256 research outputs found

    Quasi-automatic colon segmentation on T2-MRI images with low user effort

    Get PDF
    About 50% of the patients consulting a gastroenterology clinic report symptoms without detectable cause. Clinical researchers are interested in analyzing the volumetric evolution of colon segments under the effect of different diets and diseases. These studies require noninvasive abdominal MRI scans without using any contrast agent. In this work, we propose a colon segmentation framework designed to support T2-weighted abdominal MRI scans obtained from an unprepared colon. The segmentation process is based on an efficient and accurate quasiautomatic approach that drastically reduces the specialist interaction and effort with respect other state-of-the-art solutions, while decreasing the overall segmentation cost. The algorithm relies on a novel probabilistic tubularity filter, the detection of the colon medial line, probabilistic information extracted from a training set and a final unsupervised clustering. Experimental results presented show the benefits of our approach for clinical use.Peer ReviewedPostprint (author's final draft

    End to End Colonic Content Assessment: ColonMetry Application

    Get PDF
    Colon segmentation; Colonic content; Intestinal gasSegmentación de colon; Contenido colónico; Gas intestinalSegmentació del còlon; Contingut colònic; Gas intestinalThe analysis of colonic contents is a valuable tool for the gastroenterologist and has multiple applications in clinical routine. When considering magnetic resonance imaging (MRI) modalities, T2 weighted images are capable of segmenting the colonic lumen, whereas fecal and gas contents can only be distinguished in T1 weighted images. In this paper, we present an end-to-end quasi-automatic framework that comprises all the steps needed to accurately segment the colon in T2 and T1 images and to extract colonic content and morphology data to provide the quantification of colonic content and morphology data. As a consequence, physicians have gained new insights into the effects of diets and the mechanisms of abdominal distension.This work was supported by the Spanish Ministry of Science and Innovation (Proyectos de Generación de Conocimiento), PID2021-122295OB-I00, and Agencia Estatal de Investigación and Fondos FEDER, PID2021-122136OB-C21); Ciberehd is funded by the Instituto de Salud Carlos III

    Development Of Semi-Automatic Liver Segmentation Method For Three-Dimensional Computed Tomography Dataset

    Get PDF
    Segmentation of liver from 3D computed tomography (CT) dataset is very important in hepatic disease diagnosis and treatment planning. Manual segmentation gives accurate result but the process is tedious and time-consuming due to a large number of slices produced by the CT scanner. Low contrast of liver boundary with neighbouring organs, high shape variability of liver and presence of various liver pathologies will affect the accuracy of automatic liver segmentation and thus make automatic liver segmentation a challenging task. Therefore, a semi-automated liver segmentation program is developed in this project in order to obtain high accuracy in liver segmentation and reduce the time required for manual liver segmentation. The proposed algorithm can be divided into three stages. The first stage is parameter setup and pre-processing. User interaction is required to setup the segmentation parameters. For pre-processing, anisotropic diffusion filtering is applied to reduce noise in the image and smooth the image. In second stage, thresholding is applied to CT images to extract the possible liver regions. Then, morphological closing and opening are used close small holes inside liver region and break the thin connections between liver and neighbouring organs. Hole-filling is employed to fill up the large holes inside liver region. Next, the connected component analysis is performed to extract liver region from the CT slices. The last stage is post-processing. In post-processing, the contour of liver is smooth by binary Gaussian filter. The liver segmentation program with proposed algorithm is evaluated with CT datasets obtained from SLIVER07 to prove its effectiveness in liver segmentation. The results of liver segmentation achieved average VOE of 9.9

    Semi-Automatic Segmentation of Normal Female Pelvic Floor Structures from Magnetic Resonance Images

    Get PDF
    Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are important health issues affecting millions of American women. Investigation of the cause of SUI and POP requires a better understand of the anatomy of female pelvic floor. In addition, pre-surgical planning and individualized treatment plans require development of patient-specific three-dimensional or virtual reality models. The biggest challenge in building those models is to segment pelvic floor structures from magnetic resonance images because of their complex shapes, which make manual segmentation labor-intensive and inaccurate. In this dissertation, a quick and reliable semi-automatic segmentation method based on a shape model is proposed. The model is built on statistical analysis of the shapes of structures in a training set. A local feature map of the target image is obtained by applying a filtering pipeline, including contrast enhancement, noise reduction, smoothing, and edge extraction. With the shape model and feature map, automatic segmentation is performed by matching the model to the border of the structure using an optimization technique called evolution strategy. Segmentation performance is evaluated by calculating a similarity coefficient between semi-automatic and manual segmentation results. Taguchi analysis is performed to investigate the significance of segmentation parameters and provide tuning trends for better performance. The proposed method was successfully tested on both two-dimensional and three-dimensional image segmentation using the levator ani and obturator muscles as examples. Although the method is designed for segmentation of female pelvic floor structures, it can also be applied to other structures or organs without large shape variatio

