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PEMBANGUNAN KAEDAH PERUASAN HATI SEPARA- 

AUTOMATIK DARIPADA DATASET TOMOGRAFI 

BERKOMPUTER TIGA DIMENSI 

 

ABSTRAK 

 

 Peruasan hati daripada dataset tiga dimensi tomografi berkomputer (CT) adalah sangat 

penting dalam diagnosis dan perancangan rawatan penyakit hati. Peruasan manual memberi 

keputusan yang lebih tepat tetapi meletihkan dan memakan masa kerana kepingan imej yang 

banyak dihasilkan oleh mesin CT. Beza jelas yang rendah pada sempadan hati dengan organ-

organ berjiranan, kepelbagaian yang tinggi bentuk-bentuk hati dan kehadiran pathologi hati akan 

menjejaskan ketepatan peruasan hati automatik dan menjadikan peruasan hati automatic satu 

tugas yang mencabar. Oleh itu, perisian peruasan separa-automatik telah dibina dalam projek ini 

untuk memperoleh ketepatan peruasan hati yang tinggi dan mengurangkan masa yang digunakan 

untuk peruasan hati secara manual. Algoritma yang dicadangkan boleh dibahagikan kepada tiga 

peringkat. Peringkat pertama ialah persiapan parameter dan pra-pemprosesan. Dalam pra-

prosesan, keadah resapan tak-isotropi digunakan untuk mengurangkan hingar dalam imej dan 

melicinkan imej. Dalam peringkat kedua, teknik pengambangan digunakan untuk mendapatkan 

kawasan hati dalam imej CT. Selepas itu, mophologi penutupan dan pembukaan digunakan untuk 

menutup lubang-lubang kecil dalam kawasan hati dan memutuskan sambungan nipis di antara 

hati dengan organ-organ berjiranan. Kemudian, penutupan lubang digunakan untuk mengisi 

lubang-lubang besar dalam kawasan hati. Selepas itu, analisis komponen-komponen bersambung 

akan dijalankan untuk menyarikan kawasan hati daripada kepingan imej CT. Peringkat terakhir 

merupakan pasca-pemprosesan. Dalam pasca-pemprosesan, kontur hati dilicinkan dengan turas 

Gauss perduaan. Perisian peruasan hati dengan algoritma yang dicadangkan dinilai dengan 

menggunakan dataset CT yang diperoleh daripada SLIVER07 untuk membuktikan 

keberkesanannya dalam peruasan hati. Keputusan peruasan hati mencapai purata VOE 9.93 േ 

4.36 %, purata RVD -0.03 േ 3.76 %, purata ASD 2.57 േ 1.73 mm, purata RMSD 5.82 േ 3.56 

mm dan purata MSD 39.90 േ 17.23 mm. Jumlah masa yang diperlukan oleh perisian yang dibina 

untuk menyelesaikan proses peruasan hati adalah di antara 2 hingga 4 minit. Algoritma yang 

dicadangkan dapat meruas hati yang sihat dengan cekap dan berkesan walaupun terdapat masalah 

peruasan berlebihan dan masalah peruasan berkurangan disebabkan kehadiran penyakit dan beza 

jelas yang rendah di antara hati dengan organ-organ berjiranan. 
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DEVELOPMENT OF SEMI-AUTOMATIC LIVER 

SEGMENTATION METHOD FOR THREE 

DIMENSIONAL COMPUTED TOMOGRAPHY DATASET 

 

ABSTRACT 

  

Segmentation of liver from 3D computed tomography (CT) dataset is very important in 

hepatic disease diagnosis and treatment planning. Manual segmentation gives accurate result but 

the process is tedious and time-consuming due to a large number of slices produced by the CT 

scanner. Low contrast of liver boundary with neighbouring organs, high shape variability of liver 

and presence of various liver pathologies will affect the accuracy of automatic liver segmentation 

and thus make automatic liver segmentation a challenging task. Therefore, a semi-automated liver 

segmentation program is developed in this project in order to obtain high accuracy in liver 

segmentation and reduce the time required for manual liver segmentation. The proposed 

algorithm can be divided into three stages. The first stage is parameter setup and pre-processing. 

User interaction is required to setup the segmentation parameters. For pre-processing, anisotropic 

diffusion filtering is applied to reduce noise in the image and smooth the image. In second stage, 

thresholding is applied to CT images to extract the possible liver regions. Then, morphological 

closing and opening are used close small holes inside liver region and break the thin connections 

between liver and neighbouring organs. Hole-filling is employed to fill up the large holes inside 

liver region. Next, the connected component analysis is performed to extract liver region from 

the CT slices. The last stage is post-processing. In post-processing, the contour of liver is smooth 

by binary Gaussian filter. The liver segmentation program with proposed algorithm is evaluated 

with CT datasets obtained from SLIVER07 to prove its effectiveness in liver segmentation. The 

results of liver segmentation achieved average VOE of 9.93 േ 4.36 %, average RVD of -0.03 േ 

3.76 %, average ASD of 2.57 േ 1.73 mm, average RMSD of 5.82 േ 3.56 mm, and average MSD 

of 39.90 േ 17.23 mm. The total time required for the program developed to complete liver 

segmentation process is between 2 to 4 minutes. The proposed algorithm was able to segment the 

healthy liver effectively and efficiently even though there were over-segmentation and under-

segmentation problem due to the presence of pathologies and low contrast between liver and 

neighbouring organs. 
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CHAPTER ONE - 

INTRODUCTION 

 Background 

Liver is the largest glandular organ in our body. It is located at the upper-right section of 

abdominal cavity to the right of stomach as shown in Figure 1.1. The liver plays important roles 

in keeping the body pure from toxins and harmful substances. Among the functions of liver are 

haemoglobin decomposition, protein synthesis, glycogen storage, storage of vitamins and 

minerals, detoxification, hormone regulation and bile production (Jayanthi, 2016; Starr & 

McMillan, 2016). 

Figure 1.1: Location of liver in human abdominal cavity (Starr & McMillan, 2016) 

 

Liver is prone to many diseases such as hepatitis A, hepatitis B, hepatitis C, cirrhosis and 

liver cancer (Younossi et al., 2011). According to Global Cancer Incidence, Mortality and 

Prevalence (GLOBOCAN), which is an international agency for research on cancer under World 

Health Organization (WHO), liver cancer has become the second common causes of cancer death 

(Ferlay et al., 2013). Liver cancer caused 745,000 deaths worldwide in 2012 (Ferlay et al., 2015). 

In Malaysia, liver cancer caused 1,600 death in 2010 and the figure was increased to 1,900 death 

in 2015 (WHO, 2016). 

