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Abstract. In large-scale distributed retrieval, challenges of latency, heterogene-
ity, and dynamicity emphasise the importance of infrastructural support in reduc-
ing the development costs of state-of-the-art solutions. We present a service-based
infrastructure for distributed retrieval which blends middleware facilities and a
design framework to ‘lift’ the resource sharing approach and the computational
services of a European Grid platform into the domain of e-Science applications.
In this paper, we give an overview of the DILIGENT Search Framework and illus-
trate its exploitation in the field of Earth Science.

1 Introduction

The problem of retrieving information which is widely disseminated and autonomously
managed has a wide range of possible solutions. Variability is in terms of:

– models: from those in which queries and data are structured or semi-structured (data
retrieval), to those in which they are mostly or entirely unstructured (document or
content-based retrieval) [1];

– approaches: from those in which queries are distributed along with the data (dis-
tributed retrieval) [2,3], to those in which the data is centralised around the queries
(content crawling and metadata harvesting) [4];

– architectures: from those in which queries emanate from clients and data is held at
servers (client-server architectures), to those in which both may originate from any
of a number of peers (peer-to-peer architectures) [5].

Across the spectrum, the core challenges remain those associated with the latencies
of the underlying network and the heterogeneity of data, tools, means, and purposes
which may be observed across communicating nodes. It is increasingly recognised that
the scale of these challenges requires infrastructural support to reduce the development
costs normally associated with state-of-the-art solutions [6]. It is equally recognised
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that, in most areas, infrastructural support remains piecemeal and revolves around open-
source implementations of standard protocols and formats.

Issues of large scale distribution and heterogeneity are particularly acute in e-Science
communities, where infrastructures are called upon to enable secure, cost-effective, and
on-demand resource sharing [7]. This is the Grid vision [8], and current-generation
infrastructures increasingly realise it under a service-based paradigm and for low-level
computational resources, such as networks, storage, and processing cycles [9,10].
Building on these platforms, next-generation infrastructures set out to extend the vi-
sion into application domains, where the scope for resource sharing broadens to in-
clude, among others, retrieval services [11]. The impact is potentially non-trivial, for
co-ordinated sharing of application resources may invalidate cost analyses of retrieval
solutions which assume more conventional deployment scenarios: solutions with high
adoption costs may be outsourced to the Grid infrastructure.

The DILIGENT project1 is one of the first attempts to systematically lift into the Dig-
ital Library (DL) domain the facilities of a European Grid platform2 (see also [12,13]).
The expected outcome is a rich infrastructure of internetworked machines, middleware
services, domain services, and application services in which resource sharing is an
implication of virtual digital libraries, i.e. DLs that are: (i) assembled declaratively
from community-provided datasets and application services; and (ii) deployed and re-
deployed on-demand across machines by middleware services, according to availabil-
ity, performance, and functional constraints. This is genuinely ambitious, for it reflects
a model of application-level sharing which encompasses not only data resources but
also domain and application services: like computing cycles, storage, and data before,
application logic becomes a commodity within an infrastructure which abstracts over
its physical location at any given time. The dynamic deployment of services is the key
challenge of DILIGENT and its primary contribution to the Grid vision for application
domains.

The DILIGENT infrastructure retains the service-orientation of the underlying plat-
form and organises its services across three layers: the Collective Layer (CL), where
middleware services define, deploy, secure, and otherwise support the operation of DLs;
the Digital Library Layer (DLL), where domain services manage the data and orches-
trate processes against it; and the Application Specific Layer (ASL), where application
services mediate between users and the services of the CL and DLL layers. Within
the DLL layer, in particular, the infrastructure offers novel opportunities for supporting
application development: not only may its domain services be invoked to offer sophisti-
cated functionality, they may also be designed so as to be specialised and extended into
application services which are tailored to the bespoke needs of adopting communities.
In this case, a service-oriented infrastructure becomes a service-oriented framework.