    Semi-Automatic Segmentation of Normal Female Pelvic Floor Structures from Magnetic Resonance Images

    Get PDF
    Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are important health issues affecting millions of American women. Investigation of the cause of SUI and POP requires a better understand of the anatomy of female pelvic floor. In addition, pre-surgical planning and individualized treatment plans require development of patient-specific three-dimensional or virtual reality models. The biggest challenge in building those models is to segment pelvic floor structures from magnetic resonance images because of their complex shapes, which make manual segmentation labor-intensive and inaccurate. In this dissertation, a quick and reliable semi-automatic segmentation method based on a shape model is proposed. The model is built on statistical analysis of the shapes of structures in a training set. A local feature map of the target image is obtained by applying a filtering pipeline, including contrast enhancement, noise reduction, smoothing, and edge extraction. With the shape model and feature map, automatic segmentation is performed by matching the model to the border of the structure using an optimization technique called evolution strategy. Segmentation performance is evaluated by calculating a similarity coefficient between semi-automatic and manual segmentation results. Taguchi analysis is performed to investigate the significance of segmentation parameters and provide tuning trends for better performance. The proposed method was successfully tested on both two-dimensional and three-dimensional image segmentation using the levator ani and obturator muscles as examples. Although the method is designed for segmentation of female pelvic floor structures, it can also be applied to other structures or organs without large shape variatio

    Semi-Automatic Segmentation of Normal Female Pelvic Floor Structures from Magnetic Resonance Images

    Get PDF
    Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are important health issues affecting millions of American women. Investigation of the cause of SUI and POP requires a better understand of the anatomy of female pelvic floor. In addition, pre-surgical planning and individualized treatment plans require development of patient-specific three-dimensional or virtual reality models. The biggest challenge in building those models is to segment pelvic floor structures from magnetic resonance images because of their complex shapes, which make manual segmentation labor-intensive and inaccurate. In this dissertation, a quick and reliable semi-automatic segmentation method based on a shape model is proposed. The model is built on statistical analysis of the shapes of structures in a training set. A local feature map of the target image is obtained by applying a filtering pipeline, including contrast enhancement, noise reduction, smoothing, and edge extraction. With the shape model and feature map, automatic segmentation is performed by matching the model to the border of the structure using an optimization technique called evolution strategy. Segmentation performance is evaluated by calculating a similarity coefficient between semi-automatic and manual segmentation results. Taguchi analysis is performed to investigate the significance of segmentation parameters and provide tuning trends for better performance. The proposed method was successfully tested on both two-dimensional and three-dimensional image segmentation using the levator ani and obturator muscles as examples. Although the method is designed for segmentation of female pelvic floor structures, it can also be applied to other structures or organs without large shape variatio

    Analysis of contrast-enhanced medical images.

