
Singapore Management University
Institutional Knowledge at Singapore Management University
Research Collection School of Information Systems
(Open Access) School of Information Systems

6-2010

Efficient Processing of Exact Top-k Queries over
Disk-Resident Sorted Lists
Hwee Hwa PANG
Singapore Management University, hhpang@smu.edu.sg

Xuhua DING
Singapore Management University, xhding@smu.edu.sg

Baihua ZHENG
Singapore Management University, bhzheng@smu.edu.sg

Follow this and additional works at: http://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School of Information Systems (Open Access) by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
PANG, Hwee Hwa; DING, Xuhua; and ZHENG, Baihua, "Efficient Processing of Exact Top-k Queries over Disk-Resident Sorted
Lists" (2010). Research Collection School of Information Systems (Open Access). Paper 800.
http://ink.library.smu.edu.sg/sis_research/800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13242124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F800&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F800&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F800&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F800&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F800&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F800&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ink.library.smu.edu.sg/sis_research/800?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F800&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Noname manuscript No.
(will be inserted by the editor)

Efficient Processing of Exact Top-k Queries
over Sorted Lists

HweeHwa Pang · Xuhua Ding · Baihua Zheng

the date of receipt and acceptance should be inserted later

Abstract The top-k query is employed in a wide range
of applications to generate a ranked list of data that
have the highest aggregate scores over certain attributes.
As the pool of attributes for selection by individual
queries may be large, the data are indexed with per-
attribute sorted lists, and a threshold algorithm is ap-
plied on the lists involved in each query. The thresh-
old algorithm executes in two phases – find a cut-off
threshold for the top-k result scores, then evaluate all
the records that could score above the threshold.

In this paper, we focus on exact top-k queries that
involve monotonic linear scoring functions over disk-
resident sorted lists. We introduce a model for estimat-
ing the depths to which each sorted list needs to be pro-
cessed in the two phases, so that (most of) the required
records can be fetched efficiently through sequential or
batched I/Os. We also devise a mechanism to quickly
rank the data that qualify for the query answer and
to eliminate those that do not, in order to reduce the
computation demand of the query processor. Extensive
experiments with four different datasets confirm that
our schemes achieve substantial performance speed-up
of between two times and two orders of magnitude over
existing threshold algorithms, at the expense of a mem-
ory overhead of 4.8 bits per attribute value. Moreover,
our scheme is robust to different data distributions and
query characteristics.

Keywords Top-k query processing, threshold algo-
rithm, Bloom filter.

School of Information Systems

Singapore Management University
E-mail: {hhpang, xhding, bhzheng}@smu.edu.sg

1 Introduction

A top-k query produces a ranked list of the k highest
scoring records from a dataset, in which the score of a
record is aggregated over the query attributes. Where
the schema of the dataset contains many attributes, one
obvious method to support top-k query processing is to
organize the data in a multi-dimensional index struc-
ture, as in [29]. This method works well for data that in-
volve a small number of attributes, but not for datasets
that contain many attributes because no existing index
structures are known to perform efficiently beyond 5 or
6 dimensions [22]. A more scalable approach is to create
an sorted list for each attribute, in which the records
are ordered by that attribute, and to apply the thresh-
old algorithm [14] over the attributes specified in each
query.

In this paper, we focus on the problem of efficiently
processing exact top-k queries involving monotonic lin-
ear scoring functions over disk-resident sorted lists. Our
objective is to minimize the query processing time, com-
prising CPU computation and disk I/O costs, subject
to available memory resources. Examples of the prob-
lem include retrieval of multimedia information based
on feature vectors extracted from the object contents
(e.g. [48]), as well as text search engines that order doc-
uments according to their similarity to the term com-
position of each user query [49].

The classical solution to the above problem is the
threshold algorithm [14]. In this algorithm, query pro-
cessing involves two phases – finding a cut-off threshold
for the top-k result scores, followed by processing the
sorted lists to enough depth so as to evaluate all the
records that could accumulate enough score to match
the threshold, and thus qualify as candidates for the

2 HweeHwa Pang et al.

top-k result. To optimize the two phases, we investi-
gate the following concerns:

1. From the query, how do we determine depththres,
the depth to which to scan each sorted list in order
to determine the cut-off threshold? With depththres,
the entries in the sorted lists that are needed for
phase one can be fetched through sequential I/Os if
each list occupies contiguously disk blocks, as exem-
plified by text search engines [49]. Even if the sorted
lists are not stored contiguously on disk, fetching
them together still allows the disk to service the
I/O requests according to the elevator (or SCAN)
algorithm [34], thus reducing seek costs.

2. Having derived the cut-off threshold, how do we de-
termine depthresult, the depth to scan the sorted
lists to in phase two? With depthresult, the required
entries on the sorted lists can be fetched through
sequential or batched I/Os, as for phase 1.

3. Among the records that are encountered in the two
phases, how do we safely prune away the non-viable
ones that will not accumulate enough scores from
the sorted lists to qualify for the top-k result, with-
out incurring random I/Os to fetch their values?
This question is pertinent because there could be
a huge number of non-viable records, and an effec-
tive pruning mechanism would reduce the memory
footprint and computation demands of the thresh-
old algorithm.

Our solutions to the above concerns are summarized
below:

– We introduce a model for determining, for any top-k
query involving m sorted lists, the expected depths
depththres and depthresult to which to scan the lists
in order to generate the query answer. These two
estimates enable the system to retrieve all the req-
uisite records from each query list in two sequen-
tial/batched I/O operations, first to depththres and
then to depthresult, instead of incurring random I/Os
in rotating through the query lists.

– We extend our model to handle general workloads
that are likely to occur in practice, including non-
identical list distributions, queries that specify dif-
ferent weights for the lists, and non-uniform distri-
butions for the attributes. Our extended model re-
tains the ability to estimate depththres and depthresult,
thus enabling our solution to support realistic appli-
cations efficiently by exploiting sequential I/Os.

– We propose a flexible organization that allows Bloom
filters [6] on the sorted lists to be dynamically grouped
into buckets that are sized according to the query
characteristics. With the buckets, the query proces-
sor is able to derive with high confidence a tight

upper-bound score for each candidate record. The
upper-bound scores are used to quickly prune away
candidate records that would ultimately fail to ac-
cumulate sufficient scores to qualify as top-k results,
as well as to order those records that do qualify.

– We design a query processing algorithm, called TBB
for Threshold algorithm over Bucketized sorted lists
withBloom filter, that takes advantage of the depththres
and depthresult estimates, as well as the candidate
pruning mechanism, to process top-k queries effi-
ciently. If the estimated input depths turn out to
be shallower than required, TBB will continue to
scan down the query lists, till the cut-off threshold
is found in the case of depththres, or till the entire
top-k result is determined in the case of depthresult.
Therefore the estimated input depths help to opti-
mize performance, without undermining the correct-
ness of the query results.

– We report results of extensive experiments, using
four sets of synthetic and real workloads that exhibit
very different properties, which confirm the useful-
ness of our depththres and depthresult estimates as
well as candidate pruning mechanism. Overall, our
scheme achieves speed-up of between two times and
two orders of magnitude over existing threshold al-
gorithms, at an average memory overhead of only
4.8 bits per record attribute value.

The rest of the paper is organized as follows. Sec-
tion 2 reviews related work, and differentiates our scheme
from the existing solutions. In Section 3, we formulate
the addressed problem, then develop the TBB scheme.
An empirical evaluation of the scheme is reported in
Section 4. Finally, Section 5 concludes the paper.

2 Related Work

We begin this section by reviewing the threshold al-
gorithms by Fagin et al. Following that, we examine
several studies that enhanced the threshold algorithms,
and that applied them to different types of systems.
Finally, we summarize the differentiations of our work
here from the existing solutions in the literature.

2.1 Threshold Algorithms

The problem of top-k query over sorted lists was first
formalized in the seminal work of Fagin et al [13,14].
Given m repositories, each holding a sorted list of ob-
jects in decreasing scores on a different attribute, the
threshold algorithm (TA) produces the query results as
follows. TA cycles through the sorted lists, popping an

Efficient Processing of Exact Top-k Queries over Sorted Lists 3

object from the front of the list each time. For each en-
countered object, TA immediately retrieves all the at-
tribute values of the object in order to derive its score.
The algorithm terminates when the threshold, which
aggregates the last encountered score from all the lists,
falls below the k-th highest object score. TA can poten-
tially incur very high processing overheads arising from
all the random accesses for the object attributes.

For systems in which random access is expensive,
[14] proposes an NRA variant. NRA executes in two
phases. In phase one, NRA cycles through the sorted
lists, popping a candidate object from the front of each
list in turn. Instead of issuing a random access for the
attribute values immediately, NRA accumulates the score
of a candidate object gradually, as its component scores
are gathered from the sorted lists. Phase one ends when
the threshold falls below the k-th highest accumulated
object score. In the second phase, NRA does not enter-
tain new candidate objects. Rather, it pops more entries
from the sorted lists only to establish tighter bounds
for the existing candidate objects. The algorithm ter-
minates once it determines that there is total ordering
among the k highest scoring objects, and that the re-
maining candidates cannot accumulate enough scores
to displace those top-scoring objects.

2.2 Extensions of Threshold Algorithms

A variation of the threshold algorithm is presented in
[15]. Here, Güntzer et al showed that the number of
random object accesses can be reduced through more
termination condition tests, as well as through heuris-
tics that generally hasten the fulfillment of the termi-
nation condition. The proposed heuristics include scan-
ning the top-ranked objects in all the sorted list at the
start, then focusing on those lists that exhibit steeper
declining scores thereafter.

The threshold algorithm has been applied to sev-
eral problem settings. [27] extended it to top-k queries
on databases that are accessed over the Web. As the
databases are autonomous, their attributes may be probed
only through certain restricted interfaces, rather than
being exposed for direct manipulation by the queries.
Indeed, some of the databases may not even offer a
sorted view. In the paper, Marian et al proposed an Up-
per algorithm that determines, after each probe, whether
to issue a sorted-access probe on a database to get new
objects, or to perform a random-access probe for the
current most promising object. The scheme is able to
exploit parallel accesses to the databases in order to
minimize response time.

In [9], Chang and Hwang addressed the problem of
processing top-k queries that involve predicate evalua-

tions. Some of the predicates might offer sorted access of
the objects at very low cost (through index structures),
whereas others might involve user-defined functions, ex-
ternal predicates and joins. As the latter entails costly
per-object probes, an MPro algorithm was given that
ensures every probe performed is necessary for finding
the top-k query answers. The authors extended this
work in [19], to a general framework for finding the
algorithm that is optimal for the given resource char-
acteristics, e.g., different cost trade-offs between sorted
access and random access.