 

Computer aided liver diagnosis plays an important role in helping doctors to diagnose 

liver diseases and plan proper treatment (Luo et al., 2014). Diagnosis of liver diseases can be 

done by using medical imaging modalities such as ultrasonography, computed tomography (CT) 

and magnetic resonance imaging (MRI). Ultrasonography is safe because it uses high frequency 

sound wave instead of ionising radiation but its accuracy is lower than CT and MRI. CT scan 

uses X-ray and provides high accuracy images. MRI uses strong magnetic field and high radiation 

Liver 

Stomach 

Small intestine Colon 

Rectum 

Gall bladder 

Pancreas 

Esophagus 
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radio waves to get detailed image (Jayanthi, 2016). Among these imaging modalities, CT is 

commonly used because it is well-established for non-invasive diagnosis of liver diseases due to 

advanced technology in CT scanner and image reconstruction algorithm (Li et al., 2015). 

 

Liver segmentation is a process to divide a medical image obtained from imaging 

modalities such as computed tomography (CT) and magnetic resonance imaging (MRI) into liver 

parenchyma area and non-liver parenchyma area (Luo et al., 2014). Liver segmentation is 

important in computer aided liver diagnosis to evaluate patient-specific liver anatomy for hepatic 

disease diagnosis, function assessment, and treatment planning  (Li et al., 2015). Traditionally, 

doctors or radiologists segment liver region manually. Yet, manual segmentation is difficult, 

time-consuming and doctors or radiologists need to have experience in the liver segmentation to 

obtain accurate results. Hence, it is a goal to segment liver region fast and accurately (Lu et al., 

2014).  

 

Semi-automatic or automatic liver segmentation is preferable and helpful in clinical 

application (Li et al., 2015). Many methods have been proposed to segment liver effectively and 

efficiently.  The methods used in semi-automatic and automatic liver segmentation include 

threshold based, region growing, active contour, graph cuts, and clustering based (Luo et al., 

2014). Liver segmentation is a challenging task in medical image processing due to high shape 

variability of liver, low contrast with adjacent organs or tissues and presence of various 

pathologies such as tumours. Besides, image artefacts and noise presence may lead to blurred 

boundaries between liver and neighbouring organs and affect the accuracy of segmentation (Li et 

al., 2015; Peng et al., 2015). 

 

 Problem Statements 

One challenge in automatic liver segmentation is the accuracy of segmentation. In 

automatic liver segmentation, low contrast of liver boundary with adjacent organs may lead to 

over-segmentation problem in grey-level based methods (Irr & Rahni, 2015). The artefacts and 

noise presence in CT image that blurred the liver boundary will affect the liver segmentation 

accuracy for pixel-based approaches such as thresholding, region growing, and edge detection 

because these methods are very sensitive to noise (Li et al., 2015). The presence of large tumours 

and other liver pathologies leads to inhomogeneous appearance in CT images which may cause 

misclassification of the tumours as non-liver tissue in region growing and clustering-based 

methods  (Peng et al., 2015).  

 



3 
 

Segmentation of liver manually by radiologists is a tedious and time-consuming task due 

to large number of CT slices produced by high resolution CT scanner. The difficulty of manual 

liver segmentation increases due to the complexity and variability of liver shape (Arjun et al., 

2015). The time required for a radiologist to segment liver from a CT dataset with 320 slices is 

about 4 hours. The manual segmentation results are greatly depend on the skill of the radiologist 

or doctor so human error may affect the segmentation results (Goryawala et al., 2012).  

 

 Parameter configuration is time-consuming too. This is because there are more than one 

parameter to be configured in image processing operations such as image filtering and 

morphological image processing. It is better to find out the optimum values for the parameters 

experimentally and set the optimum values as default values of the parameters in term of 

performance consideration (Li et al., 2015). 

 

 Project Objectives 

The objectives of this project are: 

1. To develop a semi-automatic liver segmentation program. 

2. To determine the optimum values for parameters of image filtering and morphological 

operations. 

3. To evaluate the performance of the developed program in term of segmentation accuracy 

and segmentation time. 

 

 Scope of Project 

 The scope of project is to develop a semi-automatic program for liver segmentation. The 

program developed is written by using C++ programming language with Open Source Computer 

Vision (OpenCV) library. Graphical user interface (GUI) is created to aid user to use the program 

easily. 

 

In this project, only abdominal CT images will be dealt with. The 3D abdominal CT 

datasets are obtained from Segmentation of the Liver Competition 2007 (SLIVER07) website, 

http://www.sliver07.org/download.php. Each datasets consists of 64 to 394 CT slices (Heimann 

et al., 2009).  

 



4 
 

 Chapter Organization 

This report consists of five chapters. Chapter 1 gives an introduction to the project which 

includes the background of the project, problem statement, objectives, and scope of project. 

 

Chapter 2 contains the literature review which describes the previous techniques 

developed for liver segmentation. This chapter explains the imaging modalities used in abdominal 

image acquisition. Various approaches used in liver segmentation are explained in this chapter. 

 

Chapter 3 presents methodology of this project. In this chapter, the concepts and 

algorithm used in liver segmentation are discussed and explained in detail. The design of 

graphical user interface and the program workflow are described in this chapter. 

 

Chapter 4 explains the CT dataset used for evaluation. The optimisation processes of 

anisotropic diffusion filtering and morphological operation are explained in detail. The evaluation 

methods of the segmentation result are presented in this chapter. The evaluation results obtained 

are analysed and discussed in detail. The quantitative comparison of proposed method with 

methods developed by other researchers is presented in this chapter. 

 

Chapter 5 presents the conclusion of this final year project. Some recommendations on 

future improvements are expressed in this chapter. 
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CHAPTER TWO- 

LITERATURE REVIEW 

 Introduction 

As mentioned in Chapter 1, diagnostic imaging modalities such as ultrasonography, 

computed tomography (CT) and magnetic resonance imaging (MRI) can be used to obtained 

abdominal images for diagnosis of liver diseases. The working principles of modalities used to 

obtained abdominal images are discussed in section 2.2. 

 

Image segmentation is a process of decomposition of image into multiple parts for 

analysis. The analysis usually involves object identification or attribute extraction of digital image. 

The level of detail of decomposition process depends on the object to be identified or attribute to 

be extracted. Once the object is identified or attribute is extracted, the segmentation process will 

be stopped. To improve the accuracy of segmentation, considerable care should be taken 

especially when dealing with segmentation of nontrivial images (Gonzalez & Woods, 2006). The 

methods used in pre-processing of abdominal images to improve the segmentation result are 

presented in section 2.3. The common techniques used in liver segmentation are discussed in 

section 2.4.  

 

 Modalities in Diagnostic Imaging 

Different modalities are used by radiologist and doctor to view the internal parts of body. 

The common imaging modalities used in early diagnosis of liver diseases are ultrasonography, 

computed tomography (CT) and magnetic resonance imaging (MRI) (Jayanthi, 2016). The 

working principles of ultrasonography, computed tomography (CT) and magnetic resonance 

imaging (MRI) are discussed in the subsections below. 

 

 Ultrasonography 

 In ultrasonography, ultrasonography machine as shown in Figure 2.1(a) is used to acquire 

image. Gel that acts as acoustic seal is applied on the patient’s skin and transducer as shown in 

Figure 2.1(b) that emits and receives high frequency sound waves is moved across the surface of 

patient’s body. The image is generated by scan converter at real time based on the intensity of 

returning echo and the duration for the sound wave to reflect back to the transducer. The intensity 

of returning echo of tissues such as abdominal fats that have higher echogenicity than other soft 

tissues will appear brighter on ultrasound image. These tissues are described as hyperechoic. 

