The agent behaviour implements ProtocolObserver, thus allowing the agent to be no-
tified about social events. This will be done after the agent executes the method star-
tObserving, specifying which artifact it requires to observe. The implementation of
ProtocolObserver requires, in turn, the implementation of the method handleEvent.
Here, it is possible to test the kind of event that was notified (line 10), and in particu-
lar whether it concerns a commitment. If this is the case, it is possible to further check
specific conditions of interest on the commitment, including its state, the identity of its
debtor and/or creditor, the antecedent or consequent condition (lines 12-15). The agent
will, then, add appropriate behaviours to handle the detected situation. The handler
represents the classical agent sense-plan-act cycle, rephrased into “sense the social
state”, “activate behaviors according to social events”, “schedule behavior execution”.

4. PROGRAMMING SOCIAL RELATIONSHIPS: AN EXAMPLE
FinancialMAS is an example application of 2COMM4JADE. Inspired by [European
Parliament 2004], it allows financial interactions between three categories of stake-
holders: (1) investors, (2) financial promoters and (3) banks. Investors have the goal

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Programming and Reasoning about Social Relationships 39:13

Table I. Responsibility Table for FinancialMAS.
Agent Type No. Responsibility

Investor agent (IA)

1.1 Let investor search for investments proposals
1.2 Assist investor in setting search parameters and data
1.3 Support the individuation of the investor’s risk profile
1.4 Support in proposal acceptance
1.5 Withdraw from an investment contract

Financial Promoter agent (FP)
2.1 Respond to investment searches

2.2 Assist financial promoter in risk-classifying financial
products

2.3 Determine the investor’s profile
2.4 Support individuation of the investor’s risk profile

Bank agent (BA) 3.1 Support bank in investment contract subscription
3.2 Assist bank in investment conclusion

Financial Provider agent (FV) 4.1 Provide financial and aggregate news information

Integration agent (IntA) 5.1 Serve and support integration with legacy bank in-
formative systems

to place investments; promoters to propose and finalize investment contracts, on be-
half of a bank and on the basis of current investor’s profile; banks to finalize contracts
placed by promoters.

Investor

FinancialMAS
Check

Portfolio

Search
Investment

Data
Insertion

Withdraw

Accept
Proposal

Investment

Classify
Products

Investor
Profiling

<include>

<extends>

Financial
Promoter

Bank

<include>

<include>

<utilizza>

Fig. 4. The FinancialMAS Use Cases.

Figure 4 reports a part of the UseCase Diagram of the system, pointing out the
macro-functionalities the system should offer and the involved stakeholders. Starting
from this, we individuated a collection of agent types and environment artifacts. Each
agent has responsabilities, in the specific case, tasks it should accomplish (see Table I),
and related social relationships. Table II reports the Interaction Table for the domain.
It contains the “patterns of interactions” that allow performing the various tasks, and
that we realize as interaction protocols. Specifically, we rely on standard FIPA proto-
cols and implement them as protocol artifacts.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 M. Baldoni, C. Baroglio, F. Capuzzimati

Table II. Interaction Table for FinancialMAS: who interacts with whom, to fulfill which duty, by using which
protocol.

Interaction R.ty Interaction
Protocol Role With When

Investor Agent
Search Investment 1.1 CNP Initiator FP Investor searches an investment
Profiling 1.3 Query Participant FP Investor chose a Financial Promoter
Proposal Acceptance 1.4 Query Participant BA Investor chose a financial product
Withdraw 1.5 Request Initiator BA After Investor accepted a proposal
Financial Promoter Agent
Respond to Search 2.1 CNP Participant IA Investor searches an investment
Profiling 2.3 Query Initiator IA Investor chose a Financial Promoter
Fin. Prod. Classif. 2.2 Query Initiator FV FP starts fin. prod. classif.
Bank Agent
Proposal Acceptance 3.1 Query Initiator IA Investor chose a financial product
Withdraw 3.3 Request Participant IA After Investor accepted a proposal
Financial Provider Agent
Fin. Prod. Classif. 4.1 Query Participant FP FP starts fin. prod. classif.

Let us focus on the Contract Net Protocol (CNP for short) [Foundation for Intelli-
gent Physical Agents 2002], which is used inside FinancialMAS to manage the inter-
action between the Investor and the Financial Promoter when the former looks for
some investment (Table II). We adopt the following CNP formulation:

cfp causes create(C(i, p, propose, accept ∨ reject))
accept causes none
reject causes release(C(p, i, accept, done ∨ failure))
propose causes create(C(p, i, accept, done ∨ failure))
refuse causes release(C(i, p, propose, accept ∨ reject))
done causes none
failure causes none

where i stands for the role Initiator and p for Participant. The instance used by Fi-
nancialMAS will tie the Investor to the i and the Financial Promoter to p. Initiator
supplies its player the powers cfp (call for proposal), accept, and reject. The first allows
the initiator to ask participants for proposals for solving a task of interest. If a pro-
posal is chosen, action accept notifies the winner and all other proposals are rejected.
The role participant supplies its player the powers propose, refuse, done, and failure.
Action propose allows a participant to supply a solution for a task, action refuse allows
declining the invitation to send a proposal. If a proposal is accepted, the winning par-
ticipant is expected to execute the task and either provide the result by means of the
action done or communicate its failure. Powers allow agents to affect the social state.
For instance, when an agent playing the role Initiator executes cfp, the social state
is modified by creating the commitment C(i, p, propose, accept ∨ reject). This addition
binds i to either accept or reject a proposal, if one is received. The agent is free to decide
not only which course of action to take but also how to realize acceptance or rejection.