Another study, reported in [5], shows how to sched-
ule index access steps in processing top-k queries. The
proposed query processing scheme interleaves sorted ac-
cesses and random lookups to the sorted lists, with the
objective of minimizing the weighted sum of all the
sorted accesses and random accesses. Each sorted list
is organized as a series of blocks, with the block size
being a one-off configuration parameter that is chosen
to balance disk seek time and transfer rate. Further-
more, a histogram of the value distribution is main-
tained for each term, for estimating the probability that
a given record can qualify for the top-k result, and
hence whether to incur random accesses to probe its
values. Experiments showed that the scheme outper-
formed the original threshold algorithms by a factor of
1.5 to 3 times in most cases, and up to 5 times at the
maximum. This work does not estimate the required
depths to take advantage of sequential or batched I/Os
for fetching the query lists, which could lead to substan-
tial incremental speed-ups as we will demonstrate. It
also does not perform candidate pruning as done in our
scheme, which entails a quick and definite, not proba-
bilistic, determination of the viability of each candidate
without looking up its values.

[2] proposed a couple of techniques to optimize the
TA algorithm. The first technique tracks the deepest
position in each sorted list, before which all the en-
tries have been seen through either sorted or random
accesses; these are the “best positions”. By constitut-
ing the threshold from the scores at the best positions,
rather than those at the last sorted access in each list,
TA is likely to be able to terminate earlier. The sec-
ond technique tracks the data objects that have been
examined through sorted or random accesses, so as to
avoid refetching them. These techniques substantially
reduce the execution costs, and are incorporated in the
TA implementation of our study.

In [25,26], Mamoulis et al proposed an efficient real-
ization of the NRA algorithm, called LARA. LARA is
based on the observation that in phase one of the NRA
algorithm, the set of candidate objects can only grow
and it is no beneficial to attempt any pruning. Thus,

4 HweeHwa Pang et al.

LARA provides data structures to efficient maintain (i)
the objects seen so far, along with their partial aggre-
gate scores and the input lists that have produced each
object, (ii) the top-k objects with the highest lower-
bound scores, and (iii) the latest score encountered on
each input list. For phase two, the aim is to avoid up-
dating the upper-bound score of every candidate object
each time an object is read off the input lists. Instead,
LARA maintains, for each combination of input lists,
the identifier of the object that satisfies these condi-
tions: (i) the object has been seen only on these lists,
(ii) the object has the highest partial aggregate, and
(iii) the object is not among the top-k scoring ones
currently. Experiments confirm that LARA has much
better time and space complexities than the original
NRA. The techniques in LARA complement our solu-
tion nicely. Indeed, we implement our proposed schemes
on top of LARA.

2.3 Approximate Top-k Queries

In [39], Theobald et al proposed a set of statistical tech-
niques to estimate the score of candidate objects, with
the aim of determining when it is safe to drop candi-
dates that, with high probability, will not qualify for
the query result.

[28] shows that, for approximate top-k queries, his-
tograms on the value distribution in the various sorted
lists can be used to estimate the aggregate score of can-
didate records. Moreover, a Bloom filter is built on the
record identifiers in each cell of a histogram, for detect-
ing quickly whether a given record falls within the cell.
The authors did not address the issue of cell size con-
figuration; as we will show, the best cell size varies from
query to query, and we need a flexible scheme that can
support different cell sizes according to the character-
istics of individual queries.

Another study along this line of research is [33],
which provides techniques to produce best-effort results
subject to given resource constraints. The aim there is
to maximize the quality of the query results.

A common characteristic of this category of work is
that It is possible for a true top-k result to be pruned
wrongly, so the techniques are not appropriate where
exact top-k results are required.

2.4 Applications of Threshold Algorithms

In the context of relational databases, the top-k query
corresponds to a ranked join on the input tables. Ilyas
et al [20] proposed to implement the rank join algo-
rithm as a pipelined operator, and presented formulas

for estimating the depth to which the two operand ta-
bles need to be scanned for any desired result size k. [8]
developed a cost model for choosing which of the avail-
able indices to use, in order to effect TA-like strategies
to answer top-k queries in a relational DBMS.

In [32], Schnaitter et al studied the problem of esti-
mating, for the query plan of a rank join operation, the
input depths of its operand relations that are needed
to produce the k top-scoring result tuples. Represent-
ing the joint frequency distribution of the inputs by
tensors, the method repeatedly pulls the highest scor-
ing tensor from the output, until the cumulative fre-
quency of the pulled tensors reaches k. The score of the
last tensor gives the cut-off threshold, which is used
to calculate the depth of each input. In other words,
this work estimates depthresult but not depththres. It
also does not deal with pruning the non-viable records
within depthresult of the input relations.

[11] studied the problem of top-k query processing
over multimedia repositories. Here, the system is capa-
ble of performing a graded search for a feature/attribute
selection condition that returns the objects matching
the condition closely, as well as probing for the grade
of match of a given object with respect to a condition.
The authors described a scheme for determining which
conditions should be evaluated through graded search,
and which should be probed.

The threshold algorithm is a natural fit for text
search engines. In these systems, the corpus is typically
represented as an inverted index that maps a search
term to a ranked list of documents that contain that
term, and the answer for a search query comprises those
documents that have the highest weighted sum over the
search terms [49]. In [30], Ntoulas and Cho described a
number of techniques for pruning terms and documents
from the inverted index, in such a way that most of the
queries can be satisfied from the pruned index without
degrading the quality of the query results.

2.5 Other Related Work

Several variations of the top-k query problem have also
been studied in the literature. One variation involves
indexing schemes other than sorted lists. [43] proposed
a solution for top-k aggregate query over indexed rela-
tions. [41] investigated top-k queries over datasets that
are horizontally distributed in large-scale peer-to-peer
networks. In [12], Deshpande et al introduced the AL-
Tree, a multi-dimensional index, which is shown to of-
fer efficient pruning of the search space during query
processing. In [50], Zou and Chen proposed to build a
Dominant Graph structure to facilitate the efficient pro-
cessing of top-k queries. [37] introduced the SUBSKY

Efficient Processing of Exact Top-k Queries over Sorted Lists 5

technique, which transforms the attributes of data ob-
jects into one-dimensional values; the transformed val-
ues can then be indexed with the B-tree to support
subspace top-k queries.

[35] formulated a probabilistic formulation of top-k
queries over data that may be imprecise and uncertain;
here, the problem is to find the list of data objects that
have the highest probability of being top-k. In [44], Yi
et al considered top-k queries over uncertain databases
in which each x-tuple may instantiate randomly into
one tuple from multiple possibilities. [3] addressed the
challenge of reporting, at anytime during the execution
of the TA algorithm, the confidence that the top-k re-
sult has been found.

Other studies have extended top-k processing to
typicality queries ([16,17]), dominating queries ([45,46],
[24]), data streams ([18],[21]), twig queries on weighted
graphs ([31]), semistructured data ([38]), spatial cum
aggregation queries ([47]), and queries for pairs of sim-
ilar records ([42]). Due to the difference in the prob-
lem setting, data structure, processing strategy and re-
source considerations, the solution approaches in those
papers are different from our work here.

2.6 Differentiation of Our Work

To the best of our knowledge, no existing work has car-
ried out a comprehensive optimization of the threshold
algorithm that covers its total resource demands. The
value of this work is that we provide a unified solu-
tion that includes techniques for optimizing the I/Os,
memory and computation demands. In addition, our
model for determining the required depths of the query
lists works for both phases of the threshold algorithm,
as well as for a varied range of data distributions, and
hence is more general than the existing work in [20] and
[32]. Finally, our candidate pruning mechanism, though
serving a similar purpose as the techniques from [39]
and [5], guarantees that no top-k result will be missed;
thus our scheme is suitable for both exact as well as
approximate top-k queries.

3 A New Top-k Query Processing Algorithm

In this section, we introduce our TBB (Threshold al-
gorithm over Bucketized sorted lists with Bloom filter)
scheme for top-k query processing. We begin by for-
mulating the problem in Section 3.1. Next, we give an
overview of our solution approach in Section 3.2, be-
fore developing our input depth estimation model in
Section 3.3 and the candidate pruning mechanism in
Section 3.4. For clarity, we start with a simple model

Notation Meaning Default

D Database of records –

n Number of records in D 1 million
m Number of record attributes 20

Aj The j-th record attribute –
Lj The sorted list on Aj –

[0, α] Domain of record attributes [0, 1]

Q A user query –
q Number of query attributes 2

wj Weight of the j-th query attribute 1

r A record in D –
S(r|Q) Score of r w.r.t. Q –

S(r|Q) Upper-bound score of r w.r.t. Q –
S(r|Q) Lower-bound score of r w.r.t. Q –

R Result of Q –

k Number of required records in R 10
Sk k-th highest record score in R –

Table 1 Query Model

with weighted sum, and attributes that are indepen-
dent, identically, uniformly distributed in the range [0, α],
and gradually generalize our solution. In Section 3.5, we
extend our techniques to cope with non-uniform data
distributions as well as correlated attributes. This is fol-
lowed by the data structures and the query processing
algorithm for our solution in Section 3.6. Finally, Sec-
tion 3.7 discusses how our solution generalizes to top-k
queries involving nested scoring functions and selection
predicates.

3.1 Problem Formulation

We have a database D consisting of n records. Each
record contains m attributes with values falling uni-
formly in the range [0, α]1. We also have m sorted lists
Lj , each of which sorts the records in descending order
on a different attribute Aj . Each list Lj contains an en-
try 〈r.Aj , r〉 for each record r in the database D, where
r.Aj denote the value of the j-th attribute of record r.
A query Q selects any of q number of attributes from
the overall number of m attributes in the database.
Without loss of generality, we assume that attributes
A1, A2, . . ., Aq are chosen; we call the corresponding
sorted lists, L1, L2, . . ., Lq, the query lists. The score
of a record r ∈ D with respect to Q, S(r|Q), is a mono-
tonic aggregation function such that for any two records
r1, r2 ∈ D, if r1.Aj ≥ r2.Aj for every 1 ≤ j ≤ q, then
S(r1|Q) ≥ S(r2|Q). The query result R is a ranked list
of k records such that:

1 We work with the range of [0, α], instead of [0, 1], as a pre-
lude to supporting different data distributions and weights for

the attributes. This will become evident in Section 3.5.

6 HweeHwa Pang et al.

– The records in R are ordered in decreasing scores,
i.e., R = [r1, r2, . . . , rk] where S(ri|Q) ≥ S(rj |Q)
for i < j and ri, rj ∈ R; and

– All other records inD do not have higher scores than
any result record, i.e., ∀ri ∈ D − R,S(ri|Q) ≤ Sk
where Sk is the score of the last result record in R.

3.2 Motivation for Our Solution Approach

Algorithm 1 NRA to retrieve the top-k results
1: Initialize sorted result R.

