8,299 research outputs found

    Classification of generalized Hadamard matrices H(6,3) and quaternary Hermitian self-dual codes of length 18

    Get PDF
    All generalized Hadamard matrices of order 18 over a group of order 3, H(6,3), are enumerated in two different ways: once, as class regular symmetric (6,3)-nets, or symmetric transversal designs on 54 points and 54 blocks with a group of order 3 acting semi-regularly on points and blocks, and secondly, as collections of full weight vectors in quaternary Hermitian self-dual codes of length 18. The second enumeration is based on the classification of Hermitian self-dual [18,9] codes over GF(4), completed in this paper. It is shown that up to monomial equivalence, there are 85 generalized Hadamard matrices H(6,3), and 245 inequivalent Hermitian self-dual codes of length 18 over GF(4).Comment: 17 pages. Minor revisio

    Commutative association schemes

    Full text link
    Association schemes were originally introduced by Bose and his co-workers in the design of statistical experiments. Since that point of inception, the concept has proved useful in the study of group actions, in algebraic graph theory, in algebraic coding theory, and in areas as far afield as knot theory and numerical integration. This branch of the theory, viewed in this collection of surveys as the "commutative case," has seen significant activity in the last few decades. The goal of the present survey is to discuss the most important new developments in several directions, including Gelfand pairs, cometric association schemes, Delsarte Theory, spin models and the semidefinite programming technique. The narrative follows a thread through this list of topics, this being the contrast between combinatorial symmetry and group-theoretic symmetry, culminating in Schrijver's SDP bound for binary codes (based on group actions) and its connection to the Terwilliger algebra (based on combinatorial symmetry). We propose this new role of the Terwilliger algebra in Delsarte Theory as a central topic for future work.Comment: 36 page

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit
    • …
    corecore