Let us see how CNP is realized in 2COMM4JADE. The class CNP extends Protoco-
lArtifact and implements as artifact operations all the protocol actions. In the sketch
below we detail, for the sake of brevity, only the action cfp. Lines 6–10 represent the
construction and sending of a call for proposals, which will be inserted in the black-
board and made available to participants. The recipient of the message is left generic
because the Initiator may not know its peers, who may join even later in the future.
Lines 12–15 modify the social state by adding commitments and by stating that the

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Programming and Reasoning about Social Relationships 39:15

event cfp has occurred. Lines 21–27 defines the role in terms of its powers. Here (lines
23–25), in fact, the power cfp is defined in terms of the homonym artifact operation.

1 public class CNP extends Protoco lArt i fac t {
2 / / . . .
3 @OPERATION
4 public void cfp (Task task , RoleId i n i t i a t o r) {
5 / / send message with the task
6 RoleMessage cfp = new RoleMessage () ;
7 RoleId dest = new RoleId (PARTICIPANT ROLE, RoleId .GENERIC ROLE) ;
8 cfp . setContent (task) ; c fp . setRoleSender (i n i t i a t o r) ;
9 cfp . setRoleReceiver (dest) ; c fp . setPerformative (ACLMessage .CFP) ;

10 send (cfp) ;
11 / / update the s o c i a l state
12 createAllCommitments (new Commitment (i n i t i a t o r , dest , "propose" ,
13 new CompositeExpression (LogicalOperatorType .OR,
14 new Fact ("accept") , new Fact ("reject")))) ;
15 assertFact (new Fact ("cfp" , i n i t i a t o r , task)) ;
16 }
17 @OPERATION
18 public void propose (Proposal prop , RoleId partic ipant , RoleId i n i t i a t o r) {
19 / / . . .
20 }
21 / / . . .
22 / / Role c lasses
23 public class I n i t i a t o r extends PARole {
24 / / . . .
25 public void cfp (Task task) {
26 doAction (this . ge tArt i fac t Id () , new Op("cfp" , task , getRoleId ())) ;
27 }
28 / / . . .
29 }
30 public class Partic ipant extends PARole {
31 public void propose (Proposal proposal , RoleId proposalSender) {
32 / / . . .
33 }
34 / / . . .
35 }
36 }

The following, instead, is a sketch of the definition of a JADE agent, playing the role
Initiator by using 2COMM4JADE. In this example, the artifact is created by the agent
which, then, enacts the role of interest. At line 8, the agent uses the power cfp through
the role it plays. Finally, at line 10, it inspects if someone committed to accomplish the
task, and reads the proposals in the tuple space in order to make a choice.

1 public class Init iatorAgent extends Agent {
2 / / . . .
3 public class Init iatorBehaviour extends OneShotBehaviour {
4 / / . . .
5 public void action () {
6 Art i fac t Id art = Role . c reateArt i fac t (ARTIFACT NAME, CNPArtifact . class) ;
7 i n i t i a t o r = (I n i t i a t o r) (Role . enact (CNPArtifact . INITIATOR ROLE, art , this ,
8 myAgent . getAID ())) ;
9 i n i t i a t o r . c fp (t) ;

10 / / . . .
11 boolean proposalPerformed = i n i t i a t o r . existsCommitmentWithConsequent (
12 new CompositeExpression (LogicalOperatorType .OR,
13 new Fact ("done") , new Fact ("failure")) ;
14 / / . . .
15 }
16 }
17 }

More interesting is to exploit the feature of 2COMM4JADE, which allows roles to
register for the notification of social events. Thanks to the event handler, modifications
to the social state will add specific behaviours to the agents, aimed at tackling the
case. The code is organized by following the schema described in Algorithm 1. Figure 5
contains the UML diagram for this solution.

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 M. Baldoni, C. Baroglio, F. Capuzzimati

<< Artifact >>
CNP

Artifact Operations
+ cfp (proposal: Proposal) : void
+ accept () : void
+ reject (): void
+ propose(proposal: Proposal): void
+ refuse(task: Task): void
+ done(): void
+ failure(): void

Initiator

+ cfp(task: Task): void
+ accept(): void
+ rejecet(): void

Participant

+ propose(proposal: Proposal): void
+ refuse(task: Task): void
+ done(): void
+ failure(): void

+

+

2COMM4JADE

<<plays>>
<<plays>>

JADEjade.core.Behaviourjade.core.Agent

Agent1 Agent2

+commitToAcceptOrRejectIf
Propose(): Behaviour
+satisfyCommitToAccept
OrReject(): Behaviour
+fulfilledCommitToDoneOr
Failure(): Behaviour

+handleEvent(event:
SocialEvent, args: Object[])

InitiatorBehaviour

JADE

Contract Net Protocol

+commitToDoneOrFailure
IfAccept(): Behaviour
+fulfilledCommitToAcceptOr
Reject(): Behaviour

+handleEvent(event:
SocialEvent, args: Object[])

ParticipantBehaviour

Observable Properties
socialState: SocialState

<< Artifact >>
ProtocolArtifact

Artifact Operations

create (commit: Commitment)
discharge (commit: Commitment)
cancel (commit: Commitment)
release (commit: Commitment)
assign (commit: Commitment, role: Role)
delegate (commit: Commitment, role: Role)
assertFact (fact: LogicalExpression)

<< Role >>
PARole

+ hasCommitmentInvolving(c:
Commitment): boolean
+ socialFactExists(f:
SocialFact): boolean

...query operations on
 SocialState ...