In this paper, we focus on a core part of the DILIGENT DLL layer in which infras-
tructural support is largely in terms of a framework for application services. In partic-
ular, we abstract away from DLL services dedicated to content, metadata, annotation,
and workflow management, and concentrate instead on the DILIGENT Search Frame-
work, i.e. the set of DILIGENT services for the distributed retrieval of both data and

1 http://www.diligentproject.org/
2 Enabling Grids for E-sciencE, http://public.eu-egee.org/

http://www.diligentproject.org/
http://public.eu-egee.org/
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documents. We discuss the framework in Section 2 and we report on its exploitation
within the domain of Earth Science, a challenging e-Science, in Section 3. Finally, we
conclude in Section 4, where we outline directions for further work.

2 The DILIGENT Search Framework

Within a service-oriented framework, the notion of ‘service’ acquires structure and
granularity to accommodate functional composition and abstraction, respectively (cf.
Figure 1). Precisely, our service model distinguishes between: (i) service classes, i.e. flat
groupings of services within the same functional area (e.g. the Index class), (ii) services,
i.e. abstract instances of service classes (e.g. the LookupService in the Index class),
and (iii) web services, i.e. entry-points to concrete implementations of abstract services

Fig. 1. Service Model

LookupFactoryService). (e.g. the
Service implementations are dy-
namically deployable, and doing
so on one or more Host Nodes
of the DILIGENT infrastructure
(DHNs) yields running instances
of the service (RIs).

Against this model, the sup-
port offered by the framework
is twofold. Firstly, it provides a
set of core services which co-
ordinate the functionality of ap-
plication and domain services to-
wards a wide range of distributed
search processes; depending on the semantics of the orchestrated services, processes
may fall at arbitrary points within the content-based vs. data-based spectrum and oper-
ate upon different forms of content and metadata (full-text or multimedia search, sim-
ilarity search, structured and semi-structured search, etc.). Discussed in Section 2.1,
the core services provide foundations to support the heterogeneity and dynamicity of
data and processing requirements which can be observed within e-Science scenarios.
Secondly, the Search framework offers design blueprints, partial implementations, and
libraries for the development of application and domain services compliant with second-
generation Web Service standards [14,15]. Two distinguished classes of such services,
namely the index management services and the service for content description, selection
and result fusion, are outlined in Sections 2.2 and 2.3, respectively.

2.1 The Core Services

The DILIGENT Search Service is a Service Class that groups all fundamental functional
elements (i.e. Services) related to Information Retrieval (IR), but not directly bound to a
more specific thematic area, such as Indexing, Distributed Information Retrieval (DIR),
etc. The overall search management as well as several gluing elements fall within its
scope. In contrast, we refer to the Search Engine as the full fledged set of elements that
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serve IR in DILIGENT. Finally, we refer to Search Framework when implying not only
software but also protocols, rules and even guidelines for implementing and extending
DILIGENT IR.

Search Overview. DILIGENT Search Engine, modular even in its internal structure,
captures its requirements through a complex, yet straightforward, set of concepts and
mechanisms, which are depicted in Figure 2.

The main idea behind the presented architecture is that the actual work of retrieving
and processing the information and data contained in DILIGENT or other sources, is not
an integral part of the Search Service, but can rather be off-loaded to entities that focus
on different (D)IR and data processing aspects. Yet, the Search Service comes bundled
with a set of such entities to enable the out-of-the-box use of the system.

The search task is captured by a set of steps which manage:

– Interaction with the ultimate consumer of the service (e.g. the User Interface)
through a query language and various alternative interaction staging facilities;

– Consolidation of information regarding the status and availability of resources in
need / reach;

– Preparation of the IR process through advanced facilities that potentially impose
changes over the initial query;

– Operation planning, producing a near-optimal workflow of low-level search opera-
tions, in terms of resource utilisation;

– Execution of the workflow, i.e. invocation of the low-level search operations, (po-
tentially off-loaded to external engines) and progress monitoring;

In this operation, the Search Orchestrator, which falls is the class of Services in the
service model, is the entry point of the Search Engine, and acts as the manager of the
IR procedure. Under its co-ordination, collaborating, yet independent, sets of service
classes, such as the DIR, the Index and the Metadata Management ones, form the back-
bone of DILIGENT Search Engine.