Tissues that have lower intensity of returning echo will appear darker on ultrasound images and 
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are known as hypoechoic. Fluid-filled structures such as gall bladder and urinary bladder appear 

as black due to few or no acoustic interfaces (Eastman et al., 2006; Singh & Neutze, 2015). 

  
(a)     (b) 

Figure 2.1: (a) Ultrasonography machine, (b) Transducers for different purpose (Eastman et 
al., 2006) 

 

The image is often recorded with 512 × 512 or 640 × 480 pixels with bit depth of 8 bits 

for grey image. For colour image, bit depth of 24 bits is used, one byte each for red, green and 

blue channels. For video clip acquisition, the video is taken at 10 to 30 frames per seconds 

(Bushberg et al., 2012). Figure 2.2 shows ultrasonography (USG) image of abdomen which 

shows that there a solid echogenic mass (M) between liver and right kidney (RK) (Bano et al., 

2012).  

 
Figure 2.2: Ultrasound image of abdomen (Bano et al., 2012) 
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 Computed Tomography (CT) 

In computed tomography (CT), the images are acquired by measuring the X-ray 

transmission profiles through a patient from different angle around the body. Figure 2.3 shows 

anatomical planes of body. From the figure, the axial plane divides the body into upper and lower 

segments, the coronal plane divides the body into front and back sections, and the sagittal plane 

divides body into left and right sections. Figure 2.4 shows a patient is placed in CT gantry and 

CT image acquisition in axial sections. During CT scanning, the X-ray tube rotates continuously 

around patient. A beam of X-ray passes through patient’s body and hits detector arc which 

consists of row of detector elements. Rapid acquisition can be achieved by using multiple detector 

rows. When the X-ray beam passes through patient’s body, the tissues with different density will 

have different linear attenuation coefficients to the X-ray beam. The detector samples and 

digitises the incoming radiation signal and send to computer for image reconstruction (Dance et 

al., 2014; Smith & Farrell, 2014; Singh & Neutze, 2015).  

 
Figure 2.3: Anatomical planes of body (Smith & Farrell, 2014)  

 

 

Axial plane 

Coronal plane 

Sagittal plane 
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Figure 2.4: A patient is placed in CT gantry and CT image acquisition in axial sections (Singh 
& Neutze, 2015) 

 

Image reconstruction algorithm is applied to restructure the raw data. The average linear 

attenuation coefficient for each projection of a pixel is computed and stored in a 3D matrix of 

pixels. The value of pixel represents the linear attenuation coefficients and is expressed as 

Hounsfield units (HU). Hounsfield units range from -1000 for air to 1000 for dense bone and 

water is represented as zero. For clinical imaging, minimum bit depth used for Hounsfield scale 

should be 12, so that it can cover most clinical relevant tissues. Hounsfield scale can be extended 

to bit depth of 14 to make it compatible with high linear attenuation coefficient materials. CT 

images usually store as raw or DICOM format with bit depth of 16 bits (Dance et al., 2014; 

Washington & Leaver, 2015). Figure 2.5 shows an abdominal axial CT image with dense bone 

appears as white and soft tissue appears as grey (Bano et al., 2012). 

 

Figure 2.5: Abdominal axial CT image (Bano et al., 2012) 
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 Magnetic Resonance Imaging (MRI) 

Magnetic resonance is based on the interaction between applied magnetic field and 

angular momentum of nuclear spin. In magnetic resonance imaging (MRI), the patient is exposed 

to strong magnetic field and radio frequency (RF) wave in MRI scanner as shown in Figure 2.6. 

In MRI, RF pulse which has the same frequency as the spin frequency of hydrogen nuclei is 

applied to the patient. The hydrogen nuclei become energised or resonate after absorbed the RF 

pulse energy. Once the RF pulse is stopped, the excited hydrogen nuclei immediately decay back 

to their steady state by emitting RF signal. This process is known as relaxation. The intensity of 

RF signal emitted which represents the number of hydrogen nuclei and location is captured by 

the receiver coil. If high number of hydrogen atoms present, for example in fat, the received RF 

signal will be intense whereas if the low number of hydrogen atoms present, for example in bone, 

the received RF signal will have low intensity (Eastman et al., 2006; Singh & Neutze, 2015). 

 

Figure 2.6: MRI scanner (Eastman et al., 2006) 

 

The MRI scanner can measure relaxation times, T1 and T2. The T1 relaxation time is 

also known as longitudinal relaxation time or spin-lattice relaxation time, is the time required for 

the excited hydrogen nuclei to return to their original orientation in the direction of applied 

magnetic field by giving up their energy. One T1 is equal to time required to return to 63% of its 

original value once the RF excitation pulse stopped. T2 relaxation time is also known as spin-

spin relaxation time or transverse relaxation time, is the time required for the transverse 

magnetisation components of the excited hydrogen nuclei to decay to 37% of its initial value 

immediately after 90o RF pulse when irreversible loss of phase coherence to the spin occurs. T2* 

is another source that contributes to the total relaxation time. T2* relaxation is an exponential 

decay of transverse magnetisation ܯ௑௒ immediately after the excitation pulse as a function with 

time constant T2*. T2* relaxation time depends on the main field inhomogeneity and magnetic 

susceptibility (McRobbie et al., 2006).  
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MRI images usually stored in raw or DICOM format with depth of 16-bit. There are two 

common sequences in MRI known as T1-weighted and T2-weighted sequences. In T1-weighted 

image, fluids are very dark, water-based tissues are mid-grey and fat-based tissues are very bright, 

with different soft tissues have intensity in between. In T2-weighted image, water is bright and 

fat is dark, with different soft tissues have intensity in between (McRobbie et al., 2006). Figure 

2.7 shows example of T1-weighted and T2-weighted abdominal images (Bano et al., 2012). 

 
(a)      (b) 

Figure 2.7: (a) T1-weighted abdominal axial image, (b) T2-weighted abdominal axial image 
(Bano et al., 2012) 

 

 Comparison of Diagnostic Imaging Modalities 

Ultrasonography is safe as it does not require the use of ionising radiation.  

Ultrasonography is relatively cheaper than other imaging modalities like CT and MRI. In addition, 

it is fast and can produce slices in multiple planes at real time. Besides, portable unit is available 

to be used in emergency situations. However, ultrasonography is not good for bone and lung 

imaging and the detection of malignant lump required skilled operator (Smith & Farrell, 2014). 

