
AT-GIS: Highly Parallel Spatial Query Processing with
Associative Transducers

Peter Ogden
Imperial College London

p.ogden12@imperial.ac.uk

David Thomas
Imperial College London

d.thomas1@imperial.ac.uk

Peter Pietzuch
Imperial College London

prp@imperial.ac.uk

ABSTRACT
Users in many domains, including urban planning, transportation,
and environmental science want to execute analytical queries over
continuously updated spatial datasets. Current solutions for large-
scale spatial query processing either rely on extensions to RDBMS,
which entails expensive loading and indexing phases when the
data changes, or distributed map/reduce frameworks, running on
resource-hungry compute clusters. Both solutions struggle with the
sequential bottleneck of parsing complex, hierarchical spatial data
formats, which frequently dominates query execution time. Our
goal is to fully exploit the parallelism offered by modern multi-
core CPUs for parsing and query execution, thus providing the
performance of a cluster with the resources of a single machine.

We describe AT-GIS, a highly-parallel spatial query processing
system that scales linearly to a large number of CPU cores. AT-
GIS integrates the parsing and querying of spatial data using a new
computational abstraction called associative transducers (ATs). ATs
can form a single data-parallel pipeline for computation without
requiring the spatial input data to be split into logically independent
blocks. Using ATs, AT-GIS can execute, in parallel, spatial query
operators on the raw input data in multiple formats, without any
pre-processing. On a single 64-core machine, AT-GIS provides 3×
the performance of an 8-node Hadoop cluster with 192 cores for
containment queries, and 10× for aggregation queries.

1. INTRODUCTION
Sources of spatial data are growing at an ever increasing rate.

Crowd-sourced projects such as OpenStreetMap [21] create contin-
uously-updated, planetary-scale datasets with 100s of millions of
objects—the latest weekly OpenStreetMap snapshot is over 40 GBs
compressed, 596 GBs uncompressed. High-resolution imaging, from
microscopes to satellites, is another source of massive spatial data
that can be analysed. In urban planning [5], transportation [52], en-
vironmental science [22] and medical image analysis [31], data sci-
entists therefore face the task of executing spatial analytics queries
over large datasets in an efficient manner. Spatial queries include se-
lecting shapes within regions, summarising shapes that meet given
criteria, and finding all intersecting or overlapping shapes. From
these primitives, more complex queries for testing for shape sim-

ilarity between datasets or determining changes over time can be
built.

In domains with new or constantly updated spatial datasets, a key
requirement is a low data-to-query time [2], i.e. the time to obtain
a query result after the data becomes available. In pathology image
analysis, in which segmented image data is queried for anomalous
artefacts, it is one of the limiting factors for fast diagnosis [60]; for
the OpenStreetMap dataset, this value determines how quickly new
geographic features can be incorporated into any analysis.

Currently users who query large spatial datasets must either use
relational database management systems (RDBMS) with spatial
indexing support, such as PostGIS [25] or Oracle Spatial [45],
or employ a distributed compute framework on a cluster, such as
Hadoop-GIS [1] or SpatialHadoop [13]. Both approaches, how-
ever, suffer from a slow data-loading phase, which must occur
before spatial queries can be run. RDBMS can only offer fast spatial
query processing after the data has been fully parsed, loaded and
indexed—in our experiments, loading the complete OpenStreetMap
dataset into PostGIS takes over 90 minutes, with an additional
75 minutes to construct the index. Conversely, distributed frame-
works with indexing support can offer good query performance, but
they require substantially more computational resources than single
machine deployments. To spread the load between cluster nodes,
they must partition the spatial datasets, e.g. by loading it first into a
distributed file system, increasing the total data-to-query time [34].

To reduce the data-to-query time for large spatial datasets, it
is paramount to exploit parallelism when parsing, indexing and
querying the data. If the original dataset format is simple, as it
is the case for the well-known text (WKT) and well-known bi-
nary (WKB) spatial formats [42], data-parallelism can be gained
from partitioning the input data into independent, fixed-sized blocks
and processing them separately [58]—parsing and some spatial
filtering can then be performed in parallel, while aggregation and
join queries require the combination of all of the data. Unfortunately
this simple partitioning approach does not work for more complex,
though widely used spatial data formats, including GeoJSON [19]
and XML [43]. Due to their hierarchical nature, these formats make
it difficult to determine at which boundaries to split the data into
independent parts without resynchronising the parser [46].

Our goal is to design a single-machine system for spatial query
processing over large datasets that fully exploits the parallelism
of modern multi-core CPUs. To minimise data-to-query time, our
system should ingest commonly-used source data formats without
any pre-processing, following the NoDB philosophy of executing
queries over raw data [2]. The main challenge is that such a system
must parallelise the parsing, indexing and spatial query execution.
To scale to many CPU cores, it must thus minimise any inter-
thread communication or access to global state. While the NoDB
philosophy may result in increased I/O bandwidth when the input

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Spiral - Imperial College Digital Repository

https://core.ac.uk/display/77011431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


data format is complex or queries require multiple data passes, this
can be mitigated through on-the-fly indexing and temporary storage.

We describe the design and implementation of AT-GIS, a system
for highly-parallel spatial query processing on multi-core CPUs that
operates on raw spatial datasets. For containment and aggregation
queries, AT-GIS constructs a parallel processing pipeline that parses
the data and executes the query in a single pass with constant
memory. For spatial join queries, AT-GIS employs two passes,
separating parsing and partitioning from the join computation.

To achieve parallelism across many CPU cores, AT-GIS uses a
new computational model called associative transducers (ATs).
ATs allow for the data-parallel execution of otherwise sequential
operations, making them a natural model for the processing of
complex spatial data formats. With ATs, it is possible to separate
parsing, extraction and spatial operator execution into distinct trans-
ducers that can be pipelined together. Instead of allocating a thread
per transducer, which would limit the degree of parallelism and
require synchronisation between them, in ATs each thread executes
the entire pipeline, for separate blocks of the input data. Interme-
diate results in the pipeline are kept local to each thread, with only
the final result synchronised and shared globally.

ATs have two features that enable them to execute multiple de-
pendent spatial query processing stages in a data-parallel fashion:
(i) they perform some degree of speculation during execution; and
(ii) they leverage the associativity of spatial query operations. Pars-
ing, data extraction and spatial operations are performed using finite
and pushdown state machines, modified to support out-of-order
operation through efficient speculative execution from all possible
starting states. A formal model based on transducers allows multiple
ATs to be pipelined while maintaining associativity. This permits
AT-GIS to implement complex spatial operators using associative
algorithms so that partial results can be merged.

We show experimentally that AT-GIS operates efficiently on mul-
tiple data formats: it performs spatial aggregation queries on GeoJ-
SON or WKT-formatted OpenStreetMap data 2× faster than Spa-
tialHadoop on the same hardware, despite not using an index; it is
10× faster than an 8-node Hadoop-GIS cluster, which has 3× the
CPU cores and already pre-partitioned data. For spatial join queries,
the time that AT-GIS requires to read and partition the dataset in
parallel is less than 20% of the time taken to execute the join, with
the total query time comparable to that of a larger cluster-based
system. AT-GIS also achieves similar query performance, but with
a much lower data-to-query time, as a commercial parallel DBMS
with indexing for containment and aggregation queries and shows
a two orders-of-magitude improvement over PostGIS.

The rest of paper is structured as follows: §2 discusses the prob-
lem and existing solutions for spatial query processing over large
datasets; §3 describes the model of associative transducers for spa-
tial queries; §4 presents the design of AT-GIS, explaining its query
processing stages; §5 evaluates our prototype implementation; §6
discusses related work; and §7 concludes.

2. SPATIAL QUERY PROCESSING
We now introduce spatial queries (§2.1) and the challenges when

querying large datasets (§2.2). We then discuss two approaches for
large-scale spatial query processing (§2.3): spatial extensions to
RDBMS and distributed systems based on the map/reduce model.

2.1 Spatial queries
As the size of data has increased, so has data that incorporates a

spatial component [33]. Given that spatial searching is widely used
in modern web applications [12], a common use of spatial data is in
relating places on the surface of the earth. Other uses for geospatial
processing are finding correlations between datasets acquired from

Listing 1: Example fragment of GeoJSON file
1 { "type": "FeatureCollection",
2 "features": [
3 { "type": "Feature",
4 "geometry": {
5 "type": "GeometryCollection",
6 "geometries": [
7 { "type": "GeometryCollection",
8 "geometries": [/* Shape Data */]},
9 { "type": "LineString",

10 "coordinates": [[1.1, 0.0],[1.2, 1.0]]}
11 ]}
12 "id": 1234,
13 "properties": { /* User Data */ }
14 }
15 ]
16 }

different sources—a key component of current geospatial datastore
benchmarks [16, 51]. As well as geospatial data, there is a growing
use of spatial analytics in medical imaging, in particular pathology,
in order to automate the process of finding a diagnosis from high-
resolution digital microscopy images [31].

In this paper, we consider spatial datasets as collections of ob-
jects. Each object consists of a geometry, as defined by the Open
Geospatial Consortium Standard [42], and associated metadata.
Supported types of geometries are linestrings, polygons, multipoly-
gons and collections. An example of a dataset consisting of one
object is given in Listing 1. Here the geometry is a collection, and
the metadata is both an identifier and user-provided properties.

We focus is on three classes of spatial queries:
Containment queries are the most basic primitive in spatial pro-
cessing and perform a filtering operation on the data. The canonical
example is finding all geometries contained within a region, but
any filtering query against a defined set of reference objects can be
considered as containment.
Aggregation queries are an extension of containment queries and
involve some summarisation over the filtered result set. The sum-
mary can be numeric, such as the average area of all selected ge-
ometries, or spatial, e.g. computing the set-spatial union of all
shapes in the set. Multiple aggregations can also be performed
simultaneously, as done by GROUP BY SQL statements.
Join queries are one of the most expensive operations associated
with spatial querying because, in the worst case, every geometry
in one dataset must be compared with every geometry in another.
To reduce the number of pairs of geometries for comparison and to
parallelise the computation, it is common to divide the shapes into
spatial partitions [48, 24]. Each partition contains a subset of the
dataset within some defined area, and disjoint partitions can thus be
processed in parallel. Partitioning allows join processing to scale to
multiple CPU cores, but introduces an additional partitioning step.