Fig. 2. The DILIGENT Search Framework

The major hooks
for extending func-
tionality that renders
the overall engine
capable of captur-
ing the requirements
for custom process-
ing, raised by its
addressed communi-
ties, have been
sketched in the
above. These entail
both the IR prepa-
ration steps, masked
under the Query Preprocessor concept, as well as the run time processing performed
by single components of the Search Operators set. Within the adopted architecture,
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the quality and performance of the IR operations are, to a large degree, subject to the
performance of particular elements plugged-in at these predefined placeholders.

In the following paragraphs we deepen on selected aspects of the DILIGENT Search
Engine and its operation.

Serving a Request. The first step, even prior to searching, is the construction of a user
query, i.e. an XML based, tree-like, abstract representation of the IR processing tasks
involved in a search operation, that the engine must perform on behalf of the user. This
query, formulated in a strict structure, is passed to the Search Orchestrator and has its
validity thoroughly verified.

This procedure, i.e. validation, is an informed decision based on the availability of
infrastructure resources. This information is gathered by the DIS, the DILIGENT CL
service playing the role of global registry commonly used in both SOA architectures
and Grid infrastructures to monitor and discover resources. The DIS has a two-fold
role in the context of Search. The first is the discovery of the hosting environment
the engine resides and the resources it can allocate to a task, e.g. Web Services, RIs,
DHNs. This environment does not only drive the construction of query execution plans,
but in conjunction with the dynamic deployment feature and the modular nature of
service oriented approaches, it can imply the need to create new resources to utilise in
future evaluations. The second key role of the DIS is to actually enable the modular
architecture the Search framework provides. Available service instances define their
semantics within the search context by publishing them to the DIS in a common way.
These semantics are used by the Query Planner to produce execution plans.

The Search Orchestrator is constantly aware of the environment, through repetitive
interactions with the DIS. Given a user query, the service supervises the individual
steps that produce the query results. These steps include validation, preprocessing, such
as injecting personalised information and pre-selection over the available sources, and
linguistic processing. The enriched query and the environment information are passed
to the Query Planner, in order for it to construct the execution plan.

The individual steps of this plan are performed by elements which are labelled as
Search Operators. These operators are actually services that enable both information re-
trieval and data processing. Processing can refer to standard operations, e.g. sort, join,
merge, but also to more complex ones, such as mathematical and logical expression
evaluation, aggregation and even branching evaluation, all within the same workflow.
Following the service-oriented approach, search operators build up a pool of dynam-
ically selectable services, allowing unconstrained extensibility of the Search Service
through the addition of new, custom, processing blocks. These very concepts equip the
Search Engine with the capability to exploit elements such as DataFusion, Indices and
Metadata handling services, as Search Operators themselves, even if they are distinct
components. Search Operators follow the aforementioned Service Model, thus it is pos-
sible to have the domain-specific Services embedding multiple operation steps in a sin-
gle Operator Service, leaving room for trade-off evaluation of distributed computational
power versus highly optimised local transactions.

Planning and Optimising Execution. In order to produce the execution plan, the
Query Planner matches abstract queries to concrete service instance invocations. This
is accomplished using templates that specify the query sub-trees a service can satisfy.
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The outcome of the procedure is a graph of service invocations, adopting the orchestra-
tion model of the Business Process Execution Language (BPEL). According to this, there
is a global view of the participant service instances, under the central control of the execu-
tion engine (the DILIGENT Process Execution Service). This paradigm accommodates,
among others, better performance, sophisticated control and fine grained error handling.
The final plan is subsequently passed to the available execution engine which executes
and monitors it so that the desired results are produced and passed back to the user.

Due to the dynamic nature of the underlying infrastructure, the query planner does
not have inherent knowledge of available service instances, but instead receives this
information externally from the Search Orchestrator. This favours both extensibility,
by adding/removing service instances, and flexibility, by changing existing instances.

It is a fact that, due to the plethora of resources, a single user query can be served
by more than one execution plan, with semantic equivalence yet significant diversion in
terms of resource requirements. Under this observation, the Query Planner, and more
specifically its optimisation component, is responsible not only to construct a seman-
tically and operationally valid execution plan, but also to achieve minimal resource
consumption while maintaining a certain quality of service level. Yet, this optimisation
has to accomplished within a reasonable time limit, since searching for the best execu-
tion plan is generally a computationally intractable problem and involves enumerating
and checking a potentially huge number of alternative options.