<< interface >>
ProtocolObserver

+ handleEvent (event:
SocialEvent, args: Object[])

+

<<implements>>

Agent1 Behaviours Agent2 Behaviours

CommitToAcceptOr
RejectIfPropose

+action(): void

SatisfyCommitTo
AcceptOrReject

+action(): void

FulfilledCommitTo
DoneOrFailure

+action(): void

CommitToDoneOr
Failure

+action(): void

FulfilledCommitTo
AcceptOrReject

+action(): void

Fig. 5. CNP with 2COMM4JADE and support for event handling.

1 public abstract class Init iatorBehaviour extends OneShotBehaviour
2 implements ProtocolObserver {
3 public String artifactName ;
4 protected I n i t i a t o r i n i t i a t o r ;
5 public abstract Behaviour commitToAcceptOrRejectIfPropose () ;
6 public abstract Behaviour satisfyCommitToAcceptOrReject () ;
7 public abstract Behaviour fulfilledCommitToDoneOrFailure () ;
8 public Init iatorBehaviour (String artifactName){
9 this . artifactName = artifactName ;

10 }
11 public void action () {
12 Art i fac t Id art = Role . c reateArt i fac t (artifactName , CNPArtifact . class) ;
13 i n i t i a t o r = (I n i t i a t o r) (Role . enact (CNPArtifact . INITIATOR ROLE, art , this ,
14 myAgent . getAID ())) ;
15 i n i t i a t o r . startObserving (this) ;
16 myAgent . addBehaviour (this . commitToAcceptOrRejectIfPropose ()) ;
17 }
18 public void handleEvent (SocialEvent e , Object . . . args) {
19 i f (e . getElementChanged () . getElType () ==
20 interactionStateElementType .COMMITMENT) {
21 Commitment c = (Commitment) e . getElementChanged () ;
22 i f (c . getLifeCycleStatus () == LifeCycleState .DETACHED
23 && c . getDebtor () . equals (i n i t i a t o r . getRoleId ())
24 && c . getCreditor () . equals (new RoleId (
25 CNPArtifact .PARTICIPANT ROLE, RoleId .GROUP ROLE))
26 && c . getConsequent () . equals ("accept OR reject"))) {
27 myAgent . addBehaviour (satisfyCommitToAcceptOrReject ()) ;
28 } else {
29 myAgent . addBehaviour (fulfilledCommitToDoneOrFailure ()) ;
30 }
31 }

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Programming and Reasoning about Social Relationships 39:17

32 }
33 }

After line 14, all events occurring in the social state are notified to the role Initiator,
which will handle them by executing handleEvent after a callback. The above abstract
behaviour is extended by the concrete behaviour of the agent that plays the role Ini-
tiator. In particular, here we find the methods that create the actual behaviours for
managing the social events.

1 public class Init iatorAgent extends Agent {
2 / / . . .
3 public class InitiatorBehaviourImpl extends Init iatorBehaviour {
4 public static final String ARTIFACT NAME = "CNP-1" ;
5 public InitiatorBehaviourImpl () {
6 super (ARTIFACT NAME) ;
7 }
8 public Behaviour commitToAcceptOrRejectIfPropose () {
9 return new CommitToAcceptOrRejectIfPropose (i n i t i a t o r) ;

10 }
11 public Behaviour satisfyCommitToAcceptOrReject () {
12 return new SatisfyCommitToAcceptOrReject (i n i t i a t o r) ;
13 }
14 public Behaviour fulfilledCommitToDoneOrFailure () {
15 return new FulfilledCommitToDoneOrFailure (i n i t i a t o r) ;
16 }
17 }
18 }

As an example, we describe the behaviour SatisfyCommitToAcceptOrReject, which
gathers proposals and selects the one to accept.

1 public class SatisfyCommitToAcceptOrReject extends OneShotBehaviour {
2 I n i t i a t o r i n i t i a t o r = null ;
3 ArrayList<Proposal> proposals = new ArrayList<Proposal > () ;
4 public SatisfyCommitToAcceptOrReject (I n i t i a t o r i n i t i a t o r) {
5 super () ;
6 this . i n i t i a t o r = i n i t i a t o r ;
7 }
8 public void action () {
9 ArrayList<RoleMessage> propos = i n i t i a t o r . rece iveAl l (ACLMessage .PROPOSE) ;

10 for (RoleMessage p : propos) {
11 proposals . add ((Proposal) (p . getContents ())) ;
12 }
13 i n i t i a t o r . accept (proposals . get (0)) ;
14 for (int i = 1 ; i < proposals . s i ze () ; i ++) {
15 i n i t i a t o r . r e j e c t (proposals . get (i)) ;
16 }
17 }
18 }

In 2COMM4JADE, an agent consists of a set of behaviours aimed at accomplishing
given social relationships: such behaviours depend neither on when nor on how the
social relationships of interest are created inside the social state. These aspects are, in
fact, encoded in the protocol artifact that creates them based on the actions the agents
perform. As a consequence, modifying how or when a social relationship is created
does not have any impact on the agent implementation. We show this with the help
of two examples where the same commitments (from the Initiator to the Participants,
and concerning the acceptance/rejection of proposals) are detached respectively when a
given number of proposals is received (Listing 1) or when a deadline expires (Listing 2).