2.2 Scalability challenges
The wide availability of always-connected, location-aware mo-

bile devices is causing a massive growth in the quantity of spatial
data being generated and stored [63, 61]. Crowd-sourced mapping
and behavioural data has become mainstream for uses such as navi-
gation [21] and epidemiology [23], with the number of users con-
tinuing to grow. Standards are already being developed to support
the next generation of sensor and IoT systems in which updates will
be continuously streamed [7], thus requiring spatial data processing
systems to operate without prior offline data partitioning.

Since CPU clock speeds have remained relatively constant, multi-
core processing is essential for achieving fast query results [57].
For a low data-to-query time, all query processing stages must
be parallelised. Most data querying systems now implement some
form of parallelism once the data is loaded; few systems, however,



consider how data can be loaded in parallel. Loading data in parallel
requires the concurrent execution of two operations: parsing the
source data format and partitioning or indexing. When the data on
disk is not spatially partitioned, distributing the parsing in cluster
systems causes significant I/O load as geometries are shuffled from
the node responsible for parsing to the nodes with the correct spatial
partitions [47]. The same is true when loading data in parallel into a
single-node sharded database: here network I/O is replaced by disk
I/O when moving geometries to the correct database instance.

Following a NoDB philosophy [2], a scalable spatial querying
system should support the input data efficiently no matter what
its format is. Many existing formats for spatial data, however, are
complex to split and parse. RDBMS with spatial extensions usually
handle well-known text (WKT) and well-known binary (WKB) [42]
geometries contained inside comma or tab separated files. This
makes splitting the data a case of searching for newlines in the
dataset. Public spatial datasets, however, tend to favour more struc-
tured data formats, such as XML [43] and JSON [8], in order to
simplify interoperability. These semi-structured formats do not have
the same ease of splitting as database bulk formats.

As a result, we focus on GeoJSON [19] because it encompasses
many features that make parallel processing challenging, such as a
recursive definition and support for arbitrary metadata. An example
fragment is given in Listing 1. Allowing geometries to contain other
geometries prevents splitting based on hierarchy; supporting free-
form user metadata makes splitting using known strings unsound—
without full parsing, it is impossible to decide if the string indicates
a hierarchy boundary or is part of the metadata. We also consider
WKT- and XML-formatted data to show the flexibility of our ap-
proach in handling different input formats.

2.3 Existing solutions
Spatial DBMS. Both relational and NoSQL-style database engines
have added spatial query support: Oracle [45], Microsoft SQL-
Server [15] and IBM DB2 [9] all offer spatial extensions, as well
as several open-source engines, including PostGIS [25] and My-
SQL [39]. RDBMS support spatial data through the use of spatial
indexes, such as R-trees [40] (used by PostGIS) or Quadtrees [32]
(available in Oracle). These index structures operate on the bound-
ing boxes of geometries, providing an efficient mechanism to select
possible matches. Each possible match still needs to be refined by
comparing the geometries, a process often taking longer than the
index search [54]. There is also the upfront cost of creating the
index, which may dominate for regularly updated datasets.

In contrast, the MonetDB column store [59] does not have a
spatial index but instead stores bounding boxes as a separate col-
umn [38]. The rationale is that the sequential access pattern of
scanning a column offsets the extra computation due to the lack
of an index. MonetDB can parallelise some operations, but spatial
joins are sequential and require constructing the entire candidate set
in memory. For containment queries, sequentially laid-out bounding
boxes can achieve performance comparable to indexes for pre-
filtering. This approach fails to scale to large joins because it re-
quires sufficient memory to hold the product of the joined columns.

GeoCouch [18] supports simple filtering primitives for the Couch-
DB NoSQL datastore [3]. There is no join support, and the perfor-
mance has so far been shown to be up to 3× worse than PostGIS on
a single node [37]. By sharding documents across nodes, it may be
possible for GeoCouch to scale, but this has yet to be demonstrated
for geospatial data. GeoCouch also has the fewest supported spatial
query operators of any of the discussed systems.
Distributed frameworks. The two main implementations for spa-
tial query processing on clusters are Hadoop-GIS [1] and Spatial-
Hadoop [13], which are both based on the Hadoop map/reduce

framework [10]. While both systems perform data indexing, Hadoop-
GIS assumes that index creation is inexpensive and thus can be done
mostly on demand, with only the largest regions indexed statically.
while SpatialHadoop is more concerned with up-front indexing.
Despite the indexing support of these systems, we show that AT-GIS
achieves substantially better performance without prior indexing.

Any system built on top of Hadoop requires that the data is first
loaded into the HDFS distributed file system with suitable parti-
tioning. Both systems use spatial partitioning to distribute objects
between nodes. Given that an object can be part of multiple spatial
partitions, each system must have a way to either eliminate dupli-
cate objects or transfer them between nodes: Hadoop-GIS spends
substantial time on boundary handling—objects are duplicated prior
to parallel processing and then duplicate results are pruned; Spatial-
Hadoop uses more sophisticated indexing structures to avoid this in
most cases. While AT-GIS supports partitions similar to Hadoop-
GIS, following a partition-based spatial merge join strategy [48],
its single-node design eliminates expensive network I/O.
Discussion. All of the above approaches for spatial query process-
ing require that the input data is loaded first so that indexing or
partitioning can be performed. Once loaded, the data is processed
in parallel using the internal data structures to create independent
work units. An important requirement for a system with a low data-
to-query time, however, is that it operates in parallel from the start,
without assuming the existence of any ancillary data structures.

A related requirement is for the data to be left in its original form.
A conversion of data into an internal representation requires at least
two data passes: one pass to do the conversion, and a second pass to
perform the query. For loaded data, a more compact representation
may be used, which reduces I/O bandwidth for queries such as
joins that require multiple passes of the data on disk; for single-pass
queries, however, this may increase I/O bandwidth usage.

Finally, the system should operate on a single node in parallel.
For current map/reduce-based cluster systems, significant inter-
node communication is necessary during the reduce phase to handle
geometries that straddle partition boundaries. By confining compu-
tation to a single multi-core node, this deduplication can be handled
internally rather than being limited by the network bandwidth.

3. ASSOCIATIVE TRANSDUCERS
To execute spatial queries with a single data pass, we need a

computational model that is expressive enough to represent the
whole processing pipeline for spatial queries, from the parsing of
the raw spatial data to the execution of spatial operators. The model
must also be parallelisable and should have bounded internal state.

While transducers [36] have primarily been used for lexing and
parsing, we introduce a new transducer class, called associative
transducers, that can express a wide range of spatial query opera-
tions. Transducers are an inherently sequential model, but we show
that, through a combination of speculation [41] and the properties of
our new transducer class, it becomes possible to construct pipelines
of transducers that can execute spatial queries with data parallelism.

First we provide a formal description of associative transducers
and show how they support data-parallel operations (§3.1) while
maintaining the property of compositionality required to construct
complex spatial query processing pipelines (§3.2). After that, we
discuss the specific types of transducers needed to support spatial
querying (§3.3) and how they map to spatial query operators (§3.4).
Finally, we introduce partially-associative transducers, an optimi-
sation that reduces the overhead of speculation (§3.5).

3.1 Formal description
We assume a transducer T can be represented as a five-tuple

T = (Q,q0,Σ,Γ,δ ) where Q is the set of states, q0 is the starting



1start 2 3

a

b a

b / ∗

a

b

Figure 1: Transducer for matching the string ab

state, Σ is the input alphabet, Γ is the output alphabet, and δ is
the transition function. We only consider deterministic transducers,
making δ a function of the current state and input symbol. We do
not require that Q is finite to ensure that the model can express both
aggregations across infinite sets and pushdown transducers.

If we combine the state Q and output tape Γ∗ of a regular trans-
ducer into a pair p ∈ P = (Q×Γ∗), we can think of execution as
an operator p� s→ p′ where s is an input symbol. � is defined as
performing the state transition of T and updating the output tape.
The result of processing T on a string of symbols s1,s2, · · · ,si is
the same as p0� s1� s2 · · · � si where p0 = (q0,ε). � is clearly
non-associative because it cannot operate on two symbols, relying
on a left-reduction to be well-formed.

An associative transducer (AT), denoted as T ′, is a generic con-
struction over T to support associative operations. We wish to be
able to define a function ⊗ that has the same semantics as � but
supports associative reduction. We define ATs as having fragments,
rather than states. A fragment f ′ contains a state mapping relation
q′ ∈ Q′ : [Q→ Q] that maps potential starting states to correspond-
ing finishing states, where Q′ is the set of all such relations. A
fragment also contains a set of predicated output tapes o′ ∈ [Q→Γ∗]
to store the symbols emitted by the transducer. The predicates are
needed because some output symbols may only be emitted for a
subset of possible starting states.

The state mapping relation begins as the identity relation. As
symbols are processed, each entry in the fragment has its finishing
state updated. Merging two fragments results in the composition of
the two relations. As the composition of relations is associative, the
action of the AT is also associative.

Using these definitions, we can now define an operator©:

(q′,o′)©si→

 {(qi,q∗) | (qi,q f ) ∈ q′ and q∗ = δQ(q f ,si)},
{(qi,o : o∗) | (qi,o) ∈ o′ and (qi,q f ) ∈ q′ and

o = δΓ(q f ,si)}


where : is string concatenation, and δQ and δΓ are defined such that
δ (q,si) = (δQ(q,si),δΓ(q,si)).

We now transform each symbol in the input into a fragment
independently. We also define a function ⊗ to merge fragments:

(q′1,o
′
1)⊗ (q′2,o

′
2)→

 q′1 ◦q′2,
{(qs,o1 : o2) | (qs,o1) ∈ o′1and

(qs,o2) ∈ q◦o′2}


where ◦ is relation composition. As this function depends only on
relation composition and string concatenation, which are both asso-
ciative operations, the resulting merge function is also associative.