Query optimisation is managed with optimisation techniques borrowed from dis-
tributed databases [16,17]. It traverses through the solution space of alternative exe-
cution plans, estimates their costs and chooses the best candidate. This involves not
only selecting the best set of services that can compute a user query, but also choosing
the best hosting nodes of these service instances. Optimisation takes place in two-steps
[18]. First, an abstract execution plan is produced and then site selection is performed.

A mathematical cost formula, tailored to the DILIGENT service oriented architec-
ture, is employed. It takes into consideration factors like data source statistics, service
operational complexity, intermediate results size, cost of messages among service invo-
cations, communication initialization/termination overheads, intermediate result frag-
mentation, etc. Cost estimation is constantly enhanced by an active component that
monitors the plan execution and refines both the formula and the stored statistics [19].

Moving Large DataSets. Throughout the execution of a search workflow, the need to
transfer potentially large amounts of data between services is evident. Given the par-
ticular hosting environment of the Grid, enriched by the possibilities provided by the
dynamic deployment features of DILIGENT, it is essential to utilise a common frame-
work for data transferring.

The separation of concerns achieved by extracting relevant concepts out of the
main functional logic of the services, allows them to be easily and uniformly reused
for all search elements (i.e. Services). This lead to the DILIGENT ResultSet framework,
i.e. the leveraging system data transfer mechanism be comprised of the ResultSet ser-
vice and client elements. Its utilisation aims at hiding the complexities of underlying
protocols and data locations. Yet, benefits rising from their exploitation are offered to
consumer / producer services, which are able to take advantage of them with the mini-
mum cost and complexity.
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The encapsulated logic allows on-the-spot processing of data, eliminating unneces-
sary data movements, usually avoiding protocol stack and network engagement.

Furthermore, pipelining of execution is enabled through paged data transfer facili-
ties, integrated in the framework. Based on this feature, the ResultSet can also act as
a flow control mechanism, freeing component services of unnecessary resource con-
sumption in a uniform manner.

2.2 Index Generation and Management

The role of the Index service in the Search framework is to facilitate fast and scal-
able information retrieval from a number heterogeneous information sources over the
distributed and unstable Grid environment. This is achieved by generating and main-
taining a number of different indices, deeply integrated in the DILIGENT infrastructure.
In collaboration with the Planner and the other Search services, both low response time
services and complex search operators are made available.

The main obstacle to be overcome by the design of the Index service, was to be able
to ensure both stability and low response times on a highly distributed and heteroge-
neous system. Clearly replication, both concerning files and services, was needed. As
an indices might grow very big, replicating the full index is potentially a slow and band-
width heavy process. With this in mind, it was decided to represent indices by way of
delta files3, which can both easily be replicated through DILIGENT services and be used
to keep service replications up to date. In order to manage the delta files and replication
process the Index service has been designed as service oriented framework characterised
by services playing three distinct roles: (i) Manager service, i.e. a service managing and
representing one specific index in terms of delta files used to build it; (ii) Updater ser-
vice, i.e. a service responsible for consuming content from a content source, transforming
this into delta files, and updating the Manager service of a specific index. Any number of
Updater instances may be connected to a single Manager instance, allowing for highly
distributed feeding of an index; and (iii) Lookup service, i.e. a service that will use the
delta files maintained by a Manager in order to build a replication of the index locally on
a node. Any number of Lookup instances can be connected to one logical index repre-
sentations (Manager instances), thereby providing replication of the Lookup Service and
the actual physical index, adding both stability, fault tolerance and query performance.

In order to ensure that the Manager-Updater-Lookup framework is easily and uni-
formly implemented current and future Index service implementations, a library han-
dling delta files storage, management and retrieval in addition to providing needed
Web Service operations for the different roles was implemented. Using the library, the
three roles can be implemented in a single Service, or as distinctly separate Services.
In this manner, four different index distribution configurations can be implemented:
(i) All-in-one, all roles are implemented through the same Service thus ensuring low
latency between document feeding and searchability; (ii) Lookup separated, promoting
any number of lookup instances thus supporting query intensive environments even if it
might not be applicable for large indices or indices with a large number of information

3 Delta files contain information on how to transform each version of the index to the next a.k.a.
the difference between the versions.
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sources; (iii) Updater separated, keeps the Updater separated from the rest thus being
able to handle a more intense feeding process for large indices or indices with a number
of information sources where a low query frequency is expected; (iv) One service per
role, promotes one service per role on diverse nodes thus offering replication both at
the updater and lookup level.

