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SEMI-AUTOMATIC SEGMENTATION OF NORMAL  

FEMALE PELVIC FLOOR STRUCTURES FROM MAGNETIC 

RESONANCE IMAGES 

XIAOLONG LI 

 

ABSTRACT 

Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are important 

health issues affecting millions of American women. Investigation of the cause of SUI 

and POP requires a better understand of the anatomy of female pelvic floor. In addition, 

pre-surgical planning and individualized treatment plans require development of patient-

specific three-dimensional or virtual reality models. The biggest challenge in building 

those models is to segment pelvic floor structures from magnetic resonance images 

because of their complex shapes, which make manual segmentation labor-intensive and 

inaccurate. In this dissertation, a quick and reliable semi-automatic segmentation method 

based on a shape model is proposed. The model is built on statistical analysis of the 

shapes of structures in a training set. A local feature map of the target image is obtained 

by applying a filtering pipeline, including contrast enhancement, noise reduction, 

smoothing, and edge extraction. With the shape model and feature map, automatic 

segmentation is performed by matching the model to the border of the structure using an 

optimization technique called evolution strategy. Segmentation performance is evaluated 
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by calculating a similarity coefficient between semi-automatic and manual segmentation 

results. Taguchi analysis is performed to investigate the significance of segmentation 

parameters and provide tuning trends for better performance. The proposed method was 

successfully tested on both two-dimensional and three-dimensional image segmentation 

using the levator ani and obturator muscles as examples. Although the method is 

designed for segmentation of female pelvic floor structures, it can also be applied to other 

structures or organs without large shape variation. 
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CHAPTER I 

INTRODUCTION 

 

 

 

1.1 SUI and POP  

Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are important 

health issues that affect millions of American women at a cost of approximately $20 

billion annually [1]. According to one study, the population of woman over eighty is the 

fastest growing segment in the United States and the rate of women who will seek 

treatment for SUI and POP will double over the next thirty years [2]. 

Urinary incontinence (UI), which means involuntary loss of urine, has been 

reported to affect 35% of American women over 50 years of age [3]. UI can be 

categorized into different types, including stress urinary incontinence, urge incontinence, 

mixed incontinence, functional incontinence, overflow incontinence, transient continence 
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and deformity incontinence [4]. Among all those types of incontinence, SUI is the most 

common type and much more prevalent in women than in men [5]. According to current 

research, approximately 60% of women with incontinence will have stress incontinence 

[6]. 

SUI, also called effort incontinence, is any involuntary leakage of urine associated 

with sneezing, coughing, laughing, or other movement that increases the intra-abdominal 

pressure, which in turn increases the pressure on the bladder. In females, the urethra is 

located behind the public symphysis and is supported by numerous structures, including 

the endopelvic fascia, the anterior vagina, and the arcus tendineus fascia pelvis. If such 

supports are weakened, the urethra can move downward when abdominal pressure 

increases and cause urine leakage. For women, some SUI can be caused by physical 

changes such as pregnancy, childbirth, and menopause. It is reported that 30 percent of 

women will develop SUI within 5 years after their first vaginal delivery [7]. 

POP is a common problem especially among older women. It is estimated over 50 

percent of the women who have vaginal delivery will experience some form of prolapse 

in later life [8]. The female pelvic organs, such as uterus, vagina, and bladder are 

surrounded by a network of muscles, ligaments, and connective tissue that act as a 

complex support structure that holds those organs in place. POP occurs when the support 

system weakens or collapses, causing a pelvic organ to slip out of its normal position. 

Types of POP includes disorders of the anterior vaginal compartment, the posterior 
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vaginal compartment, the apical compartment (uterus or post-hysterectomy vaginal apex), 

the recto-vaginal space, and the perineum [9]. The typical symptom associated with POP 

is SUI, and other symptoms include pressure and pain, bowel symptoms and sexual 

problems [9]. 

1.2 Anatomy of the Female Pelvic Floor 

In recent years, a great deal of research([10], [11], [12]) has been done on 

investigating the cause of incontinence and prolapse and yet it remains elusive.  Part of 

the reason is limited knowledge of the anatomy of the female pelvic floor. The main 

components of the female pelvic floor are pelvic bones, bladder, urethra, vagina, uterus, 

rectum, levator ani muscle, and obturator muscles. The female pelvic floor not only 

provides support for pelvic organs, such as the bladder, intestines, the uterus, but also is 

important in maintenance of continence as part of the urinary and anal sphincters [13]. 

The details about each structures of female pelvic floor are described in the following 

subsections. 

1.2.1 Pelvic Bones 

The bony structure of the pelvis is located at the base of spine and composed of 

several bones: ilium, ischium, public rami, sacrum, and coccyx (tailbone). The pelvic 

bones are the rigid foundation in which all of the pelvic floor structures  anchor [14]. 
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1.2.2 Levator Ani Muscle 

Levator ani muscle is a funnel-shaped diaphragm in the pelvis between the lateral 

hip walls, the pubis anteriorly and the coccyx posteriorly. It is traversed by urethra, 

vagina, and rectum. The levator ani is the main muscle of the pelvic floor and has a 

complex shape, which is composed of several separate muscle parts including 

pubovaginalis, coccygeus, iliococcygeus, pubococcygeus, and puborectalis. It has a 

crucial role in the maintenance of continence, and damage to the levator ani muscle has 

been considered a main cause of POP[15]. 

1.2.3 Obturator Muscles 

Obturator muscles lie on the intrapelvic side of the obturator membrane. The origin 

of the obturator muscles comes from the inferior margin of the intrapelvic pubic ramus 

and the pelvic surface of the obturator membrane [16]. The obturator muscles are the 

lateral boundary of the pelvic sidewall and contain the pelvic contents laterally, provide 

powerful, lateral rotation of the thigh and assist in maintaining the head of the femur in 

the acetabulum [17]. 

1.2.4 Vagina 

The vagina is a fibromuscular tube with rugal folds that located in the front of the 

rectum and behind the bladder. The length of the vagina is 8.9 cm on average. The 
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muscular wall of vagina is thin and composed of three layers: mucosa, muscularis, and 

adventitia [18].  

1.2.5 Urethra 

The female urethra originates at the trigone of the bladder and terminates anterior 

at the urethral meatus. The urethra is about 3.5 to 4 cm long and averages 0.6 cm in 

diameter. Most part of the urethra is merged into the anterior vaginal wall [19]. The 

urethra has three layers: the inner mucosal layer, the highly vascular submucosal layer 

and the outer muscular [14]. 

1.2.6 Bladder 

The bladder is pyramidal in shape, with its apex pointing anteriorly towards the 

superior portion of the public symphysis. The bladder consists of four layers: an outer 

adventitial layer of connective tissue, a nonstriated muscle layer, a lamina propria, and an 

inner layer of mucosa [20]. 

1.2.7 Uterus 

The uterus is located inside the pelvis close to urinary bladder and the rectum. The 

uterus can be divided into three major segments: the fundus of uterus, the corpus uteri 

and the cervix [21]. 
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1.2.8 Rectum 

The rectum is about 20 cm long on average which hooks up with the sigmoid colon 

at the proximal end and with the anal canal at the distal end [22]. 

1.3 2D, 3D and VR Models of Female Pelvic Floor 

In order to understand the functions of the female pelvic floor, especially how the 

structures provide support for organs and affect continence and prolapse, a model of the 

female pelvic floor is required to provide sufficient and accurate anatomical information. 

However, the female pelvic floor is so complex that it is difficult to visualize from 

conventional two-dimensional (2D) anatomy images (Figure 1) [23]. 

 

Figure 1    Sagittal Section of Female Pelvis (From Gray 1918[23]) 
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With the development of computer technology, three-dimensional (3D) models are 

now available and widely used as research tools in a broad number of medical areas. 

Some researchers have successfully built 3D models of the female pelvic floor with 

commercial software such as Maya and 3D-Max Studio [24]. Compared to conventional 

2D pictures, 3D models provide a more accurate representation of anatomical structures, 

bones, and soft tissues. 3D models also can be rotated and rendered from different angles 

of view, providing clinicians with more structure information. Furthermore, 3D models 

quantify the normal appearance of the female pelvic floor, helping scientists to 

understand the anatomy of the specific structures responsible for maintaining support in a 

better way, such as the thickness of levator ani muscle (Figure 2) [24]. 

 

Figure 2     Coronal 3D model of female pelvis (Fielding 2000 [24]) 
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However, even 3D models still have limitations in visualization and interaction. In 

most cases, 3D models are presented as 2D projections, which make it difficult for people 

to be fully aware of the complicated geometric structure of the female pelvic floor. 3D 

models only contain mesh points and mapping textures. Thus, they have to be treated as 

one piece. Each component in 3D models cannot be flexibly controlled and manipulated. 

In addition, 3D models are static models. They only can represent geometric shapes and 

relationship. Biomechanical properties and physiological functions of organs and tissues 

cannot be revealed in these models.  

In 2004, Dr. Margot Damaser at the University of Illinois at Chicago proposed and 

built a Virtual Reality (VR) model of normal female pelvic floor based on high resolution 

magnetic resonance image (MRI) [25] (Figure 3). VR is an advanced computer 

technology used to create an artificial world and allow a user to interact with this 

computer-simulated environment. A user can be immersed in such a imaginary world that 

would normally be unavailable due to cost, safety, or perception restrictions, with the 

ability to navigate through the world and manipulate objects in the world [26]. 
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Figure 3     VR model of normal female pelvic floor (Damaser 2004) 

Compared to traditional 3D model, VR model has some unique features. The 

features are listed in the following subsections.  

1.3.1 ‘Real’ World View 

The stereo view mode leads people into a ‘real’ world. Using certain devices such 

as stereo-view glasses or head-mounted displays (HMD), viewers have the impression 

that they are in the simulated scenes and the things they feel in VR are exactly same as 

those they feel in the real world (Figure 4).   
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Figure 4     ImmersaDesk Used to Demonstrate VR Model 

1.3.2 Node Structure Model 

VR model is programmed so that each component can be manipulated while 

visualized. VR models are usually programmed with virtual reality languages such as 

Virtual Reality Modeling Language (VRML) and Open Inventor (OI). In those languages, 

objects and scenes are created separately. Each object has its own properties in 

appearance and behavior. Then, all objects are connected in one world by a node 

structure: each object is a node and one can enable or disable its connections with other 

objects (nodes).   
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1.3.3 Integrated Model 

Mechanical properties and physiological functions can be incorporated into the 

model, which cannot be realized completely in a traditional 3D model. For example, the 

elasticity of muscles and tissues, the velocity of bloods, the pressure of veins and arteries, 

the Young’s modulus of pelvic bones can all be defined as additional properties of those 

objects (nodes), which make the model more realistic and accurate compared to 

traditional 3D models.  

VR model of the female pelvic floor can be used in many clinical applications, 

such as surgical training, surgical planning, and augmented reality. Besides these 

applications, it also can be used for research and education purposes. 

1.4 Problem Statement 

The VR model of female pelvic floor proved to be successful and useful. However, 

it requires improvement in the image segmentation method. Previously, MRI scans of 

normal female pelvic floor were manually segmented to build VR model. In this process, 

an expert with the knowledge of anatomy utilizes a mouse to fill regions or label borders 

of target structures on the image slice. The advantage of manual segmentation is the 

expert’s prior knowledge of a structure’s anatomy utilized in the segmentation process so 

that despite artifacts on the image data such as diffusion and overlapping, a reasonable 
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result can still be obtained. However, there are several disadvantages for manual 

segmentation. 

1.4.1 Time-consuming Property 

Although some available software tools can help manual segmentation such as 

magnetic lasso and region growing, the manual segmentation process is time-consuming 

and tedious, especially when there are large numbers of MRI slices or complicated shapes 

of structures and organs. 

1.4.2 Lack of Reproducibility 

Manual segmentation lacks reproducibility because of the subjectivity and 

limitation of segmentation tools. Different people can have different segmentation results 

for the same structure [27]. Sometimes it may not obtain identical segmentation results 

even for a same person to segment the same structure twice.  

The female pelvic floor structures have complicated shapes, which make manual 

segmentation difficult and sometimes inaccurate. For another, due to the limitation of 

imaging hardware and imaging protocols, the contrast of soft tissues is low in MRI scans 

and the in-plane resolution is limited. Thus, the border of structures is blurred, such as for 

the levator ani muscle, obturator muscles, and the vagina (Figure 5). It is not easy to label 

the edge of targets accurately even for a trained professional. 
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Figure 5     Sample MRI Scan of Female Pelvic Floor 

1.5 Objective of Dissertation 

The objective of this dissertation is to develop a semi-automatic segmentation 

method to speed up the modeling process of the normal female pelvic floor as well as to 

increase the accuracy of VR model. Compared to the manual segmentation method, semi-

automatic segmentation has the following advantages: a) Semi-automatic segmentation 

methods rely on computer aided digital image analysis, substantially reducing the time 

needed for segmentation; (b) Semi-automatic segmentation minimizes the need for 

intervention of human judgment and thus greatly improves both accuracy and 

repeatability. The proposed semi-automatic segmentation method of the female pelvic 

floor shall meet the following requirements. 
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1.5.1 Easily Extend from 2D models to 3D models 

The proposed method requires to be easily extended from 2D models to 3D models. 

VR models can be built either from groups of 2D contours, using 2D segmentation, or 

from 3D mesh points, using 3D segmentation. Depending on the shape properties of the 

target structure, 2D segmentation method or 3D segmentation method is chosen. Thus, 

the proposed method can easily undergo a dimensional increase or decrease. 

1.5.2 Robust 

The proposed method shall be robust. There is diversity of structure shapes among 

different patients. In addition, imaging protocols and imaging parameters are different in 

MRI scans. Therefore, the proposed segmentation method needs to be robust enough to 

handle all these differences.   

1.5.3 Smart 

The proposed method shall be smart. The low contrast of the target in the image 

generally leads to an error in most segmentation methods. Moreover, in pelvic floor MRI 

scans, some structures have similar intensity value with the surrounding tissues. In 

manual segmentation, an expert often utilizes his or her knowledge of the anatomy of the 

structures while labeling the shapes. Such knowledge shall be incorporated into the 

proposed segmentation method so it can be smart enough to discern the correct border 

from image without being misled by local features. 
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1.5.4 Objectively Evaluate Performance 

The performance of segmentation shall be objectively evaluated. Usually the 

evaluation of segmentation results is subjective, and the most common method is to 

compare the image segmentation results visually, which is a tedious and time-consuming 

process and lacks consistency and reproducibility. Moreover, several parameters may be 

involved in the segmentation process, which requires an objective comparison of 

different parameterizations of the segmentation method. 

1.6 Overview of Dissertation 

In this dissertation, a semi-automatic segmentation method is proposed which 

incorporates the prior knowledge of structure shapes into unsupervised segmentation 

process. First, a statistical model of shapes is built based on sample images in a training 

set. Principle component analysis (PCA) is applied to the signed distance map of the 

structure shapes to generate a mean shape model and a shape variation model. Then local 

image features are extracted from unseen data by an image-processing pipeline composed 

of specially designed filters. Based on the statistical model and local image features, 

unsupervised segmentation is performed by model matching, which can be turned into an 

optimization process resulting in a best-fit shape. At last, the performance of the 

segmentation is evaluated by a Dice coefficient function, and the Taguchi method is 

applied to reveal the index of significance of segmentation parameters. The proposed 
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segmentation method is tested for 2D and 3D images, using the example of levator ani 

muscle and obturator muscles respectively. 

