10,984 research outputs found

    A grid-based infrastructure for distributed retrieval

    Get PDF
    In large-scale distributed retrieval, challenges of latency, heterogeneity, and dynamicity emphasise the importance of infrastructural support in reducing the development costs of state-of-the-art solutions. We present a service-based infrastructure for distributed retrieval which blends middleware facilities and a design framework to ā€˜liftā€™ the resource sharing approach and the computational services of a European Grid platform into the domain of e-Science applications. In this paper, we give an overview of the DILIGENT Search Framework and illustrate its exploitation in the ļ¬eld of Earth Science

    Automatically attaching web pages to an ontology

    Get PDF
    This paper describes a proposed system for automatically attaching material from the world wide web to concepts in an ontology. The motivation for this research stems from the Diogene project, which requires the project's own databases of learning objects to be augmented with additional resources from the web. Two main approaches to this problem are being taken: one using ontology mapping, and another based on the conventional text search facilities of the web, covered in this paper. By generating queries based on the concepts in the ontology, the aim is to retrieve material from the web, and then filter it to ensure its proper correspondence with a concept. The Diogene system will be briefly outlined, before the query-generation system is described. A small pilot experiment, designed to provide some initial results and insight into the problem, is then presented

    X-ENS: Semantic Enrichment of Web Search Results at Real-Time

    Get PDF
    While more and more semantic data are published on the Web, an important question is how typical web users can access and exploit this body of knowledge. Although, existing interaction paradigms in semantic search hide the complexity behind an easy-to-use interface, they have not managed to cover common search needs. In this paper, we present X-ENS (eXplore ENtities in Search), a web search application that enhances the classical, keyword-based, web searching with semantic information, as a means to combine the pros of both Semantic Web standards and common Web Searching. X-ENS identifies entities of interest in the snippets of the top search results which can be further exploited in a faceted interaction scheme, and thereby can help the user to limit the - often very large - search space to those hits that contain a particular piece of information. Moreover, X-ENS permits the exploration of the identified entities by exploiting semantic repositories

    Rumble: Data Independence for Large Messy Data Sets

    Full text link
    This paper introduces Rumble, an engine that executes JSONiq queries on large, heterogeneous and nested collections of JSON objects, leveraging the parallel capabilities of Spark so as to provide a high degree of data independence. The design is based on two key insights: (i) how to map JSONiq expressions to Spark transformations on RDDs and (ii) how to map JSONiq FLWOR clauses to Spark SQL on DataFrames. We have developed a working implementation of these mappings showing that JSONiq can efficiently run on Spark to query billions of objects into, at least, the TB range. The JSONiq code is concise in comparison to Spark's host languages while seamlessly supporting the nested, heterogeneous data sets that Spark SQL does not. The ability to process this kind of input, commonly found, is paramount for data cleaning and curation. The experimental analysis indicates that there is no excessive performance loss, occasionally even a gain, over Spark SQL for structured data, and a performance gain over PySpark. This demonstrates that a language such as JSONiq is a simple and viable approach to large-scale querying of denormalized, heterogeneous, arborescent data sets, in the same way as SQL can be leveraged for structured data sets. The results also illustrate that Codd's concept of data independence makes as much sense for heterogeneous, nested data sets as it does on highly structured tables.Comment: Preprint, 9 page

    AT-GIS: highly parallel spatial query processing with associative transducers

    Get PDF
    Users in many domains, including urban planning, transportation, and environmental science want to execute analytical queries over continuously updated spatial datasets. Current solutions for largescale spatial query processing either rely on extensions to RDBMS, which entails expensive loading and indexing phases when the data changes, or distributed map/reduce frameworks, running on resource-hungry compute clusters. Both solutions struggle with the sequential bottleneck of parsing complex, hierarchical spatial data formats, which frequently dominates query execution time. Our goal is to fully exploit the parallelism offered by modern multicore CPUs for parsing and query execution, thus providing the performance of a cluster with the resources of a single machine. We describe AT-GIS, a highly-parallel spatial query processing system that scales linearly to a large number of CPU cores. ATGIS integrates the parsing and querying of spatial data using a new computational abstraction called associative transducers(ATs). ATs can form a single data-parallel pipeline for computation without requiring the spatial input data to be split into logically independent blocks. Using ATs, AT-GIS can execute, in parallel, spatial query operators on the raw input data in multiple formats, without any pre-processing. On a single 64-core machine, AT-GIS provides 3Ɨ the performance of an 8-node Hadoop cluster with 192 cores for containment queries, and 10Ɨ for aggregation queries

    Toward Entity-Aware Search

    Get PDF
    As the Web has evolved into a data-rich repository, with the standard "page view," current search engines are becoming increasingly inadequate for a wide range of query tasks. While we often search for various data "entities" (e.g., phone number, paper PDF, date), today's engines only take us indirectly to pages. In my Ph.D. study, we focus on a novel type of Web search that is aware of data entities inside pages, a significant departure from traditional document retrieval. We study the various essential aspects of supporting entity-aware Web search. To begin with, we tackle the core challenge of ranking entities, by distilling its underlying conceptual model Impression Model and developing a probabilistic ranking framework, EntityRank, that is able to seamlessly integrate both local and global information in ranking. We also report a prototype system built to show the initial promise of the proposal. Then, we aim at distilling and abstracting the essential computation requirements of entity search. From the dual views of reasoning--entity as input and entity as output, we propose a dual-inversion framework, with two indexing and partition schemes, towards efficient and scalable query processing. Further, to recognize more entity instances, we study the problem of entity synonym discovery through mining query log data. The results we obtained so far have shown clear promise of entity-aware search, in its usefulness, effectiveness, efficiency and scalability

    Performance comparison of clustered and replicated information retrieval systems

    Get PDF
    The amount of information available over the Internet is increasing daily as well as the importance and magnitude of Web search engines. Systems based on a single centralised index present several problems (such as lack of scalability), which lead to the use of distributed information retrieval systems to effectively search for and locate the required information. A distributed retrieval system can be clustered and/or replicated. In this paper, using simulations, we present a detailed performance analysis, both in terms of throughput and response time, of a clustered system compared to a replicated system. In addition, we consider the effect of changes in the query topics over time. We show that the performance obtained for a clustered system does not improve the performance obtained by the best replicated system. Indeed, the main advantage of a clustered system is the reduction of network traffic. However, the use of a switched network eliminates the bottleneck in the network, markedly improving the performance of the replicated systems. Moreover, we illustrate the negative performance effect of the changes over time in the query topics when a distributed clustered system is used. On the contrary, the performance of a distributed replicated system is query independent
    • ā€¦
    corecore