Three standard index implementations have been created in the current DILIGENT

implementation supporting three different indexing scenarios with distinct data types.
A Full Text Index providing the functionality of retrieving entries based on text queries
against the full text contents of the entries. By manipulating the index profile it is
possible to customize this index, e.g. specify the index structure, the query process-
ing supported and the result sets including advanced linguistic processing. The full
text index is implemented using the one-service-per-role distribution. A Forward Index
supporting simple and fast key-value lookups. It is implemented using the one-service-
per-role distribution. A Geographical Index, supporting geospatial and spatio-temporal
search over a very large set of objects described by their location in a geographical
system. In expectation of highly distributed content sources, intense feeding process,
and high query frequencies, it was decided to use the one-service-per-role index dis-
tribution. This lead to the Geographical index being implemented by way of the fol-
lowing three Web Services: GeoIndexManagementService, GeoIndexUpdaterService
and GeoIndexLookupService. The functionality of the latter Web Service in respect to
Earth Science will be further described in Section 3.

2.3 DIR Services

Complementing search and indexing services, three service classes provide further sup-
port for content-based retrieval within the framework: namely, Content Source Selection
(CSS), Content Source Description (CSD), and Data Fusion (DF). Collectively, CSD,
CSS, and DF services perform the tasks which characterise content-based Distributed
Information Retrieval [3], an active field of research which has had limited uptake in
the practice of information services so far [20]. In more detail: (i) CSD services gen-
erate and maintain summary descriptions of content sources, such as partial indices,
collection-level term statistics, or result traces from training or past queries; (ii) CSS
services limit the routing of queries to the sources which appear to be the best tar-
gets for their execution, where ‘goodness’ criteria include the relevance of content, the
sophistication of retrieval engines, and the monetary costs associated with query exe-
cution; and (iii) DF services derive a total order of the result sets produced by target
sources with respect to different scoring functions and content statistics.

The framework sets out to support a wide range of DIR strategies. For example, a CSD
service may base source descriptions on term statistics derived from full-text content
indices, while another may do so using partial indices derived directly from the content
through query-based sampling techniques [21]. Similarly, a DF service may rely on a
round-robin algorithm to merge results, another may be biased by the output of a CSS
service, and yet another may employ non-heuristic techniques and leverage the output of
a CSD service to ‘consistently’ re-rank results with respect to global content statistics.

Though pairwise different, strategies of description, selection, and fusion share a
common architecture which the framework attempts to capture within an extensible
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design. In it, services are stateful and the state of their RIs is comprised of source de-
scriptions (CSD) or sets thereof (CSS, DF) which are generated, accessed, and updated
through distinguished web services. In particular:

– access services expose the state of RIs to clients, or otherwise consume it on their
behalf. CSS selectors and DF mergers consume sets of descriptions to select over
content sources and merge results which emanate from them, respectively. CSD de-
scriptors expose descriptions through fine-grained interfaces suitable for selective
access, or through file-transfer facilities suitable for coarse-grained access. Selectors
choose sources based on cut-off points within rankings of their descriptions, where
cut-offs are either specified by the client or else are derived from upper bounds on
the number of results to be retrieved, also indicated by clients; in the latter case,
selectors return an estimate of the number of results to be retrieved from selected
sources. To promote responsiveness and optimal resource consumption, mergers
process streams of results, using facilities provided the ResultSet service. Streaming
is also supported in output, if the merging strategy allows it; in this case, a callback
mechanism allows result merging on demand within configurable timeouts.

– monitor services observe the external environment for changes which may trigger
an update to the state of RIs. CSD monitors react to changes to indices of content
sources, for which they subscribe with instances of Index services; the regeneration
of a description is governed by update policies based on a configurable combination
of time and space criteria (i.e. every so often and/or whenever indices have changed
of a given proportion). CSS and DF monitors react instead to changes to descrip-
tions, for which they subscribe with CSD descriptors. In all cases, subscriptions are
brokered by services in the CL, so as to achieve resilience to the redeployment of
notification producers.