2: Set depth d = 1.

3: // Phase One ...

4: while d ≤ n do

5: Set threshold τ = 0.
6: for j = 1 to q do

7: Let 〈r.Aj , r〉 be the d-th entry in Lj .

8: if r is discovered for the first time then
9: Create an entry in R for r.

10: Set S(r|Q) = wj × r.Aj .
11: else r has appeared in some other query list
12: Set S(r|Q)+=wj × r.Aj .
13: Set τ+=wj × r.Aj .
14: d+=1.

15: if (|R| ≥ k) AND (Sk > τ) then
16: Goto line 18.

17: // Phase Two ...
18: while d ≤ n do

19: for j = 1 to q do

20: Let 〈r.Aj , r〉 be the d-th entry in Lj .
21: if r is discovered for the first time then

22: Ignore 〈r.Aj , r〉.
23: else r has appeared in some other query list
24: Set S(r|Q)+=wj × r.Aj .
25: d+=1.

26: if terminating conditions are met then

27: Goto line 29.

28: // Return the top-k results
29: Remove from R the (k + 1)-th entry downwards.

30: Return R.

31: Terminating conditions:
32: • ∀1 ≤ i1 < i2 ≤ k, S(R.ri1 |Q) ≥ S(R.ri2 |Q), and

33: • ∀i > k, S(R.rk|Q) ≥ S(R.ri|Q).

We begin by examining the behavior of the classical
NRA algorithm from [14]. In the pseudo-code in Algo-
rithm 1,

– S(r|Q) gives a lower bound on the score of r with
respect to Q. S(r|Q) =

∑q
j=1 wj × ϕj where ϕj =

r.Aj if the entry 〈r.Aj , r〉 has been discovered in
query list Lj ; otherwise ϕj = 0.

– S(r|Q) gives an upper bound on the score of r with
respect to Q. S(r|Q) =

∑q
j=1 wj × γj where γj =

L1

0.98, r3

0.93, r1

0.89, r6

0.83, r7

0.81, r2

0.76, r9

0.75, r13

0.68, r16

0.62, r11

0.60, r12

0.99, r4

0.92, r1

0.87, r5

0.84, r2

0.80, r8

0.78, r13

0.77, r14

0.71, r7

0.69, r3

0.62, r10
… …

L2

depththres

depthresult

Phase 1:

Completed candidates:

{〈1.85, r1〉, 〈1.65, r2〉}

Incomplete candidates:

C = {r3, r4, r5, r6, r7, r8}

Threshold τ = 1.61

Phase 2:

R = {〈1.85, r1〉, 〈1.67, r3〉}

Fig. 1 NRA Execution for Top-2 Objects from L1 and L2

r.Aj if the entry 〈r.Aj , r〉 has been discovered in
query list Lj ; otherwise γj corresponds to the last
attribute value read from Lj .

The algorithm maintains a sorted list of candidate re-
sults, ordered in descending S(r|Q) scores. A candidate
r is said to be completed if all of its query attributes
have been discovered, so S(r|Q) = S(r|Q); otherwise r
is incomplete.

Since γj changes every time an entry is popped from
Lj , we do not update all the S(r|Q) values eagerly.
Instead, a given S(r|Q) is computed on-demand when it
is needed to test the terminating conditions, by adding
to S(r|Q) the γj value for those lists Lj in which r has
yet to be discovered.

Figure 1 exemplifies NRA’s execution for a top-2
query on two sorted lists. The algorithm scans all the
query lists to the same depth. At depththres, there are
two completed records r1 and r2 with scores S(r1|Q) =
1.85 and S(r2|Q) = 1.65, and the threshold τ = 0.81 +
0.80 = 1.61. Since τ forms an upper bound on the
score of any new record down the lists, none of those
records can outscore r1 or r2, so phase one of NRA
ends. At this time, R comprises the tentative answer
{〈1.85, r1〉, 〈1.65, r2〉}, as well as incomplete candidates
C = {r3, r4, r5, r6, r7, r8}. In the next phase, NRA scans
further down the lists to depthresult, where r1 and r3
(with S(r3|Q) = 1.67) are confirmed to have the highest
scores while the remaining candidates in C are found
to be non-viable.

Although NRA is guaranteed to locate the top-k
results correctly, it has the following inefficiencies:

– NRA scans one entry from each query list at a time,
which generates random I/Os and is slow. If we
could determine depththres and depthresult right from
the start, we could fetch all depththres entries at
once from each list in phase one, then the next
(depthresult − depththres) entries at once from the

Efficient Processing of Exact Top-k Queries over Sorted Lists 7

Notation Meaning

p Number of buckets to split each Lj into

b Number of records per bucket
B A bucket of records

LB(B) Lowest attribute value in B
UB(B) Highest attribute value in B

Bj(r) First bucket in Lj that contains record r

FPβ False positive rate of bucket β in each Lj

Table 2 Parameters for Bucket Design

lists in phase two. This way, the execution would be
sped up through sequential or batched I/O opera-
tions.

– Phase two of NRA evaluates some candidates (like
r4, r5, r6, r8 in Figure 1) that eventually are found to
be non-viable because they do not appear within the
first depthresult entries in one or more of the lists.
Maintaining the lower- and upper-bound scores of
those candidates during the second phase is a waste
of computation cycles and memory. If the upper-
bound scores could be estimated, such candidates
might be ruled out early to improve efficiency.

We will show how to derive depththres and depthresult
next, followed by the estimation of upper-bound scores
in Section 3.4.

3.3 Estimation of depththres and depthresult

We partition each sorted list Lj into p = n
b buckets with

b entries each; the buckets within each sorted list are
numbered serially from 0 onwards. For simplicity, we as-
sume that n is a multiple of b so that p is a positive inte-
ger. The buckets in each list are numbered 0, 1, . . . , p−1,
with bucket 0 at the head, and bucket p− 1 at the tail-
end. We show in the following theorem how to fix the
bucket size and determine depththres. Let Bj(r) denote
the bucket in the query list Lj that contains the record
r and let bj,r be the bucket number of Bj(r).

Theorem 1 Suppose that for every j ∈ [1,m], for ev-
ery r ∈ D, bj,r is uniformly distributed over [0, p − 1].
If we set the bucket size b = k1/q · n(q−1)/q, then it is
expected that there are k records with completed scores
after NRA phase one fetches the first bucket for each
queried attribute. Namely, depththres = k1/q · n(q−1)/q.

proof(informal) Consider any record r appearing in
bucket 0 of L1. The probability that r also appears in
all the first buckets of L2, . . . , Lq is 1

pq−1 . Since there
are b records per bucket, the expected number of such
records is b

pq−1 . Since by definition bp = n,

p =
n

k1/q · n(q−1)/q
=
(n
k

) 1
q

(1)

we have b
pq−1 = k. In other words, it is expected to

discover k records with completed scores by setting

depththres = b = k1/q · n(q−1)/q (2)

�

Obviously, we want to have p ≥ 2; otherwise, with
only one bucket per sorted list, our algorithm would
be scanning the entire query lists which is inefficient.
This implies that our algorithm is meaningful only for
n ≥ k · 2q.

Next, let LB(B) and UB(B) denote the lowest and
highest attribute values in bucket B respectively. More-
over, let BC(r) denote the sum of the serial number
of the buckets in the query lists that contain r; i.e.,
BC(r) =

∑q
j=1 bj,r. If we assume b = 5 in the example

in Figure 1, b1,r7 = 0 and b2,r7 = 1, so BC(r7) = 0+1 =
1. We show in Theorem 2 how to establish depthresult.

Theorem 2 Suppose that for every j ∈ [1, q], r.Aj
is distributed uniformly in [0, α]. Then, for any Lj, a
record r is not expected not to be qualified if BC(r) ≥ q
under the same bucketization setting as in Theorem 1.
In other words, depthresult = q · k1/q · n(q−1)/q.

Proof(informal) We prove the theorem by showing
that in average there exit k records with scores larger
than r’s.

Note that for 0 ≤ i < p, all the attributes in bucket
i of Lj is bounded by p−i−1

p α and p−i
p α. Thus we have

S(r|Q) ≤
∑
j

p− bj,r
p

α =
α

p

∑
j

(p− bj,r)

=
α

p
(pq −BC(r)) ≤ p− 1

p
qα

The threshold τ is at the end of bucket 0 in all the
query lists after phase one, so τ = p−1

p qα too. Since it
is expected that we already have k completed records
scoring above τ because all of their attribute values
appear in the first bucket of the query lists, r cannot
qualify for the top-k answer and so can be pruned.

Therefore, it suffices for phase two to scan to the
end of bucket q − 1 of the query lists; any candidate
record that still has undiscovered attribute values at
that point can no longer be viable. With b entries per
bucket, we have:

depthresult = q · k1/q · n(q−1)/q (3)

�

8 HweeHwa Pang et al.

q ncandphase1 ncandideal
2 6,314 30

3 64,623 100

4 224,927 350
5 499,990 1260

6 880,670 4620

7 1,000,000 17,160
8 1,000,000 64,350

Table 3 The number of candidates found in phase one

(ncandphase1), versus the ideal number of candidates for phase

two (ncandideal)

3.4 Estimation of Upper-Bound Scores for Candidate
Records

With q query lists, the number of bucket combinations
that allow a record r to have BC(r) ≤ β, for some
0 ≤ β ≤ p(q − 1), is

bucket combinations(BC(r) ≤ β) =
q∏
j=1

β + j

j

Intuitively, the above formula calculates, in the hyper-
space formed by the q query attributes, the volume
bounded by the origin and the hyperplane that is an-
chored at 〈β, 0, . . . , 0〉, 〈0, β, . . . , 0〉, . . ., 〈0, 0, . . . , β〉.

Since every bucket combination has the same like-
lihood of 1

pq and the database contains n records, the
expected number of records r for which BC(r) ≤ β is

records(BC(r) ≤ β) =
n

pq
·
q∏
j=1

β + j

j

As explained in Section 3.3, a record r cannot qual-
ify for the top-k answer if BC(r) ≥ q. Therefore ideally
the number of candidate records that should be eval-
uated in phase two of the algorithm is ncandideal =
records(BC(r) ≤ q − 1) = n

pq ·
∏q
j=1

q−1+j
j . In con-

trast, phase one of the algorithm retrieves q · b records,
among which only k scores above the threshold τ , leav-
ing ncandphase1 = q·b−k candidates. Table 3 illustrates
the difference between ncandphase1 and ncandideal, for
n = 1, 000, 000 and k = 10. Evidently, the difference
(ncandphase1−ncandideal) widens rapidly as q increases.
A filtering mechanism that is able to prune most of the
non-viable candidate records, without incurring ran-
dom I/Os in retrieving their attribute values, could
therefore give a significant performance boost to the
algorithm, at the expense of some memory overhead
(which we will quantify through experiments in Sec-
tion 4.