Listing 1. Detach on number of proposals reached.
1 public class CNPArtifact extends Protoco lArt i fac t {
2 boolean acceptingProposals = true ;
3 / / . . .
4 @OPERATION
5 public void propose (Proposal prop , RoleId partic ipant , RoleId i n i t i a t o r) {

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18 M. Baldoni, C. Baroglio, F. Capuzzimati

6 i f (! acceptingProposals)
7 f a i l e d ("No more proposals allowed.") ;
8 prop . setRoleId (part ic ipant) ;
9 RoleMessage proposal = new RoleMessage () ;

10 proposal . setContents (prop) ;
11 proposal . setRoleSender (part ic ipant) ;
12 proposal . setRoleReceiver (i n i t i a t o r) ;
13 proposal . setPerformative (ACLMessage .PROPOSE) ;
14 send (proposal) ;
15 assertFact (new Fact ("propose" , partic ipant , prop)) ;
16 createCommitment (new Commitment (partic ipant , i n i t i a t o r , "accept" , "done OR failure")) ;
17 i f (actualProposals == numberMaxProposals) {
18 acceptingProposals = false ;
19 RoleId groupParticipant = new RoleId (PARTICIPANT ROLE, RoleId .GROUP ROLE) ;
20 createCommitment (new Commitment (i n i t i a t o r , groupParticipant , "accept OR reject")) ;
21 }
22 }
23 }

Listing 2. Detach on deadline expiration.
1 public class CNPArtifact extends Protoco lArt i fac t {
2 private long max time millis = 10000;
3 / / . . .
4 @OPERATION
5 public void cfp (Task task , RoleId i n i t i a t o r) {
6 / / same l o g i c
7 execInternalOp ("startTiming") ;
8 }
9 @INTERNAL OPERATION

10 public void startTiming () {
11 await time (maxTime) ;
12 acceptingProposals = false ;
13 RoleId groupParticipant = new RoleId (PARTICIPANT ROLE, RoleId .GROUP ROLE) ;
14 createCommitment (new Commitment (i n i t i a t o r , groupParticipant , "accept OR reject")) ;
15 }
16 }

Notice that the above is always the code of the artifact and that there is no need to
modify the agent code because the social event did not change.

5. CONCLUSIONS AND DISCUSSION
STS are a challenging frontier of system realization. They answer to a specific need of
the contemporary society [Sommerville 2010]: the need of developing software systems
that are capable of supporting independent and autonomous stakeholders, each with
his/her own objectives, in their interaction. More and more often, such systems build
on top (and supervise the use of) resources as diverse as application systems, mobile
devices, sensors, or even domotic systems. Stakeholders are proactive and character-
ized by an own decisional capability but at the same time they have an interest in that
the system keeps on working.

We agree with [Singh 2014] that in order to implement STS, it is necessary to re-
alize some kind of self-governance, i.e. to realize normative systems, where the ac-
tors accept a set of regulations which will guide their behaviour. Although MAS sup-
ply the means for supporting the development of distributed systems involving many
actors, currently none of the implemented infrastructures allows the realization of
self-governance. In this work, we have proposed 2COMM4JADE, an infrastructure for
achieving this very objective. 2COMM4JADE is based on JADE, for what concerns
the support to the realization of interacting agents, and integrates self-governance
mechanisms by relying on the reification of commitments and of commitment-based
protocols. These are, at all respects, resources that are made available to stakeholders
and that are realized by means of artifacts. The article also shows how to pass from
a cross-organizational business process to a set of reified protocols, which represent it

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Programming and Reasoning about Social Relationships 39:19

and that will enable the interaction. Recently, we developed on top of 2COMM4JADE a
commitment-based typing system [Baldoni et al. 2014]. Such typing includes a notion
of compatibility, based on subtyping, which allows for the safe substitution of agents to
roles along an interaction that is ruled by a commitment-based protocol. Type checking
can be done dynamically when an agent enacts a role.

The proposal is characterized, on the one hand, by the flexibility and the openness
that are typical of MAS, and, on the other, by the modularity and the compositionality
that are typical requirements of the methodologies for design and development. One of
the strong points of the proposal is the decoupling between the design of the agents and
the design of the interaction, that builds on the decoupling between computation and
coordination done by coordination models, like tuple spaces. This is a difference with
respect to JADE where no decoupling occurs: a pattern of interaction is projected into a
set of JADE behaviours, one for each role. Binding the interaction to ad-hoc behaviours
does not allow having a global view of the protocol and complicates its maintenance.

Decoupling is an effect of explicitly representing the topmost level of STS and, in
particular, of considering social relationships as resources: agent behaviour is, thus,
defined based on the existing social relationships and not on the process by which they
are created. For instance, in CNP the initiator becomes active when the commitments
that involve it as a debtor, and which bind it to accept or reject the proposals, are
detached. It is not necessary to specify nor to manage, inside the agent, such things as
deadlines or counting the received proposals: the artifact is in charge of these aspects.