The remaining chapters of the dissertation are organized as follows. Chapter II 

introduces the imaging modalities for the female pelvic floor and reviews the 

segmentation methods for medical images. Chapter III introduces the structure and 

pipeline of the proposed segmentation method. Chapter IV describes how to build a 

statistical model from training set images. Chapter V talks about extraction of local image 

features and model matching. Chapter VI gives the details about how to use Taguchi 

method to tune the segmentation parameters. Chapter VII shows test results of the 2D and 

3D segmentation while Chapter VIII contains conclusion and future work, summarizing 

the major finding of this dissertation. Limitations of this dissertation are also discussed 

and a promising modification is proposed in this final chapter.
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CHAPTER II 

AN OVERVIEW ON MEDICAL IMAGING AND MEDICAL IMAGE 

SEGMENTATION 

 

 

 

2.1 Medical Imaging Modalities 

Medical imaging refers to applying different kinds of techniques and processes to 

create images of the human body for clinical purposes or medical science. The resulting 

medical images will be used to reveal, diagnose or examine disease, or study normal 

anatomy and physiology of the human body. Clinically, the most popular imaging 

methods are computed tomography (CT), ultrasound, and magnetic resonance imaging 

(MRI). 
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2.1.1 Computed Tomography (CT) 

Computed tomography (CT) acts as a diagnostic tool utilizing X-ray to obtain 

cross-sectional imaging of the human body. Detailed images of organs, bones, and other 

tissues can be acquired using CT, which was first proposed by the Italian radiologist 

Alessandro Vallebona in the early 1900’s. Based on the principle of projective geometry, 

a single slice of the body on radiographic film was obtained. Specifically, the X-ray tube 

and film are moved synchronously in opposite directions so that points on the focal plane 

are sharply focused, resulting into the desired image [28]. Some substances and tissues in 

a human body are more permeable to X-rays than others are. Due to this difference, 

disparate tissues can have different intensities when the X-ray film is developed.  

CT was officially introduced as clinical diagnosis equipment in 1972, and quickly 

became one the most important imaging methods. With the development of computer 

technology, CT technology has improved and now the images are created by using an 

array of individual small X-Ray sensors and a computer. By rotating the X-Ray 

equipment and sensors around the patient, data is collected from planes with multiple 

angles. Later on, a microcomputer processes the data to create an image on the screen.  

Over the past few years, CT technology has advanced significantly. One new 

technique of the CT scan, called the multislice CT scan, or MSCT scan, is now widely 

used in coronary artery disease detection (Figure 6). Since the rotation time has been 

decreased to less than one second, more slices (16 ~64) can be acquired simultaneously. 
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MSCT with sub-second rotation times has made possible the scanning of long ranges, 

shorter scan times and a reduction in movement artifacts [29].  The 3D CT scan is also 

one of the new techniques and mainly used in angiography and brain scans. The 

technique involves selecting specific boundaries of the structure on the CT image. 

Successively narrow section images are then taken and the information from these scans 

is reassembled to produce a 3D grey-scale-image which may be viewed from different 

angles and in real-time rotation [30].   

 

Figure 6     Multislice CT (MSCT) 

CT is frequently used to detect brain diseases such as stroke, bleeding, blood clot, 

and brain tumor [31]. Moreover, it is widely used for detecting both acute and chronic 

changes in the lung parenchyma [32]. MSCT is also widely used for cardiac and 
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cardiovascular imaging [33]. CT is not expensive compared to other imaging methods. 

Moreover, it is less sensitive to patient movement, which could cause motion artifacts. 

The main concern about CT imaging is how to reduce the radiation dose for CT 

examinations without affecting the image quality. A high radiation dose results in a high-

quality scan since the contrast of the objects is higher. On the contrary, a lower dose leads 

to more image noise and results in low contrast images. However, as the radiation dose 

increases, so does the associated risk of radiation-induced cancer. It is estimated that a 

radiation exposure of 1200 millirem can induce a potential radiation-induced cancer 

chance around a million to one [34]. Although a great deal of effort has been undertaken 

to minimize the radiation dose during the scan, given the increasing number of CT scans 

being obtained, the increasing exposure to radiation in the population may still be a 

public health issue. For example, radiation doses with MSCT scans are 30 - 50 times 

higher than those associated with a chest x-ray [29]. 

2.1.2 Ultrasound 

Ultrasound imaging, sometimes also called sonography, involves using high-

frequency sound waves to travel through a part of body to produce images of the inside 

structures. Humans are capable of hearing sound with frequencies range from 20 to 

20,000 cycles per second (20-20,000 Hertz or Hz), and any frequency greater than that 

range is called ultrasound.  
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Ultrasound is a soft-tissue modality, since it cannot provide useful image of bones 

or bodies of gas such as found in the lung and bowel. Compared to CT and X-ray, 

ultrasound has some unique features. 

2.1.2.1 None Ionizing Radiation 

Ultrasound does not utilize ionizing radiation. Instead, an ultrasound signal is sent 

out by a transmitter. The ultrasound signal passes through the body, partly reflected from 

two tissues interfaces with different acoustic impedance. The reflected signal is detected 

by the transducer, processed by computer and then is converted to an image on a screen: 

the stronger the reflected signal, the higher intensity of the image. 

2.1.2.2 Real-time Image 

Ultrasound imaging can create real-time images. A real-time image is still a 2D 

view while keeping constantly updated. The structures within a 2D image can be better 

demonstrated by visualizing the changes that occur within that image over time. Real-

time sonography is very useful to visualize moving objects, such as a fetal heart. Also the 

texture and shape of the target structure can be enhanced in the image by sweeping the 

transducer beam through the object, providing more details to the operator [35]. 
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2.1.2.3 Quantitative Measurement  

Ultrasound imaging provides quantitative measurement and imaging of the blood 

flow. With the Doppler, a special form of ultrasound, both the speed and direction of 

flowing blood can be measured and illustrated in color pictures (Figure 7).  

 

Figure 7     Doppler Ultrasound 

Doctors utilize Doppler technique to evaluate blood flow through the major 

arteries and veins of the human body. A transcranial Doppler ultrasound (TCD) can be 
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used to reveal blocked or reduced blood flow in the major arteries that could result in a 

stroke potentially. Also it can show blood clots in leg veins that could break loose and 

block blood flow to the lungs [36].         

2.1.3 Magnetic Resonance Imaging (MRI) 

Magnetic resonance imaging (MRI) is a noninvasive medical imaging technique, 

which is widely used in radiology to visualize internal structures and functions of the 

human body.  

MRI obtains image slices of inside structures of the body based on the interaction 

among radio frequency pulses, magnetic fields, and body tissue [31]. The measured 

targets are mobile hydrogen nuclei, which are the majority of elements in the body [37].  

Hydrogen nuclei are capable of absorbing energy if exposed to short wave radio 

pulses at their resonance frequency. After the absorption of this energy, the nuclei release 

this energy so that they return to their initial state of equilibrium. The transmission of 

energy by the nuclei as they return to their initial state is what is observed as the MRI 

signal [38]. The resulting image primarily reflects the water protons in the patient, as well 

as their chemical association with proteins, etc. 

The main components of the MRI scanner are its magnet and radio frequency 

systems (Figure 8) [31]. The magnet system is the largest, as well as the most expensive 

component of the scanner and usually consists of a permanent magnet and a resistive 

electromagnet or superconducting electromagnet [31]. Even though the superconducting 
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electromagnet is the most expensive magnet, it is actually the most commonly used type 

because of its outstanding performance. The strength of the magnet is measured in Tesla 

(T). Clinical magnets generally have a magnetic field strength in the range 0.1—3.0 T 

[39]. Magnetic field strength plays an important role in determining image quality. 

Higher magnetic fields increase the signal-to-noise (S/N) ratio, and allow for higher 

resolution and faster scanning. However, higher field strengths generally are associated 

with more expensive magnets and higher maintenance costs [40]. 

 

Figure 8     MRI Scanner 
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The radio frequency system consists of two parts: transmission system and receiver 

system. The radio frequency transmission system consists of a radio frequency generator, 

a power amplifier, and a transmitting coil. The power of the transmitter is variable, but a 

peak output power of up to 35 kW and a consistent average power of 1kW are generally 

required for high-end whole-body scanners [38]. The radio frequency receiver consists of 

the coil, pre-amplifier and signal processing system. Sometimes if a small region of the 

body is scanned, a better quality image can be achieved by using a close-fitting coil. 

Different kinds of coils are available for clinical diagnosis. External coils can fit flexibly 

around part regions of the body, such as the head, neck, knee, wrist, and breast, while the 

internal coil is put inside the structure of the body, such as the rectum. 

2.2 Introduction of Medical Image Segmentation 

Segmentation is the first as well as the most important step in building the 

proposed VR model since only accurate segmentation makes a reasonable and reliable 

anatomic model. The goal of segmentation is separation of structures of interest from 

background and each other based on one or more of several properties, such as texture, 

color, distribution of the densities of the image elements, and motion field, etc. The result 

of segmentation is either an image with labeled regions or a set of contours describing the 

region’s boundaries. As for medical images, the purpose of segmentation is usually to 

extract known anatomic structures from images such as the heart, the brain, the knee, the 
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spine and the liver, or to label abnormalities in tissues or organs such as tumors and cysts 

[41] . 

Segmentation allows the quantitative measurements of structures and thus can 

assist doctors in confirming the existence of certain diseases and evaluating their severity. 

In addition, segmentation results can be used to build an anatomical atlas, which is 

valuable for pre-surgical planning. Furthermore, dynamic or adaptive segmentation can 

track anatomical changes over time, making it very useful in image-guided surgery. The 

most general applications of medical image segmentation are described in the following 

sections. 

2.2.1 Visualization  

Based on segmentation results such as contour and labeled pixels or voxels, we can 

create surface models, which give a 3D view from any angle. The surfaces of models can 

be generated from different kinds of mesh elements such as hexahedral mesh, tetrahedral 

mesh, pyramid mesh, or prism mesh. The smaller mesh elements, the smoother the 

surface. Different textures are then mapped to the surface. Directions, intensities, and the 

color of the lighting source also need to be defined to make the model look more realistic 

(Figure 9). 
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Figure 9     Reconstruction of Head Anatomy 

2.2.2 Quantitative Measurement 

Quantitative measurements of structures and organs in medical images are often 

used in medical studies, and accurate measurements can only be acquired by proper 

segmentation. Usually the quantitative measurements are focused on geometric properties 

of the structure such as position, length, angle, thickness, surface area, and volume. For 

example, in the study of women with unilateral defects in the public portion of the levator 

ani muscle, the cross-sectional areas of the muscles are usually smaller than normal ones. 

Segmentation of the levator ani muscle followed by a quantitative measurement of the 

cross-sectional area is the usual way to evaluate the degree of muscle loss [42].  
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2.2.3 Pre-surgical Planning and Image-guided Surgery 

Segmentation is a significant part in pre-surgical planning and image-guided 

surgery. For example, in order to remove tumors from organs such as brain or liver, 

surgeons need to operate carefully to avoid anatomical hazards such as arteries or 

functional areas (Figure 10). Before the operation, patients will have MRI or CT scans. 

Based on the segmentation of those scans, safe surgical trajectories can be accurately 

designed. During the procedure, a fast scanning technique such as ultrasound can 

generate real-time images of the operation area, and the simultaneous segmentation 

results will help the surgeon to confirm that the pre-planned operation path is being 

followed. 

 

Figure 10     Paranasal Cavities 
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2.2.4 Detection of Change 

Segmentation is widely used to analyze dynamic images such as Functional MRI 

(FMRI). FMRI is a relatively new neuroimaging technique, which allows measurements 

of the hemodynamic response related to neural activity in the brain or spinal cord. During 

the imaging, MRI scans are acquired over time, and the change of activities in certain 

brain areas, which could be related to some movements of the body, can be detected by 

tracking the change of segmentation results from fixed spots (Figure 11). 

 

Figure 11     FMRI Segmentation of Human Brain 

2.3 Image Segmentation Techniques 

The input for a segmentation pipeline is grayscale digital images, such as the 

imaging results from MRI or CT scans. These images can be stored in either a 2D-file or 
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a 3D-file format. Most of existing segmentation algorithms are developed for 2D images 

although some of them can be extended to 3D. 

There is a large variety of techniques available for segmenting images. They can 

be divided into two categories: model-free segmentation methods and model-based 

segmentation methods. Model-free segmentation methods are based on local features as 

well as properties of the image itself and no prior knowledge is required. On the contrary, 

model-based methods use a training set to build a ‘Golden Model’, fit this model to 

unseen data, and then the best fit shape is determined as the results of segmentation. 

2.3.1 Model-free Segmentation Techniques  

Model-free segmentation methods, sometimes called unsupervised segmentation 

methods, are based on local image properties such as intensity value, gradient magnitude, 

and textures. Image statistics tools such as histogram, mean, variance, and entropy can be 

used in this kind of segmentation. The following methods are the most frequently used 

model-free techniques. 

2.3.1.1 Thresholding 

Thresholding is one of the most widely used segmentation techniques for digital 

images. It separates the structures of interest based on signal intensity of these digital 

images. The thresholding operation can change the pixel values or categorize pixels into 

different groups based on one or more specified values, i.e. threshold values. There are 



31 
 

two basic types of thresholding methods: binary thresholding and general thresholding. 

When the binary thresholding method is applied, a grayscale image can be transformed 

into a binary image by changing the pixels’ values according to the rules described in 

Figure 13(a). If the intensive value of a pixel is less than the upper threshold and greater 

than the lower, the output of this pixel (i.e. inside value) is defined as 1 (white), 

Otherwise, the output (i.e. outside value ) is defined as 0 (black) (Figure 13(b)). The 

generated binary images are usually taken as inputs for further morphological image 

processing such as opening, closing, eroding, and dilation. 

 

(a)     Binary Thresholding Function 
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(b)     Binary Thresholding for Brain Image 

Figure 12     Binary Thresholding 

As for general thresholding, pixel intensities can be transformed with flexibility. 

One can define a threshold value, and any pixel with intensity value below or above this 

threshold will be replaced by a predefined value while all other pixels remain unchanged. 

Alternatively, one can define a lower threshold value as well as an upper threshold value, 

and all pixels with intensity value within the threshold range will be replaced by a 

predefined value while all other pixels remain unchanged. The output of general 

thresholding is an image with a highlighted region of certain intensity, thus separating the 

structure of interest from the background. 

There are some other thresholding techniques used in medical image segmentation 

including multi-thresholding and adaptive thresholding. Through multi-thresholding, the 

number of significant intensity levels can be found, and an optimum value between any 

two consecutive significant intensity levels can be selected to segment the images [43]. 
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Different from multi-thresholding, adaptive thresholding is a technique to change the 

threshold dynamically over the image. With different threshold based on difference in the 

pixels, this method can deal with changing lighting conditions in the image, e.g. those 

occurring due to a strong illumination gradient or shadows [44]. The Thresholding 

method has already been used in CT images to segment bones and soft tissues from 

background [45]. It also has been used in brain MRI images to segment brain tissues [46]. 

The key to effective thresholding is to choose a proper threshold value. The thresholding 

segmentation method is simple and fast. However, it is sensitive to noise in low contrast 

images and usually generates isolated pixels instead of connected regions. 

2.3.1.2 Edge Detection 

Edge detection method extracts discontinuities in the digital image and the results 

can be used for segmentation. It is because the pixels on the border of structure often 

have much higher or lower intensity values than those of neighboring pixels. Many 

operators can be used to extract edges, and most commonly used is the Canny operator in 

image segmentation since it can give continuous border/contour of objects [47]. Canny 

edge detection consists of four steps:  

1) Noise Reduction  

Edge detectors are susceptible to noise so Canny detectors smooth the raw image 

by using a filter based on the first derivative of a Gaussian.  