We base our filtering mechanism on the Bloom filter.
As proposed in [6], a Bloom filter is designed to support
membership checks on a set B of b key values, B =

{r1, r2, . . . , rb}. To construct a Bloom filter with ι bits,
we choose ν independent hash functions h1, h2, . . . , hν ,
each with a range of [1, ι]. For each value ri ∈ B, the
filter bits at positions h1(ri), h2(ri), . . . , hν(ri) are set
to 1. To check whether a given r is in B, we examine
the bits at h1(r), h2(r), . . . , hν(r). If any of the bits is
0, r cannot possibly be in B; otherwise there is a high
probability that r is in B. In other words, the Bloom
filter admits controlled false positive rates but no false
negatives. The false positive rate is

FP =

(
1−

(
1− 1

ι

)νb)ν
≈
(

1− e−νb/ι
)ν

(4)

Mathematically, FP is minimized for ν = (ι × ln2)/b.
Since ν must be an integer, we will use ν = b(ι×ln2)/bc.
Given the value of b and the target FP rate, we can thus
set ν and ι accordingly.

For each bucket B, we maintain a triplet 〈LB(B),
UB(B), BF (B)〉 where LB(B), UB(B), and BF (B)
are the smallest attribute value, the largest attribute
value, and the Bloom filter on the record identifiers in
bucket B, respectively. At runtime, the Bloom filters
(which are much more compact than the sorted lists)
are loaded into memory, and used for filtering the can-
didate records C that are found in phase one of the
threshold algorithm. Let Bj(r) be the first bucket in
sorted list Lj that, according to the Bloom filter on the
bucket BF (Bj(r)), might contain r. The probability of
Bj(r) = β is

Prob(Bj(r) = β) =
1
p if β = 0(

1
p + p−β−1

p FPβ

)∏β−1
h=1 (1− FPh) if 1 ≤ β < p

0 otherwise

where FPβ is the false positive rate of the Bloom fil-
ter for the β-th bucket of the sorted lists. There is no
false positive component associated with β = 0 because
bucket 0 of every query list is always loaded into mem-
ory, so its contents can be examined directly.

For any record r, we derive an upper bound for its
score from the Bloom filters,

S(r|Q) ≤
q∑
j=1

UB(Bj(r))

Any record r for which
∑q
j=1 UB(Bj(r)) < τ = p−1

p qα

can be eliminated.
The above filtering mechanism can be optimized in

the following ways.

Efficient Processing of Exact Top-k Queries over Sorted Lists 9

– If a record r scores less than p−q
p α for even one query

list, r will not be able to meet the cut-off thresh-
old τ even if it gets the maximum α from each of
the remaining q− 1 lists. Therefore we only need to
construct Bloom filters for the leading buckets B in
each sorted list for which UB(B) ≥ p−q

p α, not for
the trailing buckets. Once the algorithm determines
that a record r is not found within those leading
buckets of a query list, r can be disqualified imme-
diately.

– In phase two, as the algorithm evaluates the candi-
dates in C, it is likely to find among them records
that accumulate sufficiently high scores to qualify
for R. As Sk (the k-th largest record score) rises
in the process, further records r in C can then be
discarded if their upper-bound score as determined
from the Bloom filters is below Sk,
i.e.,

∑q
j=1 UB(Bj(r)) < Sk.

– The algorithm always retrieves bucket 0 of the query
lists in order to formulate the initial R. A Bloom
filter on bucket 0 serves no purpose since the algo-
rithm can check the bucket content directly; we thus
build the Bloom filter from bucket 1 downwards.

3.5 Handling Practical Attribute Distributions

In formulating our scheme so far, we have made simpli-
fying assumptions such as the attributes are identically
and independently distributed, and the attribute values
are uniformly distributed in [0, α]. We now consider how
to generalize the scheme beyond those assumptions so
that it is capable of supporting realistic applications.

Non-Identical and Non-Uniform Attribute Distributions

In some applications, the query attributes may not be
identically distributed. Rather, each attribute Aj could
have a different range [αj , αj], and the attribute val-
ues may not be distributed uniformly within the range.
Even where the attributes share a common domain [α, α],
the query could associate different weights wj with the
attributes.

Figure 2 depicts the extension of our proposed scheme
to cope with non-identical attribute distributions. As
before, we partition each attribute list into p buckets
with b entries each, but allow the buckets to cover vary-
ing intervals of attribute values. (This bucket organiza-
tion is analogous to an equi-depth histogram.) Denoting
the smallest and largest attribute values in bucket 0 of
Lj by θj and αj , and the probability that a record falls
within [θj , αj] by P (Aj ≥ θj),

P (Aj ≥ θj) =
b

n
=

1
p

(5)

θ1

β1

score

Phase 1:

nP(A1≥θ1)P(A2≥θ2)P(A3≥θ3) = k

P(Aj≥θj) = 1/p, 1 ≤ j ≤ 3

Phase 2:

βj = max(αj, αj – Σ (αi – θi)), 1 ≤ j ≤ 3
3

i=1

L1 L2 L3

θ3

θ2

β3

β2

Fig. 2 Non-Identical Attribute Distributions

By setting p as in Formula 1, phase one of the algorithm
is still expected to yield k records with completed scores
after collecting the entries in bucket 0 of the query
lists. Again, Sk denotes the k-th highest record score
(Sk = S(R.rk|Q)) thus far; Sk ≥ τ =

∑q
j=1 wj × θj . In

phase two, rather than uniformly fetching depthresult
(as defined in Formula 3) entries from every list, we
now fetch from each query list Lj the remaining buck-
ets B that satisfy UB(B) ≥ βj , where

βj = max

(
αj , αj −

q∑
i=1

αi + Sk

)
(6)

Other than these modifications for the expected input
depths, the estimation of upper-bound scores as pre-
sented in Section 3.4 still applies, and it allows us to
prove that any record r appearing below βj in some
query list Lj cannot possibly qualify as a top-k re-
sult. This extended scheme works with any arbitrary
attribute distribution. A skewed distribution, for exam-
ple, would just lead to varying interval widths UB(B)−
LB(B) across buckets.

Attributes with Positive Linear Correlation

It is common for some of the attributes in the data to be
correlated. If two attributes are positively correlated, a
record that ranks highly with respect to one attribute
is likely to have a relatively large value for the other at-
tribute. With negatively correlated attributes, a record
that appears near the front of one attribute’s sorted list
is likely to be positioned towards the end of the other’s
sorted list. For instance, the sorted lists for synonyms
like ‘jurist’ and ‘judge’ in a text corpus will be pos-
itively correlated, whereas opposite measures such as
‘distance’ and ‘similarity’ are likely to have negatively
correlated sorted lists.

Where query attributes are positively correlated,
and/or the first buckets of the query lists have dispro-
portionately higher scores than the buckets that fol-
low, the algorithm is likely to discover more than k

10 HweeHwa Pang et al.

0 5 10 15
0

4

8

12

Blocks per I/O

I/O
 T

im
e

(m
se

c)

Fig. 3 Average I/O Cost with Sequential Reads

records with completed scores after phase one. To il-
lustrate, consider the extreme case of a query for the
top k = 10 records with respect to q = 5 attributes, all
of which are set to the same value within each record.
In essence, the query involves only one independent at-
tribute, and it suffices to scan only the first k = 10 en-
tries from each query list to compose the top-k record
scores. This corresponds to setting q = 1 in Formula 2.
In contrast, with n = 1, 000, 000 and q = 5, we get
b = 101/5 ·10000004/5 = 100, 000; this causes the system
to fetch 10,000 times more records than is necessary!

The above example highlights that, in Formulas 1
and 2, the setting of q should discount query attributes
that are positively correlated. In order to do that, the
system needs to track the correlation coefficient ρij be-
tween every pair of attributes Ai and Aj . Since we are
interested in the top-k results, it is not necessary to
involve all the records in deriving the ρ’s. Instead, we
select only records that rank high for at least one at-
tribute (say, the top-1,000 entries in each attribute list),
so as to lower the computation overheads. Given a query
Q, we repeatedly drop one of the query attributes Aj
that satisfies both of the following conditions: (a) Aj is
positively correlated with at least one other query at-
tribute Ai, i.e., ρij > 0; and (b) ρij is significant at some
pre-determined confidence level (e.g., 95%). At the end
of the procedure, the remaining query attributes either
are negatively correlated or there is no significant cor-
relation among them. We now set q to the number of
remaining attributes, to derive p and b with Formu-
las 1 and 2. With these p and b settings, we then per-
form query processing on the sorted list of all the query
attributes, i.e., including the positively correlated at-
tributes.

The above procedure is designed to discount query
attributes that are determined with high confidence to
be positively correlated. Even after applying the proce-
dure, it is possible to still have weaker positive correla-
tion among the remaining query attributes that causes
our scheme to overestimate b and, hence, the number of
blocks to scan in phase one. As an additional safeguard,
we need to cap b without losing too much of the advan-
tage of sequential I/Os. In general, the average I/O cost
for fetching a block of sorted list entries from the disk

trends down as a larger number of contiguous blocks are
fetched in one I/O operation, because the disk seek and
rotational delays are amortized over the blocks that are
retrieved sequentially. However, the incremental gain
becomes marginal beyond a certain point, say x blocks.
For our test system, this point occurs at around x = 6
blocks as Figure 3 shows. (With 1-Kbyte blocks and 8
bytes per sorted list entry, as described in Section 4.1,
6 blocks corresponds to 750 sorted list entries.)

Based on this disk characteristic, we modify our
threshold algorithm to cycle through the query lists in
phase one, fetching up to x successive blocks from each
list in turn, until the target depththres is reached or at
least k completed record scores are found, whichever
occurs earlier. Likewise, phase two of the algorithm re-
trieves up to x blocks from each query list in turn, until
the query answer is confirmed. This safeguard kicks in
only in exceptional situations where the combination
of a large k, a large q and moderate positive correla-
tions cause depththres and depthresult to be elevated.
In our experiments, the depththres and depthresult set-
tings given by our model provide tighter limits in almost
all cases.

Attributes with Negative Linear Correlation

In contrast, negative correlation among the query at-
tributes would lower the initial Sk. Indeed, phase one
of the algorithm may not even be able to locate k com-
pleted records from the first bucket of the query at-
tributes. The algorithm will then need to delve deeper
into the query lists in order to produce R. In particular,
some valid result records may now score below p−q

p α on
some query list. If such a circumstance is deemed likely,
the default countermeasure is to extend the Bloom fil-
ters to all the blocks in the sorted lists, and the can-
didate filtering mechanism in Section 3.4 can still be
effective. Alternatively, to conserve memory space, we
may use progressively fewer Bloom filter bits per record.
This permits a slightly elevated false positive rate for
those buckets toward the end of the sorted lists, but
it should not adversely affect performance because the
attribute values in those buckets are low anyway.