The difference with tuple spaces and CArtAgO itself is that 2COMM4JADE arti-
facts reify social relationships as commitments, giving them that normative value that,
jointly with the fact that by using an artifact an agent explicitly accepts the regula-
tions encoded by it, enables the generation of expectations about the agents behaviour
(as advised in [Chopra and Singh 2009]). As such, it allows agents to reason and take
decision also based on the others’ expected behaviour. For instance, the presence of
a commitment C(i, p, propose, accept ∨ reject) grants the participant that its proposal
will receive a feedback (it will either be accepted or rejected); if not, the initiator will be
liable of a violation. In a tuple space, instead, agents can just read or write the shared
blackboard but cannot have expectations on the behaviour of their parties.

A common way to model user activities is by means of business processes, that the
performers have to follow for achieving some result. Business processes, in their clas-
sic definition, are sets of structured, ordered tasks which impose a strict arrangement
onto subtask execution: diverging from it results in a failure. The de facto standard no-
tation for business processes is provided by the Business Process Model and Notation
(BPMN) [White 2004], a graphical language that models a business process as a dec-
orated, enriched flowchart. Although BPMN is a preferred choice for modeling single-
actor activities, and even if its latest release (BPMN 2.0) introduces support for a mes-
sage element, it still suffers from major drawbacks in modeling cross-organizational
business processes [Desai et al. 2009] and, in general, systems with different stake-
holders. The reason relies in the procedural/imperative nature of BPMN: a step-by-
step process representation does not consider the autonomy of the interacting entities
and hinders their decisional capabilities, when it is used to define both interaction and
how it must be carried out.

This work has also relationships with works concerning e-institutions, like [Fornara
et al. 2007; Fornara et al. 2008; Okouya et al. 2013]. E-institutions introduce a nor-
mative aspect that lies on a different level with respect to the one we capture with
commitments. Indeed, in our proposal the normative layer stands in the observational
semantics of the social actions. We mean to extend the regulative aspects, as a first
step, by enriching commitment protocols as proposed in [Marengo et al. 2011; Baldoni
et al. 2013]. More in general, we mean to move towards a representation of business

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 M. Baldoni, C. Baroglio, F. Capuzzimati

processes as suggested in the Comma methodology [Telang and Singh 2012], where
commitment patterns regulate activities instead of being used for giving the action
semantics. The advantage of our proposal is that it allows the direct use of the well-
known JADE Methodology in the development of STS [Baldoni et al. 2013]. Another
advantage is that artifacts are an actual system for implementing mediated interac-
tion, they supply efficient, simple, and direct means for checking the powers for per-
forming institutional actions, and they offer runtime mechanisms for letting the agents
perceive the state of the interaction.

Concerning organizations, ORA4MAS [Hübner et al. 2010] and JaCaMo are exam-
ples of integrations with artifacts. The latter also accounts for BDI agents. The orga-
nizational infrastructure of ORA4MAS is based on Moise+. It allows the enforcement
and the regimentation of regulations, by defining both a set of conditions to achieve
and the roles that are allowed to or that must achieve them. The limit of this approach
is that it cannot manage norms that cannot be restricted to goal achievement. Re-
cently, the use of a communication infrastructure based on artifacts has been proposed
to define, in an explicit and clear way, interaction in JaCaMo [Rodrigues et al. 2013].
Nevertheless, the proposal does not supply a normative account of communication.

Finally, concerning the realization of cross-organizational business processes and,
in particular, of human-oriented workflows, whose nature is intrinsically social and
where the notion of commitment plays a fundamental role [Medina-Mora et al. 1993],
it is relevant to cite LoST [Singh 2011]: a commitment-based model for defining declar-
ative protocols. It exploits vectors, each associated to one of the interacting agents,
containing the local history of the sent/received messages. LoST enables the represen-
tation and monitoring of protocols when it is necessary to transfer local knowledge
about occurring interactions between the agents. It works as an adapter for message
transfer between agents. 2COMM4JADE, instead, provides agents an environment by
which they communicate and, if this is requested, they can perform actions which do
not amount to utterances but still entail social effects.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for the many interesting comments which helped
improving this paper.

REFERENCES
Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. 2013. 2COMM: A Commitment-Based

MAS Architecture. In Engineering Multi-Agent Systems - 1st Int. Workshop, EMAS 2013, Re-
vised Selected Papers (Lecture Notes in Computer Science), M. Cossentino, A. El Fallah-
Seghrouchni, and M. Winikoff (Eds.), Vol. 8245. Springer, St. Paul, MN, USA, 38–57.
DOI:http://dx.doi.org/10.1007/978-3-642-45343-4 3

Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. 2014. Typing Multi-Agent Systems via Com-
mitments. In Proc. of the 2nd International Workshop on Engineering Multi-Agent Systems, EMAS 2014,
held in conjuction with AAMAS 2014, M. B. van Riemsdijk, F. Dalpiaz, and J. Dix (Eds.). IFAAMAS,
Paris, France, 341–359.