Rather than two relations, the fragment can be considered equiva-
lently as a fragment function, which takes a starting state and returns
the corresponding finishing state and output tape. Using this model,
we can find efficient ways to represent the fragment function other
than storing the relations directly (see §3.3).
Example (Matching transducer): Consider the simple string trans-
ducer in Fig. 1 that outputs * each time the string ab is seen. To
operate on the string abab, we split the string into individual sym-
bols and construct execution pairs for each one:

Input a b a b

Fragment {1,2,3}→ 2 {1,3}→ 1 {1,2,3}→ 2 {1,3}→ 1
{2}→ 3 {2}→ 3

Output {2}→ ∗ {2}→ ∗

The symbol b results in an execution pair that outputs a single * if
the actual starting state turns out to be 2, but not if the starting state
was 1 or 3. The next step is to combine the pairs associatively:

Input ab ab
Fragment {1,2,3}→ 3 {1,2,3}→ 3
Output {1,2,3}→ ∗ {1,2,3}→ ∗

These intermediate results show the property of convergence: the
number of distinct finishing states in the relation decreases as data
is processed. Since the transducer is deterministic, the number of
distinct finishing states in a fragment cannot increase.

The final step is to merge the remaining two execution pairs to
compute that, regardless of the starting state, the finishing state is 3,
with ** on the output tape.

3.2 Composition and parallel execution
By storing fragments for the next transducer in a pipeline, rather

than the output tape, we can compose multiple ATs. We observe
that the string concatenation operator : can be replaced by any as-
sociative operator ⊗ without invalidating the transformation. When
two ATs are combined, the first transducer now stores a predicated
set of fragments from the second transducer, rather than the output
tapes. This model can be extended to a pipeline of arbitrary length.

One possible way of parallelising a pipeline would be to exe-
cute each stage concurrently, but this would limit the degree of
parallelism to the number of transducers in the pipeline and require
synchronisation to pass data between them. Instead, the pipeline
can be executed in a data-parallel fashion, constructing fragments
independently for blocks of data that can then be merged together.
This provides greater parallelism, which is better suited to achieve
scalable query processing with many CPU cores.
Example (Counting transducer): Building on the previous example,
to count the number of * symbols on the tape, we can construct a
simple counting transducer with Q = N, which increments when a
* is seen as input. We then compose the two transducers to count
the occurrences of ab. Using the same string and the matching
transducer as before, we can see below that, under b, a 1 is contained
in the predicated list and a 0, otherwise.

Input a b a b

Fragment {1,2,3}→ 2 {1,3}→ 1 {1,2,3}→ 2 {1,3}→ 1
{2}→ 3 {2}→ 3

Output {1,2,3}→ 0 {1,3}→ 0 {1,2,3}→ 0 {1,3}→ 0
{2}→ 1 {2}→ 1

The execution proceeds analogously to the previous example except
that, instead of concatenation, we add the fragments of the counting
transducer. The result is that, regardless of the starting state, the fin-
ishing state of the matching transducer is 3, with 2 as the fragment
of the counting transducer.

3.3 Spatial query processing
Next we explore efficient implementations of the fragment func-

tion for different types of transducers needed for spatial query
processing. We identify five types of ATs that can be mapped to
operations when processing spatial data:

1. finite state transducers for lexing the input data;
2. deterministic pushdown transducers for extracting the data and

metadata from lexed symbols;
3. stateless transducers for conversions on points or aggregates;
4. aggregation transducers for summarising data; and
5. periodically flushing transducers for aggregating geometries.
We look at each in turn, grouping the conceptually similar finite

and pushdown transducers together along with the stateless and
aggregation transducers. To illustrate the use for each type of trans-



1start

2 3

4

5 6 7

89

10 11 12 13

141516

Linestring [
[

]
]

Polygon [ [ [

]
]

]

Multpolygon [
[ [ [

]
]]

]

(a) Deterministic transducer

1start

2 4 5

67

Linestring [

Multipolygon [

Polygon [

[[

]

]]

]

]

(b) Non-deterministic transducer

1start

2 3

4

5

Linestring [

[

]

]

Polygon [

[ ]

]

Multpolygon [
[ ]

]

(c) Pushdown transducer

Figure 2: Three potential automata for parsing geometries

ducer, as a running example, we consider all of the stages required
to divide the shapes from GeoJSON data into spatial partitions.
Finite and pushdown transducers can extract spatial data from
a raw format. Finite transducers have an explicit associative form:
each fragment contains the state mapping relation from all possible
starting states to the corresponding finishing states and a set of out-
put tapes predicated by the starting states. When an input symbol is
processed, each entry in the relation is updated, and output symbols
are appended to the output tapes.

A natural way to express these relations are as N ×N binary
matrices, where N is the number of states in the transducer. For a
small number of states, the transitive closure under multiplication
can be precomputed as a set of lookup tables. This is similar to the
approach used by simultaneous finite automata [56] but with the
addition of an output tape.

Each output tape in the fragment has a predicated set of start-
ing states represented by a vector. By considering all output tapes
formed as a vector, a matrix can be used to associate starting states
with corresponding output states. The complete fragment thus holds
a state relation mapping matrix, an output matrix and a vector
of output tapes. This representation allows for tapes to be shared
among multiple starting states after convergence was achieved.

All of the relation composition operations needed to merge exe-
cution pairs thus become precomputed matrix multiplications. Merg-
ing the output tapes from each pair thus becomes the dominant fac-
tor in performing merges. This is mitigated by limiting the number
of possible starting states based on the structure of the lexer. For
example, in XML, it can be guaranteed that if a block starts with a
< character, there are only three possible starting states (comment,
CDATA or neither); the , character in JSON can fulfil a similar pur-
pose. This can only be done without impacting performance if the
searched character is common in the input stream [41].

It is possible for the same parsing task to be implemented using
different automata models. Fig. 2 shows the transition diagrams of
parsers for a simplified geometry format based on GeoJSON. A
deterministic finite transducer requires fewer states than either a
non-deterministic or a pushdown transducer (Fig. 2a). As the cost
of speculation depends on the number of states, and we do not
have a formal model for a non-deterministic transducer (Fig. 2b),
we choose to implement the parsing of spatial data formats using
pushdown transducers (Fig. 2c).
Stateless and aggregation transducers. The stateless (SLT) and
aggregation (AGT) families of transducers correspond to the func-
tional map/filter and reduce primitives found in parallel process-
ing [10, 26]. They are used to support mathematical and spatial
transformations and aggregations in spatial queries. We exploit their
associativity to provide efficient AT implementations.

A stateless transducer is one for which the set of states Q is a
singleton ⊥, i.e. there is no shared state carried over between input
symbols, and each can be processed independently. The transition

1

1

2 2 1,2 2

1
⊗ →

Figure 3: Partitioning expressed as an associative operation

function δ thus takes the form δ (⊥,s)→ (⊥, p(s)) where p : Σ→
Γ∗ is the mapping function. Each input can result in zero or more
outputs, giving it the expressive power of both map and filter. A
stateless transducer has a trivial associative form without any state
to manage. For example, coordinate space conversion—a common
operation in spatial querying—can be done by stateless transducers.
Example (Point parser): A point parser is a transducer that takes
streams of point offsets and produces a stream of point values. It is
used to isolate the structural parsing, performed by finite and push-
down transducers, from handling floating point values. It is stateless
as each offset can be parsed into a point value independently, with
no dependencies between adjacent symbols in the input data.

Aggregation transducers perform some reduction over the input
data without producing output. The reduction function combines
the internal state of the transducer with the input value to produce
the new internal state. More formally, an aggregation transducer has
a transition function δ (q,s)→ (a(q, t(s)),ε) where the transforma-
tion function t : Σ→ Q converts each input symbol into a state, and
an aggregation function a : Q×Q→ Q combines states.

An efficient AT relies on the properties of the aggregation func-
tion: if the function is associative, the transformation only needs
to store one copy of the in-order state to reconstruct the whole
state relation. If the aggregation function is not associative, another
approach is needed, typically buffering until the aggregation can be
run in-order. Aggregations can be numeric, e.g. when computing
the sum of values, or spatial, e.g. when computing the set-theoretic
union of a list of shapes.
Example (Partition): Spatial partitioning is an example of an op-
eration that can be performed by an aggregation transducer. The
state of the transducer contains a set of spatial partitions and the
identifiers of the contained objects. Fig. 3 shows two partitions, each
containing a single object numbered 1 and 2. The associative merge
operation (⊗) concatenates the list of objects in each partition.
Periodically flushing transducers are a hybrid of stateless and ag-
gregation transducers and can perform aggregations over subsets of
the input stream, e.g. computing a bounding box for each geometry.

The set of input symbols can be divided into two disjoint sets:
P for processing symbols and F for flushing symbols. When a
flushing symbol is received, zero or more output symbols are emit-
ted, and the internal state resets to the starting state q0; when a
processing symbol is received, the internal state is updated but no
symbols are output. Thus periodically flushing transducers perform
aggregations on strings of processing symbols demarcated by flush-
ing symbols. The processing symbols are typically points or edges,
and the flushing symbols are markers for geometry boundaries.



P P P F P P P P F P P P F P P

F Flushing symbol P Complete geometryP Processing symbol

Speculative MainProcessing state:

Symbol stream: Main reset after each geometry

Figure 4: Data processing with a periodically flushing transducer

As with aggregation transducers, the most efficient transforma-
tions into an associative form arise when the aggregation function
is itself associative. In this case, the fragment of an AT can be
represented using two copies of the in-order state: the speculative
and main states. Fig. 4 shows the speculative state that is used to
aggregate the processing symbols before the first flushing symbol,
while the main state is used for all input symbols from that point on.
An additional bit is needed to record if at least one flushing symbol
was seen and hence which copy of the state should be used for
processing the next input symbol. Only one output tape is needed to
store the results of the main state. The output from the speculative
state is not determined until merging.

To merge two associative fragments, the main state at the end of
the first must be merged with the speculative state at the beginning
of the second. The result is a new aggregation that must be inserted
into the output tape between the tapes of the two merged fragments.
Example (Polygon bounding): A periodically flushing transducer
can compute the master bounding rectangles (MBRs) of geometries.
The processing symbols are the point values, and the flushing sym-
bols are the special values marking the boundaries of geometries.
MBR computation from a list of points is an associative operation
as each point can be considered as its own bounding box, and an
associative operation computes the union of the boxes. Merging can
similarly be performed by computing the spatial union of the two
partial states being merged.