2) Edge Magnitude and Orientation Computation  
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A structure’s edge may have a variety of directions, so the Canny algorithm uses 

four filters to detect horizontal, vertical, and diagonal edges and calculate the gradient 

magnitude.  

3) Directional Non-maximal Suppression  

In this step, a search is carried out to determine if gradient magnitude achieves a 

local maximum in the gradient direction. 

4) Hysteresis Edge Labeling  

There is one high threshold value which is used for marking the border/contour of 

high confidence, and another low threshold value will be used to track faint sections 

(Figure 13) [48]. 

Although the Canny edge detector is a powerful tool for 2D image segmentation, it 

cannot be directly applied to 3D volume images[49]. 

 

Figure 13     Canny Edge Detection for Pelvic Floor MR Image 
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2.3.1.3 Clustering 

Clustering means classifying objects into different groups according to certain 

properties, such as intensity, color, texture, and connectivity. Segmentation is used to 

determine to which data group a pixel or voxel naturally belongs. The most popular and 

simple technique is K-means clustering which usually consists of four steps:  

1) K cluster centers are chosen randomly. 

2)  Each pixel in the image is assigned to the cluster to minimize the squared 

or absolute difference between the pixel and the cluster center. 

3)  The cluster centers are recalculated by averaging all of the pixels in the 

cluster. 

4)  Repeat the above step 2) and 3) until certain termination criteria are met.  

The most common termination criterion is that there is no change in cluster 

membership compared to the previous iteration [50]. Although convergence is guaranteed 

with this algorithm, the optimal solution may be not achieved. Some other clustering 

methods are developed based on the method of K-means. Some of them have achieved 

great improvement of image segmentation. These methods include fuzzy C-means, which 

gives the possibility of certain pixels belonging to each cluster. By setting the threshold 

value of the possibility, each cluster can contain greater or fewer pixels [51]. In addition, 

all clustering algorithms can easily be extended from 2D to 3D. 
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2.3.1.4 Region Growing 

Region growing algorithms have lot of applications in medical image segmentation. 

Region growing method has proved to be a very effective approach. The purpose of 

region growing is to produce spatially connected regions based on intensity homogeneity 

as well as geometrical proximity. A simple approach of region growing segmentation is 

to start with a seed region (user-defined pixels) that is confidently considered to be inside 

the target object. The pixels in the neighboring region are evaluated to determine if they 

belong to the object based on certain criteria (Figure 14). This process will continue and 

repeat until a certain stop condition is satisfied [52].  

 

Figure 14     Segmentation of Brain MRI by Using Region Growing Method 

The performance of region growing segmentation is largely based on merging and 

termination criteria. The simplest merging criterion is to evaluate an intensity value to 

determine if it is inside a specific interval. 

Another criterion for merging pixels is to minimize the error of misclassification. 

The objective is to find a threshold that classifies the image into two clusters. Therefore, 



37 
 

the area under the histogram for one cluster, locating on the other cluster’s side of the 

threshold, can be minimized. The region growing method can easily be extended from 2D 

to 3D applications in medical image segmentation [53]. The advantage of region growing 

methods is their simplicity. The major disadvantage is that they are based on point wise 

comparisons, which can give jagged borders. 

2.3.2 Model-based Segmentation Techniques 

Model-based segmentation means that a model representing an object is obtained 

through a training set and is matched to unknown image data later. During the matching 

process, the model’s shape and additional properties are varied to improve the match 

iteratively. Some typical model-based segmentation techniques are discussed in following 

subsections. 

2.3.2.1 Golden Images 

The simplest model-based method is to use a typical example of an object as a 

‘Golden Image’. In order to register the golden image to new data, a correlation operation 

is performed. Once the golden image is created, the registration will search for the 

proximate position of the structure in a new image. This method can be used in those 

applications that the objects of interest have fixed shape and size. The good thing for this 

method is quality examination of standard industrial products. However, in the 

application of  segmentation of medical images, most structures and organs of human 
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body have variability in both shape, size and texture, thus limiting the precision of this 

method [54]. 

2.3.2.2 Deformable Templates 

Deformable templates give a simple and compact representation of similar objects 

with variations in shape. Because the objects found in the same family can be deformed 

to each other, an ideal template can be created. Depending on the intrinsic properties of 

the objects, a template can be created by a polygonal boundary model or a triangulation 

model. The deformation of the template is constricted by defining the range of angle and 

ratio of length. When matching the template to a new image, the transformation 

parameters will be iteratively updated to change the template shape. By this means, the 

objective function is minimized and the best match between the deformed template and 

the edges in the image is achieved [55]. The method can be effective in certain cases but 

it is also complicated. The performance of the segmentation is mainly based on how a 

template is built; however, there is no general method to build templates or to choose the 

nodes for the polygonal boundary model. Determining how to represent the shape by 

triangles is based on observation and experience. 

2.3.2.3 Active Contours 

Active contours, known as snakes (also called an active surface in 3D 

segmentation), was a method first introduced in 1987 and has been used more and more 
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frequently in medical image segmentation [56]. An active contour is a flexible spine, 

which detects specified properties of an image and can dynamically fit to the edges of a 

structure by minimizing an energy function. Initially, it is placed close to an object’s  

gradient [56]. The forces that control the curve/surface regularity are called ‘internal 

forces’. In other words, the curve/surface is given the physical properties of elasticity and 

rigidity, which guarantee that curve/surface is always smooth while attracting to the 

boundary of objects (Figure 15). Successful applications have been reported on 

segmentation of the brain [57], bones [58], and lung [59] . The active contour or surface 

method has limitations in the following areas:  

1) The method depends on the initial positions of the contour or surface, 

which need to be carefully placed by the user.  

2) The method depends on the quality of images. It is prone to give an error 

result when it is applied to a low contrast image: it either includes different structures in 

one contour, or misses a part of structure.  

3) The method is complicated and requires a lot of computation during 

iterations. 
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Figure 15    Segmentation of MRI by Using Active Contour Method 

2.3.2.4 Deformable Fourier Models 

Usually, deformable curves and shapes can be expressed as the parameterizing 

functions. Staib and Duncan represent the shapes of objects in medical images using 

Fourier descriptors of closed curves/surface [60].  For example, a closed curve can be 

expressed as: 
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The choice of coefficients affects the curve complexity. By truncating the Fourier 

series, a compact representation of a smooth curve can be obtained, where a0 and b0 

define the translation of the curve and the rest follows the parametric form of an ellipse. 

By placing limits on each coefficient, the shape can be constrained to some degree but 

not in a systematic way. The method of deformable Fourier models is somewhat similar 

to the statistical models described below, but is not as general. For instance, it has 

difficulty to represents open boundaries [61]. 

2.3.2.5 Finite Element Models 

Finite element models (FEM) can be applied to model variable image objects as 

physical entities with properties of internal stiffness and elasticity [62]. Pentland used 

three dimensional models which act like lumps of elastic clay [63]. They drive modes of 

vibration of suitable base shape, such as an ellipsoid, and build up shapes from different 
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modes of vibration. They can fit models to range data by an interactive process, and can 

compare different heads by comparing the parameters. Models built by FEM are 

relatively easy to construct and represent a compact parametric shapes family [64]. 

2.3.2.6 Statistical Models 

Statistical analysis is used to describe important properties of large data with a 

small set of meaningful values. Recently, lot of research has been done to determine the 

use of statistical models for medical image segmentation [65]. Statistical models retrieve 

shape information from a set of labeled training data. The most widely used statistical 

model is the active shape model (ASM), proposed by T. F. Cootes in 1995 [66]. Each 

shape in the training set is described by a set of corresponding points called landmarks. 

These sets of landmarks are rotated, scaled, and aligned to get a mean shape with variable 

point positions. Thus, the shapes can be represented by a point distribution model (PDM). 

Principle component analysis (PCA) is then applied to reduce the dimension of the PDM 

and eigenvectors with the biggest eigenvalues represent the greatest variation in shape. In 

order to segment the new data, the model needs to be rotated, scaled and positioned again 

and the shape variation parameters need to be adjusted to get a best fit. ASM has 

achieved great success in medical image segmentation of organs such as brain [67], bones 

[68]], heart [69], lung and kidney [70], and also has been widely used in face recognition 

[71].   
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A direct extension of the ASM approach leads to the active appearance models 

(AAM) [72]. Beside the shape information, the textual information is also included in the 

model. The statistical shape model and statistical texture are built separately in a similar 

way and then combined together using a weight vector. Compared to ASM, AAM is 

more powerful, especially for those objects with complex texture information; however, 

since the model contains both shape variation parameters and texture variation 

parameters, model searching (fitting) will take more time than ASM [72]. 

2.4 Conclusion 

Model free segmentation methods are based on local image features and properties. 

The advantage of these methods is that no training process is needed and one can quickly 

apply them to segment data. However, the disadvantage is that the segmentation is based 

on the quality of the image and can be easily misled by noise in the image. Thus, this 

method is mostly applied to high quality images, in which the target objects have high 

contrast and are easily identified. Although model-free methods are generally low-level 

segmentation methods, they could be used during the process of a high-level 

segmentation pipeline, or as preprocessing filters.  

An advantage of model-based segmentation methods is that the strong statistical 

background makes them very robust even if the quality of the analyzed data is poor. The 

prior information about an object’s appearance helps to compensate for missing texture 
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information. However, some disadvantages do exist: the training process is long, and 

optimization takes a lot of time and is not suitable for modeling objects which can only 

be identified in a special context or which do not have a fixed shape, e.g. matching clouds, 

stones, trees, or blood vessels. 

As a conclusion, in segmentation of medical images, no one method is good for all 

applications but adequate segmentation could be obtained by using a variety of 

segmentation methods. What kind of segmentation methods should be applied depends 

on the following considerations. 

2.4.1 Imaging Modalities and Image Quality 

Since quality of image is different due to different imaging modalities (CT, MRI or 

ultrasound) and even for the same modality, different imaging protocols or imaging 

parameters can cause differences in the resulting images. Images with high contrast of the 

target structure can use model-free segmentation methods with the benefits of fast and 

easy implementation, while segmentation of low contrast images should consider model-

based methods for a robust and reliable segmentation. 

2.4.2 Properties of the Structures in Images 

Some structures such as muscle and soft tissue have low contrast in images, while 

some structures such as bone and bladder have higher contrast. Moreover, textures and 
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shapes are varied, even for the same kind of structures [73]. Model-free methods are 

sensitive to intensity value while model-based methods are sensitive to shape variations. 

2.4.3 Requirements of Application 

Segmentation can be used for varieties of applications such as to identify 

pathological organs, have quantitative measurements, and perform image registration and 

modeling. Different applications have different requirements and criteria for 

segmentation. Accuracy and efficiency are important for all applications; however, no 

golden method is available to meet both, and most algorithms require a tradeoff between 

accuracy and efficiency to meet the specific requirements of the application.
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CHAPTER III 

PROPOSED SEMI-AUTOMATIC SEGMENTATION METHOD 

 

 

 

3.1 Challenges for Semi-automatic Segmentation of Medical Images 

Recently, many researchers have put great efforts into developing algorithms for 

semi-automatic segmentation of medical images ([74],[75],[76]). However, there are 

several challenges remaining for such algorithms. 

3.1.1 Diffuse in Intensity Value  

In medical images, structures and organs are often diffuse in intensity and lack 

strong edges. Currently, most of the semi-automatic segmentation methods are either 

based on the intensity value used to label the region of objects, or based on a gradient 

value to delineate the edge of objects [77]. Those semi-automatic segmentation methods 

can achieve satisfying results where good quality and high contrast images can be 
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acquired [78]. However, for segmentation of medical images, those methods generally do 

not give satisfying results [41]. 

3.1.2 Limited In-plan Resolution 

In medical images, in-plane resolution is limited because of hardware restrictions 

and the imaging method itself. MRI can acquire higher resolution images than CT or 

ultrasound, but it also has to be limited in certain ranges [79]. Since higher resolution 

leads to smaller voxel volume, the received signal intensity is decreased, as is the signal-

to-noise (S/N) ratio. With limitations on in-plane resolution, small structures such as the 

vagina and urethra in MR images of the female pelvic floor are not easily separated from 

background [80]. Furthermore, lower resolution means fewer pixels or voxels are 

contained in the shape of structures, thus small structures cannot give smooth borders 

with intensity-based segmentation methods [80]. 

3.1.3 Difficult to Separate Objects 

In medical images, many structures and organs have similar intensity values, 

creating a challenge for segmentation methods to separate objects from each other 

automatically, based only on local image features such as intensity and gradient value 

[81]. Typically, this effect cannot be removed by simple pre-processing techniques such 

as histogram equalization [82]. 
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3.2 Model-Based Semi-automatic Segmentation 

In order to solve the challenges mentioned above, model-based methods have been 

introduced into semi-automatic segmentation [83]. Model-based segmentation methods 

are based on local image features and on prior knowledge of anatomy to identity 

structures and organs in medical images[84]. There are several model-based methods that 

can be used in semi-automatic segmentation such as deformable templates, active 

contours, Fourier models and FEM, but the utmost used is statistical model methods [85]. 

A statistical model not only represents an object of interest, but also describes how its 

shape might deform based on a statistical analysis of shapes of same class of objects. 

Compared to other segmentation methods, statistical models have the following 

advantages [86]. 

3.2.1 Robust 

Strong statistical background in general makes the models very robust even if the 

quality of image data is not good. Usually, the statistical models describe the shape 

variation of an object using mean shape models and shape variation models that are 

generated based on analysis of shapes of objects in the training set [87]. With 

combinations of the two models, a new instance of shape for this object can be created to 

fit into unseen image data [88]. This process is not only based on local image properties, 

but also based on the two shape models mentioned above. 
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3.2.2 Statistical Analysis to Provide Prior Knowledge 

The prior information about an object’s appearance helps to compensate missing 

information. Sometimes, part of a border of structure is missing in an image because of 

diffusion or noise or artifacts. For manual segmentation, a trained professional can make 

a reasonable guess of the missing part based on his or her knowledge of anatomy of the 

structure as well as the available information of the structure in the image [89]. Statistical 

shape models perform in a similar way, but the knowledge of anatomy of the structure 

comes from the statistical analysis of structure shapes in training set [87]. However, 

statistical shape models also have some limitations. 

3.2.2.1 Labor Intensive 

The training process is labor intensive. Sample images of structures for the training 

set need to be carefully examined to ensure they can cover most shape variations [88]. 

Images in the training set also need to be manually segmented by professionals to 

generate a reliable shape model [88]. At last, the segmentation results need to be 

normalized before performing a statistical analysis. 

3.2.2.2 Time-consuming 

The fitting process could take a long time because of multiple control parameters 

[88]. Model fitting means variation of shape based on the local image features as well as 

statistical shape models. Many control parameters are involved in this process such as 
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location, scales, rotation angles, moving speed, and weightings. Some complicated 

statistical shape models can have even more control parameters. 

3.2.2.3 Limitation of Statistical Analysis 

Statistical shape models are not suitable for modeling objects that do not have 

fixed shapes, but they do allow variation of shapes to a certain degree [65]. However, for 

objects with large shape variation, reliable shape models cannot be obtained from 

statistical analysis. For example, the shape of the bladder can vary a lot due to filling and 

emptying status [90]. Therefore, it is not suitable to use statistical model for semi-

automatic segmentation of the bladder. 