Matteo Baldoni, Cristina Baroglio, Elisa Marengo, and Viviana Patti. 2013. Constitutive and Regulative
Specifications of Commitment Protocols: a Decoupled Approach. ACM Transactions on Intelligent Sys-
tems and Technology 4, 2 (March 2013), 22:1–22:25. DOI:http://dx.doi.org/10.1145/2438653.2438657

Matteo Baldoni, Cristina Baroglio, Elisa Marengo, Viviana Patti, and Alessandro Ricci. 2011. Back to the
future: an Interaction-oriented Framework for Social Computing. In First International Workshop on
Requirements Engineering for Social Computing (RESC 2011), held in conjunction with the 19th IEEE
International Requirements Engineering Conference, A. K. Chopra, F. Dalpiaz, and S. O. Lim (Eds.).
IEEE Xplore, Trento, Italy, 2–5. DOI:http://dx.doi.org/10.1109/RESC.2011.6046711

Matteo Baldoni, Guido Boella, and Leendert van der Torre. 2007. Interaction between Objects in powerJava.
Journal of Object Technology, Special Issue OOPS Track at SAC 2006 6, 2 (2007), 5–30. http://www.jot.
fm/issues/issue 2007 02

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Programming and Reasoning about Social Relationships 39:21

Matteo Baldoni, Andrea Omicini, Cristina Baroglio, Viviana Mascardi, and Paolo Torroni. 2010.
Agents, Multi-Agent Systems and Declarative Programming: What, When, Where, Why, Who,
How? In Twenty-five Years of Logic Programming in Italy, A. Dovier and E. Pontelli
(Eds.). Lecture Notes in Computer Science, Vol. 6125. Springer, Berlin Heidelberg, 204–230.
DOI:http://dx.doi.org/10.1007/978-3-642-14309-0 10

Fabio Bellifemine, Federico Bergenti, Giovanni Caire, and Agostino Poggi. 2005. JADE - A Java Agent De-
velopment Framework. In Multi-Agent Programming: Languages, Platforms and Applications, R. H.
Bordini, M. Dastani, J. JDix, and A. El Fallah-Seghrouchni (Eds.). Multiagent Systems, Artificial Soci-
eties, and Simulated Organizations, Vol. 15. Springer, Berlin Heidelberg, 125–147.

Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. 2007. Developing Multi-Agent Systems
with JADE. John Wiley & Sons, West Sussex, England.

Guido Boella and Leendert W. N. van der Torre. 2007. The ontological properties of social roles in multi-
agent systems: definitional dependence, powers and roles playing roles. Artificial Intelligence and Law
15, 3 (2007), 201–221. DOI:http://dx.doi.org/10.1007/s10506-007-9030-8

Rafael H. Bordini, Lars Braubach, Mehdi Dastani, Amal El Fallah-Seghrouchni, Jorge J. Gómez-Sanz, João
Leite, Gregory M. P. O’Hare, Alexander Pokahr, and Alessandro Ricci. 2006. A Survey of Programming
Languages and Platforms for Multi-Agent Systems. Informatica (Slovenia) 30, 1 (2006), 33–44.

Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. 2007. Programming Multi-Agent Systems in
AgentSpeak Using Jason. John Wiley & Sons, West Sussex, England.

Frances M. T. Brazier, Barbara Dunin-Keplicz, Nicholas R. Jennings, and Jan Treur. 1997. DESIRE: Mod-
elling Multi-Agent Systems in a Compositional Formal Framework. Int. J. Cooperative Inf. Syst. 6, 1
(1997), 67–94. DOI:http://dx.doi.org/10.1142/S0218843097000069

Paolo Bresciani and Paolo Donzelli. 2004. A Practical Agent-Based Approach to Requirements Engineering
for Socio-technical Systems. In Agent-Oriented Information Systems, 5th Int. Bi-Conference Workshop,
AOIS 2003, Revised Selected Papers (Lecture Notes in Computer Science), P. Giorgini, B. Henderson-
Sellers, and M. Winikoff (Eds.), Vol. 3030. Springer, Riga, Latvia and New York, NY, USA, 158–173.
DOI:http://dx.doi.org/10.1007/978-3-540-25943-5 11

Albert Cherns. 1976. Principles of Socio-Technical Design. Human Relations 2 (1976), 783–792.
Amit K. Chopra. 2009. Commitment Alignment: Semantics, Patterns, and Decision Procedures for Distributed

Computing. Ph.D. Dissertation. North Carolina State University, Raleigh, NC.
Amit K. Chopra and Munindar P. Singh. 2009. An Architecture for Multiagent Systems: An Approach Based

on Commitments. In Proc. of the AAMAS Workshop on Programming Multiagent Systems (ProMAS).
IFAAMAS, Budapest, Hungary, 184–202.

Rosaria Conte, Cristiano Castelfranchi, and Frank Dignum. 1999. Autonomous Norm Acceptance. In Intelli-
gent Agents V, Agent Theories, Architectures, and Languages, 5th Int. Workshop, ATAL ’98 (Lecture Notes
in Computer Science), J. P. Müller, M. P. Singh, and A. S. Rao (Eds.), Vol. 1555. Springer, Paris, France,
99–112.