– factory services generate the state of RIs. The separation of factories and access
services distinguishes two phases in the lifetime of RIs: in the operative phase,
clients interact with access services to act upon state; in the generative phase, state
is created, derived, updated or otherwise materialised locally to the instances. While
the two phases may interleave during the lifetime of instances, their exact time of
occurrence is ultimately determined by client strategies. Further, state generation
may occur in either a passive or a proactive mode: in the passive mode, clients
trigger generation by interacting with factories at any point in the lifetime of RIs; in
the proactive mode, the instances create resources autonomously by reacting to the
observation of key events in the environment, starting from their very deployment
of the instance on a node (bootstrapping).

State persistence, service publication, Grid-based file exchange mechanisms, streamed
processing, lifetime management, and other forms of interactions with the infrastructure
are handled transparently. Specialisation is supported by: (i) extensive use of declara-
tive configurations; (ii) domain-specific libraries for inverted index management, update
policy, and best-effort discovery strategies; (iii) design patterns which allow pluggable
algorithms for selection, fusion, and object bindings of XML serialisations of descrip-
tions and results. Specific CSD, CSS, and DF services which make use of these facilities
are described in Section 3.
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3 The Search Framework in Action: Searching the Earth Science
Information Space

Earth Science is a discipline that well represents the complex nature of e-Science activ-
ities and may thus gain tremendous benefits from the DILIGENT infrastructure. Earth
Science scientists need to access data and tools within a multi-institutional, heteroge-
neous and large-scale context. The analysis and the generation of objective facts on the
Earth status, i.e. Earth Observation (EO), require integration of specific data products,
handling of information in multiple forms and use of storage and computing resources
in a seamless, dynamic and cost effective way. The typical desiderata about the retrieval
paradigm consists in mixing bugs of keywords, either free terms or ontology extracted,
with geo-location features aiming to capture the area of pertinence.

The building of periodical environmental reports, for example, is a typical EO activ-
ity where the DILIGENT search infrastructure proves its appropriateness. These com-
plex information objects, mostly built as aggregation of other information objects, re-
quire a lot of existing information, coming from worldwide distributed heterogeneous
sources. This information has to be properly discovered and uniformly accessed. The
so collected information has often to be coherently integrated with pertinent informa-
tion generated on-demand through procedures that often need to access and process
huge amount of data. This scenario has been termed Implementation of Environmental
Conventions (IMPECT) and details on its implementation are provided in the follow.

The DILIGENT infrastructure to serve IMPECT consist of “external” content provid-
ers, such as the NASA CEOS IDN initiative4, the European Environment Agency5, and
Medspiration6, plus a pool of three community specific data sources, all placed at the
ESA’s European Space Research Institute (ESRIN), namely: the EO ESA web portal7

documents and data, the EO Grid on demand system8, and EO catalogue together with
relevant databases and archives.

The resulting information space is tremendously heterogeneous, it contains classic
documents like research studies and meteorological papers, satellite images, EO prod-
ucts like Chlorophyll-1 measure or vegetation indexes. To process such data effectively
and efficiently appropriate customisation and instantiations of the DILIGENT Search
framework have been needed but easy thanks to the possibility to plug-in new search
operators in the search procedure.

With respect to the indexing facilities, the Geographical index is intended for such
use. The web services used to implement this index use innovative techniques providing
a highly dynamic search experience and allowing for post-index-creation addition of ad
hoc query and sorting algorithms.