NULL Attribute Values

In some applications, a record may not specify a value
for every attribute. A classic example is the text search
engine [49], where the records correspond to documents
and the attributes correspond to search terms. Since a
document typically contains only a small subset of the
possible search terms, for efficiency reasons the docu-
ment is omitted from the sorted list of those search

Efficient Processing of Exact Top-k Queries over Sorted Lists 11

Sorted List L j

Blockj0

Blockj1

Blockj2

Blockj3

Blockj4

Blockj5

…

〈j, 0, LBj0, UBj0, blkBFj0〉

〈j, 1, LBj1, UBj1, blkBFj1〉

〈j, 2, LBj2, UBj2, blkBFj2〉

〈j, 3, LBj3, UBj3, blkBFj3〉

〈j, 4, LBj4, UBj4, blkBFj4〉

〈j, 5, LBj5, UBj5, blkBFj5〉

Block Table BT

…

〈j, 0, LBj0, UBj0, bucBFj0〉

〈j, 1, LBj1, UBj1, bucBFj1〉

Virtual Buckets at Runtime

…

Bucketj0

Bucketj1

…

Fig. 4 Dynamic Block-to-Bucket Mapping
(In this example, each bucket is 3 disk blocks in size)

terms that it does not contain. Consequently, each sorted
list indexes a subset of the documents rather than the
entire document collection, and the sorted lists may
vary in length.

Since unspecified attributes do not contribute to the
score of a record, we conceptually augment the sorted
list Lj of attribute Aj with an entry 〈0, r〉 for every
record r that does not specify a value for Aj , so that Lj
again indexes the full set of n records. This allows us to
apply Formulas 1 and 2 to determine settings for p and
b, followed by Formula 6 to decide how deep to scan each
query list. Once the query processing algorithm reaches
the end of a sorted list Lj , any incomplete candidate
record that has not appeared in Lj can assume zero
contribution from Aj .

3.6 Algorithm Implementation

We now put together the algorithms for our proposed
solution below.

System Configuration

According to Formulas 1 and 2, the settings for p and
b are dependent on query-specific parameters k and q.
It is thus not possible to partition the sorted lists into
buckets and generate their associated Bloom filters in
advance to cater for all possible queries. Instead, we
store each sorted list in contiguous disk blocks, and con-
struct for each disk block a Bloom filter with the spec-
ified false positive rate FP . The details of every block
Bji are captured as a tuple 〈j, i, LB(Bji), UB(Bji),
blkBFji〉 in a ‘Block Table’ BT , where j is the iden-
tifier of the sorted list Lj , i is the block offset within
Lj , LB(Bji) and UB(Bji) are the smallest and largest
attribute values within Bji, and blkBFji is the Bloom
filter for the record identifiers in Bji. At runtime, after
the bucket boundaries have been determined for a given
query, the blocks in each query list are mapped to the
buckets dynamically. Figure 4 illustrates the mapping,
with 3 blocks to a bucket. Thus, checking the bucket

Bloom filter bucBF (e.g. bucBFj1) for a record iden-
tifier entails probing the Bloom filter blkBF of its un-
derlying disk blocks (blkBFj3, blkBFj4 and blkBFj5).
This storage scheme incurs overheads in creating one
tuple per block in BT (rather than one BT tuple per
multi-block bucket), and in examining multiple block-
level Bloom filters for each bucket probe. In return, we
gain the flexibility of catering to ad-hoc queries with
arbitrary k and q requirements.

Algorithm 2 Block Table Construction for the Sorted
Lists

Function: CreateBF(B, b, FP)

. . .
Return bloom filter FP .

Function: Construction(n, kmax, qmax, Lj , FP)

1: Initialize the Block Table BT .

2: Let b be the number of sorted list entries per disk block.
3: Set p = dn

b
e.

4: Store the first b entries of Lj in block Bj0.

5: Append 〈j, 0, LB(Bj0), UB(Bj0), NULL〉 to BT .
6: for i = 1 to p− 1 do

7: Store the next b entries of Lj in block Bji.

8: Let blkBFji = CreateBF(Bji, b, FP).
9: Append 〈j, i, LB(Bji), UB(Bji), blkBFji〉 to BT .

Algorithm 2 summarizes the configuration algorithm.
Here, we are creating Bloom filters for all the blocks
in each sorted list. If the applications are able to im-
pose upper limits on the query answer size (kmax) and
the number of query attributes (qmax), we can calculate
with Formula 3 the maximum depth to which the sorted
lists will ever be scanned, and create Bloom filters only
up to that depth. For example, queries in a text search
engine typically do not exceed 20 query terms, and most
users do not look beyond the first page of 10 result en-
tries [36]. If it is not possible to fix specific values for
kmax and qmax, all the blocks in each sorted list will
get a Bloom filter by default.

Our approach of embeding a Bloom filter on the
entries within each disk block of a sorted list has the
advantage of facilitating data updates. Whenever there
are changes to the entries assigned to any disk block,
the Bloom filter within it can be refreshed at the same
time, and written back to disk without incurring extra
I/O operations.

Query Processing

The query processor and its associated functions are
presented in Algorithm 3. In phase one of query pro-
cessing, lines 36 and 37 are intended to handle situa-
tions where the tentative answer R contains fewer than

12 HweeHwa Pang et al.

A1 × A2

A2

A3

ln A1 ln A2

A1 × A2 + A3

op1

op2

A1

Fig. 5 Query Plan for Nested Top-k Operations

k records that score above the threshold τ after pro-
cessing the first bucket from all the query lists. This
could be caused by a number of factors; e.g., the query
attributes are negatively correlated as explained previ-
ously. Under such circumstances, the algorithm needs
to examine additional blocks of records from the query
lists to ensure that all candidate records are located.

Similarly, lines 52 to 54 in Algorithm 3 catch ex-
ceptions where, after processing the buckets Bji that
satisfy UB(Bji) ≥ βj , there is still no total ordering
among the top-k candidates, or there are still candi-
dates with incomplete scores that cannot be disqual-
ified. These exceptions could be handled by scanning
deeper down the query lists. However, as the number of
candidates in question is expected to be low, we opt to
retrieve their attribute values directly to complete their
aggregate scores.

3.7 Extensions to Our Query Model

Up to this point, we have focused on scoring functions
that are weighted sums of the query attributes. Our so-
lution extends trivially to linear aggregation functions
of the form S(r|Q) =

∑q
j=1 wj × f(r.Aj) where f is a

monotonic increasing function. In this section, we dis-
cuss how our solution can apply to queries that involve
nested top-k operations, and queries that have selection
predicates on the query lists.

Queries with Nested Top-k Operations

To simplify our discussion, we center on the scoring
function S(r|Q) = A1 × A2 + A3; extension to scoring
functions that involve more products and additions of
attributes is straightforward.

Instead of a single operation, the query requires two
top-k operators as illustrated in Figure 5. The first op-
erator op1 implements the scoring function lnA1+lnA2,
whose output is dynamically mapped to elnA1+lnA2 =
A1 × A2 for the second operator op2 that scores on
(A1 ×A2) +A3.

Algorithm 3 Query Processing with Bucketized
Sorted Lists

Function: ProbeBF(r, BF)

. . .

Return TRUE/FALSE.

Function: UBScore(r)

1: Set score S = 0.
2: for j = 1 to q do

3: if r has appeared in Bj0 then

4: Set S += UB(Bj0).
5: Continue with the next j iteration.

6: for i = 1 to p− 1 do
7: if ProbeBF(r, bucBFji) is TRUE then

8: Set S += UB(Bji).

9: Break out of for-loop i.

10: Return S.

Function: Phase2Done()

11: Terminating conditions:

12: • ∀1 ≤ i1 < i2 ≤ k, S(R.ri1 |Q) ≥ S(R.ri2 |Q), and

13: • ∀i > k, S(R.rk|Q) ≥ S(R.ri|Q).

14: if the terminating conditions are met then

15: Return TRUE;

16: else
17: Return FALSE;

Function: Query(k, q)

18: // Compose the buckets dynamically

19: Calculate b with Formula 2.
20: Round b up to the nearest multiple of blocks of records.

21: Set p = dn
b
e.

22: for j = 1 to q do

23: for i = 0 to p− 1 do

24: Map 〈j, i, LB(Bji), UB(Bji), bucBFji〉 from the un-
derlying blocks with information in BT .

25: // Phase One ...

26: Set τ = 0.

27: for j = 1 to q do
28: Fetch bucket Bj0 of Lj .

29: for all 〈r.Aj , r〉 in Bj0 do

30: if r is discovered for the first time then
31: Create an entry in R for r.

32: Set S(r|Q) = wj × r.Aj .
33: else r has appeared in some other query list
34: Set S(r|Q) += wj × r.Aj .
35: Set τ += wj × LB(Bj0).

36: if Sk < τ then
37: Repeat lines 27–35, replacing Bj0 with the next disk block

of Lj .

38: // Prune non-viable candidates

39: for all incomplete r in R do
40: if UBScore(r) < Sk then

41: Remove r from R.

Efficient Processing of Exact Top-k Queries over Sorted Lists 13

42: // Phase Two ...

43: for j = 1 to q do
44: Calculate βj with Formula 6.

45: for all bucket Bji such that UB(Bji) ≥ βj do

46: Fetch bucket Bji of Lj .
47: for all 〈r.Aj , r〉 in Bji do

48: if r is discovered for the first time then

49: Ignore 〈r.Aj , r〉.
50: else r has appeared in another query list

51: Set S(r|Q) += wj × r.Aj .
52: while Phase2Done() is FALSE do

53: Fetch the attribute values of a candidate record r that
violates the terminating conditions.

54: Complete r’s aggregate score S(r|Q).

55: // Return the top-k results
56: Remove from R the (k + 1)-th entry downwards.

57: Return R.

The techniques that we presented earlier can be ap-
plied to the query plan, as follows:

– Working backwards from the result output, our scheme
for estimating depththres and depthresult is applied
to the second operator op2 to determine the required
depths on (A1×A2) and on A3. The depththres and
depthresult on A1 × A2 are in turn translated to
the input depths for the first top-k operator op1,
again using our scheme to estimate the input depths.
These depth estimates enable the server to fetch the
required entries from the A1, A2 and A3 lists effi-
ciently, through sequential or batched I/Os as be-
fore.

– In the course of executing the query, non-viable can-
didates can still be pruned with the bucketized Bloom
filters on A1, A2 and A3. The exception is the in-
termediate list for (A1 × A2) which has no pre-
generated Bloom filters and hampers the pruning
of candidates from A3. Note that candidates from
(A1×A2) can still be pruned with the Bloom filters
on A3.