3.3 Limitation of Landmark-Based Statistical Model 

The most frequently used statistical model for medical image segmentation is the 

Active Shape Model (ASM), proposed by T.F.Cootes in 1995 [66], which was briefly 

introduced in Chapter II, section 2.3.2.6. In his statistical model, each shape in the 

training set is described by a set of corresponding points called landmarks (Figure 16) 

[71]. There are three types of landmark points. Type 1): Application-dependent points, 

such as the center of an eye or corners of mouth in the face model; type 2): Application-

independent points, the highest point, lowest point or curvature extreme in the model; 

type 3): Other points, which can be interpolated from the above-mentioned points. 
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Those set of landmarks are rotated, scaled, and aligned to get a mean shape with 

variable point positions. Thus, the shapes can be represented by a point distribution 

model (PDM). PCA is then applied to reduce the dimension of the PDM, and 

eigenvectors with the biggest eigenvalues represent the greatest variation in shape. 

 

Figure 16     Landmarks of Face (T F Cootes 1998) 

Although ASM has achieved great success in face recognition [71], the model has 

some limitations when applied to medical image segmentation:  

1) Manually labeling each corresponding point in images is time-consuming 

and labor intensive, and sometimes it is impossible for people to identify all the 

correspondent points of the structures visually.  

2) Performance of the model is based on the proper selection of application-

dependant landmarks, and this process is subjective and has no standards. It is mostly 

based on observation and experience.  
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3) Normalization of landmarks model is computationally intensive. To 

compare the equivalent landmark points of different samples, they must be aligned with 

respect to a set of axes by rotating, scaling, and translating operations. In Cootes’ 

algorithm, each landmark point needs to be weighted and must solve a large equation set 

to get global minimization for the weight matrix [66].   

4) It is difficult to extend the method from 2D to 3D images. The reason is 

obvious: to identify and label each corresponding point in 3D images is much more 

difficult than in 2D images, and sometimes it is highly impractical. 

3.4 Overview of Proposed Semi-automatic Segmentation Method 

In this dissertation, a semi-automatic segmentation method is proposed, which can 

be applied on both 2D and 3D MR images of the female pelvic floor. The proposed 

segmentation method is a statistical model-based method and contains the following 

features. 

3.4.1 Using Distance Field Instead of Landmarks 

Instead of using landmarks, the proposed semi-automatic segmentation method is 

based on a statistical model of a distance field. The distance field is an operator normally 

applied to binary images, which contain only black and white pixels. It is a representation 

of a digital image by assigning to each pixel the distance to the nearest non-zero pixel 

[91]. The distance field was first introduced by Pfaltz and Rosenfeld [92], and has been 
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used in various applications, such as blurring, path finding, motion planning in robotics, 

pattern matching and so on [93]. It can also be used in pattern recognition to classify 

certain objects in an image by defining a threshold [93] . Compared to the statistical 

models based on landmarks, the distance field has the following advantages. 

1)  It does not require manual labeling of corresponding landmark points 

slice by slice. Instead, the distance field is automatically generated from a series of binary 

mask images, which separate target structures from the background of MRI images [93]. 

As a result, it can greatly decrease the time to build a statistical model.  

2)  It is a more robust and reliable statistical model. Since the distance field 

covers all the pixels inside and outside of the target structure, it can capture all possible 

anatomical features of the shape of the structure [94]. The calculation of the distance field 

map is automatic and unsupervised, thus the statistical model is more objective and 

reliable. 

3) It is easy to extend the method from 2D to 3D images since calculation of 

the distance field is based on vectors and matrix operations.  

4) The distance value can be directly used for updating contour or surface 

movement in model searching since it represents the closest path from the current 

position to the border of target structures.  
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3.4.2 Using  Centered Affine Transform to Align Shape model 

Similar to the ASM/AAM method, the corresponding points in distance field 

images, which are generated from images in the training set, need be well aligned with 

respect to a set of axes before performing the statistical analysis. However, instead of 

using a weight matrix for each pixel and solving a large set of equations to obtain 

alignment parameters, the proposed segmentation method applies a centered affine 

transform between each of two distance field images [95]. To reduce the effect of the 

randomly selected initial shape, this procedure will be iterated several times. During the 

process, a pair of 2D or 3D distance field images are converted into vectors and a 

centered affine transform between these two vectors is composed of linear 

transformations (rotation, scaling) and a translation (shift). 

3.4.3 Extraction of Local Image Features by Designed Filter Sequence 

A specially designed image filter sequence is applied to an unseen image to extract 

the local image features, including windowing, smoothing/noise reducing, contrast 

enhancement, and feature extraction.  

3.4.3.1 Windowing Filter 

Medical image data are usually 12 to 16 bits, while the grayscale display of the 

computer provides only 8 bits (256 levels). Thus a windowing filter is required to select a 

certain rang of intensity values for display. For this filter, windowing parameters need to 
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be carefully chosen since inappropriate windowing display can ruin contrast information 

and some features of target structure can be missing. 

3.4.3.2 Smoothing/Noise Reducing Filter 

In general, the noise signal has higher frequency than a normal signal in medical 

images. Consequently, a low pass filter can be used to remove or reduce noise [96]. 

However, small features of the structure may also be smoothed out by applying a low 

pass filter. In order to keep the features of the edge of structures, an anisotropic diffusion 

filter is the pipeline. 

3.4.3.3 Edge Enhancement Filter 

The statistical model is based on the shape information of the structures, i.e., the 

boundaries of objects in images. Proper features can be extracted from the image with an 

edge enhancement operation [97]. Moreover, during the model fitting process, edge 

properties of the structure are the most important local image features that affect the 

performance and result of segmentation. 

3.4.4 Using Evolutionary Strategy for Model Matching 

Given the statistical model and image features of unseen data, the model-based 

segmentation is to first superimpose the model over a given image and then change the 

model parameters until the model is as close to the target image as possible [85]. In this 
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dissertation, an Evolutionary Strategy (ES) is applied to update the evolutionary contour 

or surface in the parameter space to obtain the optimal value. 

3.4.5 Using Taguchi Analysis to Improve the Performance of Segmentation 

To evaluate the performance of the proposed segmentation method, the results of 

the semi-automatic segmentation will be compared with those of manual segmentation. A 

similarity value will be calculated using the Dice coefficient equation [98]. Then Taguchi 

analysis will be performed based on the Dice coefficient to tune the control parameters of 

segmentation to improve performance [99]. Taguchi method is a technique to lay out the 

experimental plan in the logical, economical, and statistical way [100]. It is usually used 

where the output depends on many inputs. By systematically choosing certain 

combinations of variables, the Taguchi method can separate their individual effects 

without having to tediously and uneconomically run the process using all possible 

combinations of values of those variables [100]. After Taguchi analysis, the significance 

index of segmentation parameters can be generated, and the trends of tuning parameters 

for better performance can be finally acquired.   
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The framework of the proposed segmentation method is shown in the following 

chart (Figure 17) to provide tuning trends for better 

performance.  

Figure 17     Framework of Proposed Segmentation Method 

First, a statistical model is built based on images of the structure in the training set. 

Images are manually segmented and aligned, and PCA is performed to generate a mean 

shape model and a shape variation model, which contain the most shape variations for 

target structures. Then local feature map of unseen image data is obtained by a specially 

designed filtering sequence, including contrast enhancement, noise reduction, smoothing, 

and edge extraction. With the shape model and feature map, automatic segmentation is 

performed by matching the model to the border of structures using ES method, an 

optimization technique based on evolution and adaptation. At last, segmentation 
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performance is evaluated by calculating a similarity coefficient between semi-automatic 

and manual segmentation results. Since several segmentation parameters are involved in 

segmentation, Taguchi analysis is performed to investigate the significance of 

segmentation parameters and provide tuning trends for better performance. 

Details of how to build the statistical model will be covered in Chapter IV. The 

systematic approach to image feature extraction and model matching will be deliberately 

described in Chapter V. The performance evaluation and Taguchi analysis will be 

discussed in Chapter VI.
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CHAPTER IV 

BUILDING STATISTICAL SHAPE MODEL 

 

 

 

4.1 Introduction 

A statistical shape model is one kind of mathematical representation of prior 

knowledge of structure shapes [65]. It not only describes what the general shape a 

structure looks like but also determines how it can vary based on statistical analysis of 

shape features. Building a statistical shape model is the key process of the proposed semi-

automatic segmentation method, and only a robust and accurate statistical model can lead 

to reliable segmentation results. Several steps are involved in building the statistical 

shape model. At first, a training set is established by choosing normal patient examples 

from image database. Clinically, several imaging methods can be use to get images of the 

female pelvic floor such as CT, MRI and ultrasound. CT has the problem of radiation and 



60 
 

has limited application in the evaluation of the pelvis because of low contrast of soft 

tissues (Figure 18). Nevertheless, it may be part of abdominal scanning (e.g. for tumors), 

and has uses in assessing bone fractures [101]. 

 

Figure 18     CT Scan of the Female Pelvic Floor 

Ultrasound can be used to evaluate lower urinary tract and pelvic floor 

dysfunctions. It can also be used to evaluate the dynamic response of female pelvic floor 

muscles as well as to identify gallstones [102]. Some researchers also use ultrasound to 

evaluate the anatomy of the levator ani muscle [103]. However, the signal of ultrasound 

is noisy, and the borders of soft tissues and muscles are not clear enough for accurate 

segmentation (Figure 19). An ultrasound image has low contrast, resulting in difficulty in 

separating one structure from surrounding tissues and organs [104]. Sometimes, the 

structure is blurred with the background, which makes it impossible for identification and 

segmentation even with post processing of images. 
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Figure 19     Ultrasound of Female Pelvic Floor  

Compared to CT and ultrasound, MRI gives the best contrast for soft tissue, 

playing a main role in pelvic floor imaging applications [105]. Moreover, sensitivity for 

the detection of fluid and its ability to direct multi-planar imaging make MRI superior to 

other imaging modalities in the investigation of the anatomy of the female pelvic floor 

[106]. In general, MRI has the following advantages. 

1) MRI does not use X-Rays or any other type of ‘ionizing’ radiation. 

Alternatively, powerful magnetic fields and radio frequency fields are used to acquire 

images, so MRI provides a safer imaging technique. 

2) MRI has the ability to change the imaging plane by choosing radio 

frequency pulse bandwidth, which is also called ‘slice selection’. Therefore, the patient’s 

body does not need to be moved during the MRI scan. 
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3) MRI scans can provide more detailed information about soft tissue than 

CT and ultrasound. In addition, MRI can give clearer difference between normal and 

abnormal tissue than CT scan [25] (Figure 20). MRI has the ability to adjust the contrast 

of scans by changing the radio waves and magnetic fields, which in turn change the 

received signal intensity. By changing the contrast settings, different structures and 

tissues can be highlighted. Sometimes contrast agents are also used in MRI but it is 

noteworthy that they are not made of iodine [107]. 

 

Figure 20     MRI Scan of Female Pelvic Floor 

However, MRI is more expensive and slower than CT. In addition, CT is better 

than MRI for imaging bone structures. MRI is not applicable for some patients who have 

received certain types of surgical clips, metallic fragments, cardiac monitors, or 

pacemakers [105]. 
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To create an accurate statistical shape model, MRI scans of normal female pelvic 

floor are used as training set samples since they can provide better contrast for soft 

tissues. All the MRI slices are examined by a trained professional (radiologist) to ensure 

that the target structures are normal and intact. Besides, the candidate images are 

confirmed to have sufficient shape variations for target structures, thus a robust shape 

variation model can be obtained. In the next step, these MRI scans are manually 

segmented by a live wire algorithm to generate binary mask images, which separate 

target structures from image background. The binary mask images are then cropped to 

obtain the region of interest (ROI) image, which only contains the shape information of 

target structures. Because of diversity of shapes among different patients and different 

imaging protocols, the binary ROI images are aligned to filter out position, rotation, and 

scaling information. In this way, the filtered images are normalized, and should only 

contain shape features of target structures. A centered affine transformation is used to 

align training shapes here. Distance maps are calculated based on the aligned images. A 

distance map can translate shape features into distance values to nearest shape point, i.e., 

pixel or voxel of structure edge. At last, PCA is applied to the distance map to extract the 

most salient features of shapes. As a result, a mean shape model, a shape variation model, 

and according eigenvalues are obtained and will be used for segmentation of unseen 

image data. The framework of building the statistical model mentioned above is shown in 

Figure 21, and the remaining sections describe the detailed steps. 
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Figure 21     Flow Chart of Building Statistical Model 

4.2 Training Set Preparation 

The training set consists of a collection of raw image data, containing the shape 

information of the target structures. Selection of samples for the training set is the first 

step to derive a statistical model. There are three requirements for training set candidates 

in this study:  

1) The image data is from healthy women with normal pelvic floor structures. 

2) The image has good quality and no artifacts. Shape information of the 

target structures needs to be correct and intact, and the border of target structures can be 

clearly identified from images. 

3) There are sufficient shape variations in the candidate images. In the study, 

training set images were selected from a MRI database at the Cleveland Clinic, and the 

image data was preprocessed to eliminate the patient’s name and other identifying 
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information. All images data was inspected and confirmed by the Radiologist, Dr. Joseph 

C. Veniero MD, PhD (Radiologist of Section of Abdominal Imaging, Diagnostic 

Radiology Department of Cleveland Clinic) (Figure 22). 

 

Figure 22     Examples of Training Set Images 

Performance of the statistical model-based segmentation method has a close 

relation to the quality and quantity of training set samples. In order to derive a robust and 

reliable statistical model to represent the shape features of target structures, a certain 

quantity of samples with sufficient shape variation are required to be put into training set. 

Similar to neural network training, if the shape features of a target structure is considered 

as an unknown map, more data samples generally means more mesh points available and  

a smoother map can be constructed. However, those mesh points need to be evenly 

separated and cover each part of the map, otherwise the generated map will lose integrity. 
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On the other hand, more training samples do not necessarily mean that a better statistical 

model can be obtained. Redundant data, which has similar properties of other data in the 

training set, not only lowers the computational efficiency, but also decreases the 

performance of model searching in image segmentation. Putting redundant data into a 

training set can cause unbalanced property distributions in a generated statistical model.  

The size of a training set is determined arbitrarily, and there is no certain standard 

that can be referred to. Generally, it depends on how many samples are available; but 

some rules can help to choose the proper size of training set [108]. 

4.2.1 Performance Requirement 

For applications requiring quick processing, such as real-time target tracking and 

detection, a small training set can be used for modeling. On the contrary, if applications 

require high accuracy, a large training set needs to be used.   

4.2.2 Properties of Target Structures 

For those structures with complicated shapes, a large training set is more likely to 

be used for modeling than a small one. 

4.2.3 Segmentation Results 

If the performance of segmentation is not satisfactory and segmented images 

cannot capture key features of the target structures, more samples need to be put into the 

training set to rebuild the statistical model. 



67 
 

4.3 Manual Segmentation of Training Set Images 

The purpose of manual segmentation is to separate target structures from the image 

background and the results are usually stored as a binary mask, which contain only two 

intensity values: 1 represents a white region and 0 represents black region. Manual 

segmentation is subjective, and prior knowledge of anatomy of the target structures and 

their normal appearance in MRI scans are essential for an accurate and reliable 

segmentation. Besides, software also plays an important role in improving the 

performance of manual segmentation. 