 

One advantage of MRI is it does not use ionising radiation as in CT. During CT scan, 

patient is exposed to radiation of X-rays beam, so it is not recommended for pregnant women and 

children. CT is good for axial imaging whereas MRI is good for coronal and sagittal imaging. CT 

has higher spatial resolution than MRI but soft tissue contrast of MRI is better than soft tissue 

contrast of CT (Smith & Farrell, 2014). MRI is generally more costly than CT and the image 

acquisition time is longer as compared to CT. MRI is not able to scan patients with ferromagnetic 

material in their body (Singh & Neutze, 2015). Long scan time of MRI may result in motion 

artefacts in the images acquired. Single breath-hold is required for abdominal CT scan to prevent 

motion artefacts (Smith & Farrell, 2014). The advantages and disadvantages of the three 

modalities are summarised in Table 2.1.  
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Table 2.1: Comparison of diagnostic imaging modalities (Smith & Farrell, 2014; Singh & 
Neutze, 2015) 

 Ultrasonography CT MRI 
Technology 
used 

Ultrasound wave X-ray Magnetic field and RF 
wave 

Advantages  Safe, no ionising 
radiation  

 Less expensive 
than CT and MRI 

 Multiple plane 
imaging 

 Real-time imaging 
 Portable 

 Good for axial 
imaging 

 Scans are 
performed faster 
than MRI 

 Higher spatial 
resolution than 
MRI 

 Good for coronal 
and sagittal 
imaging 

 Soft tissue contrast 
is better than CT  

 No ionising 
radiation 

Disadvantages  Not good for bone 
and lung imaging 

 Required skilled 
operator to detect 
malignant lump 

 

 Expensive 
 Patient is exposed 

to radiation of X-
rays beam, not 
recommended for 
pregnant women 
and children 

 Single breath-hold 
is required to 
prevent motion 
artefacts 

 More expensive 
than CT 

 Takes longer time 
to scan than CT 

 Inability to scan 
patient with 
ferromagnetic 
material in the 
body. 

 Motion artefacts 
due to long scan 
time 

 

 Image Pre-Processing 

Image pre-processing is an important step to reduce noise and smooth the images. Lu et 

al. (2014) applied Gaussian filter to smooth the image and reduce noise effects so that the 

complexity of segmentation process can be reduced. Li et al. (2013) improved segmentation result 

of fuzzy clustering by employing median filter to reduce noise and smooth the image. Suzuki et 

al. (2010) applied anisotropic diffusion as pre-processing step to improve the accuracy of 

geodesic active contour. Anisotropic diffusion is capable of reducing noise and preserving the 

structure of liver. 

 

Noise reduction improves overall accuracy of liver segmentation. Salt and pepper noise 

in CT images that reduces the accuracy of liver segmentation can be reduced by smoothing filter 

(Priyadarsini & Selvathi, 2012). Smoothing filters are applied to blur and suppress noise of an 

image. The filters can be classified into linear and non-linear filter. For linear filters, there is one-

to-one relationship between spatial and frequency domains. Gaussian filter is an example of linear 

filter whereas median filter and anisotropic diffusion are examples of non-linear filter (Gonzalez 

& Woods, 2006). The common filters used in pre-processing stage are explained in following 

subsections. 
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 Gaussian Filter 

Gaussian filter is a lowpass filter that replace a pixel with weighted average of the 

neighbouring pixels. Gaussian filter is used in noise suppression because it can reduce sharp 

intensity transitions. However, it introduces blurring effects to the edges as sharp intensity 

transitions occur at edges. Figure 2.8(a) shows a 3 ൈ 3 average smoothing filter mask. Gaussian 

filter as shown in Figure 2.8(b) is formed by introducing weightage to the average filter mask. 

The rest of the pixels are weighted using Gaussian distribution function (Gonzalez & Woods, 

2006).  

  1 1 1       1 2 1 
 

1
9
ൈ 1 1 1    

1
16

ൈ  2 4 2 
 

  1 1 1       1 2 1 
 

(a)     (b) 
Figure 2.8: (a) 3×3 average filter mask, (b) 3×3 Gaussian filter mask (Gonzalez & Woods, 

2006) 

 

The 2D Gaussian distribution function, ܩሺݔ,   .ሻ is given by Eq. (3.4) (Sonka et al., 2008)ݕ

,ݔሺܩ  ሻݕ ൌ ݁ି
௫మା௬మ

ଶఙమ  (2.1)

where ݔ and ݕ are spatial coordinates of image and ߪ is the standard deviation of the probability 

distribution. The standard deviation ߪ is proportional to the size of neighbouring pixels on which 

the filter operates. The pixel at the centre of mask is more important, thus it is assigned with 

higher value than the neighbouring pixels. The pixels which are further away from the centre of 

the mask have smaller influence, thus the values assigned are smaller (Gonzalez & Woods, 2006; 

Sonka et al., 2008).  

 

 Median Filter 

 Median filter is a non-linear filter that provides excellent noise reduction capability and 

reduces the blurring effect of the edges as in Gaussian filter. Median filter replaces each pixel 

value by the median pixel value in a square neighbourhood around the centre pixel. For example, 

in 3 ൈ 3 median filter, the values of pixel in 3 ൈ 3 neighbourhood will be sorted and the fifth 

largest value will be assigned to the corresponding pixel as shown in Figure 2.9(a). The asterisks 

as shown in Figure 2.9(b) represent values of pixel that remain the same after filter is applied 

(Gonzalez & Woods, 2006).  
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(a)     (b) 
Figure 2.9: (a) Pixel values before median filter is applied, (b) Pixel values after median filter 

is applied (Gonzalez & Woods, 2006) 

 

Median filter is effective in impulse noise reduction. However, median filter could 

damage the thin line or sharp corner in the image. This is because the principle function of median 

filter is to force points with distinct intensity to be similar to their neighbourhood. Hence, small 

isolated cluster of pixels that are lighter or darker with respect to their neighbouring pixels and 

whose area is smaller than one-half of the filter area are eliminated by median filter (Gonzalez & 

Woods, 2006; Sonka et al., 2008). 

 

 Anisotropic Diffusion 

Anisotropic diffusion is often used as pre-processing step to filter noise and preserves 

edges or other important details. Anisotropic diffusion is modelled as a diffusion that is allowed 

along homogeneous regions and inhibited by region boundaries (Yussof & Burkhardt, 2009). The 

drawback of anisotropic diffusion filtering is it requires more computational time due to the 

iterative diffusion process (Priyadarsini & Selvathi, 2012). 

 

Anisotropic diffusion equation was formulated by Perona and Malik (1990). The 

equation is based on the numerical solution of non-linear partial differential equation on two-

dimensional image. The partial differential equation used  to describe the diffusion process is 

given by Eq. (2.2) (Perona & Malik, 1990) 

 
ܫ߲
ݐ߲
	ൌ divሺܿሺݔ, ,ݕ ሻܫߘሻݐ ൌ ܿሺݔ, ,ݕ ܫ∆ሻݐ ൅ ܿ׏ ∙ (2.2) ܫ׏

where div is divergence operator, ׏ is gradient operator with respect to space variables, ∆ is 

Laplacian operator with respect to the space variables, ܫ is the input image and ܿ is the proposed 

flux function which controls the rate of diffusion at any point in the image. Two flux functions 

as shown in Eq. (2.3) and Eq. (2.4)  were proposed (Perona & Malik, 1990).  