Fabiano Dalpiaz, Amit K. Chopra, and Soo Ling Lim. 2011. Proc. of the 1st Int.
Workshop on Requirements Engineering for Social Computing. IEEE, Trento, Italy.
DOI:http://dx.doi.org/10.1109/RESC.2011.6046710

Mehdi Dastani, Davide Grossi, John-Jules Ch. Meyer, and Nick A. M. Tinnemeier. 2009. Normative
Multi-agent Programs and Their Logics. In Knowledge Representation for Agents and Multi-Agent
Systems, 1st Int. Workshop, KRAMAS 2008, Revised Selected Papers (Lecture Notes in Computer
Science), J.-J. Ch. Meyer and J. Broersen (Eds.), Vol. 5605. Springer, Sydney, Australia, 16–31.
DOI:http://dx.doi.org/10.1007/978-3-642-05301-6 2

Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. 2009. Amoeba: A Methodology for Modeling and
Evolving Cross-organizational Business Processes. ACM Trans. Softw. Eng. Methodol. 19, 2, Article 6
(Oct. 2009), 45 pages. DOI:http://dx.doi.org/10.1145/1571629.1571632

European Parliament. 2004. Directive 2004/39/EC of the European Parliament and of the Council of 21 April
2004 on markets in financial instruments. Official Journal of the European Union L145 (2004), 1–44.

Michael Fisher, Rafael H. Bordini, Benjamin Hirsch, and Paolo Torroni. 2007. Computational Logics and
Agents: A Road Map of Current Technologies and Future Trends. Computational Intelligence 23, 1
(2007), 61–91.

Nicoletta Fornara, Francesco Viganò, and Marco Colombetti. 2007. Agent communication and
artificial institutions. Autonomous Agents and Multi-Agent Systems 14, 2 (2007), 121–142.
DOI:http://dx.doi.org/10.1007/s10458-006-0017-8

Nicoletta Fornara, Francesco Viganò, Mario Verdicchio, and Marco Colombetti. 2008. Artificial institutions:
a model of institutional reality for open multiagent systems. Artificial Intelligence and Law 16, 1 (2008),
89–105. DOI:http://dx.doi.org/10.1007/s10506-007-9055-z

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:22 M. Baldoni, C. Baroglio, F. Capuzzimati

Foundation for Intelligent Physical Agents. 2002. FIPA Specifications. (2002). http://www.fipa.org.
Jomi Fred Hübner, Olivier Boissier, Rosine Kitio, and Alessandro Ricci. 2010. Instrumenting multi-agent

organisations with organisational artifacts and agents. Autonomous Agents and Multi-Agent Systems
20, 3 (2010), 369–400.

Elisa Marengo, Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, Viviana Patti, and Munindar P. Singh.
2011. Commitments with Regulations: Reasoning about Safety and Control in REGULA. In Proceedings
of the 10th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2011,
K. Tumer, P. Yolum, L. Sonenberg, and P. Stone (Eds.), Vol. 2. IFAAMAS, Taipei, Taiwan, 467–474.

Viviana Mascardi, Maurizio Martelli, and Leon Sterling. 2004. Logic-Based Specification Languages
for Intelligent Software Agents. Theory and Practice of Logic Programming 4, 4 (2004), 429–494.
DOI:http://dx.doi.org/10.1017/S1471068404002029

Raul Medina-Mora, Terry Winograd, Rodrigo Flores, and Fernando Flores. 1993. The Action
Workflow Approach to Workflow Management Technology. Inf. Soc. 9, 4 (1993), 391–404.
DOI:http://dx.doi.org/10.1080/01972243.1993.9960152

Daniel Okouya, Nicoletta Fornara, and Marco Colombetti. 2013. An Infrastructure for the Design and
Development of Open Interaction Systems. In Engineering Multi-Agent Systems - 1st Int. Work-
shop, EMAS 2013, Revised Selected Papers (Lecture Notes in Computer Science), M. Cossentino,
A. El Fallah-Seghrouchni, and M. Winikoff (Eds.), Vol. 8245. Springer, St. Paul, Minnesota, USA, 215–
234. DOI:http://dx.doi.org/10.1007/978-3-642-45343-4 12

Andrea Omicini, Alessandro Ricci, and Mirko Viroli. 2008. Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17, 3 (2008), 432–456.

Andrea Omicini and Franco Zambonelli. 1998. TuCSoN: a Coordination model for Mobile Information
Agents. IDI-TR-5/98. In Proc. of the 1st Int. Workshop on Innovative Internet Information Systems
(IIIS’98), D. G. Schwartz, M. Divitini, and T. Brasethvik (Eds.). IDI – NTNU, Trondheim (Norway),
Pisa, Italy, 177–187.

Maja Pesic and Wil M. P. van der Aalst. 2006. A Declarative Approach for Flexible Business Processes
Management. In Business Process Management Workshops, BPM 2006 Int. Workshops (Lecture Notes
in Computer Science), J. Eder and S. Dustdar (Eds.), Vol. 4103. Springer, Vienna, Austria, 169–180.
DOI:http://dx.doi.org/10.1007/11837862 18

Daniele Porello, Francesco Setti, Roberta Ferrario, and Marco Cristani. 2013. Multiagent Socio-Technical
Systems: An Ontological Approach. In Coordination, Organizations, Institutions, and Norms in Agent
Systems IX, Revised Selected Papers (Lecture Notes in Computer Science), T. Balke, F. Dignum, M. B. van
Riemsdijk, and A. K. Chopra (Eds.), Vol. 8386. Springer, St. Paul, MN, USA and Dunedin, New Zealand,
42–62. DOI:http://dx.doi.org/10.1007/978-3-319-07314-9 3

Alessandro Ricci, Michele Piunti, and Mirko Viroli. 2011. Environment programming in multi-agent sys-
tems: an artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23, 2 (2011), 158–192.
DOI:http://dx.doi.org/10.1007/s10458-010-9140-7

Thiago Fredes Rodrigues, Antônio Carlos da Rocha Costa, and Graçaliz Pereira Dimuro. 2013. A Communi-
cation Infrastructure Based on Artifacts for the JaCaMo Platform. In Proc. of the 1st Int. Workshop on
Engineering Multi-Agent Systems, EMAS 2013, held in conjuction with AAMAS 2013, M. Cossentino,
A. El Fallah Seghrouchni, and M. Winikoff (Eds.). IFAAMAS, St. Paul, Minnesota, USA, 97–111.