Several software tools can be used to perform manual segmentation of medical 

images, such as Amira (www.amiravis.com), ImageJ (rsbweb.nih.gov/ij), and ITK-SNAP 

(www.itksnap.org/pmwiki/pmwiki.php). Amira is commercial software developed by 

Mercury while ImageJ and ITK-SNAP are both open source and free software. All of 

them provide some interactive segmentation tools that can help to speed the manual 

segmentation process. In ITK-SNAP and ImageJ, a polygon toolbox is used for 

segmentation by manually labeling points in the border of the target structure and 

automatically connecting those points to generate a contour (Figure 23). The polygon 

method is ok for simple shapes that are mainly composed of lines, but for complicated 

shapes composed of smooth curves, such as the levator ani muscle and obturator muscles, 

the generated contour is coarse and cannot accurately represent the shapes. Although 

http://www.itksnap.org/pmwiki/pmwiki.php
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smoothing algorithms can be applied to the contours afterwards, they also change the 

shape and area information and lead to inaccurate segmentation [109]. 

 

Figure 23     Manual Segmentation Using Polygon Toolbox (ITK-SNAP) 

Compared to polygon tools, the live wire toolbox provided by Amira is much more 

suitable for manual segmentation of elastic objects. The live wire algorithm, sometimes 

also called intelligent scissors or magnetic lasso, was proposed by Eric Mortensen and 

William Barrett in 1995 [110]. During the segmentation, the user clicks on a pixel of a 

structure’s border as a seed point, and the program can stick to the contour of the 

structure as closely as possible by computing a path from the seed point to the mouse 

cursor. In order to compute such a path, the original image is converted to a node map in 

which each pixel is taken as a node. Each node is connected by links to its eight 

neighboring nodes, and the cost value of each link is the derivative of intensities across 

that link (Figure 24). 
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Figure 24     Node Link Map of Live Wire Algorithm 

The path (live wire), which now can be represented as a sequence of links, is 

computed by finding the minimum cost path from the seed point to the current mouse 

position. Figure 25(a) shows how a live wire (in yellow) can be closely attracted to the 

border of levator ani muscle. Figure 25(b) is the result of manual segmentation where the 

levator ani muscle is labeled in red color. Figure 25(c) shows the binary result of manual 

segmentation where target structure is in white and background is in black. The final step 

of manual segmentation is to define the ROI, which only contains the target structure 

(Figure 25(d)). Analysis performed on ROI rather than on the entire image will greatly 

increase computational efficiency of building the statistical model and the modeling 

search process in a semi-automatic segmentation. 
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Figure 25     Manual Segmentation of the Levator Ani Muscle with Live Wire 

4.4 Alignment of Segmented Images 

The proposed modeling method works by examining the statistics of the coordinate 

points of the distance maps of structures shapes. In order to compare equivalent points 

from different shapes, the binary masks of the target structure must be aligned in the 

same way with respect to a set of axes. The purpose of alignment is to filter out the 

differences in shapes due to translation, scaling, and rotation, which may be caused by 

differences in the human body or imaging parameters. Two issues need to be considered 

here for alignment. One is how to align any two shapes and the other is how to align 

multiple shapes. 
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In this dissertation, a robust image registration method, called centered affine 

transformation, is applied to align any two shapes of training set images. Different from 

rigid body transformation, which only contains translations and rotations, an affine 

transformation between two vector spaces (affine spaces) is composed of linear 

transformation (rotation, scaling, or shear) and a translation (Figure 26). An affine 

transform can be centered by specifying the center point of rotation, which usually is the 

centroid of structure [111]. 

 

Figure 26     Affine Transformation 

In 2D images, suppose that a coordinate (x, y) is a point of structure before the 

transformation and that (u, v) is the location of that point after the transformation. Then 

the translation, scaling, rotational and shear transformations can be expressed by equation 

(8),(9),(10),(11) respectively [111]: 
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Where a and b denote the shift of origin of the old coordinates, c and d denote 

scaling coefficients of x and y respectively, θ denotes the rotation angles, and S denotes 

the shear factor in the x direction. Thus, an affine transformation can be expressed as: 
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We can see from the equation (12) that several linear transformations can be 

combined into a single one, so the affine transformation can also be expressed as: 

BAPP ' +=      (13) 

In which, A and B can be expressed as: 
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Similar to a 2D affine transformation, 3D affine transformation can also be 

expressed with the equation (13), with coefficient matrix expressed as: 
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As there are six parameters for a 2D affine transformation and twelve parameters 

for a 3D affine transformation, respectively, the alignment problem turns into finding the 

value of those parameters that can minimize the difference of two shapes. The difference 

of two shapes can be described by the sum of the squared Euclidean distance between 

pairs of correlation points, expressed by the following equation: 

∑
=
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N
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ii 'PP)'P,P(d     (18) 

The optimal translation vector can be obtained from the difference of the centroid 

of the two shapes (Cp and Cp’), which are express as: 
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The remaining parameters can be solved by using a standard optimization method 

such as derivative-free method or Lagrange multipliers [112]. MATLAB (product of the 

Math Works) incorporates those methods in its optimization toolbox, which can be used 

in the alignment application. The testing results of a centered affine transformation based 

on synthetic images are shown in Figure 27. The moving image has different pose 

(angles), size, and position (centroid coordinates) from the fixed images. With a centered 

affine transformation, the moving image is well aligned to the fixed image. 
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Figure 27     Centered Affine Transformations 

Results of transformation parameters are show in Figure 28. 
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Figure 28     Parameters for Center Affine Transformation 

The method of alignment of two shapes also can be applied to alignment of 

multiple shapes. By arbitrarily selecting one shape from the training set as an initial shape 

(Gm), all the other shapes (Si) can be aligned to it using the method described above. A 

mean shape can be generated from those aligned shapes by equation (21): 

∑
=

=
N

1i
iS

N
1

S      (21) 

Where Si (i=1….N) are shapes that have been aligned to the initial shape. To 

reduce the effect of random selection of the initial shape, this procedure is executed for 

several iterations, and the similarity of two consecutive iterations is utilized to monitor 

convergence. The iteration stops automatically until the similarity value is greater than a 

predefined threshold. The flowchart of this method is shown in Figure 29, where κ 

denotes the similarity value and ε denotes the error threshold. 
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Figure 29     Flowchart of Shape Alignment 

4.5 Calculating Distance Maps of Aligned Shape Images 

The distance map is an operator normally applied to binary images and it is a 

representation of distance proximity of the point sets. Given a two-dimensional binary 

image I(x, y) by dividing all the pixels into the object pixels and the background pixels, 

the distance map Id of this image is a matrix that assigns each object pixel with the 

distance to the nearest background pixel and is expressed in Equation (22): 
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Where ||x, y|| is a distance metric. 

The result of the transformation is a gray scale image that looks similar to the input 

image. The gray scale intensities of points inside foreground regions are changed to show 

the distance to the closest boundary from each point (Figure 30). 

 

Figure 30     Distance Map 

Distance maps are used for various applications, such as image and video blurring, 

path finding, and motion planning in robotics [113]. In image analysis, it can be used to 

measure objects or find relationships between objects [114]. Furthermore, it can also be 

used to classify certain objects in an image as foreground or background by defining a 

threshold. Several types of distance transformations are available, depending upon which 

distance metric is being used to determine the distance between pixels. The most 

commonly used distance operators are chessboard, Euclidean, city block and quasi- 

Euclidean [115]. 
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The Euclidean distance map uses the form of a L2 norm, and is defined by 

equation (23): 

22 yx||y,x|| +=     (23)  

As shown in Figure 31(a), the pixel with value 0 stands for the border of an object 

while the pixel with value 1 denotes a pixel inside the object, and the red line is the path 

from that pixel to upper-right border pixel. Therefore, the length of red line is the 

Euclidean distance value, calculated as 1.414. By calculating the length of all eight paths, 

we can get a Euclidean distance transform map that is shown in Figure 31(b). 

The Euclidean distance map is very useful since it represents the way that 

distances are measured in the real world. The metric is isotropic in that distances are 

independent of object orientation. However, it is difficult to calculate efficiently for 

objects with complex shapes in digital images [116]. 

 

Figure 31     Euclidean Distance Map 

Several other metrics are used to calculate approximate distances between two 

pixels, such as city block, sometimes also called Manhattan metric. City block uses the 
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L1 norm where the distance is measured by the sum of horizontal and vertical steps in the 

path between two pixels [115]. The city block distance metric is defined in equation (24): 

|y||x|||y,x|| +=     (24) 

If each pixel is considered as a node and only connected to the four neighboring 

nodes in horizontal and vertical direction, then the city block distance is the minimum 

number of nodes that pass though when travel from one pixel to another. In Figure 32 (a), 

the city block path from inside pixel to the upper-right border pixel is shown in red line, 

therefore the distance value is equal to 2, which is shown in Figure 32 (b). 

 

Figure 32     City Block Distance Map 

Another approximation of Euclidean distance is the chessboard metric. Similar to 

the city block, the chessboard metric use an 8-connected node to calculate the distance 

between two pixels, while the node at a diagonal direction is considered to have the same 

distance as that in vertical and horizontal directions. In Figure 33(a), the chessboard path 

from inside pixel to the upper-right border pixel is show in red line, since all neighboring 
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pixel are conceded to have same unit of distance value, the result is calculated as 1, which 

is shown in Figure 33 (b). 

 

Figure 33     Chessboard Distance Map 

Both city block and chessboard approximation distance maps are easy to calculate, 

however, that is accomplished by sacrificing the accuracy. Compared to these two 

distance maps, the quasi-Euclidean distance map can better approximate the Euclidean 

distance metric while retaining the simplicity of calculation [117]. The quasi-Euclidean 

distance metric measures the minimum path between two pixels by a set of horizontal, 

vertical, and diagonal line segments, which is a hybrid method of city block and 

chessboard (Figure 34). 
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Figure 34     Quasi-Euclidean Distance Map 

In this dissertation, the quails-Euclidean metric is used to calculate the distance 

map of the training samples because structures of the pelvic floor have complex shapes. 

The distance map is calculated twice, during which the second calculation is based on 

inverted binary image (from white to black or from black to white), thus a signed distance 

map can be acquired by combining two distance maps with positive distance inside the 

shape and negative value outside the shape (Figure 35). The advantage of signed distance 

map is that it not only determines how close a given point x is to the boundary of shape 

(where distance is zero), but also tells if the pixel is inside or outside the boundary. In the 

later model matching (segmentation), such a signed distance map can guide the 

evolutionary contour or surface to update to the correct directions. 
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Figure 35     Example of Signed Distance Map 

4.6 Principle Component Analysis 

To model the variation of shapes in the training set, principle component analysis 

(PCA) is applied to signed distance maps. PCA is a standard data mining method that is 

mostly used in a variety of applications to find out inherent data structure [118]. The 

objective of PCA is to reduce the dimensionality of data set while still keeping the most 

variability. If a data set contains a large number of variables, modeling a data set is 

complicated or impractical. Furthermore, it is very likely those variables are correlated 

with each other. Thus, modeling a data set based on these correlated variables is 

inaccurate and unreliable. With the application of PCA, correlated variables can be 

transformed into a number of uncorrelated variables, and the most significant 

uncorrelated variables are defined as principle components [118]. Thus, the statistical 

model can be built based on the limited numbers of principle components (independent 
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variables), and the model is capable of modeling the most of variability of the original 

data set. 

In order to perform a dimensionality reduction, PCA uses a method to project a 

higher-dimensional data set samples into a subspace of much lower dimensionality. An 

example of performing PCA on 2D data set by projection method is illustrated in Figure 

36. By projecting the data set to the one-dimensional space (i.e. axis) X’ (in red line), 

where contains the largest variation, the first principle component is obtained as 

PC1.Again, by projecting the subspace orthogonal to the first subspace, i.e. the axis Y’ (in 

red line) perpendicular to the X’, the second principle component is acquired as PC2. 

Both principle components have their own direction and magnitude, and any point in the 

original data set can be express as the sum of the mean plus a linear combination of PC1 

and PC2, which are expressed as: 

2211i PCkPCkxx ⋅+⋅+=    (25) 

∑
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In which, k1 and k2 represent coefficients for principle component PC1 and PC2 

respectively. 
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Figure 36     Example of Performing PCA on 2D Data Set 

The principle components are usually sorted one by one with the most significant 

component at first position and the least significant one at last position. The principle 

components with less significance can be left out to reduce the dimensionality [79]. This 

is reasonable since the small variations in a data set often stand for the noise. For 

example, a point in above 2D data set can also be approximately expressed as: 

11i PCkxx ⋅+=     (27) 

The dimensionality of the data set has been reduced to one-dimension since PC1 

covers the majority of variations. 
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Similar to 2D projection, 3D data set can be projected to a 2D surface containing 

the most variation. In this 2D space, the first and second principle components can be 

acquired using the same 2D projection method described above. Then a data set is 

projected to an axis perpendicular to the 2D surface. In this way, the third principle 

component can be acquired. Obviously, those three principle components are orthogonal 

to each other. 3D data set can be expressed as linear combinations of three, two, or one 

principle components. Similar to equation (27), 3D data set now can be expressed in a 

more general form: 

 
∑
=

⋅+=
M

1i
i Pikixx

    (28) 

Where Pi (i=1,…,M) is the most significant M principle components of the data set. 

The projection method is intuitive for 2D or 3D data set, but impractical for the 

data set with the high dimensionality. In practical, PCA is performed as an eigenanalysis 

of the covariance matrix of the data set [79]. Let X be Nth dimensional vector expressed 

by the column vector, which stands for the original data set, and there will be an 

orthogonal transformation P matrix with N by N dimensions so that: 

XPY T=      (29) 

Where the covariance matrix of Y is a diagonal matrix and T1 PP =− . If Cov (Y) 

and Cov(X) are used to denote the covariance matrix of Y and X respectively,  
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The following equation (30) and equation (31) can be derived based on rules of the 

matrix operation.  

TYY
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1
)Y(Cov

−
=  
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P)X(Cov)Y(PCov =     (31) 

P can be rewritten as:  

[ ]Pn...2P1PP =     (32) 

In addition, Cov(Y) can be expressed as: 
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Equation (34) can be derived based on equation (32) and (33): 
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[ ] [ ]Pn)X(Cov...2P)X(Cov1P)Xcov(knPn...2P2k1P1k =  (34) 

Where Pi is an eigenvector of the covariance matrix of X and the ki is an according 

eigenvalue. When these eigenvalues are sorted from large to small, the eigenvector with 

the biggest eigenvalue is the most significant principle component. 

This study assumes that there are n aligned and scaled shapes in the training set, 

they are described as vectors (Si, i=1..n),and each shape consists of m points signed 

distance map, so those shapes can be expressed as column vectors, and the average shape 

can be obtained through the alignment: 

∑
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=
n

1i
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1

S      (35) 

The covariance matrix thus can be given as: 

T
n

1i

)SSi)(SSi(
n
1

)S(Cov −−= ∑
=

   (36) 

The principle component of shape variation can be obtained as eigenvectors of 

Cov(S), Фi and according eigenvalue λi (λi>= λi+1). If the first t eigenvectors are 

selected as principle components for modeling, a new shape instance can be generated by 

the following equation: 
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Vector b is called the shape variation control vector. Since the eigenvalue λi 

calculated in the PCA is the maximum of likelihood estimates for the variations, the 

according standard deviation is: 

ii λ=σ      (38) 

It has been approved by applying the limits to the shape variation vector b with the 

following Equation: 

i3bi λ±≤      (39) 

A new shape instance that is similar to the training set shapes can be generated in 

this way [66].  