3.4 Support for spatial operators
Next we consider a set of spatial operators and describe how

each can be expressed as an AT. We first explain the case in which
operators are used as a predicate with a single or small set of objects
provided as a query parameter, and then describe how the operators
can be used for joins. Finally, we address extensions, as used by
PostGIS and other spatial DBMS, to provide geometry aggregation.

We focus on the spatial operators provided by the SQL option
of the Open Geospatial Consortium Simple Feature Access Spec-
ification [42] when comparing polygons to polygons, as listed in
Table 1. We split the operators into three categories: operators that
(i) calculate some property on a single geometry; (ii) spatially relate
two geometries; and (iii) represent set-theoretic operations on one
or more geometries. Table 1 shows the mapping into transducers
when one of the operands is a query parameter. We consider the
case in which operators are used in a join query separately.

For each operator, we state the input and output types of the cor-
responding transducer as well as the type of any internal state. The
class of each generated transducer (from §3.3) is also listed along
with the corresponding associativity available. The most flexible
form of associativity is “in shape”, which allows a single shape to be
distributed; “between shapes” requires that each shape is allocated
to a single thread, potentially reducing parallelism.

The first category of operators contains those that operate on a
single geometry to perform some form of aggregation. With the
exception of ST_IsSimple and ST_Boundary, both of which must
consider the geometry in its entirety, the others can be implemented
as PFTs, constructing a partial aggregation and merging the two.
We have already explored the case of bounding box calculation as
part of the running example in the previous section.

Spatial Input Output Processing Transducer Associativity
operator state class

(i) Single geometry properties
ST_IsEmpty Points Bool Bool PFT In shape
ST_IsSimple Shapes Bool None SLT Between shapes
ST_Envelope Edges Boxes Box PFT In shape
ST_ConvexHull Points Shapes Shape PFT In shape
ST_Boundary Shapes Shapes None SLT Between shapes

(ii) Geometry relations
ST_Disjoint Edges Bools Bool×Bool PFT In shape
ST_Intersects Edges Bools Bool×Bool PFT In shape
ST_Touches Edges Bools Bool PFT In shape
ST_Crosses Edges Bools Bool PFT In shape
ST_Within Edges Bools Bool×Bool PFT In shape
ST_Contains Edges Bools Bool×Bool PFT In shape
ST_Overlaps Edges Bools Bool×Bool PFT In shape
ST_Relate Edges Relations Relation PFT In shape
ST_Distance Edges Floats Float PFT In shape

(iii) Set-theoretic operations
ST_Intersection Shapes Shapes None SLT Between shapes
ST_Difference Shapes Shapes None SLT Between shapes
ST_Union Shapes Shapes None SLT Between shapes
ST_SymDifferenceShapes Shapes None SLT Between shapes
ST_Buffer Shapes Shapes None SLT Between shapes

Table 1: Representation of spatial operators as ATs
The second category includes all those operations that perform

some spatial relation. When comparing against a known reference
set, these operators can be executed using an algorithm that com-
pares each edge in turn. Using ST_Intersects as an example, we
use an edge testing algorithm that compares each incoming edge
with the edges in the reference set. Any crossing means that the
geometry intersects with the reference. To handle the case in which
one polygon is entirely inside another, we perform two point-in-
polygon tests, one comparing the first point in the geometry against
the reference set and the second comparing an arbitrary point in
the reference set against the geometry. If either of these two tests
matches, the geometries are intersecting.

The final category includes set-theoretic operations on shapes. As
such operations require processing the entire polygon as a single en-
tity rather than each point or edge individually, we cannot use a PFT.
Instead we use transducers that operate on a stream of polygons as
stateless transducers when each operation is independent, e.g. using
ST_Buffer on a stream or ST_Difference on a stream of joined
pairs or with a reference object. Alternatively, when the operator is
used as an aggregation across a column, e.g. using ST_Union on a
large set of geometries, we can take advantage of the associativity
of set operations to use an aggregation transducer.

When a spatial predicate is used for a join between two large sets
of geometries, the model used for a small reference set ceases to be
effective, requiring an alternative approach. Typically some version
of a plane or line-sweep algorithm can be used. Our transducer
model is not a good fit for a join between two data streams, so we
wrap the join into a transducer that takes sets of shapes as input
and emits joined pairs as the output stream. This permits the use
of transducer operations before and after the join, while having the
performance of existing parallel joins. We use a partition-based
spatial merge join [48] to perform all spatial joins between two
datasets, using transducers for the initial partitioning.

3.5 Partially associative transducers
Depending on the input data, it may be possible to relax the

requirement for full associativity to reduce speculation. Partially-
associative transducers are an optimisation when the data can be
split in such a way that the state at the start of a block is known.
This is common in many spatial data formats, even recursive ones
such as GeoJSON, if the complete schema is known in advance.

The idea for this optimisation is to introduce some logic into the
splitting of the data into blocks such that block boundaries occur
only at locations that result in known states: in comma- or tab-
separated text files with no escaping, this is typically the end of



D
at

a
fil

e

Pipelines
Pipelines
Pipelines
Pipelines
Pipelines
Pipelines

Fi
na

l
re

su
lt

Split phase Processing phase Merge phase

Figure 5: Phases of pipeline execution in AT-GIS

lines; in XML or JSON, it is commonly some tag that only appears
at a given point in the hierarchy and that can be used to establish
the state of the parser for the block.

In some cases, it may be possible for the tag to appear at an
unexpected location due to a free-form field in the input. A partially-
associative transducer may then temporarily process the data incor-
rectly, but the inconsistency will be caught during a subsequent
merge. The data would then have to be reprocessed, but it would
not affect the correctness of the final result.
Example (GeoJSON parsing): For GeoJSON, the parse and query-
ing stages can be converted into a partially-associative form by
exploiting the object type field that appears within each object. If
object boundaries can be found, the lexer and parser can be started
in a known state, permitting the use of an optimised, off-the-shelf
library without speculation. For example, it is possible to use a
regular expression to search for the string "type":"Feature", as
seen on line 3 in Listing 1. Since the tag is not necessarily the start
of an object, a parser can find the boundaries of the object.

4. AT-GIS DESIGN
In this section, we describe how AT-GIS uses associative trans-

ducers (ATs) to create parallel processing pipelines for the execution
of spatial queries. First we introduce its processing model (§4.1) and
present the pipelines for different query types (§4.2), explaining
their physical query plans, how stages are decomposed into ATs
and how the system is implemented (§4.3). After that, we focus on
each pipeline stage in turn, exploring the trade-offs for performance
optimisation (§4.4). We finish with a discussion of spatial joins and
how they use multiple pipelines (§4.5).

4.1 Overview
AT-GIS executes spatial queries by translating a physical query

plan into pipelines of transducers. The physical plan takes the form
of a dataflow representation of the query [53] in which the majority
of spatial operators are compiled into a single pipeline. Joins require
multiple pipelines because they rely on barriers.

The construction of the physical query plan follows past work
on optimising pipelined parallel query execution [6]. AT-GIS as-
sumes a tree-shaped dataflow graph in which each spatial operator
is represented by a node; edges denote the objects transfered be-
tween operators. AT-GIS supports a hierarchy of four object types,
with points being the lowest level, followed by edges, rings and
polygons. In general, edges should be typed with the lowest-level
object supported by both sides—the lower the level, the greater the
opportunity for parallelism. All but conditional and join operators
have a single input and output edge.

AT-GIS then constructs a pipeline from each linear section of
the dataflow graph. It makes special consideration for conditional
operators (§4.4.2) to allow them to form part of a linear pipeline in
spite of them not being linear. Once the pipelines have been defined,
AT-GIS compiles them using an optimising compiler to reduce the
overhead of the abstraction between stages.

As shown in Fig. 5, the execution of pipelines involves three
phases: split, processing and merge. The split phase divides the
input data into blocks. Data splitting may require incrementing a
pointer (for fully-associative transducers) or executing a regular
expression and lightweight parsing (for partially-associative trans-

LEXER
PARSER
QUERY

POINT
PARSER

SHAPE
BOUNDER

PARTITION

Data extraction stage Transform Aggregation

Input
Text

Lexed
Tokens

Point
Offsets

Point
Values MBRs

Figure 6: Pipeline for shape partitioning in a textual data format

ducers). After a data block is formed, it is placed in a work queue for
the processing phase. The processing phase performs the majority
of the computation by passing blocks from the work queue through
the pipeline. As ATs make the tasks independent, it can be scaled to
many parallel threads. The merge phase combines all of the partial
results from the processing phase to compute the final query result.
While the first two phases can run concurrently to reduce latency,
the third phase executes only after all blocks are available.

4.2 Spatial query processing pipelines
Fig. 6 shows how a single-pass pipeline can be split into three

logical stages: (i) parsing of the dataset and extracting the data of
interest; (ii) transforming and filtering the data to answer the query;
and (iii) aggregating the result. The parsing/data extraction stage is
responsible for consuming bytes from the input file and outputting
a stream of point values. If required by the query, any filtering on
the metadata is also handled by this stage. Restricting metadata
queries to the first stage ensures that format-specific knowledge
is not needed in the rest of the pipeline. The transformation/fil-
tering stage encompasses any operations that process individual
geometries or points and consists primarily of periodically flushing
transducers. Finally, the aggregation stage performs any aggrega-
tion across all the geometries. In the case of a containment query,
the final stage buffers the result for output.

Each object between pipeline stages is tagged with the data offset
from which it was created. Offsets are used in two ways: to enable
unique identification of points and geometries; and to allow re-
parsing of objects in the join pipeline. The type of the objects
transfered between the transformation and aggregation stage de-
pends on the nature of the aggregation: spatial aggregations require
that the aggregation stage receives all point data, whereas numeric
aggregations require only the computed result.

4.3 Pipeline implementation
Each pipeline stage is written as a C++ class template with the

template parameter describing the destination for output symbols.
Pipelines are thus constructed back to front, starting with the final
aggregation transducer before wrapping it with the previous stages.