 ܿሺ‖ܫ׏‖ሻ ൌ ݁
ି൬
‖ூ׏‖
௄ ൰

మ

 (2.3)
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ܿሺ‖ܫ׏‖ሻ ൌ

1

1 ൅ ൬
‖ܫ׏‖
ܭ ൰

ଶ 
(2.4)

The constant ܭ  is used to control the filter sensitivity to edge contrast and is either chosen 

manually or as function of noise in the image. Eq. (2.3) and Eq. (2.4) are different as Eq. (2.3) 

privileges high contrast edge over low contrast one whereas Eq. (2.4) privileges wide region over 

small region (Perona & Malik, 1990).  

 

 The Eq. (2.2) can be discretized by using 4-nearest-neighbours discretization of 

Laplacian operator. The discretized equation is given by Eq. (2.5) (Perona & Malik, 1990). 

௜,௝ܫ 
௧ାଵ ൌ ௜,௝ܫ

௧ ൅ ߣ ሾܿே ∙ δேܫ ൅ ܿௌ ∙ δௌܫ ൅ ܿா ∙ δாܫ ൅ ܿா ∙ δாܫሿ௜,௝
௧  (2.5)

The subscripts ܰ, ܵ, ܧ, and ܹ correspond to pixels on the above (North), on the below (South), 

on the right (East) and on the left (West) of the pixel under consideration at coordinate ሺ݅, ݆ሻ. The 

symbol δ is nearest neighbour differences, ݐ is number of iterations and ߣ is stability factor that 

in the range of 0 to 0.25 for the numerical scheme to be stable (Perona & Malik, 1990). 

 

 Image Segmentation Techniques 

In diagnostic radiology, liver segmentation is important in diagnosis of liver pathologies. 

Various methods used for liver segmentation are based on threshold, region growing, active 

contour, graph cuts and clustering. Some of the methods are semi-automatic which need user to 

select the region of interest before computer processing. Fully automated segmentation methods 

segment the images without user intervention (Priyadarsini & Selvathi, 2012). The various 

approaches used in liver segmentation are discussed in subsections below. 

 

 Thresholding 

 Thresholding is the simplest segmentation method and useful if the region of interest has 

good contrast with other regions in the image. If the pixel intensity, ݂ሺݔ,  ሻ  falls between lowerݕ

threshold, 	 ଵܶ and upper threshold, 	 ଶܶ, the output pixel ݃ሺݔ,  ሻ will be assigned to white whereasݕ

if the pixel intensity, ݂ሺݔ, ,ݔሻ falls outside the threshold range, the output pixel, ݃ሺݕ  ሻ willݕ

assigned to be black as shown in Eq. (2.6) (Dance et al., 2014).  

 ݃ሺݔ, ሻݕ ൌ ቄ 1 ଵܶ ൑ ݂ሺݔ, ሻݕ ൑ ଶܶ
0 ݁ݏ݅ݓݎ݄݁ݐ݋

 (2.6)
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Another approach is if the pixel intensity, ݂ሺݔ, 	 ,ሻ  falls between lower thresholdݕ ଵܶ and upper 

threshold, 	 ଶܶ, the pixel intensity will be maintained whereas pixels with intensity which is out of 

the threshold range will assigned to be black as shown in Eq. (2.7) (Dance et al., 2014). 

 ݃ሺݔ, ሻݕ ൌ ቄ ݂ሺݔ, ሻݕ ଵܶ ൑ ݂ሺݔ, ሻݕ ൑ ଶܶ
0 ݁ݏ݅ݓݎ݄݁ݐ݋

 (2.7)

 

 Yussof and Burkhardt (2009) employed thresholding technique in liver segmentation. A 

3D anisotropic diffusion was employed as pre-processing step to reduce noise while preserving 

the important details of the image. The image was segmented by thresholding method with 

threshold values that automatically selected from histogram of image. The input image and 

segmentation result are shown in Figure 2.10(a) and Figure 2.10(b) respectively. Then, 3D 

connected component was used to identify liver region and remove false liver region. The datasets 

used for evaluation were obtained from Hospital University of Freiburg. The percentage of 

volumetric overlap error was between 15% to 18%. The segmentation accuracy have to be 

improved for clinical application. 

   
(a)     (b) 

Figure 2.10: Thresholding technique. (a) Filtered image, (b) Result after thresholding (Yussof & 
Burkhardt, 2009) 

 

 Zayane et al. (2012) developed an automatic liver segmentation method by using 

thresholding technique. The interval for liver threshold was determined using histogram of CT 

image. The regions with intensity fall within interval of liver threshold were segmented. Median 

filter and morphological closing filter were applied to ameliorate image and fill the holes of 

regions. The largest connected component was identified using connected components labelling. 

Sobel filter was used to detect the contour of liver. The contour was used to segmented the liver 

region on the original image. The result was not satisfactory because the histogram varied with 

the input image. Peak representing liver in the histogram was different from dataset to dataset. 

 

 Irr and Rahni (2015) presented an automatic liver segmentation method by using low-

level processing and shape model registration. Shape model was built using ground truth of data 
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sets using direct mesh to mesh registration. Multiple thresholding and distance transform were 

used in low-level processing stage to identify the range of intensity of dense tissue and locate the 

centre of liver. Then, the 3D binary image was used for shape model registration. The evaluation 

was done using data sets obtained from SLIVER07. Accuracy of segmentation was evaluated by 

using Jaccard index. The average Jaccard index of the evaluation of all images after shape 

registration was 0.64 ± 0.11 as compared to 0.39 ± 0.09 before shape registration. Liver 

boundaries need to be refined to improve the segmentation accuracy. 

 

 Thresholding technique is simple and time-efficient to extract liver parenchyma but does 

not produce satisfactory results in certain cases. Region of interest might be incorrectly labelled 

in noisy image because the intensity of pixel is out of the threshold interval due to the presence 

of noise. If liver region has low contrast with neighbouring organs, more advanced techniques 

need to be employed to improve the accuracy of segmentation (Dance et al., 2014). The result 

may not be good if there are tumours present in the liver because the contrast between liver and 

tumour is significant (Luo et al., 2014). 

 

 Region Growing 

 Region growing is a technique that merges pixels and sub-regions into larger regions 

based on criteria set. The region growing process starts with a set of “seed” points which are 

chosen based on user’s criteria. The seed point as shown in Figure 2.11(a) grows by merging 

those neighbouring pixels that have predefined properties similar to the seed as shown in Figure 

2.11(b). The growing process stops when region is expanded to the boundary of object (Gonzalez 

& Woods, 2006; Abd-Elaziz et al., 2014). 