In this chapter, a modeling method of statistical shape model is elucidated. A 

reliable and accurate model is essential for proposed model-based segmentation method. 

Building such a model involves several steps. At first, a proper imaging technique is 

required to obtain the raw image data. In this study, MRI was used for the female pelvic 

floor imaging since it has better contrast for soft tissue and high resolution compared to 

CT and ultrasound. Secondly, a certain number of image data is examined and selected 

into training set, and then manual segmentation of structure shape is performed with live 
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wire tools. Thirdly, shapes of structure are aligned using a centered affine transformation 

and a mean shape model can be generated. Fourthly, signed distance maps are calculated 

based on aligned structures shapes, using quasi-Euclidean distance metric. Compared to 

other distance metric, the quasi-Euclidean distance metric is more accurate but still has 

decent computational efficiency. Finally, PCA is performed to obtain the shape variation 

models using eigenanalysis. Eigenvectors are sorted by eigenvalues and only the first 

several vectors are chosen to build the statistical shape model. With mean shape model 

and shape variation model, a new instance of structure that has the similar shape to those 

in the training set can be generated with limited changes of shape control parameters. 
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CHAPTER V 

LOCAL FEATURE MAP AND MODEL MATCHING 

 

 

 

5.1 Introduction 

Given a statistical shape model and a new image, the proposed segmentation 

method first generates a local feature map from the image and then superimposes the 

mean model over the feature map. During the matching process, the image feature map 

will attract a contour or surface to the boundaries of the target structure while the 

variation model will maintain the shape in a reasonable way. Several steps are involved 

in extraction of the local feature map from unseen images, including importing MRI data, 

adjusting the window and level value, reducing noise and calculating the gradient 

magnitude. Details of these steps are described in the following sections.
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5.2 Import MRI Data 

The MRI scans are saved as Digital Imaging and Communication in Medicine 3.0 

(DICOM), a digital imaging standard created by the American College of Radiology 

(ACR) and National Electrical Manufacturers' Association (NEMA) [119]. The objective 

of this standard is to aid in storing, distribution, and viewing of medical images, such as 

CT, MRI, and ultrasound. DICOM is a comprehensive set of standards, which specify a 

file format definition as well as a network communication protocol [120]. A single 

DICOM file contains a header and a body of image data. The file header consists of both 

standardized fields and free-form fields; the former are a public DICOM dictionary while 

the latter are a DICOM shadow dictionary [121]. In this study, a MATLAB DICOM 

parser is used to import DICOM image file and decode compressed image data. 

5.3 Window and Level Operation 

Medical images are typically recorded with 16-bit intensities so each pixel or voxel 

of the image is represented by an integer from 0 to 65535. Since each structure has its 

own intensity distribution, intensity range that best represents the target structures is 

usually selected for display or study. The method to define the intensity range is called 

window operation, which consists of two parameters: window center and window width 

[122]. If a selected intensity range is from IL to IH, a window center (WC) is defined in 

equation (40): 
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2
1

W HLC +=     (40) 

A window width (WW) is defined in equation (41): 

LHW IIW −=     (41) 

Figure 37 demonstrates that two different window operations are performed on the 

same MRI scan. From the images, the levator ani muscle and obturator muscles are better 

displayed with the window setting WC =197 and WW =212 (Figure 37(b)), while the 

bladder is better displayed with WC =282 and WW =79 (Figure 37(c)). 

For a series of MRI scans with the same imaging protocol, the same window 

parameter should be applied to extract information from the target structure; however, a 

window setting that works well for one protocol will probably be useless with a different 

protocol or on a different MRI scanner [122]. 

 

Figure 37     Example of Window Operation 

A level operation is another method that allows the user to adjust the contrast and 

brightness of the digital image to enhance the target structure. Level operation sometimes 
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is also called intensity mapping. Although medical images are able to recorded with 16-

bit intensities, they only can be displayed with 8-bit grayscale intensities, i.e., from 0 to 

255. The selected intensity window needs to be mapped to 8-bit grayscale intensities for 

display, while other pixels with values outside of the window are either mapped to 0 for 

black or 225 for white. The intensity window can also be mapped to a smaller intensity 

range, in which the low threshold is greater than 0 and the high threshold is less than 255. 

Several intensity mapping methods can be performed on the MRI scans as detailed below. 

5.3.1 Linear Mapping 

Linear mapping is a typical mapping method that forces a dynamic range of 

intensities to be fit within a particular intensity scale [123]. The linear mapping equation 

is expressed as: 

L
W

LH
W M

W
)MM(

)]W
2
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Wc(Input[Output +
−

××−−=  (42) 

Where ML denotes the low threshold for mapping intensities and MH denotes the 

high threshold for mapping intensities. Linear mapping is shown in the Figure 38. The 

human eye is limited in its ability to discern the small intensity difference since it is too 

similar. With certain level operations, the ratio between the mapping range and the 

window width can be greater than 1, thus the intensity difference in the original image is 
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enlarged and people can see more details of target structure [124]. This is also called 

contrast enhancement.   

 

Figure 38     Linear Intensity Mapping 

5.3.2 Normalized Mapping 

In normalized mapping, the grayscale intensities in the output image are 

transformed to have a mean of zero and a variance of one using the following equations. 
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Where Ii (i=1...N) is all the intensity values in a selected intensity window, µ is the 

mean and σ2 is the variance [123]. This intensity mapping is particularly useful in 

medical image registration applications as a preprocessing step to the evaluation of 

mutual information metrics [125]. 

5.3.3 Histogram Mapping 

Histogram mapping, also called histogram equalization, is a method, which can 

alter the intensity distribution in an original image to a Gaussian distribution in a mapped 

image [123] . Consider a 2D image (M x N) which contains L levels of grayscale 

intensities. The possibility of an occurrence of a pixel of certain intensity I can be 

expressed as: 
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Where 0 ≤ I ≤ L, and the cumulative distribution for intensity I can be expressed in 

Equation (47): 

∑
=

=
I

0J

)J(P)I(CD     (47) 

In order to get a Gaussian distribution of intensity in the new image, the mapped 

cumulative distribution needs to be linear across the new intensity value range, i.e., 0 to 

255. This requires a transformation of intensity values based on the following equation: 

)255
)CD(MinNM
)CD(Min)I(CD

(round)I(T'I ×
−×
−

==   (48) 

In which, Min (CD) is the minimum value of the original cumulative distribution. 

5.3.4 Nonlinear Mapping 

Compared to the linear mapping, nonlinear mapping utilizes a smooth and 

continuous nonlinear transformation function instead of a linear function. Among 

different kinds of nonlinear functions, the sigmoid function is one of the most widely 

used, with the goal to focus attention on a particular set of values and progressively 

attenuate values outside that range [123]. A sigmoid mapping is expressed as: 
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A sigmoid curve is shown in Figure 39. 

 

Figure 39     Sigmoid Function 

In this study, a nonlinear sigmoid mapping is applied for intensity mapping of MR 

images. However, the sigmoid function used here is modified by adding two control 

parameters. It is expressed as: 
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In which, α defines the width of the input intensity range, i.e. intensity window, 

and β defines the intensity around which the range is centered (Figure 40(a) and (b)). 
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Figure 40     Modified Sigmoid Intensity Mapping 

5.3.5 Noise Reduction 

For medical images, noise is always involved in the signal due to the limitations of 

imaging hardware and protocols. Noise reduction is one the most important objectives for 

medical image processing. Almost all model-free segmentation methods are sensitive to 
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noise in images. Although mode-based methods are more robust, too much noise still can 

lead to an unsatisfying segmentation result.  

Usually, an image is smoothed to remove certain noise by applying a convolution 

operation onto the image with a certain smoothing kernel, such as a Gaussian convolution 

kernel. In a 2D image, a continuous Gaussian kernel is defined by equation (51): 
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The distribution of the above kernel has zero mean and variance of one. In digital 

image processing, the Gaussian kernel is expressed in a discrete form with a certain size. 

For example, a 5x5 Gaussian kernel is shown in Figure 41. The kernel is symmetric in 

both vertical and horizontal directions, and the sum of all kernel elements equals to 1 (by 

multiplying 1/273 to each kernel element), which guarantee the stability of convolution 

operation on image data. 
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Figure 41     5x5 Discrete Gaussian Smoothing Kernel 

The drawback of the Gaussian smoothing method is that it also tends to blur the 

sharp boundaries in the image while removing the noise. Even smoothing does not 

obliterate boundaries of the image, it tends to distort the fine structure of the image and 

thereby changes subtle aspects of the anatomical shapes [126]. 

As a proposed method here, an anisotropic diffusion algorithm is used to reduce 

noise of MRI scans without removing significant features of edges of the structure. 

Anisotropic diffusion was proposed by Perona and Malik in 1990 [109], so it is  also 

called a Perona-Malik diffusion. In anisotropic diffusion algorithm, a Gaussian smoothed 

image can be taken as a solution to a heat diffusion equation with respect to a certain time 

value t. The heat diffusion equation is in the form of 
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In which, f (x, y) is an input image, g (x, y, t) is a Gaussian smoothed image with 

parameter of t, and G is a Gaussian kernel. Anisotropic diffusion includes a variable 

conductance term, which depends on the differential results of the images. Smoothing can 

be controlled by formulating this variable conductance. The modified heat diffusion 

equation can be expressed as: 
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In which, c is the variable conductance term. At a certain time slice, with Gaussian 

smoothing filter G (2t), the original image is smoothed. Since the edges of the structure in 

the smoothed images have higher gradient magnitude than that of a non-edge region, the 

conductance is reduced, and the smoothing effect is limited. Beside the time-dependant 

gradient magnitude, the conductance value is also depends on k, the conductance 

parameter. The parameter k controls the sensitivity of the process to the structure edge. 
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There are two control parameters for an anisotropic diffusion filter, t and k, while t can be 

also looked as σ, the width of the discrete Gaussian smooth kernel.  

Equation (37) is a nonlinear partial differential equation and can be solved by 

using a finite forward difference method in discrete space of x, y and t [109]. Thus, an 

iteration number also needs to be defined when using anisotropic smoothing. The flowing 

image (Figure 42) shows an example of an anisotropic diffusion with the control 

parameters assigned as k= 3, σ = 0.25 and iteration =5. 

 

Figure 42     Example of Anisotropic Diffusion Smoothing 

5.4 Gradient Calculation 

For extracting features of edges of target structures in local images, the gradient 

maps are calculated from smoothed MRI scans. A gradient map describes how the 

intensity of each pixel or voxel changes by providing two pieces of information: The 

magnitude of gradient tells how quickly the intensity changes, and the direction of the 
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gradient tells in which direction the intensity changes most rapidly. In medical images, 

the sharp intensity changes are often across the edges of structures, so gradient magnitude 

maps are especially useful for extracting all of the possible structure edges based on local 

image information. 

Mathematically, the gradient of a continuous function with two variables is defined 

as a vector with the components given by the partial derivatives of variables and can be 

expressed as: 
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However, for a 2D image, since the intensity function is discrete, partial 

derivatives of the function can only be defined by assuming there is an underlying 

continuous function, and intensities are sampled at image points of this continuous 

function. Although the derivatives at any point are functions of intensity values of all the 

image points, approximation of derivatives of certain points can be calculated using the 

limited image points in a surrounding area.  

The gradient magnitude of a continuous function is calculated in the form of 

equation (58): 
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The approximate gradient magnitude of the discrete points can be calculated by 

equation (59). 
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Approximate gradient magnitude is usually calculated by performing a convolution 

operation on the target image by certain convolution kernels. Different kernels can be 

used with lesser or larger degrees of accuracy and the most commonly used methods are 

called Roberts and Sobel [123]. The Roberts Cross operator consists of a pair of 2x2 

convolution kernels and performs a simple 2-D spatial gradient measurement on an image 

(equation (60) and (61)). 
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For the pixels in the example shown in Figure 43: 
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Figure 43     Example of Pixels (1) 

The gradient can be calculated by equation (62): 

|3P2P||4P1P|G −+−=     (62) 

 

The Roberts Cross highlights regions of high spatial frequency, which often 

correspond to the edges.  

The Sobel Operator consists of a pair of 3x3 kernels (equation (63) and (64)). 
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Similarly, for the pixels shown in the example shown in Figure 44, the gradient 

can be calculated as: 
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Figure 44    Example of Pixels (2) 

|)7P4P21P()9P6P23P(||)9P8P27P()3P2P21P(|G +⋅+−+⋅+++⋅+−+⋅+= (65) 

 

Compare to Robert Cross, Sobel operator is more accurate. Furthermore, it can be 

easily extended to a 3D image, using the following convolution kernel (equation (66), (67) 

and (68)):   
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5.5 Normalization 

The gradient magnitude needs to be normalized before using as an input for model 

match. A reciprocal filter is applied to a gradient magnitude image (equation (69)). 

)x(G1
1

)x(N
+

=     (69) 

An example of gradient magnitude normalization is shown in Figure 45. 

 

Figure 45     Example of Gradient Magnitude Normalization 
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5.6 Model Matching 

Given a statistical model and an image feature map, the model-based segmentation 

of unseen data is to first superimpose an initial contour or surface over the image and 

then update the curve or surface with the guidance of a feature map and shape model. A 

statistical model allows one to describe the target structure and its shape variations in a 

compact way. On one hand, a new instance of shape can be generated by assigning 

proper values for few control parameters of principle components of variances. On the 

other hand, an image feature map contains local image features (normalized gradient 

magnitudes) of boundaries of the structures. During the matching process, the image 

feature map will attract the model to the boundaries of target structures while the 

statistical model will maintain the contour or surface shape in a reasonable way. The 

contour or surface evolves until the stop criterion is achieved, the stop criterion can be 

either a predefined error threshold or the number of iterations. The iterative change of 

evolutionary contour or surface can be expressed in equation (70). 

)]i(Se)i(S[K|])i(Se|)c)(I(S[J)i(Se)1i(Se mf −⋅+∇ξ+⋅=−+=∆  

(70) 

Where the J and K are scale values that define the weight of influence of local 

image features and shape models, respectively. The first term of Equation(70) is based on  

Casella’s boundary detection model [127], where Sf  is the image feature map, Se is the 
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evolutionary curve or surface, ξ is the curvature of the contour or surface, and c is a 

positive real constant which controls the propagation step of the evolutionary curve or 

surface.  

In the first term, Se will be attracted to feature map Sf, while keeping the 

smoothness of the evolving contour or surface. 

 In the second term, Sm (i) is the best-fit shape model for the current contour or 

surface Se (i). Since the statistical shape model has filtered out position rotation and 

scaling information, such information needs to be restored in the model matching. A 

proposed new shape instance is expressed in equation (71). 

)i(T)]i('S))[i(),i(R(M)i(Sm +θ=    (71) 

Where M(R(i), θ(i)) is a rigid body transformation, θ (i) is the rotation angle, R(i) 

is the scaling, and T(i) is the translation vector. S’(i) is determined by mean shape and 

principle components of the shape variation model and can be expressed in equation (72). 

∑
=

φ⋅+=
t

1j

)i(j)i(BjS)i('S     (72) 

Where B is the shape control parameter vector and Φ is the principle component 

vector composed of the j largest eigenvectors. The problem can be turned into an 

optimization process, which tries to find a proper shape control parameter and 

transformation parameter that minimize the difference between the model and the current 

shape. Such a difference can be expressed as an energy/cost function in the form of: 
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The parameters of a new shape instance (θ, R, T, B) are obtained by using an 

evolutionary strategy (ES). ES is one of three main research areas of Evolutionary 

Algorithms. It is mainly used for variable optimization. The first ES was developed in 

1962 at Technical University of Berlin and was used for proportional–integral–derivative 

(PID) control of nonlinear systems. After that, different types of ES were developed and 

applied in a variety of applications such as image processing, computer vision, task 

scheduling and car automation [128]. Compared to Genetic Algorithms (GA), another 

main research area of Evolutionary Algorithms, ES is easier to implement and faster than 

GA because of the following differences [129]: 

1) GA uses binary strings while ES uses real values to present parameters of 

optimization. 