Top-k Queries with Selection Predicates

In the general form, a top-k query may have selection
predicates on one or more of the query lists. We consider
separately the cases where the selection is on the scoring
attribute of a query list, and where the selection and
scoring attributes are different.

– In the first case, the selected entries occupy a contin-
uous range in the query list. We simply apply the
estimated input depths depththres and depthresult
with respect to the selected sublist.

– In the second case, the selected entries are scat-
tered across the query list, which is sorted on the
scoring attribute. Denoting the selectivity factor of

the range selection as sf , and assuming that the
selection attribute is independent of the scoring at-
tribute, we need to scale the estimated depths by a
factor of 1

sf , to become depththres/sf and
depthresult/sf respectively.

4 Empirical Evaluation

In this section, we experimentally evaluate the perfor-
mance of our proposed TBB scheme for top-k query
processing. The questions that we are seeking answers
to include:

– What are the relative strengths and weaknesses of
TA versus NRA, in processing workloads with dif-
ferent data distributions?

– How accurately does our model (particularly Formu-
las 2, 3 and 6) predict depththres and depthresult,
which are pivotal in sequentially fetching just the
right number of disk blocks for each query list?

– How effective is our bucket organization with its
associated Bloom filters in weeding out non-viable
candidate records, and in ordering the viable ones?

– What is the overall performance impact of our pro-
posed TBB scheme, and how adaptable is it to dif-
ferent data distributions?

After describing the experiment set-up, we present
the experiment results, followed by a summary of the
answers to the above questions obtained from our em-
pirical study. We continue to follow the notation and
default parameter settings in Tables 1 and 2.

4.1 Experiment Set-Up

Algorithms: We implemented TA, NRA and our TBB
scheme for the experiment study. Our implementation
incorporated the best TA techniques (from [2]) and
the state-of-the-art NRA techniques (from [25,26]). We
also include a variant of NRA, denoted by bNRA, that
employs prefetching to reduce seek delays in the disk;
specifically, each disk block request causes 6 consecu-
tive blocks to be fetched into the I/O cache, based on
the disk characteristics in Figure 3 and the associated
discussion in Section 3.5.

Datasets: We run the competing algorithms on four
datasets. Three of the datasets are synthetic, contain-
ing respectively independent, positively correlated, and
negatively correlated attributes, while the fourth dataset
is derived from a TREC benchmark [40]. We will elabo-
rate on the datasets as they are used in the experiments
that follow.

14 HweeHwa Pang et al.

Hardware: Our test system is a Redhat Linux server
equipped with dual Intel Xeon 3GHz CPUs, 4GB RAM
and a Seagate ST973401KC 73GB hard disk. The disk
is formatted with 1-Kbyte blocks, the default in Linux.
With 4-bytes each for the attribute value and the record
identifier, every sorted list entry 〈r.Aj , r〉 occupies 8
bytes, and 125 entries can fit into each disk block. Our
implementation fetches blocks of sorted list entries from
the disk as they are required by the query processing
algorithm. Only the Bloom filters are loaded in advance
and remain cached in main memory.

Performance metrics: The primary performance met-
rics are: (i) The number of candidate records that need
to be examined in phase two of query processing; this
quantifies the effectiveness of our bucket organization
in filtering out non-viable candidates. (ii) The depth
to which the query lists are scanned; this measures the
accuracy of our sequential block fetching mechanism.
(iii) The overall query processing time, which includes
the overhead of mapping dynamically the Bloom filter
in the disk blocks to filters for the virtual buckets, and
the computation overhead as well as I/O time for exe-
cuting the queries. (iv) The memory requirement of the
algorithms.

4.2 Attributes with Independent Distributions

We begin by studying how the various algorithms be-
have with independent attributes. The dataset com-
prises one million records with 20 attributes. Each at-
tribute value is generated randomly from a uniform dis-
tribution over the range [0, 1]. Queries are composed
from randomly selected attributes, and all the attributes
are weighted equally (i.e., ∀1 ≤ j ≤ q, wj = 1). Each
experiment result is averaged over 1000 queries and ver-
ified to be statistically significant. The results are sum-
marized in Figure 6. For the timing measurements in
Figure 6(c), the dotted line for each algorithm repre-
sents its I/O time, whereas the solid line corresponds
to the total processing time.

Figure 6(a) shows that, at q = 2 and k = 10, TA
finds an average of 4196 candidate records at the end of
phase one. Fetching each of the candidate records gen-
erates one random I/O. At roughly 20 msec per random
I/O, the I/O cost of 84 seconds makes up almost the
entire processing time of TA. As k increases to 50, the
number of such candidate records rises to 11606, push-
ing the processing time up to 234 seconds in Figure 6(c).

NRA identifies just as many candidate records as
TA, as shown in Figure 6(a). Unlike TA, NRA continues
to poll the sorted lists in phase two of query processing,
until all the candidate records are either disqualified

Scheme # Cand Depth Time Memory

TA 4,196 0.31% 84.9 sec 4 MB

NRA 4,297 0.44% 1.69 sec 5 MB

bNRA 4,297 0.44% 0.88 sec 11.7 MB
TBB-1% 138 0.44% 0.72 sec 41 MB

TBB-10% 1,011 0.44% 0.71 sec 28 MB

TBB-20% 1,806 0.44% 0.81 sec 25 MB
TBB-30% 2,448 0.44% 0.92 sec 23 MB

TBB-40% 2,989 0.44% 0.98 sec 21 MB

Table 4 Varying FP with q = 2 and k = 10

or completely ordered. According to Figure 6(b), this
entails scanning 0.31% of the sorted lists after phase
one, to 0.44% after phase two. The number of random
I/Os generated to fetch blocks of the sorted lists is sub-
stantially lower than those that TA expends to fetch
individual records, thus explaining the superior perfor-
mance of NRA over TA here. The turnaround time of
NRA is consistently around 2% that of TA in this ex-
periment.

For bNRA, the number of candidate records and
scan depths are the same as those of NRA. The only
difference is that bNRA has lower I/O costs, due to
its disk prefetching operations. This enables it to shave
15% off the processing time of NRA.

Turning our attention to TBB, Figure 6(b) shows
that, at FP=10%, TBB scans the sorted lists only
marginally deeper than NRA in phases one and two.
This attests to the accuracy of the estimates yielded by
our model, and is instrumental in reducing the I/O cost
of TBB through sequential or batched block fetches.
Moreover, our bucket organization enables TBB to ex-
amine less than 40% as many candidate records as NRA,
thus lowering the computation cost. These two factors
combined to make TBB the fastest algorithm, achiev-
ing speed-up of around 104, 2.4 and 2 times over TA,
NRA and bNRA, respectively.

Figure 7 presents the experiment results with vary-
ing number of query attributes (query length) and k

fixed at 10. Interestingly, NRA scans deeper into the
sorted lists than TBB. This is necessary in order to
resolve the huge number of candidate records found in
phase one. For example, at q = 5, NRA is saddled with
27,940 candidates, compared to 14,510 in TBB. Here,
TBB continues to enjoy a significant performance ad-
vantage over TA, NRA and bNRA.

To investigate TBB in more detail, we repeat the
experiment with various false positive rates FP . The
results are summarized in Table 4. With a looser FP ,
the memory footprint and the cost of probing the buck-
ets per candidate record are lower; this explains the
initial drop in turnaround time from FP=1% to 10%.
However, that also weakens the filtering power of the

Efficient Processing of Exact Top-k Queries over Sorted Lists 15

10 20 30 40 50
0

4

8

12

Result Size (k)

C

an
di

da
te

s
(x

10
00

)

TA
NRA, bNRA
TBB

(a) # Candidates

10 20 30 40 50
0

0.25

0.5

0.75

1

TA
NRA, bNRA (Phase 1)
NRA, bNRA (Phase 2)
TBB (Phase 1)
TBB (Phase 2)

Result Size (k)

Li
st

 S
ca

nn
ed

 (
%

)
(b) Scan Depth

10 20 30 40 50

10
0

10
1

10
2

Result Size (k)

E
la

ps
ed

 T
im

e
(s

ec
)

TA
NRA
bNRA
TBB

(c) Turnaround Time

Fig. 6 Independent Attributes, Varying k with q = 2 and FP = 10%

2 3 4 5
0

10

20

30

Query Length (q)

C

an
di

da
te

s
(x

10
00

)

TA
NRA, bNRA
TBB

(a) # Candidates

2 3 4 5
0

5

10

15

20

25
TA
NRA, bNRA (Phase 1)
NRA, bNRA (Phase 2)
TBB (Phase 1)
TBB (Phase 2)

Query Length (q)

Li
st

 S
ca

nn
ed

 (
%

)

(b) Scan Depth

2 3 4 5

10
0

10
1

10
2

10
3

Query Length (q)

E
la

ps
ed

 T
im

e
(s

ec
)

TA
NRA
bNRA
TBB

(c) Turnaround Time

Fig. 7 Independent Attributes, Varying q with k = 10 and FP = 10%

Bloom filters; the consequent higher computation over-
head from examining more candidate records in phase
two soon cancels out any reduction in per-probe cost,
causing the overall processing time to rise. Hence FP
= 10% represents a good compromise.

4.3 Attributes with Positive Linear Correlation

The next experiment is designed to profile the sensi-
tivity of the algorithms to the data distribution. We
create a dataset with 10 independent attributes that
are generated from a uniform distribution over [0, 1] as
before. In addition, 10 positively correlated attributes
are introduced. Conceptually, the records are clustered
along the line from [0, 0, . . . , 0] to [1, 1, . . . , 1] in the
hyperspace formed by the correlated attributes. The
attribute values are generated with the ‘mvnrnd’ func-
tion in Matlab, using correlation coefficients of 0.5. The
dataset contains one million records, while the queries
are formulated with randomly selected attributes that
are weighted equally. Our TBB algorithm is configured
to discount attributes with positive correlations that
are significant at 95% confidence level. Figure 8 shows
the corresponding results.

Since the records in this dataset tend to have sim-
ilar values in all the attributes, we might expect the

top-scoring records to be confirmed within the first few
disk blocks. However, Figure 8(b) clearly indicates oth-
erwise, as NRA, bNRA and TBB all scan much deeper
than previously. On closer examination, we discover
that with positive correlation, many candidate records
are similar enough to each other that their precise ag-
gregate scores are needed to order them. In other words,
their upper-bound scores are no longer sufficient. This
is why TBB manages to filter out far fewer candidate
records in Figure 8(a) than in Figure 6(a). This is why
TBB’s timings in Figure 8(c) are about the same as
those of bNRA. Another observation in Figure 8(b) is
that our technique of discounting positively correlated
query attributes is effective in enabling TBB to avoid
overestimating depthresult. Overall, TBB is 4.4 to 4.5
times speedier than TA, and between 2.1 to 2.4 times
faster than NRA.