 
(a)      (b) 

Figure 2.11: Region growing. (a) Start of region growing, (b) Growing process after a few 
iterations (Abd-Elaziz et al., 2014) 

 

Wang and Gao (2012) developed a high-speed liver segmentation approach for 

abdominal CT image by employing mainly region growing method. The image was first 

remapped from 12-bit to 8-bit grey scale image. Then, the evanescent liver and discrete liver 

images were generated by thresholding method. The evanescent liver image was used as seed 
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points to remove non-liver region in the discrete liver image by region growing. Then, the discrete 

liver image was used to obtain minimum and maximum coordinates of discrete points for every 

rows and columns. The intensity of pixels within the range of minimum and maximum 

coordinates was recovered. Optimisation was done by edge correction removal of over-

segmented region and 3D restoration. The dataset used were obtained from CT machine of 

hospital. The image format used was DICOM with 512ൈ512 spatial resolution. The advantage of 

the approach was fast processing time. The disadvantage was the over-segmentation problem. 

  

Lu et al. (2014)  proposed an improved region growing algorithm for liver segmentation. 

In pre-processing stage, Gaussian filter was used for noise reduction. Next, to reduce the 

complexity of segmentation, thresholding was used to remove high grey level organs or tissues. 

Non-linear mapping was used to enhance the image contrast. Quasi-Monte Carlo method was 

used to select seed points for region growing. Then, region growing algorithm was applied for 

liver segmentation. In post-processing stage, Canny operator and flood-fill methods were used to 

fill out the holes and smooth the liver contour. The method was evaluated and the results showed 

7.4% average volumetric overlap error, 4.6% relative volume difference, 1.2 mm average 

symmetric surface distance, 2.8 mm root mean square symmetric surface distance and 38.5 

maximum symmetric surface distance. The results obtained was satisfactory for clinical 

application. 

 

Arjun et al. (2015) presented an improved region growing method to improve the 

segmentation result of liver CT images. In pre-processing phase, Gaussian high boost filter was 

applied to reduce noise and sharpen the image followed by thresholding technique to remove high 

grey level organs and non-linear mapping to improve the image contrast. Then, segmentation 

process was done by using region growing method with seed points generated by Halton’s quasi-

random sequence. The region growing criteria was based on the average gradient of the seed 

points and grey scale average. The post-processing involved holes filling process. The datasets 

used were obtained from Cancer Imaging Archive. The method obtained good results with 

average accuracy of 0.9704, specificity of 0.9707, and sensitivity of 0.9690. 

 

Problem arises in region growing approach if there are noise, sharp edges, and lines that 

formed disconnected boundaries because it is hard to formulate simple criteria to decide whether 

they are true region boundaries. Two regions could be joined to become single larger region if 

there is one small break in the boundary. Therefore, region growing method turns out to be a 

complex method because it requires gradually refining of the schemes to decide which pixels 

belong to which regions (Davies, 2012). 
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 Active Contour 

Active contour or snake is energy minimising spline influenced by external forces and 

internal forces. It is active because it always minimises the energy function dynamically. The 

internal forces impose piecewise smoothness constraint on the spline and push the contour to 

conform to nearby edges. The external forces serve to put the contour near the local minimum 

(Kass et al., 1988). The internal energy consists of elastic energy and bending energy. The elastic 

energy is included to allow the snake to grow and shrink with penalty whereas the bending energy 

is included to restrict sharp corners and spikes in the snake. The external energy imposed 

constraints to the snake to prevent it from moving into prohibited region. The external energy 

allows the snake to interact with image features such as lines, edges, and termination. The snake 

energy function can be written as Eq. (2.8) (Davies, 2012). 

 

	௦௡௔௞௘ܧ ൌ ௜௡௧௘௥௡௔௟ܧ ൅        ௘௫௧௘௥௡௔௟ܧ

  ൌ ௜௡௧௘௥௡௔௟ܧ ൅ ሺܧ௜௠௔௚௘ ൅   ௖௢௡௦௧௥௔௜௡௧௦ሻܧ

  	ൌ ௦௧௥௘௧௖௛ܧ ൅ ௕௘௡ௗܧ ൅ ௟௜௡௘ܧ ൅ ௘ௗ௚௘ܧ ൅ ௧௘௥௠ܧ ൅  ௖௢௡௦௧௥௔௜௡௧ܧ

(2.8)

where ܧ௜௡௧௘௥௡௔௟  is internal energy, ܧ௘௫௧௘௥௡௔௟  is external energy, ܧ௜௠௔௚௘ is image energy, ܧ௦௧௥௘௧௖௛ 

is elastic energy, ܧ௕௘௡ௗ  is bending energy, ܧ௟௜௡௘ is line energy, ܧ௘ௗ௚௘ is edge energy, ܧ௧௘௥௠ is 

termination energy, and ܧ௖௢௡௦௧௥௔௜௡௧ is external constraint energy. 

 

Xu and Prince (1998) introduced gradient vector flow (GVF) snake to overcome the 

problems arise due to the initialization process and poor convergence into boundary concavities. 

GVF snake was insensitive to initialization and capable of segmenting concave boundaries. 

Gradient vector flow fields were vector fields derived from energy minimization of image in a 

variational framework. GVF snake was differed from traditional snake because its external forces 

cannot be expressed as negative gradient of potential function. Figure 2.12 shows the application 

of a GVF snake in cardiac magnetic resonance image. 

   
(a)     (b) 

Figure 2.12: Cardiac MR segmentation using GVF snakes. (a) Original MRI image of left 
ventricle of human heart, (b) Convergence process of GVF snake (Xu & Prince, 1998) 
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 Dawant et al. (2007) developed a semi-automatic liver segmentation method by using 

level-set approach and dynamically adapted speed function. A contour was drawn by user 

manually and one slice. Then, the level-set approach was used to drive the contour and stop at 

the boundaries. The average segmentation time required was about 20 minutes. The method was 

analysed using datasets provided by SLIVER07. The results showed average volumetric overlap 

error of 9.8%, relative volume difference of -6.2%, average symmetric surface distance of 1.6 

mm, root mean square symmetric surface distance of 3.1 mm and maximum symmetric surface 

distance of 25 mm. The total score obtained was 63. The proposed method was unable to extract 

liver effectively when pathologies were present inside liver. 

 

Suzuki et al. (2010) proposed a liver segmentation method by using geodesic active 

contour coupled with level-set contour evolution. Image was first undergone pre-processing to 

reduce noise and enhance anatomic structures. The anisotropic diffusion was used for noise 

reduction while scale-specific gradient magnitude filter was applied for boundary enhancement. 

Then, non-linear grey-scale converter was used in liver parenchyma contrast enhancement. The 

segmentation process involved two steps, fast-marching level-set algorithm was applied to 

generate initial rough contour of liver and geodesic active contour level-set algorithm was used 

to refine the liver boundary. The method achieved average accuracy of 98.4%, average sensitivity 

of 91.1%, average specificity of 99.1%, and average percent volume error of 7.2%. The inaccurate 

extraction was due to variable liver density and similar intensity of neighbouring organs with 

liver. 

  

 Goryawala et al. (2012) presented a 3-D liver segmentation technique by using modified 

k-means clustering with localised contour algorithm. The modified k-means clustering was used 

to produce five masks which are corresponding to five different regions. Optimal mask was 

produced by combining first two masks. The optimal mask was then used for contour 

initialization. Next, localised region based active contouring algorithm was used for liver 

segmentation. This approach was independent of dataset properties such as structure, size, 

position and intensity of liver. 