Using templates to perform composition rather than more com-
monly seen indirect function calls has two advantages: (i) there are
no restrictions on the types of symbols that are passed between
stages; and (ii) an optimising compiler can combine stages, using
inlining to remove most of the overhead of passing symbols along
the pipeline. Inlining also allows for general-purpose optimisations,
such as loop unrolling, to be performed across multiple stages.

The disadvantage of a template-based approach is that the pipe-
lines have to be known at compile time. For this reason, AT-GIS
generates and compiles a pipeline prior to executing the query,
creating an executable that can then be run on the raw data. While
compiling templated C++ code adds some overhead compared to
a traditional database engine, we show in §5.1 that the total query
execution time is still much reduced compared to existing systems.

4.4 Pipeline stages
Next we describe the details of each stage. Although the structure

of the pipeline is fixed for a given query, there are possible data-
and query-dependent optimisations within each stage.



B
U

FF
E

R
T

E
S

T

S
E

LE
C

T

A
R

E
APoints Filtered

Points
Filtered
Areas

(a) Buffered

A
R

E
A

T
E

S
T

S
E

LE
C

TPoints Filtered
Areas

Areas

True/
False

(b) Streaming

Figure 7: Pipelines for selecting geometries

(1) Parsing/data extraction stage. This stage converts the input
format into a list of spatial primitives suitable for the rest of the
pipeline. AT-GIS supports spatial queries over GeoJSON, WKT
and OpenStreetMap XML data. WKT is the most straightforward
to support because it is mostly a non-nested (except for Geometry-
Collections) text-based format with all of the point data available
inside the shape objects. GeoJSON adds an extra layer of complex-
ity by allowing arbitrarily formatted metadata within the object. It
thus needs a push-down parser to understand the format correctly.

OpenStreetMap XML is the most complex format to support
because it separates the data into multiple sections: first it lists all
the nodes that link a numeric identifier to a point in space; followed
by the ways that relate multiple nodes; and finally relations that link
nodes and ways to describe complex polygons. AT-GIS handles the
separation of point and polygon data by keeping a temporary table
of all points and ways on disk, which is constructed during the first
data pass. When ways and relations are processed in subsequent
passes, the need to re-parse the data from source is reduced.

In general, the parsing stage may use fully- or partially-associative
transducers. As we show in §5.5, the type of transducer that achieves
the highest throughput depends on properties of the data. Since this
is not known in advance, AT-GIS leaves the selection to the user.

With partially-associative transducers, the parsing stage consists
of a wrapper around an off-the-shelf parser, which inputs well-
formed data blocks and outputs the stream of points, potentially
filtered by some metadata. Where possible, AT-GIS uses streaming
parsers, e.g. using the SAX API [55], to limit memory usage.

Fully-associative parsers are constructed from the finite and push-
down transducers. For all of the supported input formats, i.e. Geo-
JSON, WKT and XML, AT-GIS separates the lexing and parsing
and employs transducers suited for each task.

Lexing is handled by finite transducers optimised for small tran-
sition tables. As a transition must be performed after each byte,
precomputation is used for all the transition tables, which reduces
the overhead of the associative construction. As explained in §3.3,
we use pushdown transducers to perform parsing and data extraction
to reduce the required speculation.

In addition to extracting geometry and point offsets, any fil-
tering on the accompanying metadata is also compiled into the
parsing automaton. As pushdown transducers can handle XPath-
style queries [49], AT-GIS supports a similar query language for
JSON that filters on the structure or value of fields in the metadata.

In typical scenarios, such as our running partitioning example,
the execution time of the pipeline is dominated by the parsing/data
extraction stage. While exact numbers are difficult to obtain because
the optimising compiler merges stages together, at least 90% of the
CPU time is spent in this stage.
(2) Transformation/filtering stage. The second pipeline stage con-
sists of periodically-flushing transducers that wrap standard geo-
metric algorithms. AT-GIS converts between streams of edges and
points to match the requirements of the algorithms. Most supported
algorithms are edge-centric, such as perimeter and area calculations,
and only a small number, e.g. MBR calculations, are point-centric.

M
B

R
C

O
M

PA
R

E

S
O

R
T

PA
R

S
E

R
/B

U
FF

E
R

R
E

FI
N

EPartitions Candidates Sorted
Candidates Geometries Join

Result

Figure 8: Join pipeline

An operation that conflicts with the requirement to perform the
least amount of buffering is selecting geometries for which the point
data is required later in the pipeline. An example is finding the areas
of all geometries within a defined region. AT-GIS has two ways to
construct a pipeline for such queries, trading off buffering against
redundant computation: (i) in a buffered approach (see Fig. 7a), the
geometry is stored until the result of the inclusion test is known;
and (ii) in a streaming approach (see Fig. 7b), the area is computed
at the same time as when the test is performed.

The most effective approach depends on the query selectivity, the
expected size of the largest geometries, and the cost of the aggrega-
tion. For non-selective queries, all of the computation is necessary,
so the additional buffering only adds memory overhead. For highly-
selective queries, the cost of unnecessary computation outweighs
the buffering overhead. We explore these trade-offs in §5.4.
(3) Aggregation and partitioning stage. The final stage in the
single-pass pipeline performs aggregation. While required for ag-
gregation queries, it is also used for containment queries to store
the output of the transformation stage before returning the result.

While AT-GIS supports both spatial and numerical aggregation,
it only maps numerical aggregation directly into the pipeline. Nu-
merical aggregation consists of operations such as sum and avg,
which can be mapped easily to an associative form. Spatial aggre-
gations are operations such as spatial unions for which we have not
developed a suitable associative form—AT-GIS executes them as a
separate sequential phase after the executation of the pipeline.

A special form of aggregation is partitioning, which terminates
the first pipeline when performing a spatial join. By having to
concatenate multiple lists during a merge, partitioning does not have
the constant-time merge property of numerical aggregations.

AT-GIS supports two data structures for partitions: arrays and
linked lists. Arrays have better memory locality and a lower mem-
ory footprint at the expense of linear-time merging; linked lists
achieve constant-time merging but with slower access due to cache-
unfriendly patterns. To reduce the cost of merging many partitions,
it is possible to perform the partitioning as a sequential step after
the processing pipeline. This requires that only one list or array is
merged for each block, rather than one per partition and block.

An important parameter to choose is the number of partitions.
It determines the available parallelism in later processing, so a
large number is desirable to improve e.g. join performance. Many
partitions, however, increase the merging cost of the results of
the first stage and lead to unnecessary computation when more
geometries straddle partition boundaries. In §5.6, we explore this
parameter choice with a large, real-world dataset.

4.5 Spatial joins
When a spatial join is part of a query, AT-GIS constructs a second

pipeline that consumes partitions and emits the joined geometries.
This pipeline uses a set of specialised transducers to implemented a
PBSM join algorithm [48]. This permits the join to execute along-
side other transducers if further selection or aggregation is needed.
Since the partitions are non-disjoint, there is a possibility of dupli-
cate results in the output, which are removed by a sequential step
prior to returning the query result.

The PBSM join is realised as a join pipeline of ATs, operating
on the spatial partitions (see Fig. 8). The partition has two lists of



Name Description Size (GB) Shapes (1000s)

OSM-X OpenStreetMap XML 592 187,560
OSM-G OpenStreetMap GeoJSON 63.3 187,560
OSM-W OpenStreetMap WKT 41.0 187,560
OSM-10G OpenStreetMap replicated 633 1,875,600
Synthn,σ Synthetic dataset 10.0 n/1000

Table 2: Spatial datasets used for evaluation

MBRs and the offset in the original data of the corresponding object.
Storing the offsets means that objects can be re-parsed on demand,
avoiding the need to keep the entire dataset in memory.

The join pipeline first finds all MBR intersections in a parti-
tion (MBR COMPARE transducer) and passes a stream of poten-
tially matching candidates to the SORT transducer. SORT buffers
the stream until a threshold is reached, and then sorts the objects by
location in the input data. The aim is to position candidates involv-
ing the same objects adjacently so that the time that objects remain
in memory is bounded. As adjacency can only be achieved for one
of the two sets of objects being joined, AT-GIS makes the largest
set adjacent. The PARSER/BUFFER transducer re-parses objects
to construct the full geometry for refinement. A hash map stores
objects in the non-adjacent stream to limit repeated parsing. Once
a block is processed, the hash map is cleared. Finally, the REFINE
transducer performs the join test, such as geometry intersection.

Storing entire objects in memory can potentially exhaust avail-
able resources. By adjusting the threshold in SORT, the number of
stored objects can be reduced. While reducing memory usage, some
objects may have to be read several times when the entire partition
cannot be processed as a single sorted block.

As objects can appear in multiple spatial partitions, duplicate
matches may be part of the final result. To mitigate this, after the
join pipeline has finished, AT-GIS sorts the result by the offsets of
both objects joined and eliminates duplicates.

If additional processing is required on the joined objects, this can
either be added to the end of the join pipeline or as a separate phase
after duplicate elimination. As objects are only retained in memory
while needed by the pipeline, running algorithms as a separate stage
may require objects to be re-parsed. Executing computation inside
the pipeline provides immediate access to the joined objects at the
expense of potentially encountering duplicate results, which need
to be removed.

5. EVALUATION
We evaluate AT-GIS experimentally: we compare its performance

against other approaches (§5.1) and use synthetic and real-world
datasets to explore scalability (§5.2), different data formats (§5.3),
different filtering pipelines (§5.4), dataset skew (§5.5) and parti-
tioning options (§5.6).
Datasets. Table 2 summarises our datasets. We use the OpenStreet-
Map dataset [44], retrieved on May 18, 2015. This is a large real-
world dataset that is widely used to benchmark spatial query pro-
cessing. In addition to the orignal XML file (OSM-X), we prepare
two additional versions: a GeoJSON-formatted one (OSM-G) and
a WKT-formatted one (OSM-W), which is used for loading into
PostGIS, MonetDB and SpatialHadoop. We also create a version
in a proprietary format of a commercial DBMS. In addition to the
geometry, we add an object id into each object as metadata.