For this experiment, we have intentionally picked a
high correlation coefficient of 0.5 to create a workload
for which it is important for our scheme to avoid over-
estimating the bucket size b and depththres. We also
investigated the sensitivity of TBB to varying correla-
tion levels. We observed that, as the correlation coeffi-
cient is lowered, our scheme sometimes over-discounts
the correlated attributes. As a consequence, the query
processor needs to activate lines 36–37 in Algorithm 3

16 HweeHwa Pang et al.

10 20 30 40 50
0

4

8

12

Result Size (k)

C

an
di

da
te

s
(x

10
00

)

TA
NRA, bNRA
TBB

(a) # Candidates

10 20 30 40 50
0

10

20

30

TA
NRA, bNRA (Phase 1)
NRA, bNRA (Phase 2)
TBB (Phase 1)
TBB (Phase 2)

Result Size (k)

Li
st

 S
ca

nn
ed

 (
%

)
(b) Scan Depth

10 20 30 40 50
0

100

200

Result Size (k)

E
la

ps
ed

 T
im

e
(s

ec
)

TA
NRA
bNRA
TBB

(c) Turnaround Time

Fig. 8 Positively Correlated Attributes, Varying k with q = 2 and FP = 10%

to fetch a small number of blocks beyond the estimated
depththres so as to complete phase one. The perfor-
mance deterioration is marginal, though. If we continue
to lower the correlation level, the workload and perfor-
mance results eventually converge with those for in-
dependent attributes in Section 4.2. Overall, TBB still
preserves its performance advantage over TA and NRA.
Since the results do not provide additional insights, we
have omitted them from the paper.

4.4 Attributes with Negative Linear Correlation

Next, we investigate the effect of negative correlation
among the query attributes. Each record in this dataset
is formulated in two steps: (a) A value % ∈ [0, 1] is
picked from a Normal distribution centered at 0.5. (b)
In the hyperspace formed by the attributes, the record
is a randomly selected point in the hyperplane that is
orthogonal to the line from [0, 0, . . . , 0] to [1, 1, . . . , 1]
and intersects it at [%, %, . . . , %]. We further impose a
constraint that the record must fall within the range of
[0, 1] along each dimension. The experiment results are
plotted in Figure 9.

With the Normal distribution, the attribute values
in each sorted list fall rapidly in the initial blocks, and
most of the attribute values are clustered around 0.5.
This characteristic allows the threshold τ to drop be-
low Sk quickly, which explains the small number of
candidates as well as low depththres in Figures 9(a)
and Figure 9(b). The situation leads to the negligible
CPU costs for all four schemes in Figure 9(c), but TA
benefits the most because its I/O cost is also linear
to the candidate count. At the same time, the nega-
tive correlation among query attributes causes NRA to
scan significantly deeper in phase two in order to re-
solve the candidate records. The two factors combined
to make NRA the worst performer in this experiment.
Even bNRA, which benefits from sequential I/Os, un-
derperforms TA for k > 25. In contrast, the number of

candidates in TBB is only roughly 2.5 times the value
of k, and Formula 6 enables TBB to disqualify or order
all of the candidates without scanning much farther. As
a result, TBB continues to lead the other algorithms;
its speed-up ranges from 5.6 to 5.9 times with respect to
TA, between 6 and 33 times against NRA, and between
2.2 and 12 times versus bNRA.

4.5 Text Corpus

Our fourth experiment uses the WSJ corpus, which
comprises 172,961 articles published in the Wall Street
Journal from December 1986 to March 1992. After re-
moving stopwords (common words like ‘the’ and ‘a’ that
are not useful for differentiating between documents)
and those that appear in only one article, we are left
with 181,978 search terms. (The removal of stopwords
and single-document words is a standard procedure in
document retrieval [4], and is not a specific requirement
of our scheme.) For each term Aj , we create a sorted list
Lj of entries 〈r.Aj , r〉 where r.Aj is the term frequency
tf of Aj in document r, multiplied by the inverse doc-
ument frequency idf of Aj . Similarly, the weight wj of
each sorted list Lj is set to the tf of Aj in the query
Q multiplied with the idf of Aj . With this formulation,
our top-k query model is equivalent to the classical vec-
tor space model [4] for similarity-based text retrieval.

The workload for the experiment is made up of TREC-
2 and TREC-3 ad-hoc queries (topics 101 to 200) [40].
The TREC queries contain between two and 20 terms
each, and provide realistic term compositions for testing
our proposed scheme. Figure 10 summarizes the perfor-
mance results for k = 10.

A property of the WSJ corpus that differentiates
it from our earlier datasets is that the sorted lists no
longer follow a uniform data distribution. Moreover,
the sorted lists are not uniform in length. Figure 11
plots the cumulative frequency of sorted lists (on the y-
axis) that are up to various list lengths (on the x-axis).

Efficient Processing of Exact Top-k Queries over Sorted Lists 17

10 20 30 40 50
0

0.1

0.2

0.3

0.4

Result Size (k)

C

an
di

da
te

s
(x

10
00

)

TA
NRA, bNRA
TBB

(a) # Candidates

10 20 30 40 50
0

5

10

15
TA
NRA, bNRA (Phase 1)
NRA, bNRA (Phase 2)
TBB (Phase 1)
TBB (Phase 2)

Result Size (k)

Li
st

 S
ca

nn
ed

 (
%

)
(b) Scan Depth

10 20 30 40 50

10
0

10
1

10
2

Result Size (k)

E
la

ps
ed

 T
im

e
(s

ec
)

TA
NRA
bNRA
TBB

(c) Turnaround Time

Fig. 9 Negatively Correlated Attributes, Varying k with q = 2 and FP = 10%

10 20 30 40 50
0

10

20

30

Result Size (k)

C

an
di

da
te

s
(x

10
00

)

TA
NRA, bNRA
TBB

(a) # Candidates

10 20 30 40 50
0

25

50

75

100

TA
NRA (Phase 1)
NRA (Phase 2)

bNRA (Phase 1)
bNRA (Phase 2)
TBB (Phase 1)
TBB (Phase 2)

Result Size (k)

Li
st

 S
ca

nn
ed

 (
%

)

(b) Scan Depth

10 20 30 40 50

10
1

10
2

10
3

Result Size (k)

E
la

ps
ed

 T
im

e
(s

ec
)

TA
NRA
bNRA
TBB

(c) Turnaround Time

Fig. 10 TREC Queries, Varying k with FP = 10%

10
1

10
2

10
3

10
4

10
50

25

50

75

100

Documents / Term

C
um

. F
re

qu
en

cy
 (

%
)

Fig. 11 List Length Distribution of WSJ Corpus

More than half of the lists contain only between two
and five entries each, whereas the lists corresponding
to the more common words are much longer; in fact,
the longest list has 127,848 entries. It is therefore bene-
ficial most of the time to fetch all the constituent blocks
of the query lists at once, except for the minority of ex-
traordinarily long lists. The prevalence of short lists is
why Figure 10(b) shows that NRA, bNRA and TBB

fetch a high percentage of the query lists. As in previous
experiments, here the processing time (ranging from
384 seconds to 465 seconds per query) of TA is almost
entirely accounted for by I/O time, whereas that of
NRA (measuring between 42 and 51 seconds) comprises
about 13% I/Os and 87% computation. Again, TBB
is able to reduce the I/O cost through sequential disk

reads, and the computation cost by filtering out non-
viable candidates, thereby achieving overall turnaround
times of less than six seconds; this represents a speed-
up of 75 to 100 times, 8 to 11 times, and 6 to 10 times
relative to TA, NRA and bNRA, respectively.

We have also conducted another document retrieval
experiment like the one reported in this section, with
a different dataset – the Reuters Corpus Volume 1 [23]
specifically. That experiment surfaced consistent per-
formance results and algorithm behaviors as those we
observed here for the WSJ corpus.

4.6 Nested Top-k Operations

Our last set of experiments is designed to study queries
that involve nested top-k operations, as discussed in
Section 3.7. Using the dataset with independent at-
tributes from Section 4.2, we execute the query plan
in Figure 5 with the four competing algorithms. The
results are summarized in Figure 12.

As shown in the figure, for NRA, bNRA and TBB

the I/O cost is dwarfed by the CPU overhead, the latter
accounting for the gap between the dotted line (repre-
senting the I/O cost) and the solid line (representing the
total cost) for the respective algorithms. This is because
the input depth (depthresult) of the second top-k opera-

18 HweeHwa Pang et al.

10 20 30 40 50

10
2

10
3

Result Size (k)

E
la

ps
ed

 T
im

e
(s

ec
)

TA
NRA
bNRA
TBB

Fig. 12 Nested Top-k Operations

tion op2 corresponds to the result size of the first top-k
operation op1, causing the latter’s input lists A1 and
A2 to be scanned deeply. For example, for TBB with
result size k = 10, op2 pulls in almost 4,400 entries from
the output of op1; this leads to around 93,500 entries
being scanned from each of A1 and A2, and 109,350
candidate records to be processed in phase two of the
algorithm. As a result of the high CPU overheads, the
gains enjoyed by TBB is smaller here. Notwithstanding
that, TBB’s ability to prune non-viable candidates con-
tinue to be advantageous, enabling it to be 1.8 times,
2 times, and 2.8 times as fast as bNRA, NRA and RA,
respectively.

4.7 Discussion on Experiment Results

The key observations that we gleam from the above
experiments are as follows:

– There is no consistent winner between TA and NRA.
NRA can be an order of magnitude faster than TA
for certain data distributions (seen in Sections 4.2,
4.3 and 4.5), and yet be more than 5 times slower
than TA for other distributions (in Section 4.4).
Without prior knowledge of the dataset and query
workload, it is not possible to choose between the
two algorithms.

– Formulas 2, 3 and 6, coupled with our technique for
discounting positively correlated query attributes,
produce depththreshold and depthresult estimates that
are robust enough for datasets with widely varied
distributions. These estimates enable TBB to re-
duce I/O cost through sequentially fetching the re-
quired portions of the query lists.

– Our bucket organization and the associated Bloom
filters are very effective in cutting down the num-
ber of candidate records, and in turn the CPU cost.
The experiments show that the setting of FP = 10%
strikes a good balance between the per-probe cost
and the number of false positives. According to For-
mula 4, 4.8 bits per sorted list entry are needed to
achieve FP = 10%, so the Bloom filters for a dataset

with one million records and 20 attributes necessi-
tate just over 500 Kbytes of memory space.

– Overall, our proposed TBB algorithm consistently
outperforms TA and NRA for all the datasets that
we tested. The speed-up achieved by TBB ranges
from two times, to two orders of magnitude. This
compares favorably with improvements reported for
existing schemes in the literature; for example, [5]
showed gains of 1.5 to 3 times in most cases, and up
to 5 times at the maximum.