 

The main advantage of active contour is it can capture the targeted object without a great 

definition of initial boundary (Luo et al., 2014). Cremers et al. (2007) summarised several 

drawbacks of active contour approach. One drawback is there is possibility of snake self-

interaction. Active contour does not allow topologies changes such as splitting or merging of the 

evolving contour. The snake might be biased or stuck in local minima as the algorithm is highly 

dependent on initialization. It is not straightforward to generalise snakes action to cover colour, 

texture, or motion because snakes lack of meaningful probabilistic interpretation. 
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 Graph Cut 

Graph cut is an approach that segment the graph into subgraph for each region. An 

undirected weighted graph is used to represent the image. The weight of edge represents the 

similarity between pair of adjacent pixels. The best cut can be achieved by making the similarity 

within a subgraph maximum while similarity between subgraphs minimum (Luo et al., 2014). 

Boykov and Funka-Lea (2006) set the boundary penalties using Eq. (2.9). 

௜,௝ܤ  ൌ
1
݀௜,௝

݁ି
ሺூ೔ିூೕሻమ

ଶఙమ  (2.9)

where  ܤ௜,௝  is penalty for a discontinuity between pixels ݅  and ݆, ݀௜,௝  is the distance between 

pixels ݅ and ݆, ܫ௜  if the ݅th pixel intensity, ܫ௝ if the ݆th pixel intensity, and ߪଶ can be estimated as 

Gaussian noise energy. ܤ௜,௝ is high for a pair of pixels of similar intensities, |ܫ௜ െ |௝ܫ ൏  ௜,௝ isܤ .ߪ

small if the pixels are very different, |ܫ௜ െ |௝ܫ ൐  .ߪ

 

Beichel et al. (2012) developed a liver segmentation method using graph cuts with 3D 

segmentation refinement technique. The liver segmentation consisted of two phases, 

segmentation by graph cuts and interactive segmentation refinement. In first phase, thresholding 

was used to remove voxels with density below -600HU. Then, the effect non-liver structure on 

the gradient was reduced. Gaussian filter was applied to reduce noise and Gaussian gradient was 

computed for each voxel. Next, the weak edges were enhanced and surface measure was 

computed. Then, boundary cost term with weighting function was used to make costs of cut for 

all boundaries inexpensive. Graph cut algorithm was applied and was forced to follow the ridges 

of gradient, local non-maximal response. In refinement phase, thresholding was first used to 

generate binary volume. Then, the binary volume was logical OR with the graph cut image and 

the distance transform was computed. Next, watershed segmentation was applied and H-minima 

algorithm was employed to remove all small local minima due to quantization noise. Then 

neighbouring chunks with similar boundary voxels were merged together. After chunk-based 

refinement, mesh based refinement was applied by using deformable mesh model so that surface 

based refinement can be done in virtual reality user interface. The datasets of SLIVER07 were 

used to compare the developed method with other methods. The results showed 5.2% average 

volumetric overlap error, 1.0% relative volume difference, 0.8 mm average symmetric surface 

distance, 1.4 mm root mean square symmetric surface distance and 15.7 mm maximum 

symmetric surface distance. The method was able to give very good segmentation result and help 

user to save time up to 85%. 
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 Peng et al. (2015) presented a semi-automatic 3D liver segmentation by employing 

multiple region appearance and graph cuts techniques. In pre-processing phase, linear 

interpolation was used to down sample the 3D CT image into 256ൈ256ൈ150െ180. Then, 

thresholding was used to remove the image outside the bounding box. In initialization phase, 

single-region appearance based model was initialized to optimise the energy so that the 

delineation of liver boundaries became more accurate. If the liver contained large tumours, multi-

region appearance based model was used instead. In segmentation phase, graph cut technique 

with min cut max flow graph algorithm was applied for liver segmentation. The post-processing 

phase involved morphological closing operation and holes filling. The proposed method was 

analysed using datasets obtained from SLIVER07. The results showed average volumetric 

overlap error of 4.58% േ  0.51%, relative volume difference of 1.08% േ  0.80%, average 

symmetric surface distance of 0.68 േ 0.14 mm, root mean square symmetric surface distance of 

1.45 േ 0.36 mm and maximum symmetric surface distance of 16.89 േ 3.69 mm. The method 

was able to delineate the surface of liver accurately and did not require user constraint on non-

liver tissues and interactive refinement. 

 

 Li et al. (2015) proposed an automatic liver segmentation method by applying shape 

constraints and deformable graph cut. The CT images were smoothed by applying anisotropic 

diffusion filtering. Then, the mean liver shape was constructed and the position of liver was 

computed. Mesh was deformed and was adapted to the liver boundary. The deformable graph cut 

was used to detect the boundary accurately. The datasets used were obtained from SLIVER07 

and 3D Image Reconstruction for Comparison of Algorithm Database (3DIRCADb). The results 

show average volumetric overlap error of 6.24% േ1.52%, relative volume difference of 1.18% 

േ 2.76%, average symmetric surface distance of 1.03 േ 0.31 mm, root mean square symmetric 

surface distance of 2.11 േ 0.95 mm and maximum symmetric surface distance of 18.82 േ 8.82 

mm. The method used was able to overcome the under-segmentation and over-segmentation. 

However, the accuracy has to be improved to deal with special anatomical structure of liver.  

 

Graph cuts method is not automatic as it requires user to label the object and background. 

Hence, to make it fully automatic, algorithms have to be employed to select seed points. It is 

difficult to segment liver parenchyma because the seeds of background should include every other 

region. It is difficult to extract object from non-homogenous background too (Luo et al., 2014).  

 

 Clustering Based Method  

Clustering based method classifies pixels according to the similarity of pixels. Different 

tissues in CT or MRI have different image intensities. The simplest clustering method is k-means 
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clustering which classifies intensities of image into k clusters based on the image histogram. The 

k-means clustering minimises the variability of intensity within each cluster and is defined as Eq. 

(2.10) (Dance et al., 2014). 

where ߙ௜  is the cluster to which the pixel ݅ is assigned, ܰ is the number of pixels in an image, ܫ௤ 

is the intensity of pixel ݍ, and ߤ௝ is the mean of cluster ݆, i.e. mean intensity of all pixels assigned 

with label ݆. Other clustering methods includes fuzzy c-means clustering and Gaussian mixture 

modelling. In fuzzy c-means clustering, fuzzy set is used to describe partial cluster membership. 

In Gaussian mixture modelling, weighted sum of Gaussian probability densities is computed and 

fitted on the image histogram to find out the probability that a pixel belongs to a cluster (Dance 

et al., 2014). 

 

 Li et al. (2013) presented an automatic liver segmentation of CT images by applying 

fuzzy c-mean clustering with level set. The segmentation process was divided into three stages, 

pre-processing, fuzzy c-mean clustering with level set segmentation and post-processing. In pre-

processing stage, the histogram of image was analysed and the grey level range of liver was 

identified and extracted. Contrast enhancement was done on the image and median filter was 

applied to reduce noise and smooth the image. In the next stage, fuzzy c-mean clustering was 

adopted to locate the clusters containing liver and similar clusters were merged into larger clusters. 