Munindar P. Singh. 1999. An Ontology for Commitments in Multiagent Systems. Artificial Intelligence and
Law 7, 1 (1999), 97–113.

Munindar P. Singh. 2000. A Social Semantics for Agent Communication Languages. In Issues in Agent Com-
munication (Lecture Notes in Computer Science), F. Dignum and M. Greaves (Eds.), Vol. 1916. Springer,
Berlin Heidelberg, 31–45. DOI:http://dx.doi.org/10.1007/10722777 3

Munindar P. Singh. 2011. LoST: Local State Transfer - An Architectural Style for the Distributed Enactment
of Business Protocols. In IEEE International Conference on Web Services, ICWS 2011. IEEE Computer
Society, Washington DC, USA, 57–64. DOI:http://dx.doi.org/10.1109/ICWS.2011.48

Munindar P. Singh. 2014. Norms As a Basis for Governing Sociotechnical Systems. ACM Trans-
actions on Intelligent Systems and Technology 5, 1, Article 21 (Jan. 2014), 23 pages.
DOI:http://dx.doi.org/10.1145/2542182.2542203

Ian Sommerville. 2010. Software Engineering (9 ed.). Addison-Wesley, Harlow, England.
Ian Sommerville, Dave Cliff, Radu Calinescu, Justin Keen, Tim Kelly, Marta Z. Kwiatkowska, John A.

McDermid, and Richard F. Paige. 2012. Large-scale complex IT systems. Commun. ACM 55, 7 (July
2012), 71–77. DOI:http://dx.doi.org/10.1145/2209249.2209268

Pankaj R. Telang and Munindar P. Singh. 2010. Abstracting and Applying Business Modeling Patterns from
RosettaNet. In Service-Oriented Computing - 8th International Conference, ICSOC 2010 (Lecture Notes

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Programming and Reasoning about Social Relationships 39:23

in Computer Science), P. P. Maglio, M. Weske, J. Yang, and M. Fantinato (Eds.), Vol. 6470. Springer, San
Francisco, CA, USA, 426–440. DOI:http://dx.doi.org/10.1007/978-3-642-17358-5 29

Pankaj R. Telang and Munindar P. Singh. 2011. Specifying and Verifying Cross-Organizational Business
Models: An Agent-Oriented Approach. IEEE Transactions on Services Computing 5, 3 (2011), 305–318.

Pankaj R. Telang and Munindar P. Singh. 2012. Comma: a commitment-based business modeling method-
ology and its empirical evaluation. In International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2012, W. van der Hoek, L. Padgham, V. Conitzer, and M. Winikoff (Eds.). IFAAMAS,
Valencia, Spain, 1073–1080.

Alexander Thiele, Thomas Konnerth, Silvan Kaiser, Jan Keiser, and Benjamin Hirsch. 2009. Ap-
plying JIAC V to Real World Problems: The MAMS Case. In Multiagent System Technolo-
gies, 7th German Conference, MATES 2009 (Lecture Notes in Computer Science), L. Braubach,
W. van der Hoek, P. Petta, and A. Pokahr (Eds.), Vol. 5774. Springer, Hamburg, Germany, 268–277.
DOI:http://dx.doi.org/10.1007/978-3-642-04143-3 29

Eric Trist. 1981. The Evolution of Socio-technical Systems: A Conceptual Framework and an Action Re-
search Program. Occasional paper 2 (1981).

Danny Weyns, Andrea Omicini, and James Odell. 2007. Environment as a first class abstrac-
tion in multiagent systems. Autonomous Agents and Multi-Agent Systems 14, 1 (2007), 5–30.
DOI:http://dx.doi.org/10.1007/s10458-006-0012-0

Stephen A. White. 2004. Introduction to BPMN. Technical Report. Object Management Group.
Brian Whitworth and Adnan Ahmad. 2013. Socio-Technical System Design. In The Encyclopedia of

Human-Computer Interaction, 2nd Ed., Mads Soegaard with Rikke Friis Dam (Ed.). The Interac-
tion Design Foundation, Aarhus, Denmark, Chapter 24. http://www.interaction-design.org/encyclopedia/
socio-technical system design.html

Pinar Yolum and Munindar P. Singh. 2002. Commitment Machines. In Intelligent Agents VIII,
8th International Workshop, ATAL 2001, Revised Papers (Lecture Notes in Computer Sci-
ence), J.-J. Ch. Meyer and M. Tambe (Eds.), Vol. 2333. Springer, Seattle, WA, USA, 235–247.
DOI:http://dx.doi.org/10.1007/3-540-45448-9 17

Received ??; revised ??; accepted ??

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