To evaluate scalability as the data sizes grow beyond the available
memory, we create a larger dataset (OSM-10G) by replicating the
OpenStreetMap dataset 10 times. For each replication, the geome-
tries are kept the same but the id is changed to ensure uniqueness.

We also generate a synthetic dataset (Synth) that includes poly-
gons and multi-polygons with the number of edges distributed ac-
cording to a log-normal distribution. Two parameters control the

Query SQL

Containment SELECT * FROM data WHERE
ST_Intersects(geom, ref)

Aggregation SELECT ST_Area(geom),
ST_Perimeter(geom) WHERE
ST_Intersects(geom, ref)

Join SELECT * FROM data d1, data d2
WHERE d1.id < threshold AND
d1.2 > threshold AND
ST_Intersects(d1.geom, d2.geom)

Combined SELECT ST_Area(ST_Union(d1.geom, d2.geom))
FROM data d1, data d2 WHERE
ST_Perimeter(d1.geom) > t1 AND
ST_Perimeter(d2.geom) < t2 AND
ST_Intersects(d1.geom, d2.geom)

Table 3: Spatial SQL queries used for evaluation

number of geometries and the σ value of the distribution. The size
of the geometries is scaled so that the dataset is 10 GB.
Queries. We use four types of spatial SQL queries, as shown in
Table 3: a containment query that selects all polygons contained
within some bounding box; an aggregation query that combines
containment with a summary function over all of the matching
polygons—in our case, we use the total perimeter and total area;
a join query for which we split the input data into two disjoint
subsets and which finds all intersecting pairs; and, finally, we use
a combined query to show how AT-GIS handles more complex
pipelines consisting of two containment queries to determine the
input to a join, followed by an aggregation on the resulting pairs.
Experiments with queries that use other geometries and predicates
give similar results.

As our input data is geographic, we perform all of our compu-
tation using a spherical coordinate system. We use two methods
to calculate the linear distance between points when performing
perimeter calculations: by default, we use spherical projection, but,
in §5.4, we also employ the more accurate but more expensive
computation using Andoyer’s algorithm [4].
AT-GIS implementation. Our prototype is implemented in C++.
All geometric operations use the Boost::Geometry [17] library,
other than the MBR intersection testing, which is hand-written.
Aside from the partially-associative JSON parsing, which is done
by RapidJSON [50], all other transducers are implemented by us.
The created AT pipelines for a given query plan are compiled by
the GNU g++ compiler. Compilation takes up to 5 seconds, which
is negligible compared to the total runtime.

AT-GIS is executed using both fully- and partially-associative
transducers to determine the level of optimisation available from
reducing speculation: AT-GIS-FAT runs all queries using a fully-
associative pipeline with no optimisation; AT-GIS-PAT uses opti-
mised parsers when speculation can be reduced.
System comparisons. We take Hadoop-GIS [1] as an example of
a distributed cluster system, which does not use stored indexes
beyond the initial partitioning, and SpatialHadoop [13] as an index-
based solution. We also compare to PostGIS [25], MonetDB [59]
and a commercial DBMS with spatial support (DBMS-X) in terms
of single-node spatial query engines. The performance results for
SpatialHadoop, PostGIS, MonetDB and DBMS-X results are mea-
sured on the same machine as AT-GIS; the results for Hadoop-GIS
are based on the same dataset and taken from the paper [1].

For MonetDB, the default set-up has one table with one row per
object; in PostGIS, the table is manually sharded into 1000 ranged
partitions; and DBMS-X uses a 1024-way spatially partitioned table.
The table is indexed by the geometry and clustered by the index
prior to query execution.

The experiments are performed using both bounding-box (Post-
GIS-B, MonetDB-B) and full-geometry comparisons (PostGIS-G,



0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70

Th
ro

ug
hp

ut
(M

B
/s

)

Number of cores

AT-GIS-PAT
AT-GIS-FAT

(a) Containment query

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70

Th
ro

ug
hp

ut
(M

B
/s

)

Number of cores

AT-GIS-PAT
AT-GIS-FAT

(b) Aggregation query

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70

Th
ro

ug
hp

ut
(M

B
/s

)

Number of cores

AT-GIS

(c) Join query

Figure 9: Scaling of AT-GIS on the OpenStreetMap dataset

1

10

100

1000

10000

AT-GIS-PAT

AT-GIS-FAT

Hadoop-GIS

SpatialHadoop

DBMS-X

PostGIS-S

PostGIS-B

PostGIS-G

MonetDB-B

MonetDB-G

E
xe

cu
tio

n
tim

e
(s

) Containment
Aggregation

Join

Figure 10: Comparison of query execution times

MonetDB-G). We also manually sharded the PostGIS installation
(PostGIS-S). All experiments are repeated and have low variance,
which is why we omit error bars.
Experimental set-up. All experiments are performed on a quad-
socket, 64-core AMD server with 128 GB RAM. Each CPU has a
nominal clock speed of 2.3 GHz, with turbo mode increasing this
to 2.9 GHz for small numbers of threads. To limit the effects of
I/O bottlenecks, experiments using the OSM-G, OSM-W and Synth
datasets read the data from a RAM disk. For experiments using the
OSM-10G and OSM-X datasets, we load the data onto an SSD and
ensure that the OS file cache is cleared. A second SSD is used to
store any temporary data files.

5.1 Query performance
Fig. 10 shows the execution time for three of our queries on

different systems.1 Executing from RAM, AT-GIS-PAT achieves the
same query execution time as DBMS-X for the containment query
and takes 30% less time for aggregation queries, despite not pre-
loading and indexing the data. The results also show the benefit
of AT-GIS’s efficient pipelining: aggregation takes only 25% longer
than containment, outperforming the other comparable systems.

Of all of the RDBMS, MonetDB has the fastest query time for
MBR-only queries: using a combination of sequential data access
and multithreading, it outperforms the index-based PostGIS and
DBMS-X as well as AT-GIS. Once full geometry comparisons are
considered, however, the lack of spatial optimisations in MonetDB
results in it performing the slowest of all systems.

The results also show that current RDBMS are not optimised
for large spatial joins, even with hand-optimised query plans: both
PostGIS and DBMS-X do not complete the join within 24 hours, and
MonetDB constructs the cross-product of the input prior to joining,

1We do not use the combined query for comparison because the
other systems exhibit excessive time or memory requirements when
performing the join first.

100

1000

10000

100000

1 2 4 8 16 32 64

E
xe

cu
tio

n
Ti

m
e

(s
)

Number of CPU cores

Partition
Join
Total

Figure 11: Partition and join query scaling to 64 CPU cores

requiring over 17 TBs of memory. While executing on a single
node, AT-GIS-PAT is 10× faster than SpatialHadoop for the join
query due to the latter’s cluster management and communication
overhead. Hadoop-GIS exhibits the closest join performance to AT-
GIS, however, it is deployed on a cluster with more than 3× the
number of CPU cores of our server.

For the containment and aggregation queries, the communica-
tion overhead of the distributed frameworks becomes even more
apparent. Hadoop-GIS requires 3× longer for the aggregation query
than for the containment query—the largest disparity of all systems.
Taking the number of CPU cores into account, Hadoop-GIS requires
30× the computation resources of AT-GIS-PAT. The upfront indexing
of SpatialHadoop improves performance compared to Hadoop-GIS,
but it still trails behind AT-GIS on a single node.

The difference between AT-GIS-PAT and AT-GIS-FAT for the con-
tainment and aggregation queries shows the dominance of the data
parsing cost in terms of the total execution time. Note that the
execution times for the other systems do not take the time to load
the data into account because this may be amortised over multiple
queries. Loading the data can take significant time though, ranging
from 30 minutes for MonetDB to over 4 hours for DBMS-X. The data
format may also need to be converted prior to loading—no system
other than AT-GIS can handle raw OSM XML data.

5.2 Scalability
Next we consider how AT-GIS scales as we vary the number of

CPU cores. Figs. 9a and 9b show both full and partial ATs scale
to 32 CPU cores for containment and aggregation queries. There
are two changes of the gradients in the scaling results: the first
occurs after 16 CPU cores and is due to the overclocking of cores
with few threads on the AMD CPU; the second change at 32 CPU
cores is due to its micro-architecture: the CPU only has 32 FPU
units shared between 64 cores. As AT-GIS executes floating-point
intensive operations, the scaling beyond 32 cores becomes limited.
The contention for FPUs is less of an issue for AT-GIS-FAT because
it includes more integer operations when parsing the data.



0

500

1000

1500

2000

2500

OSM-G
(RAM)

OSM-G
(SSD)

OSM-W
(RAM)

OSM-W
(SSD)

OSM-X

OSM-10G

Th
ro

ug
hp

ut
(M

B
/s

) Containment
Aggregation

Join
Combined

Figure 12: Performance of queries on three data formats

For join queries, Fig. 9c shows that AT-GIS scales linearly to
16 CPU cores followed by two regions (between 16 and 32 cores
and greater than 32 cores) when scaling is reduced. The results are
only given for AT-GIS-FAT—the parsers used in AT-GIS-PAT do not
expose the per-element file offsets required for re-parsing the data
in subsequent pipelines.

We explore the join query in more detail in Fig. 11 by splitting
the results into the partitioning and the join computation time. It
shows that the time required to perform the join dominates the time
for the partitioning. The small number of partitions and the high
skew between the number of candidate matches checked in each
partition makes late finishing threads likely and hard to mitigate.
In §5.6, we explore the impact of the number of partitions on the
relative performance of the two pipelines used for joining.

5.3 Data size and format
We investigate the ability of AT-GIS to support different input

data sizes and formats, in particular, when the dataset is larger
than the RAM. We run all four of our queries against each of the
OpenStreetMap datasets. As the data sizes on disk vary, and the
expected bottleneck is SSD I/O bandwidth, we report throughput in
MB/s. Where the dataset is small enough to fit into RAM, we also
compare the throughput against streaming from an SSD.

Fig. 12 shows that the GeoJSON format provides superior through-
put for single-pass queries because it can use optimised parsers in
PAT mode. For join queries, the simpler point structure of WKT
allow for faster re-parsing. The SSD results for both GeoJSON and
WKT are bound by the device throughput, although OS caching
reduces the cost of re-reading data during joins.