5 Conclusion

In this paper, we address the problem of processing ex-
act top-k queries over sorted lists. Such a top-k query
generally executes in two phases – find a cut-off thresh-
old for the top-k result scores, then evaluate all the
records that could score above the threshold. We intro-
duce a model for estimating the depths to which each
sorted list needs to be processed in the two phases, so
that (most of) the required records can be fetched effi-
ciently through sequential or batched I/Os. We also de-
vise a mechanism to quickly rank the data that qualify
for the query answer and to eliminate those that do not,
in order to reduce the computation demand of the query
processor. Extensive experiments with diverse datasets
confirm that our techniques lead to significant perfor-
mance gains over existing threshold algorithms, at the
expense of a modest memory overhead.

For applications that perform top-k operations di-
rectly, it would be straightforward to incorporate our
scheme. In other systems, top-k processing may con-
stitute only a step in fulfilling the user request, and it
would be interesting to extend our scheme to support
the overall query plan. Taking text search engines as an
example, we will need to accommodate more elaborate
scoring functions such as Okapi [49] and PageRank [7].
There are also many interesting engineering challenges
in implementing the scheme as a query operator to sup-
port ranked database queries [20].

Acknowledgements HweeHwa Pang is supported by Research
Grant 08-C220-SMU-03 from the Singapore Management Univer-

sity.

Proof(informal) Consider a record r satisfying r.Aj <
βj . We show that its score is less than Sk. To prove it,
we introduce a virtual record r′ s.t. r′.Aj = θj . To prove
the theorem, it suffice to prove that S(r|Q) < S(r′|Q) ≤
Sk.

Efficient Processing of Exact Top-k Queries over Sorted Lists 19

References

1. Adomavicius, G., Tuzhilin, A.: Toward the Next Generation
of Recommender Systems: A Survey of the State-of-the-Art

and Possible Extensions. IEEE TKDE 17(6), 734–749 (2005)
2. Akbarinia, R., Pacitti, E., Valduriez, P.: Best Position Algo-

rithms for Top-k Queries. In: VLDB, pp. 495–506 (2007)
3. Arai, B., Das, G., Gunopulos, D., Koudas, N.: Anytime Mea-

sures for Top-k Algorithms on Exact and Fuzzy Data Sets.

VLDB J 18(2), 407–427 (2009)
4. Baeza-Yates, R., Neto, B.R.: Modern Information Retrieval.

Addison Wesley (1999)
5. Bast, H., Majumdar, D., Schenkel, R., Theobald, M.,

Weikum, G.: IO-Top-k: Index-access Optimized Top-k Query

Processing. In: VLDB, pp. 475–486 (2006)
6. Bloom, B.: Space/Time Trade-Offs in Hash Coding with Al-

lowable Errors. Communications of the ACM 13(7), 422–426

(1970)
7. Brin, S., Page, L.: The Anatomy of a Large-Scale Hyper-

textual Web Search Engine. Computer Networks and ISDN
Systems 30(1–7), 107–117 (1998)

8. Bruno, N., Wang, H.W.: The Threshold Algorithm: From

Middleware Systems to the Relational Engine. IEEE TKDE

19(4), 523–537 (2007)
9. Chang, K.C.C., Hwang, S.: Minimal Probing: Supporting Ex-

pensive Predicates for Top-k Queries. In: SIGMOD, pp. 346–

357 (2002)
10. Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Prob-

abilistic Information Retrieval Approach for Ranking of

Database Query Results. ACM TODS 31(3), 1134–1168

(2006)
11. Chaudhuri, S., Gravano, L., Marian, A.: Optimizing Top-

k Selection Queries over Multimedia Repositories. IEEE

TKDE 16(8), 992–1009 (2004)
12. Deshpande, P.M., P, D., Kummamuru, K.: Efficient Online

Top-k Retrieval with Arbitrary Similarity Measures. In:
EDBT, pp. 356–367 (2008)

13. Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algo-

rithms for Middleware. In: PODS, pp. 102–113 (2001)
14. Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algo-

rithms for Middleware. JCSS 66(4), 614–656 (2003)
15. Güntzer, U., Balke, W.T., Kiessling, W.: Optimizing Multi-

Feature Queries for Image Databases. In: VLDB, pp. 419–428

(2000)
16. Hua, M., Pei, J., Fu, A.W.C., Lin, X., Leung, H.F.: Efficiently

Answering Top-k Typicality Queries on Large Databases. In:

VLDB, pp. 890–901 (2007)
17. Hua, M., Pei, J., Fu, A.W.C., Lin, X., Leung, H.F.: Top-k

Typicality Queries and Efficient Query Answering Methods
on Large Databases. VLDB J 18(3), 809–835 (2009)

18. Hung, H.P., Chuang, K.T., Chen, M.S.: Efficient Process of

Top-k Range-Sum Queries over Multiple Streams with Mini-
mized Global Error. IEEE TKDE 19(10), 1404–1419 (2007)

19. Hwang, S., Chang, K.C.C.: Optimizing Top-k Queries for

Middleware Access: A Unified Cost-Based Approach. ACM
TODS 32(1), 5 (2007)

20. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Joining Ranked
Inputs in Practice. In: VLDB, pp. 950–961 (2002)

21. Jin, C., Yi, K., Chen, L., Yu, J.X., Lin, X.: Sliding-Window

Top-k Queries on Uncertain Streams. VLDB pp. 301–312

(2008)
22. Korn, F., Pagel, B.U., Faloutsos, C.: On the ‘Dimensionality

Curse’ and the ‘Self-Similarity Blessing’. IEEE TKDE 13(1),
96–111 (2001)

23. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A New
Benchmark Collection for Text Categorization Research.

Journal of Machine Learning Research 5, 361–397 (2004)

24. Lian, X., Chen, L.: Top-k Dominating Queries in Uncertain
Databases. In: EDBT, pp. 660–671 (2009)

25. Mamoulis, N., Cheng, K.H., Yiu, M.L., Cheung, D.W.: Ef-

ficient Aggregation of Ranked Inputs. IEEE ICDE p. 72
(2006)

26. Mamoulis, N., Yiu, M.L., Cheng, K.H., Cheung, D.W.: Ef-

ficient Top-k Aggregation of Ranked Inputs. ACM TODS
32(3), 19 (2007)

27. Marian, A., Bruno, N., Gravano, L.: Evaluating Top-k
Queries over Web-Accessible Databases. ACM TODS 29(2),

319–362 (2004)

28. Michel, S., Triantafillou, P., Weikum, G.: KLEE: A Frame-
work for Distributed Top-k Query Algorithms. In: VLDB,

pp. 637–648 (2005)

29. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous Moni-
toring of Top-k Queries over Sliding Windows. In: SIGMOD,

pp. 635–646 (2006)

30. Ntoulas, A., Cho, J.: Pruning Policies for Two-Tiered In-
verted Index with Correctness Guarantee. In: SIGIR, pp.

191–198 (2007)

31. Qi, Y., Candan, K.S., Sapino, M.L.: Sum-Max Mono-
tonic Ranked Joins for Evaluating Top-k Twig Queries on

Weighted Data Graphs. In: VLDB, pp. 507–518 (2007)

32. Schnaitter, K., Spiegel, J., Polyzotis, N.: Depth Estimation

for Ranking Query Optimization. In: VLDB, pp. 902–913

(2007)

33. Shmueli-Scheuer, M., Li, C., Mass, Y., Roitman, H.,

Schenkel, R., Weikum, G.: Best-Effort Top-k Query Process-

ing Under Budgetary Constraints. ICDE pp. 928–939 (2009)

34. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System

Concepts, 7th Edition. John Wiley & Sons (2006)

35. Soliman, M.A., Ilyas, I.F., Chang, K.C.C.: Probabilistic Top-
k and Ranking-Aggregate Queries. ACM TODS 33(3), 1–54

(2008)

36. Spink, A., Wolfram, D., Jansen, M.B.J., Saracevic, T.:

Searching the Web: The Public and Their Queries. Journal

of the American Society for Information Science and Tech-
nology 52(3), 226–234 (2001)

37. Tao, Y., Xiao, X., Pei, J.: Efficient Skyline and Top-k Re-

trieval in Subspaces. IEEE TKDE 19(8), 1072–1088 (2007)

38. Theobald, M., Bast, H., Majumdar, D., Schenkel, R.,

Weikum, G.: TopX: Efficient and Versatile Top-k Query Pro-

cessing for Semistructured Data. VLDB J 17(1), 81–115
(2008)

39. Theobald, M., Weikum, G., Schenkel, R.: Top-k Query Evalu-

ation with Probabilistic Guarantees. In: VLDB, pp. 648–659
(2004)

40. TREC: Text REtrieval Conference. Http://trec.nist.gov/

41. Vlachou, A., Doulkeridis, C., Norv̊ag, K., Vazirgiannis, M.:

On Efficient Top-k Query Processing in Highly Distributed

Environments. In: ACM SIGMOD, pp. 753–764 (2008)

42. Xiao, C., Wang, W., Lin, X., Shang, H.: Top-k Set Similarity

Joins. In: ICDE, pp. 916–927 (2009)

43. Xin, D., Han, J., Chang, K.C.C.: Progressive and Selective
Merge: Computing Top-k with Ad-hoc Ranking Functions.
In: ACM SIGMOD, pp. 103–114 (2007)

44. Yi, K., Li, F., Kollios, G., Srivastava, D.: Efficient Processing
of Top-k Queries in Uncertain Databases with x-Relations.

IEEE TKDE 20(12), 1669–1682 (2008)

45. Yiu, M.L., Mamoulis, N.: Efficient Processing of Top-k Dom-
inating Queries on Multi-Dimensional Data. In: VLDB, pp.

483–494 (2007)

46. Yiu, M.L., Mamoulis, N.: Multi-Dimensional Top-k Domi-

nating Queries. VLDB J 18(3), 695–718 (2009)

47. Yiu, M.L., Mamoulis, N., Vaitis, M.: Top-k Spatial Prefer-
ence Queries. In: ICDE, pp. 1076–1085 (2007)

20 HweeHwa Pang et al.

48. Zhu, L., Rao, A., Zhang, A.: Theory of Keyblock-Based Im-
age Retrieval. ACM Transactions on Information Systems

20(2) (2002)

49. Zobel, J., Moffat, A.: Inverted Files for Text Search Engine.
ACM Computing Surveys 38(2) (2006)

50. Zou, L., Chen, L.: Dominant Graph: An Efficient Indexing
Structure to Answer Top-k Queries. In: ICDE, pp. 536–545

(2008)

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	6-2010

	Efficient Processing of Exact Top-k Queries over Disk-Resident Sorted Lists
	Hwee Hwa PANG
	Xuhua DING
	Baihua ZHENG
	Citation