The average intensity and standard deviation of each cluster were computed. Then, the clusters 

that did not belong to liver were rejected. Next, refinement of segmentation was done using 

distance regularised level set. The last stage was post-processing which involved morphological 

opening operation, largest region selection, median filtering and hole-filling. The experiment 

showed accuracy of 0.9986 and specificity of 0.9989. The method can give good segmentation 

result even though the boundary was not clear but the under-segmentation problem still existed 

when there were vessels or homogeneous tissues near the edge of liver. 

 

 Foruzan et al. (2013) proposed a liver segmentation approach by adopting k-means 

clustering, narrow band thresholding and geodesic active contour algorithm. In pre-processing 

stage, border of liver was defined by doctor. Then, the abdominal region was extracted using 

thresholding method. Then, the bounding box of abdominal was identified. Next, thresholding 

technique was applied again to remove ribs. Dynamic Gaussian mixture model was used to 

represent the intensity distribution of liver. The parameter of the model was estimated using 

expectation maximisation algorithm. Narrow band thresholding was used to locate candidate 

ଵߙ 
∗ ேߙ	…

∗ ൌ argminሼఈభ…	ఈಿ	∈ሾଵ…௞ሿሽ෍ ෍ ሺܫ௤ െ ௝ሻଶߤ

൛௤:ఈ೜ୀ௝ൟ

௞

௝ୀଵ

 (2.10)
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pixels. The k-means clustering was employed to determine whether a candidate pixel was within 

liver region or not. The anisotropic diffusion filtering was employed to smooth the image. Then, 

the image was converted to binary image. The non-liver regions were removed by directed graph 

search method. After that, the liver boundary was smoothed by using Fourier transform. Finally, 

geodesic active contour algorithm was employed to find the final liver surface. The approach was 

evaluated using datasets from Shiga University of Medical Science, Osaka University Hospital 

and SLIVER07. The results of SLIVER07 dataset showed average volumetric overlap error of 

8.29%, relative volume difference of 1.75%, average symmetric surface distance of 1.38 mm, 

root mean square symmetric surface distance of 2.73 mm and maximum symmetric surface 

distance of 27.16 mm. The method performed well in low contrast images. 

 

The advantage of clustering-based methods is they are fully automatic. Nevertheless, the 

segmentation result may contain false-positive regions which require post-processing. ݇-means 

clustering usually does not use as main segmentation method because it is too rough. ݇-means 

clustering is often used to select object and background seeds for graph cuts, and initial boundary 

of active contour (Luo et al., 2014). 

 

 Morphological Operations 

Mathematical morphology is a tool for extracting image components that are useful in 

the representation and description of region shapes, such as boundaries, skeletons, and convex 

hulls. Mathematical morphology can be applied on binary images and grey-scale images. The 

two types of basic morphological operations are dilation and erosion. Erosion shrinks or thins 

objects in a binary image. Hence, erosion can be viewed as morphological filtering operation in 

which the image details smaller than the structuring element are filtered out. Erosion of A by B, 

denoted ܣ⊖  is defined as Eq (2.11) (Gonzalez & Woods, 2006). Unlike erosion, which is a ܤ

shrinking or thinning operation, dilation grows or  thickens objects in binary image. Dilation of 

A by B, denoted ܣ⊕  .is defined as Eq. (2.12) (Gonzalez & Woods, 2006) ܤ

⊖ܣ  ܤ ൌ ሼݖ|ሺܤሻ௭ ⊆ ሽ (2.11)ܣ

⊕ܣ  ܤ ൌ ቄݖ|൫ܤ෠൯
௭
∩ ܣ ് ∅ቅ (2.12)

where ܣ is input image, ܤ is structuring element, ሺܤሻ௭ is the translation of B by the vector ݖ, ∅ 

is empty set, ܤ෠  is reflection of structuring element about its origin, ൫ܤ෠൯
௭
 is the translation of  ܤ෠  

by vector ݖ. 
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 Another two important morphological operations are opening and closing. 

Morphological opening is used to smooth the contour, break narrow isthmuses, and eliminate thin 

protrusions. Morphological opening of input image ܣ by structuring element ܤ, denoted by ܣ ∘

 is defined as Eq. (2.13) (Gonzalez & Woods, 2006). Morphological closing is used to smooth ,ܤ

sections of contours but, as opposed to opening, it is used to fuse narrow breaks, eliminate small 

holes, and fill gaps in the contour. Morphological closing of image ܣ by structuring element ܤ, 

denoted by ܣ	 •  .is defined as Eq. (2.14) (Gonzalez & Woods, 2006) ܤ	

ܣ  ∘ ܤ ൌ ሺܣ ⊖ ⊕ሻܤ (2.13) ܤ

ܣ  • ܤ ൌ ሺܣ⊕ ⊖ሻܤ (2.14) ܤ

where ܣ  is input image, ܤ  is structuring element, ⊖  is erosion operator and ⊕  is dilation 

operator. 

 

 Hole-filling or region-filling is another type of morphological algorithm that often used 

in pre- or post-processing steps. Hole is defined as a background region surrounded by a 

connected border of foreground pixels. Hole-filling algorithm is based on dilation, 

complementation and intersection. The hole-filling process begins with a point, ܺ଴ inside a hole 

as shown in Figure 2.13, the hole-filling is done using Eq. (2.15) (Gonzalez & Woods, 2006). 

 ܺ௞ ൌ ሺܺ௞ିଵ ⊕ ሻܤ ∩ ௖ܣ ݇ ൌ 1, 2, 3, …  (2.15)

where ܺ௞ is set containing filled holes, ݇ is number of iteration, ܤ is the structuring element, ⊕ 

is dilation operator, ∩ is the intersection operator, ܣ௖ is the complement of set ܣ. The algorithm 

terminates at iteration step ܺ௞ ൌ ܺ௞ିଵ. The dilation of hole-filling is conditional so that Eq. (2.15) 

would not fill the entire area. The output of hole-filling process is the set union of ܺ௞  and ܣ 

contains the filled hole and its boundary (Gonzalez & Woods, 2006).  

 

The process of hole-filling is illustrated in Figure 2.13. The object pixels are represented 

by white colour whereas the background pixels are represented by grey colour in Figure 2.13. 

Given input of set ܣ as shown in Figure 2.13(a), the complement of set ܣ ,ܣ௖ as shown in Figure 

2.13(b) is obtained. The structuring element	ܤ used in the hole-filling process is as shown in 

Figure 2.13(c). The hole-filling process is started by selecting a point in the hole as shown in 

Figure 2.13(d). Then, Eq. (2.15) is applied for subsequent iterations if there is an object pixel in 

its 4-connected neighbourhood. The results of first and second iteration are shown in Figure 

2.13(e) and Figure 2.13(f) respectively. After seven iterations, the algorithm is terminated as the 

hole within the boundary is filled. The result of seventh iteration is shown in Figure 2.13(g). The 
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