2) GA incorporates both crossover and mutation while ES only uses mutation. 

Among all ES, the most widely used is two-member ES, which is sometimes called 

(1+1)-ES. (1+1)-ES uses a mutation-selection scheme, in which a child was generated 

from its parents and then the performance was compared with the two members. The 

better one is selected for the next generation while the other is discarded. Here is the 

general scheme of (1+1)-ES: 
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1) Generate a parent vector X=(x1, x2, …, xm). Each parameter is chosen 

randomly while also satisfies the constraints. 

2) Create a child vector by mutation. A random vector of size X with normal 

distribution is added here: 

),0(NX'X σ+=     (74) 

3)  Compare the results of X’ and X, choose the better one for the next 

generation. 

4) Repeat step 2) and 3) until a satisfactory solution is reached. 

While being applied in the model matching, the (1+1)-ES updates the parameter 

vector by testing random permutation of the parameters. At first, (1+1)-ES explores the 

parametric space, which is composed of the shape control vector and the transform vector 

(scaling, translation, and rotation). Secondly, the child parameter vector is randomly 

generated around the current position (parent parameter vector) by adding a randomly 

generated vector with normal distribution. The covariance matrix of the child parameter 

is then calculated. The variances in the matrix are increased when the new point produces 

higher fitness values, and are decreased when the new point produces lower fitness values. 

This chapter describes how to extract local image feature map from unseen image 

data and how to segment target structures based on feature map and statistical shape 

model. In this study, a specially designed filter sequence is applied on unseen MR images 
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to get the border of target structure. First, a nonlinear sigmoid intensity mapping function 

is used for windowing and leveling operation to enhance the contrast of target structure. 

Compared to linear mapping function, the modified sigmoid function is smoother in 

intensity mapping and window center and window width can be flexibly defined. 

Secondly, an anisotropic filter is applied to reduce noise and smooth image. Compared to 

Gaussian filter, anisotropic filter can better keep the feature of the border of structures. 

Thirdly, gradient magnitude is calculated with Sobel operator, which can be used in both 

2D and 3D images. Lastly, the gradient magnitude is normalized using a reciprocal filter.  

With the statistical shape model and feature map of unseen data, segmentation is 

done by model matching, using ES. An initial smooth contour or surface is put inside the 

structure and then the feature map attracts the contour or surface to the border of 

structures while the statistical shape model maintains the shape of contour or surface in a 

reasonable way. The weights can be defined for shape model and feature map 

respectively to control the influence on the contour or surface. (1+1) ES is applied to 

update of shape model parameters. (1+1) ES has the advantages of easy implementation 

and high computational efficiency, which make it good candidate for real-time image 

application.  
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CHAPTER VI 

PERFORMANCE EVALUATION AND TAGUCHI ANALYSIS 

 

 

 

6.1 Performance Evaluation of Segmentation Method 

Although extensive research has been conducted on developing different 

algorithms for medical image segmentation, evaluation of segmentation results thus far 

has been largely subjective and the most common method for evaluation is to compare 

the image segmentation results visually with manually segmented reference images [130]. 

The subjective and supervised evaluation is a tedious and time-consuming process and 

lacks consistency and reproducibility. Evaluation scores may vary from one evaluator to 

another, since each has his or her own standards for accessing the quality of segmentation 

results [131]. In this study, the target structures have complicated shapes and lot of 

control parameters are involved in segmentation process. Therefore, an unsupervised 
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performance evaluation method is required, which enables the objective comparison of 

different parameterizations of the proposed segmentation method.  

In this dissertation, a similarity value of semi-automatic segmentation results and 

the value of manual segmentation results are used to evaluate the performance of the 

semi-automatic segmentation. Specifically, for 2D images, the area of overlapped regions 

and the area of total regions are calculated respectively, and a Dice coefficient equation is 

used to calculate the similarity value: 

YX

YX2

+
=η

I

    (75) 

Where X is the area of region of semi-automatic segmentation, Y is the area of 

region of manual segmentation, and X∩Y is the overlapped area of two regions. For 3D 

images, the similarity value can also be acquired using the same equation with volume 

calculated instead of area. 

6.2 Taguchi Analysis 

For the proposed segmentation method, several parameters need to be set as 

constant values, such as α and β for the sigmoid intensity mapping, k and σ for the 

anisotropic smoothing, and J, K, c for the model matching. However, it is difficult to 

define an optimal value for each parameter since running experiments on every possible 

combination of those values to find a suitable one is inefficient and impractical. Here, the 
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Taguchi method is used to analyze the significance of each variable in the performance of 

the segmentation process. The Taguchi method is a technique to lay out the experimental 

plan in logical, economical, and statistical way and is typically used where the output 

value depends on many inputs [132]. By using the Taguchi experimental design method 

based on the orthogonal table, Taguchi analysis can quickly reveal the significance of 

each control parameters with fewer experimental runs and provide tuning trends of 

control parameters for better performance. 

6.2.1 Background of Taguchi Analysis 

Taguchi analysis method, based on statistical analysis, was designed by a Japanese 

engineer Genichi Taguchi in 1950’s. The purpose of Taguchi analysis was to improve the 

performance of a manufacturing system [133] . However, recently, it has been more and 

more widely applied to diverse areas such as engineering, biotechnology, marketing, and 

advertising because of its robustness and efficiency [134]. 

In traditional manufacturing systems, performance or quality of products was 

measured by some criteria, such as cost of labor, deliverables meeting the specifications, 

percentage of scrapped parts, percentage of defective products and failure rate etc[100]. 

However, these criteria are all measurement of the results and cannot provide guidance 

for a system design. For example, by studying the failure rate, the primary failure module 

may be displayed, showing the main reason to cause product failure. Nevertheless, when 

this module is redesigned, other module may become more sensitive to this change and 
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contribute to a higher failure rate. As the result, more changes need to be made 

afterwards. The process of redesign, test, finding problem and providing a solution will 

be iterated until no problem is found. Such an approach is a time-consuming and costly 

process.  

Different from the traditional design methods, Taguchi’s definition of a robust 

design is: ‘a product whose performance is minimally sensitive to factors causing 

variability (at the lowest possible cost)’ [135]. By systematically choosing certain 

combinations of variables from the system, the Taguchi method makes it possible to 

separate the variables’ individual effects without having to tediously and uneconomically 

run the process using all possible combinations of values of those variables [136]. 

6.2.2 Experimental Design Using Orthogonal Arrays 

It turns out that in many applications, the objective function usually depends upon 

several different control parameters and for each parameter, one can usually focus on two 

or three different good values, or levels. However, this still leads to a large number of 

combinations. The Taguchi analysis method provides a method to determine the 

individual effect of each parameter by experimenting with some of the combinations, i.e. 

a subset of the parameters’ domain. The principles in selecting proper subset are based on 

two ideas: balance and orthogonality. 
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6.2.2.1 Balance 

Assume that a variable (control parameter) can take n different values (levels), 

v1…vn. , and a total of m experiments will be conducted, then a set of experiments is 

balanced with respect to the variable v. If: (i) m = kn, for some integer k, and (ii) each of 

the values, vi, is tested in exactly k experiments. An experiment is balanced if it is 

balanced with respect to each variable under investigation [137]. 

6.2.2.2 Orthogonality 

The idea of balance ensures an equal chance to each level of each variable. 

Similarly, equal attention needs to be paid on combinations of two variables. Assume that 

there are two variables, A (values: a1…an) and B (values: b1…bm), then the set of 

experiments is orthogonal if each pair-wise combination of values, (ai, bj) occurs in the 

same number of trials [137]. 

For examples, consider an objective function with three variables, each of which 

can be set at two different values. For convenience, these values are denoted as levels 1 

and 2 respectively. A complete investigation requires 23 = 8 total of experimental runs, as 

shown in Table I. 

RUN A B C 

1 1 1 1 

2 1 1 2 

3 1 2 1 

4 1 2 2 

5 2 1 1 
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6 2 1 2 

7 2 2 1 

8 2 2 2 

Table I     Complete Experimental Runs with Three 2-Level Variables 

However, according to the Taguchi orthogonal array, the experiment only requires 

four runs (Table II). Here, the total number of experiment runs (m) equal to 4, the 

variable value level (n) equals to 2 and thus k equals to 2 based on the above listed 

equation: m = kn.. Since each variable value is tested twice, the experiment design is 

balanced. Also for each pair wise combination of values, it occurs once in the 

experimental runs, thus the experiment design is orthogonal. 

RUN A B C 

1 1 1 1 

2 1 2 2 

3 2 1 2 

4 2 2 1 

Table II     Taguchi Orthogonal Array for Three 2-level Variables 

The above table is called the L4 array table since it contains four runs. It is 

specially designed for a problem with up to three 2-level control parameters. If there are 

only two 2-level control parameters then the first two columns in the table are used for 

Taguchi analysis and the third column will be ignored. However, if there is an interaction 

between the two parameters, which means that changing one parameter value may be 

affect the other one, the third column can be used for the interaction value (Table III). 
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RUN A B A&B 

1 1 1 1 

2 1 2 2 

3 2 1 2 

4 2 2 1 

 Table III      Taguchi Orthogonal Array for Two Interaction Variables 

 In addition to the L4 array table, there are more tables for different numbers of 

control parameters with different levels. L9 is for up to four 3-level control parameters 

and L27 is for up to thirteen 3-level control parameters. How to choose a proper 

orthogonal array table is based on the following rules [99]: 

1) Determine how many control parameters need to be analyzed and how 

many levels for each parameters. 

2) Find the total degree of freedom (DOF) by the following rules:  

a) The overall mean always uses 1 DOF.  

b) For each control parameter, if the number of level is n, then the DOF is n-1. For 

example, if the control parameter A has 3 levels, which nA=3, the DOF of A is nA-1=3-

1=2. 

c) For each two factor interaction, the DOF is the product of their individual DOF, 

for example, there are two control parameters A, B with nA =3 and nB =3, and there is an 
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interaction between AB, then DOF of AB = (nA -1)( nB -1), the total DOF=1+( nA-

1)+( nB -1)+ (nA -1)( nB -1)=9. 

3) Select a standard orthogonal array using the following two rules: a) The 

number of runs of orthogonal array is equal to or greater than the total DOF; b) The 

orthogonal array shall be able to accommodate the parameter level combinations in the 

experiment. 

The standard orthogonal arrays are shown in Table IV and the information about 

the runs and levels are provided as well. Using the two factors example above, since the 

total DOF is 9, L4, L8 cannot be used, while L9 is the best candidate. 

Orthogonal 
Array 

No. 
Runs 

Max. 
Factors 

Max. of Columns at these Levels 

2-Level 3-Level 4-Level 5-Level 
L4 4 3 3       
L8 8 7 7       
L9 9 4   4     

L12 12 11 11       
L16 16 15 15       
L'16 16 5     5   
L18 18 8 1 7     
L25 25 6       6 
L27 27 13   13     
L32 32 31 31       
L'32 32 10 1   9   
L36 36 23 11 12     
L'36 36 16 3 13     
L50 50 12 1     11 
L54 54 26 1 25     
L64 64 63 63       
L'64 64 21     21   
L81 81 40   40     

 Table IV     Taguchi Orthogonal Arrays 
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4) Assign control parameters to appropriate columns using the following 

principles: a) Assign interactions according to the linear graph and interaction table; b) 

Keep some columns empty if not all columns can be assigned. For example, An L9 

orthogonal array is reviewed below, which shows in Table V. 

 

Table V     L9 Orthogonal Array and Linear Graph 

The right side is a linear graph, which shows that interaction of first parameter, and 

second parameter can be put in column 3 or column 4. Thus, applying the rules listed 

above, an L9 orthogonal table will be utilized, with control parameter A put in column 1, 

control parameter B put in column 2, the interaction of A and B put in column 3 and the 

column 4 left blank. 

6.2.3 Analyze Performance Using S/N Ratio 

After the experimental design has been selected and all the experimental runs have 

been conducted, the outcome from each experimental run can be used to analyze the 

significance of each control parameter and determine how to adjust the values/levels for a 
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better performance. To perform the analysis, the Taguchi method uses a statistical 

measurement of performance called loss function. Traditional design methodologies have 

a viewpoint that as long as performance value falls in certain specification, it can be 

considered as good design. Different from that, Taguchi asserted that there is loss when 

the performance value is not the best one, which can be expressed as a function of 

deviation from the best performance [99]. The greater the deviation from target value, the 

greater is the loss. This function is defined as loss function mentioned above. To measure 

the loss in a single output value x, the loss function can be expressed in equation (76). 

2)tx(k)x(L −⋅=     (76) 

In which k is the loss coefficient, x is the measured value and t is the target value. 

For a sample set, an average loss function can be express in equation (77). 

])t([kL 22
avg −µ+σ⋅=       (77) 

In which σ is the standard deviation of the sample and µ is the mean value. The 

total loss can be express in equation (78). 

avgLnL ⋅=      (78) 

Where n is the number of samples. In order to minimize the loss function, Taguchi 

proposed another measurement function called Signal-to-Noise(S/N) ratio, which is 

borrowed from electrical control theory [138]. The S/N ratio takes both the mean and the 
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variability of outcome into account. It can approve that by maximizing the S/N ratio, loss 

is minimized, and the performance is tuned to the target value. Depending on the criteria 

for the performance to be optimized, there are four types of S/N ratio equations [138]. 

6.2.3.1 The S/N ratio for Smaller-the-better Type of Problem 

)](y  
n
1

[ log 10-  2
i10 ∑=η     (79) 

In which yi is the output value for each experimental run and n is the total 

experimental runs. This equation is used while the output value is expected to be as small 

as possible, such as error or failure rate. However, when an ideal value is finite number 

and its maximum or minimum value is defined, this equation can also be applied by 

changing the objective equation as 

Output’=Output-Ideal value    (80) 

6.2.3.2 The S/N ratio for Larger-the-better Type of Problem 

)]
y
1

(  
n
1

[log 10-  2
i

 10 ∑=η     (81) 

This equation is used when an output value as large as possible target is expected. 

It has similar form as smaller-the-better equation while using the invert of output instead.  
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6.2.3.3 The S/N ratio for Signed-target Type of Problem 

])-(y  
1-n

1
[ log 10-  2

i10 ∑ µ=η    (82) 

In which ∑
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 is the mean value of all output values. This equation is used   

when the output can be both positive and negative, such as the rate of change. 

6.2.3.4 The S/N ratio for Nominal-the-best Type of Problem 
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This equation can be applied to the cases where a specified value is most desired, 

neither a smaller value nor a large one is desirable. In another word, the outputs have the 

least variation around the specific value. 

Higher S/N ratios are indicative of experimental conditions that will be more 

robust. In another word, loss function is smaller and performance is closer to the target 

value. The statistically significant results found in the analysis using S/N ratios will show 

the significance of each parameters and reveal that how to tune these parameters to 

achieve better performance. 
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6.2.4 Significance and Tuning Trend of Parameters 

First, a trend table can be obtained by picking the levels with highest S/N ratio, and 

then the distance table is calculated using the following equation (85).  