    Get PDF
    Early detection of human organ diseases is of great importance for the accurate diagnosis and institution of appropriate therapies. This can potentially prevent progression to end-stage disease by detecting precursors that evaluate organ functionality. In addition, it also assists the clinicians for therapy evaluation, tracking diseases progression, and surgery operations. Advances in functional and contrast-enhanced (CE) medical images enabled accurate noninvasive evaluation of organ functionality due to their ability to provide superior anatomical and functional information about the tissue-of-interest. The main objective of this dissertation is to develop a computer-aided diagnostic (CAD) system for analyzing complex data from CE magnetic resonance imaging (MRI). The developed CAD system has been tested in three case studies: (i) early detection of acute renal transplant rejection, (ii) evaluation of myocardial perfusion in patients with ischemic heart disease after heart attack; and (iii), early detection of prostate cancer. However, developing a noninvasive CAD system for the analysis of CE medical images is subject to multiple challenges, including, but are not limited to, image noise and inhomogeneity, nonlinear signal intensity changes of the images over the time course of data acquisition, appearances and shape changes (deformations) of the organ-of-interest during data acquisition, determination of the best features (indexes) that describe the perfusion of a contrast agent (CA) into the tissue. To address these challenges, this dissertation focuses on building new mathematical models and learning techniques that facilitate accurate analysis of CAs perfusion in living organs and include: (i) accurate mathematical models for the segmentation of the object-of-interest, which integrate object shape and appearance features in terms of pixel/voxel-wise image intensities and their spatial interactions; (ii) motion correction techniques that combine both global and local models, which exploit geometric features, rather than image intensities to avoid problems associated with nonlinear intensity variations of the CE images; (iii) fusion of multiple features using the genetic algorithm. The proposed techniques have been integrated into CAD systems that have been tested in, but not limited to, three clinical studies. First, a noninvasive CAD system is proposed for the early and accurate diagnosis of acute renal transplant rejection using dynamic contrast-enhanced MRI (DCE-MRI). Acute rejection–the immunological response of the human immune system to a foreign kidney–is the most sever cause of renal dysfunction among other diagnostic possibilities, including acute tubular necrosis and immune drug toxicity. In the U.S., approximately 17,736 renal transplants are performed annually, and given the limited number of donors, transplanted kidney salvage is an important medical concern. Thus far, biopsy remains the gold standard for the assessment of renal transplant dysfunction, but only as the last resort because of its invasive nature, high cost, and potential morbidity rates. The diagnostic results of the proposed CAD system, based on the analysis of 50 independent in-vivo cases were 96% with a 95% confidence interval. These results clearly demonstrate the promise of the proposed image-based diagnostic CAD system as a supplement to the current technologies, such as nuclear imaging and ultrasonography, to determine the type of kidney dysfunction. Second, a comprehensive CAD system is developed for the characterization of myocardial perfusion and clinical status in heart failure and novel myoregeneration therapy using cardiac first-pass MRI (FP-MRI). Heart failure is considered the most important cause of morbidity and mortality in cardiovascular disease, which affects approximately 6 million U.S. patients annually. Ischemic heart disease is considered the most common underlying cause of heart failure. Therefore, the detection of the heart failure in its earliest forms is essential to prevent its relentless progression to premature death. While current medical studies focus on detecting pathological tissue and assessing contractile function of the diseased heart, this dissertation address the key issue of the effects of the myoregeneration therapy on the associated blood nutrient supply. Quantitative and qualitative assessment in a cohort of 24 perfusion data sets demonstrated the ability of the proposed framework to reveal regional perfusion improvements with therapy, and transmural perfusion differences across the myocardial wall; thus, it can aid in follow-up on treatment for patients undergoing the myoregeneration therapy. Finally, an image-based CAD system for early detection of prostate cancer using DCE-MRI is introduced. Prostate cancer is the most frequently diagnosed malignancy among men and remains the second leading cause of cancer-related death in the USA with more than 238,000 new cases and a mortality rate of about 30,000 in 2013. Therefore, early diagnosis of prostate cancer can improve the effectiveness of treatment and increase the patient’s chance of survival. Currently, needle biopsy is the gold standard for the diagnosis of prostate cancer. However, it is an invasive procedure with high costs and potential morbidity rates. Additionally, it has a higher possibility of producing false positive diagnosis due to relatively small needle biopsy samples. Application of the proposed CAD yield promising results in a cohort of 30 patients that would, in the near future, represent a supplement of the current technologies to determine prostate cancer type. The developed techniques have been compared to the state-of-the-art methods and demonstrated higher accuracy as shown in this dissertation. The proposed models (higher-order spatial interaction models, shape models, motion correction models, and perfusion analysis models) can be used in many of today’s CAD applications for early detection of a variety of diseases and medical conditions, and are expected to notably amplify the accuracy of CAD decisions based on the automated analysis of CE images

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    MRI-Based Attenuation Correction in Emission Computed Tomography

    Get PDF
    The hybridization of magnetic resonance imaging (MRI) with positron emission tomography (PET) or single photon emission computed tomography (SPECT) enables the collection of an assortment of biological data in spatial and temporal register. However, both PET and SPECT are subject to photon attenuation, a process that degrades image quality and precludes quantification. To correct for the effects of attenuation, the spatial distribution of linear attenuation coefficients (μ-coefficients) within and about the patient must be available. Unfortunately, extracting μ-coefficients from MRI is non-trivial. In this thesis, I explore the problem of MRI-based attenuation correction (AC) in emission tomography. In particular, I began by asking whether MRI-based AC would be more reliable in PET or in SPECT. To this end, I implemented an MRI-based AC algorithm relying on image segmentation and applied it to phantom and canine emission data. The subsequent analysis revealed that MRI-based AC performed better in SPECT than PET, which is interesting since AC is more challenging in SPECT than PET. Given this result, I endeavoured to improve MRI-based AC in PET. One problem that required addressing was that the lungs yield very little signal in MRI, making it difficult to infer their μ-coefficients. By using a pulse sequence capable of visualizing lung parenchyma, I established a linear relationship between MRI signal and the lungs’ μ-coefficients. I showed that applying this mapping on a voxel-by-voxel basis improved quantification in PET reconstructions compared to conventional MRI-based AC techniques. Finally, I envisaged that a framework for MRI-based AC methods would potentiate further improvements. Accordingly, I identified three ways an MRI can be converted to μ-coefficients: 1) segmentation, wherein the MRI is divided into tissue types and each is assigned an μ-coefficient, 2) registration, wherein a template of μ-coefficients is aligned with the MRI, and 3) mapping, wherein a function maps MRI voxels to μ-coefficients. I constructed an algorithm for each method and catalogued their strengths and weaknesses. I concluded that a combination of approaches is desirable for MRI-based AC. Specifically, segmentation is appropriate for air, fat, and water, mapping is appropriate for lung, and registration is appropriate for bone
    corecore