OSM-X has the lowest throughput of all single-pass queries due
to the large volume of data to be parsed and the need to construct a
temporary table. Despite the use of a temporary table, the quantity
of data being searched and the random access patterns for finding
node values further reduce the performance of joins.

Finally, the replicated dataset (OSM-10G) with single pass-queries
executes almost as quickly as the SSD bandwidth allows. It suffers,
however, on the join query due to the larger number of comparisons
and the need to re-parse data to reduce memory usage.

5.4 Streaming vs. buffered filtering
Next we evaluate the two options for implementing filtering in

a pipeline, a streaming approach and a buffered approach, as de-
scribed in §4.4. In the streaming approach, the aggregation is per-
formed concurrently with the filter test; in the buffered approach,
the geometry is buffered until the result of the filter is known.

We construct a query to output the perimeters of all polygons
contained partially or fully by an MBR. By varying the size of the
MBR, we can change the query selectivity. The MBR at each size
is chosen so that the ratio of MBR size and the number of polygons
selected remains constant.

We use two different methods for computing the perimeter to
assess how the computational cost affects the trade-off between the
two approaches. The first method, shown in Fig. 13a, uses a spher-

1900
2000
2100
2200
2300
2400
2500

0.010.1110100

Th
ro

ug
hp

ut
(M

B
/s

)

Area selected %

Streaming
Buffered

(a) Spherical projection

1800
1900
2000
2100
2200
2300
2400
2500

0.010.1110100

Th
ro

ug
hp

ut
(M

B
/s

)

Area selected %

Streaming
Buffered

(b) Andoyer’s algorithm

Figure 13: Trade-off between different filtering approaches

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

100 101 102 103 104 105 106 107 108

Th
ro

ug
hp

ut
(M

B
/s

)

Number of entries

AT-GIS-FAT
AT-GIS-PAT

(a) Small numbers of objects

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
(M

B
/s

)

σ of distribution

AT-GIS-FAT
AT-GIS-PAT

(b) Skewed data distribution

Figure 14: Effect of dataset skew

ical projection which, while efficient, can be inaccurate for high
latitudes. As the ratio of shapes selected becomes less than 25%,
the cost of performing the redundant computation becomes greater
than that of the memory management for handling the buffers.

The second method uses Andoyer’s algorithm [4], which is more
accurate at the expense of more floating-point operations. Fig. 13b
shows that the cross-over point between streaming and buffered
filtering stays approximately the same, but the absolute through-
put of the streaming approach decreases for all selectivities. The
buffered approach achieves lower throughput only for low selectiv-
ities, which is expected due to the reduced number of calculations
when most geometries are rejected by the filter.

5.5 Data skew
In this section, we use a synthetic dataset to explore the limits of

partially-associative transducers (AT-GIS-PAT) and the properties of
datasets that require fully-associative transducers (AT-GIS-FAT) for
parallel operation. We use a synthetic dataset because the objects in
the OpenStreetMap dataset are distributed sufficiently, making split-
ting with partially-associative transducers not a bottleneck. There
are two types of datasets that are difficult to split, which we evaluate
separately: (i) large datasets consisting of a small number of items;
and (ii) datasets with a large skew in polygon complexity.

Fig. 14a shows the processing throughput as we vary the number
of objects. For a large number of objects, AT-GIS-PAT can operate
around 4× faster than AT-GIS-FAT. This is due to the greater level
of optimisation in the off-the-shelf JSON parser and the lack of
speculation, leading to less computation. With fewer than 2000 ob-
jects, splitting of the dataset becomes the bottleneck in performing
the computation—AT-GIS-FAT, which does not need to search for
object boundaries, becomes faster.

We also consider the amount of skew in the data distribution.
For this, we generate the number of points in each polygon in the
synthetic dataset according to a log-normal distribution with a vari-
able σ . For small amounts of skew, the splitting time is negligible,
and AT-GIS-PAT performs better, as shown in Fig. 14b. For σ values
beyond 5, however, the splitting cost dominates the total processing
time, and AT-GIS-FAT provides a lower, more stable processing time.

While AT-GIS-FAT cannot match the speed of the off-the-shelf
optimised parser used by AT-GIS-PAT, it performs better with high-
skew or low-object-count data. The best of both approaches could
be attained by instrumenting the splitting component in partially-
associative transducers to fall back to a fully-associative pipeline if
the time taken exceeds some threshold.



0
200
400
600
800

1000
1200
1400

0.25 0.5 1 2 4

C
ul

m
ul

at
iv

e
tim

e
(s

)

Size of partition (degrees)

Join pipeline (M)
Join pipeline (P)

Partition pipeline (M)
Partition pipeline (P)

(a) Array/Associative partitioning

0
200
400
600
800

1000
1200
1400

0.25 0.5 1 2 4

C
ul

m
ul

at
iv

e
tim

e
(s

)

Size of partition (degrees)

Join pipeline (M)
Join pipeline (P)

Partition pipeline (M)
Partition pipeline (P)

(b) List/Associative partitioning

0
200
400
600
800

1000
1200
1400

0.25 0.5 1 2 4

C
ul

m
ul

at
iv

e
tim

e
(s

)

Size of partition (degrees)

Join pipeline (M)
Join pipeline (P)

Separate partition phase
Bounding pipeline (M)
Bounding pipeline (P)

(c) Array/Separate partition phase

0
200
400
600
800

1000
1200
1400

0.25 0.5 1 2 4
C

ul
m

ul
at

iv
e

tim
e

(s
)

Size of partition (degrees)

Join pipeline (M)
Join pipeline (P)

Separate partition phase
Bounding pipeline (M)
Bounding pipeline (P)

(d) List/Separate partitioning phase

Figure 15: Effect of partition size, storage format and pipeline

5.6 Partitioning and joins
We also investigate (i) whether to run the partitioner as a separate

phase or as part of the parsing associative transducer pipeline;
(ii) the effect of a varying number of partitions; and (iii) the effect
of the data structures used to store the partitions. These experiments
are performed on the OpenStreetMap dataset, and the join query
finds all intersecting polygons in subsets of the data.

As joining requires two passes, we separately time the Partition
pipeline from Fig. 6 and the Join pipeline from Fig. 8. When we
perform partitioning as a separate phase, we remove the PARTITION
transducer from the Partition pipeline to leave a Bounding pipeline.
We measure the time for the processing (P) and merge (M) phases
separately for each pipeline.

We first examine the choice between using associative partition-
ing and a separate partitioning phase. Comparing Figs. 15a and
15c, as the number of partitions increases, there is a small but
noticeable increase in the cost of the partition pipeline merge when
the partitioner is associative. As would be expected, the merge time
is constant when the partitioner is run non-associatively.

Next we consider the size of the partitions (defined in degrees).
As can be seen in Figs. 15a–15d, if the partitions are too large, the
work becomes unevenly distributed and late-finishing threads cause
the total execution time to rise significantly. For small partitions,
the cost of partitioning increases, but this is negligible compared
to the total query time. The optimum partition size for the dataset
is between 0.5 and 1 degrees—there is no further decrease in join
time for smaller partitions. Using a partition size of 1 degree could
allow for the first pass to employ integer rather than floating-point
arithmetic, potentially resulting in a further performance increase.

Finally we consider the choice between linked lists and arrays
for storing elements in a partition. Arrays allow for better data
locality at the cost of linear-time merging; linked lists require more
computation for each element but offer constant-time merging. By
comparing Figs. 15a and 15b, we see that the difference does not af-
fect the partitioning time significantly, but the reduced data locality
increases the response time by nearly 200 seconds in the worst case.
A similar pattern is revealed when comparing Figs. 15c and 15d.

6. RELATED WORK
In addition to the solutions discussed in §2.3, two areas of related

work exist to our approach: parallel automata have been proposed
for structured data parsing [35, 62, 41]; streaming spatial processing
performs single-pass processing, but it focuses on spatio-temporal
queries rather than the bulk data analytics queries as we do.
Parallel automata. The idea behind executing finite automata in
parallel is to split the data into blocks and process each block
independently. The most common approach, described by John-

son et al. [28] is, for each block, to construct a mapping between all
possible starting states and the corresponding finishing states. Once
constructed, these mappings can be combined to compute the final
state. Johnson et al. have the goal to save memory when processing
streams of network traffic, with packets arriving out-of-order, but
they do not optimise performance.

More recently, simultaneous finite automata (SFA) [56] perform
a static construction to improve performance at the expense of a
potentially expensive compilation. The result is near-linear scaling,
albeit on a limited set of benchmarks. We use ideas from both
Johnson and SFA and extend them to emit symbols for the next
stage in a pipeline. In particular, for all the data formats that we
consider, the first stage in any pipeline is a lexer, which can be
described by a deterministic finite transducer. We also reduce the
size of the constructed automaton using format-specific knowledge.

There have also been other approaches to parallel lexing and pars-
ing of structured documents [35]. Early techniques used a sequential
data pre-scan to determine suitable break points; this was enhanced
by exploiting special strings to guess the correct lexer state [62].
This mirrors our approach for partially associative transducers,
which reduce the state space based on knowledge of the input
format. Our approach goes further and can use markers in the data
to specify the initial state of multiple stages in the pipeline.

Parallel pushdown transducers [41] extend parallel automata
to pushdown transducers used in XML querying, with near-linear
scaling for a small number of queries. The work does not explore
composition, relying on sequential post-processing to perform fil-
tering. Using composition, we present a more powerful model for
parallel computation that goes beyond structural queries.
Streaming spatial query processing. There is an increasing inter-
est in using stream processing with spatial datasets, especially with
the growth of sensor networks [5, 52] and IoT use cases [11]. For
example, StreamInsight [29] has spatial primitives to support spatial
predicates over complex streams. Isenburg et al. [27] describe a
number of streaming algorithms for 3D modelling and use windows
to handle models that are larger than memory.