The Geographical index can be queried through an “index replication” represented
by an instance of a GeoIndexLookupService. As these replications are based on a two
dimensional R-Tree [22], the two step query processing normally used with R-Trees

4 http://idn.ceos.org
5 http://www.eea.eu.int/
6 http://www.medspiration.org/products/
7 http://www.eoportal.org
8 http://giserver.esrin.esa.int/

http://idn.ceos.org
http://www.eea.eu.int/
http://www.medspiration.org/products/
http://www.eoportal.org
http://giserver.esrin.esa.int/
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[23] is also used in the Geographical index. This scheme calls for a filter step and a re-
finement step. In the filter step, standard MBR (Minimal Bounding Rectangle) queries
are performed against the R-Tree producing a candidate set based on entries MBRs,
which may have a number of false hits when considering the actual detailed geometry
of both the query and entries [23]. In order to eliminate false hits, the candidate set is
refined based on additional parameters, often but not necessarily relating to the actual
geometry of the objects or queries. In between the standard two R-Tree query process-
ing steps, the GeoIndexLookupService also implements a third step in order to rank and
sort the refined results. The algorithms used in both the refinement and ranking steps
greatly affect the functionality of the application and will vary for different use cases.
By relying on the openness of the whole framework and on the Index, it is possible
to introduce other refinement and sorting algorithms making the Geographical index
adaptable to potentially any use case.

Two refinement operators and two ranking operators have been implemented. The
TemporalRefiner and PolygonalRefiner refinement operators allow the user to refine
the search results based on their timestamp or a specified polygonal shape. The Tempo-
ralRankEvaluator and ArealOverlapRankEvaluator ranking operators allow the results
to be ranked based on their timestamp or based on the amount of overlap between their
MBR and the query.

In case the refinement algorithm is very computing intensive and the candidate set
returned from the filter step is large, low response times are upheld by exploiting the
ResultSet Service mechanism. By only doing partial filtering [24] and ranking steps,
and synchronising these with requests to the ResultSet Service, these steps are only
performed for the entries returned to the user, saving a vast amount of computing cycles,
and greatly lowering the GeoIndexLookupService’s response time.

With respect to the Distributed Information Retrieval, the CSD service generates and
maintains term histograms of textual sources, a coarse-grained form of index where
containment relationships between terms and documents is intentionally abstracted
over. The service interacts with the Index services to derive the histograms from full-
text content indices and also to subscribe for point-to-point notifications of changes
to such indices. The CSS service selects sources based on rankings produced with the
standard CORI algorithm [25]; rankings are based on estimated relevance of content,
and rely on term histograms staged from the CSD service prior to query submission.
In particular, the service subscribes with the CSD service for changes to the staged his-
tograms and updates them upon notification of such changes. Finally, the DF service
merges query results based on either one of three techniques: a plain round-robin algo-
rithm, a consistent merging algorithm, and a linear regression method based on source
selection scores. The first offers the least effectiveness but acts as an upper bound on
performance (results remain unparsed, output can be streamed). The second uses global
statistics to give the best effectiveness but also the highest overhead (results are fully
parsed, output cannot be streamed); in this case, the service interacts with the reference
CSD service to gather histograms in advance of result submission. The third explores
middle ground between the first two, and uses the output of the reference CSS service
to heuristically normalise inconsistent result scores; as interaction with the CSS service
must necessarily occur during query execution, deployment services in the CL layer are
instructed to co-deploy both services on the same node.
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4 Conclusion and Future Works

We have outlined the design of a service-based framework for large-scale distributed
retrieval, built atop the computational facilities of a European Grid platform. While ini-
tial experience in the Earth Observation domain has built up some confidence around
the capacity of the framework to accommodate the requirements of e-Science applica-
tions, there are a number of implementation and design improvements which are to be
addressed in the immediate future, some of which we outline next.

Further abstraction over some particular service types, such as the information
sources (e.g. indices, external search engines), will enhance opportunities for inte-
gration in search operations. Experimentation on query planning and optimisation by
utilisation of domain-specific heuristics and content distribution statistics, based on
non-linear regression techniques [26] is expected to yield faster and higher quality
results. Improvements on the performance of the ResultSet transport mechanism are
expected to be achieved through further exploitation of facilities provided by the un-
derlying platform, such as GridFTP’s parallel striped transfers. Partitioning of indices
across DHNs, so as to exploit the resource pooling of the Grid for the distributed storage
of very large indices, will improve availability on extremely large datasets. Finally, the
support of uncooperative DIR strategies, such as query-based sampling techniques for
generating term histograms or partial indices of external content sources, would allow
us to support more advanced techniques of selection and fusion (e.g. the Semisuper-
vised Learning method of data fusion [27] and the Unified Utility Maximisation method
of resource selection [28]).
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