While streaming systems can answer temporal streaming queries,
they are not designed for joins across an entire dataset as this
is counter to their processing model over unbounded streams. In
addition, single-node streaming engines typically focus on query-
and not data-parallelism [20, 14]. By processing finite datasets with
high parallelism, we designed a more flexible spatial engine without
the windowing support of streaming systems. ATs do not presently
have an efficient primitive for sliding windows [30].

7. CONCLUSION
We have described AT-GIS, a new single-node system for parallel

spatial query processing that is capable of exploiting previously
unavailable data parallelism using associative transducers (ATs).
AT-GIS operates on input formats directly, avoiding expensive con-
versions, and thus significantly reduces data-to-query time.

AT-GIS shows good scaling behaviour for single-pass spatial
queries on un-indexed data, even matching the performance of
index-based systems for simple queries. Given the lack of pre-built
indices, it can order filtering operations to minimise the cost of
joins, while maintaining parallelism through partitioning. However,
compared to large cluster-based systems, AT-GIS exhibits worse
performance for large joins (>200 million elements) due to its sim-
ple partitioning scheme and the limits of single-node computation.

We have focussed on situations in which there is no knowledge
of past data. Based on our experience with the XML-formatted
data, our future works plans to explore how incremental changes
in large datasets can be handled efficiently through the storage of
intermediate results and lightweight index construction.



8. REFERENCES
[1] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz.

Hadoop-GIS: A high performance spatial data warehousing
system over mapreduce. Proc. VLDB Endow., 6(11), 2013.

[2] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and
A. Ailamaki. NoDB: Efficient query execution on raw data
files. In SIGMOD, 2012.

[3] J. C. Anderson, J. Lehnardt, and N. Slater. CouchDB: The
definitive guide. O’Reilly, 2010.

[4] H. Andoyer. Cours D’Astronomie. 1909.
[5] M. Batty. Big data, smart cities and city planning. Dialogues

in Human Geography, 3(3), 2013.
[6] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100:

Hyper-pipelining query execution. In CIDR, volume 5, 2005.
[7] M. Botts, G. Percivall, C. Reed, and J. Davidson. OGC sensor

web enablement: Overview and high level architecture. In
GeoSensor networks. 2008.

[8] T. Bray. The JavaScript Object Notation (JSON) Data
Interchange Format. RFC 7159, 2014.

[9] J. R. Davis. IBM’s DB2 spatial extender: Managing
geo-spatial information within the DBMS. IBM Corporation,
1998.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. Communications of the ACM,
51(1), 2008.

[11] DEBS Grand Challenge.
http://www.debs2015.org/call-grand-challenge.html, 2015.

[12] M. J. Egenhofer. Toward the semantic geospatial web. In
SIGSPATIAL. ACM, 2002.

[13] A. Eldawy and M. F. Mokbel. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE, 2015.

[14] Esper Stream Processing Engine.
http://www.espertech.com/esper, 2015.

[15] Y. Fang, M. Friedman, G. Nair, M. Rys, and A.-E. Schmid.
Spatial indexing in Microsoft SQL Server 2008. In SIGMOD,
2008.

[16] G. Garbis, K. Kyzirakos, and M. Koubarakis. Geographica: A
benchmark for geospatial RDF stores. In ISWC. 2013.

[17] B. Gehrels, B. Lalande, M. Loskot, and A. Wulkiewicz.
Boost geometry library, 2014.

[18] GeoCouch. http://github.com/couchbase/geocouch, 2015.
[19] GeoJSON specification.

http://geojson.org/geojson-spec.html, 2015.
[20] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez,

C. Soriente, and P. Valduriez. Streamcloud: An elastic and
scalable data streaming system. IEEE TPDS, 23(12), 2012.

[21] M. Haklay and P. Weber. OpenStreetMap: User-generated
street maps. IEEE Pervasive Computing, 7(4), 2008.

[22] S. E. Hampton, C. A. Strasser, J. J. Tewksbury, W. K. Gram,
A. E. Budden, A. L. Batcheller, C. S. Duke, and J. H. Porter.
Big data and the future of ecology. Frontiers in Ecology and
the Environment, 11(3), 2013.

[23] S. I. Hay, D. B. George, C. L. Moyes, and J. S. Brownstein.
Big data opportunities for global infectious disease
surveillance. PLoS Med, 10(4), 2013.

[24] E. G. Hoel and H. Samet. Data-parallel spatial join
algorithms. In ICPP, 1994.

[25] S. Holl and H. Plum. PostGIS. GeoInformatics, 3(2009),
2009.

[26] M. Isard and Y. Yu. Distributed data-parallel computing using
a high-level programming language. In SIGMOD, 2009.

[27] M. Isenburg and P. Lindstrom. Streaming meshes. In IEEE

Visualization, 2005.
[28] T. Johnson, S. Muthukrishnan, and I. Rozenbaum. Monitoring

regular expressions on out-of-order streams. In ICDE, 2007.
[29] S. J. Kazemitabar, U. Demiryurek, M. Ali, A. Akdogan, and

C. Shahabi. Geospatial stream query processing using
Microsoft SQL Server StreamInsight. Proc. VLDB Endow.,
3(1-2), 2010.

[30] A. Koliousis, M. Weidlich, R. C. Fernandez, A. Wolf,
P. Costa, and P. Pietzuch. SABER: Window-based hybrid
stream processing for heterogeneous architectures. In
SIGMOD, 2016.

[31] J. Kong, L. A. Cooper, F. Wang, D. Gutman, J. Gao,
C. Chisolm, A. Sharma, T. Pan, E. G. Van Meir, T. M. Kurc,
et al. Integrative, multimodal analysis of glioblastoma using
TCGA molecular data, pathology images, and clinical
outcomes. IEEE Trans. on Biomedical Engineering, 58(12),
2011.

[32] R. K. V. Kothuri, S. Ravada, and D. Abugov. Quadtree and
R-tree indexes in Oracle Spatial: A comparison using GIS
data. In SIGMOD, 2002.

[33] J.-G. Lee and M. Kang. Geospatial big data: Challenges and
opportunities. Big Data Research, 2(2), 2015.

[34] X. Liu, J. Han, et al. Implementing WebGIS on Hadoop: A
case study of improving small file I/O performance on HDFS.
In CLUSTER, 2009.

[35] W. Lu, K. Chiu, and Y. Pan. A parallel approach to XML
parsing. In Grid Computing, 2006.

[36] A. Meduna. Finite and pushdown transducers. In Automata
and Languages. 2000.

[37] V. Mische. GeoCouch: A spatial index for CouchDB.
Presentation at FOSS4G, 2010.

[38] MonetDB GeoSpatial.
https://www.monetdb.org/Documentation/Extensions/GIS,
2015.

[39] MySQL 5.0 Reference Manual (11.5. Extensions for Spatial
Data). https://dev.mysql.com/doc/refman/5.0/en/, 2015.

[40] T. T. Nguyen. Indexing PostGIS databases and spatial query
performance evaluations. International Journal of
Geoinformatics, 5(3), 2009.

[41] P. Ogden, D. Thomas, and P. Pietzuch. Scalable XML query
processing using parallel pushdown transducers. Proc. VLDB
Endow., 6(14), 2013.

[42] Open Geospatial Consortium, Simple feature access
specification. http://www.opengeospatial.org/standards/sfa,
2015.

[43] OpenDStreetMap XML format.
http://wiki.openstreetmap.org/wiki/OSM_XML, 2015.

[44] OpenStreetMap mirror, 2015/05/18. ftp://ftp.spline.de/pub/
openstreetmap/planet/2015/planet-150518.osm.bz2, 2015.

[45] Oracle Corporation. Oracle Spatial and Graph: Advanced
data management. 2014.

[46] Y. Pan, Y. Zhang, and K. Chiu. Simultaneous transducers for
data-parallel XML parsing. In IPDPS, 2008.

[47] A. Papadopoulos and Y. Manolopoulos. Parallel bulk-loading
of spatial data. Parallel Computing, 29(10), 2003.

[48] J. M. Patel and D. J. DeWitt. Partition-based spatial-merge
join. In SIGMOD, volume 25, 1996.

[49] F. Peng and S. S. Chawathe. XPath queries on streaming data.
In SIGMOD, 2003.

[50] RapidJSON. https://github.com/miloyip/rapidjson, 2015.
[51] S. Ray, B. Simion, and A. Demke Brown. Jackpine: A

benchmark to evaluate spatial database performance. In



ICDE, 2011.
[52] S. Shekhar, V. Gunturi, M. R. Evans, and K. Yang. Spatial

big-data challenges intersecting mobility and cloud
computing. In MobiDE, 2012.

[53] A. Silberschatz, H. Korth, and S. Sudarshan. Database
systems concepts. McGraw-Hill, Inc., 6 edition, 2010.

[54] B. Simion, D. N. Ilha, A. D. Brown, and R. Johnson. The
price of generality in spatial indexing. In BigSpatial, 2013.

[55] Simple API for XML. http://sax.sourceforge.net/, 2015.
[56] R. Sinya, K. Matsuzaki, and M. Sassa. Simultaneous finite

automata: An efficient data-parallel model for regular
expression matching. In ICPP, 2013.

[57] H. Sutter. The free lunch is over: A fundamental turn toward
concurrency in software. Dr. Dobb’s journal, 30(3), 2005.

[58] O. Tange et al. Gnu parallel: The command-line power tool.

The USENIX Magazine, 36(1), 2011.
[59] M. Vermeij, W. Quak, M. Kersten, and N. Nes. MonetDB: A

novel spatial column store DBMS. In FOSS4G, 2008.
[60] F. Wang, J. Kong, L. Cooper, T. Pan, T. Kurc, W. Chen,

A. Sharma, C. Niedermayr, T. Oh, D. Brat, A. Farris,
D. Foran, and J. Saltz. A data model and database for
high-resolution pathology analytical image informatics.
Journal of Pathology Informatics, 2(1), 2011.

[61] L. Xiao and Z. Wang. Internet of things: A new application
for intelligent traffic monitoring system. Journal of networks,
6(6), 2011.

[62] C.-H. You and S.-D. Wang. A data parallel approach to XML
parsing and query. In HPCC, 2011.

[63] Q. Zhou and J. Zhang. Research prospect of Internet of