Distance = (max(S/N) – min(S/N)   (85) 

Then the significance index table, in which the significance of each parameter is 

sorted, is calculated by normalizing the distance table using the following equation (86). 

Index = Distance / Maximum Distance           (86) 

6.2.5 Apply Taguchi Method to Proposed Segmentation Method   

For the proposed segmentation method, there are seven control parameters 

(factors), in which α and β indicate sigmoid intensity mapping, k and σ indicate 

anisotropic smoothing, and J, K, c indicate model matching. Each parameter with three 

levels was assigned a number: 1: lowest value; 2: mean value; and 3: highest value. Since 

there are no interactions among them, the total DOF is equal to 1+ (3-1) x7=15. From 

Table IV, it is clear that the L27 orthogonal table is the best choice. L27 is designed for 

up to thirteen three-level parameters (Table VI). 
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Table VI     L27 Orthogonal Array and Linear Graph 

The interaction of factors is shown in the right-side linear graph, and the 

independent factors can be .put on column 1,2,5,9,10,12,13, shown as Table VII. 
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Experimental 
Runs 

Sigmoid 
Mapping 

Anisotropic 
Filter Model Matching 

α β k σ J K c 

1 1 1 1 1 1 1 1 

2 1 1 2 2 2 2 2 

3 1 1 3 3 3 3 3 

4 1 2 1 2 2 3 3 

5 1 2 2 3 3 1 1 

6 1 2 3 1 1 2 2 

7 1 3 1 3 3 2 2 

8 1 3 2 1 1 3 3 

9 1 3 3 2 2 1 1 

10 2 1 1 2 3 2 3 

11 2 1 2 3 1 3 1 

12 2 1 3 1 2 1 2 

13 2 2 1 3 1 1 2 

14 2 2 2 1 2 2 3 

15 2 2 3 2 3 3 1 

16 2 3 1 1 2 3 1 

17 2 3 2 2 3 1 2 

18 2 3 3 3 1 2 3 

19 3 1 1 3 2 3 2 

20 3 1 2 1 3 1 3 

21 3 1 3 2 1 2 1 

22 3 2 1 1 3 2 1 

23 3 2 2 2 1 3 2 

24 3 2 3 3 2 1 3 

25 3 3 1 2 1 1 3 

26 3 3 2 3 2 2 1 

27 3 3 3 1 3 3 1 

 Table VII     Orthogonal Array for Seven 3-level Control Parameters 

The output of each experimental run is calculated using the following equation 

(87). 
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Output=1-Similarity    (87) 

Since the objective is to minimize the outcome, equation (79) representing the 

smaller-the-better type of problem is used to calculation the S/N ratio. 

In this chapter, a performance evaluation method is developed for proposed semi-

automatic segmentation method. The performance is indicated by the similarity value of 

semi-automatic and manual segmentation results, which is calculated by the Dice 

coefficient equation. In addition, Taguchi analysis is applied to reveal the significance of 

each segmentation parameter quickly with fewer experimental runs. Taguchi analysis is 

very efficient when the output depends on many control parameters. Moreover, it can 

provide tuning trend of each parameter for better segmentation performance. For 2D and 

3D segmentation of female pelvic floor structures, Taguchi orthogonal table L27 is 

selected to design experimental runs based on the DOF value and all seven segmentation 

(control) parameters are placed in independent variable columns. The output of each 

experimental run is 1-similarity. Since the objective is to maximize the similarity value of 

semi-automatic segmentation and manual segmentation, an equation representing 

smaller-the better type of problem is used to calculate the S/N ratio.
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CHAPTER VII 

TESTING RESULTS 

 

 

 

7.1 Segmentation Tests 

In this study, the proposed segmentation method is tested on both 2D images and 

3D images. Although many structures of the normal female pelvic floor can be 

segmented by applying the proposed methods, the levator ani muscle and obturator 

muscles were chosen as examples for 2D and 3D segmentation, respectively, because of 

the following factors. 

1) Levator ani and obturator muscles are important for SUI and POP. 

Previous research has confirmed the association with abnormalities of the levator ani 

muscle and prolapse. Laxity of the levator ani muscle can lead to the widening of the 
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genital hiatus, which is a potential initiation of POP [139]. In general, the damage degree 

of the muscles can be evaluated with quantitative measurement of geometric shapes [140].  

2) Levator ani and obturator muscles have complex shapes in MR images, 

which make it difficult to segment the images manually (Figure 46(a)).  

3) Levator ani and obturator muscles have low contrast on MR images, 

making it difficult to segment the images by model free methods. Moreover, they have a 

similar intensity value to the surrounding structures and the borders of structure cannot be 

clearly identified. In practical study, the model free methods are usually misleading in 

such situations. For example, since the rectum and the levator ani muscle have similar 

intensity values, the methods of thresholding and contouring cannot separate these two 

structures effectively. In Figure 46 (b), with intensity based thresholding, the border of 

levator ani muscle is fused into the border of rectum muscular wall, also, there are several 

black islands in the region of levator ani muscle which cannot moved by adjusting 

threshold values. In Figure 46 (c), the green contour is the result of contour-based 

segmentation and the segmented region obviously contains part of rectum. For comparing, 

correct border of levator ani muscle with manual segmentation is shown in yellow 

contour. 
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Figure 46    Example of Ineffective Model Free Methods 

7.2 2D Segmentation on the Levator Ani Muscle 

To semi-automatically segment the levator ani muscle, first, a statistical model was 

built based on the training set images; secondly, the local image feature map was 
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generated by applying a sequence of filters on unseen image data. The feature map and 

statistical model were taken as the inputs for model matching. Finally, the segmentation 

results were evaluated using the Dice coefficient equation, Taguchi analysis was applied 

to tune the control parameters to improve performance. Details of each step of 

segmentation are given in the following subsections. 

7.2.1 Build Statistical Model 

From an MRI database at the Cleveland Clinic, 24 examples of MRI slices were 

selected for the training set. The selected slices were confirmed to contain normal pelvic 

floor structures and cover typical shape variations of the levator ani muscle. Each slice 

was manually segmented by live wire methods to generate a binary mask, which 

separates the structure’s shape from the background.  

First, the region of interest (ROI) was cropped based on the binary masks. The 

image only contains a structure of levator ani muscle with the dimension of 160 by 160 

pixels. All of the cropped images were aligned using the method of centered affine 

transformation, which described in details in Chapter V. The results of alignment are 

shown in Figure 47. 



134 
 

 

Figure 47     Examples of Aligned Levator Ani Muscle 

In the second place, signed distance maps were calculated based on the aligned 

shapes (Figure 48). The results were 2D matrixes 160 by 160 pixels large. Each element 

of the matrix belongs to the float type data that denotes the distance of each pixel to the 

nearest shape border. Since the digital images can only be shown with integer grayscale 

intensity, ranging from 0 to 255, the float type data was converted to integer type data. 
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Figure 48    A Signed Distance Map of Levator Ani Muscle 

Once again, PCA was applied to the distance maps to generate mean shape and 

shape variation models. Although 24 principle components were generated in total, to 

describe the variation model in a compact form, only the five most significant principle 

components were selected with reference to their sorted eigenvalues (Figure 49). 

 

Figure 49   A Signed Distance Map of Mean Shape and Shape Variation Model 
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7.2.2 Generate Feature Map of Unseen Data 

The unseen images were selected from the same MRI database. Local image 

feature maps were obtained by applying the sigmoid window and level filter, the 

anisotropic smoothing filter, the gradient filter, and the normalization filter on unseen 

images sequentially (Figure 50). Proper values need to be assigned to control parameters 

of those filters. The topic of how to choose the proper values will be covered in a later 

section on Taguchi analysis (Section 7.2.4). 

 

Figure 50     Processing of Unseen Data 
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7.2.3 Model Matching 

By imposing an evolutionary contour onto unseen images, the statistical model and 

feature map guide the expansion and evolution of contour. Local image feature map 

attracts the contour to the border of the structure while the statistical model keeps a 

reasonable shape of contour by updating the best-fit shape parameters and transformation 

parameters. In Figure 51, (a) is the initial guess of the levator muscle in unseen data and 

(b) is the final best-fit results. Figure (c) is the overlap of segmented result (red color 

region) with unseen image. 

 

Figure 51     Model Matching Method for Levator Ani Muscle 



138 
 

7.2.4 Taguchi Analysis 

For the proposed segmentation, there are seven parameters (control factors) that 

need to be predefined, in which α and β are for the sigmoid intensity mapping, k and σ 

are for anisotropic smoothing, and J, K, c are for the model matching. In order to 

determine which control parameter is significant to the performance of segmentation and 

how to adjust them to achieve better result, a Taguchi analysis is performed and 

investigated in this study.  

First, the table containing the list of control factors was established, defining the 

value range and levels for each parameter. In the study, three levels were used for each 

parameter with level 1 standing for the lowest value, level 2 standing for the mean value 

and level 3 standing for the highest value (Table VIII). 

Control 
Factor 

Value 
Range 

Level 
1 

Level 2 Level 3 

α [0.5 2] 0.5 1.25 2 

β [-2 2] -2 0 2 

σ [0.1 0.5] 0.1 0.3 0.5 

k [1 3] 1 2 3 

J [0.1 0.9] 0.1 0.5 0.9 

K [0.1 0.9] 0.1 0.5 0.9 

c [0.1 0.9] 0.1 0.5 0.9 

Table VIII     Taguchi Control Factors Table 

According to the previous section 6.2.2.2, the DOF was calculated as 1+7*(3-1) 

=15. Therefore, the L27 orthogonal array was used to design experimental runs here. For 
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each experimental run, the outcome value was calculated as 1-similarity (based on the 

Dice coefficient equation), which means that the smaller the outcome value, the more 

accuracy the segmentation result. Results are shown in Table IX. 

Experimental 
Runs 

Sigmoid 
Mapping 

Anisotropic 
Filter 

Model Matching 
Outcome 

α β σ k J K c 

1 1 1 1 1 1 1 1 0.1472 

2 1 1 2 2 2 2 2 0.0469 

3 1 1 3 3 3 3 3 0.1164 

4 1 2 1 2 2 3 3 0.0927 

5 1 2 2 3 3 1 1 0.1532 

6 1 2 3 1 1 2 2 0.0702 

7 1 3 1 3 3 2 2 0.0766 

8 1 3 2 1 1 3 3 0.1678 

9 1 3 3 2 2 1 1 0.1046 

10 2 1 1 2 3 2 3 0.0911 

11 2 1 2 3 1 3 1 0.1378 

12 2 1 3 1 2 1 2 0.0899 

13 2 2 1 3 1 1 2 0.1278 

14 2 2 2 1 2 2 3 0.0556 

15 2 2 3 2 3 3 1 0.1303 

16 2 3 1 1 2 3 1 0.0941 

17 2 3 2 2 3 1 2 0.1211 

18 2 3 3 3 1 2 3 0.0894 

19 3 1 1 3 2 3 2 0.0923 

20 3 1 2 1 3 1 3 0.1344 

21 3 1 3 2 1 2 1 0.0864 

22 3 2 1 1 3 2 1 0.0897 

23 3 2 2 2 1 3 2 0.1258 

24 3 2 3 3 2 1 3 0.0977 

25 3 3 1 2 1 1 3 0.1289 

26 3 3 2 3 2 2 2 0.0458 

27 3 3 3 1 3 3 1 0.1123 

 Table IX     Taguchi L27 Orthogonal Table 
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Since the design objective is to minimize the output value, the smaller-the-better 

equation was applied here to calculate the S/N value (Table X).  

S/N 
Sigmoid 
Mapping 

Anisotropic 
Filter Model Matching 

α β σ k J K c 

Lower the Better 18.77 19.26 19.42 18.94 18.14 18.1 18.44 

Mean the Better 19.4 19.26 18.52 19.38 21.62 22.55 20.59 

Higher the Better 19.6 19.22 19.9 19.42 18.7 18.33 18.98 

Table X     S/N Table 

Based on the above s/n table, the significance index and the trend for each 

parameter were acquired (Table XI).   

  

Sigmoid 
Mapping 

Anisotropic 
Filter 

Model Matching 

α β σ k J K c 

Max-Min 0.822 0.04 1.381 0.481 3.479 4.454 2.157 

Significance Index 0.185 0.009 0.31 0.108 0.781 1 0.484 

Trend HB MB HB HB MB MB MB 

Table XI     Significance Index and Trend 

From the significance index table above, it can be concluded that the weight of the 

shape model is more important than that of the feature map for model-based 

segmentation. In addition, the weight cannot be too large or too small. It must be 

reasonable, because if the weight is too large, the segmentation method will omit the 

image features; and if the weight is too small, the shape model will have the least 

influence on the segmentation, resulting in the misleading results similar to model-free 
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methods. The best weight ratio for the shape model and feature map here is 1:1. Beside 

the above considerations, the propagation step/force factor c is also important, and the 

mean value is the best choice. Enlarging, shrinking the contour too fast, or too slow all 

lead to a lower segmentation performance. Anisotropic smoothing for unseen data has 

certain influence on segmentation performance too, which suggests that σ should be 

carefully chosen to reduce noise while keeping the edge features of the structure’s border. 

Compared to model matching parameters, the intensity mapping parameters are less 

significant. In the last, according to the trend table, the following values should be 

assigned to the parameters: α =2 and β=0 are for sigmoid intensity mapping, k=3 and 

σ=0.5 are for anisotropic smoothing and J=0.5, K=0.5, c=0.5 are for model matching. By 

running the experiment with the above parameter values, the output turns out to be 

0.0414 (the dice coefficient is 1-0.0414=0.9586), which is better than the lowest value in 

experimental runs. 

7.3 3D Segmentation on Obturator Muscles 

The proposed segmentation method can be extended from 2D to 3D images in a 

simple way. Here the obturator muscle was used as an example and the execution steps 

are similar to that of 2D segmentation. 
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7.3.1 Build Statistical Model 

Because obturator muscles have less shape variations than the levator ani muscle, 

only 8 instead of 24 samples were chosen from the MR volume images and were 

manually segmented using Amira software to generate 3D binary masks. The region of 

interest was first cropped and the 3D shapes were aligned using the same centered affine 

transformation method. The isosurfaces of aligned shapes are shown in Figure 52. 

 

Figure 52     Isosurface of Aligned Shapes of Obturator Muscles from (a) to (h) 

The 3D distance maps were then calculated based on 3D binary images. The 

following images show the 2D intersection of those 3D distance maps, in which  all 

intensity values were converted from float to integer and are normalized to the range 

from 0 to 255 (Figure 53). 
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Figure 53     3D Distance Map of Obturator Muscles from (a) to (h) 

Based on the 3D distance maps, PCA was applied and the mean shape and shape 

variation model was obtained. The most significant principle components were selected 

here to build the compact variation model (Figure 54). 
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Figure 54    Shape Model of Obturator Muscles Sample from (a) to (d) 

7.3.2 Generate Feature Map of Unseen Data 

Similar to the 2D images, the 3D volume images were processed by the same 

sequences of the filters to get a local image feature map to be used as the inputs for the 

model-based segmentation. After the sigmoid intensity mapping, the contrast of obturator 

muscles was enhanced, and with the anisotropic smooth filtering, a clear edge of the 

structure was acquired by calculating its gradient magnitude (Figure 55). 
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Figure 55     Feature Map of Unseen Data 

7.3.3 Model Matching Results 

The initial shape model and final shape model are shown in Figure 56 (a) and (b). 

To demonstrate the difference, the overlapped 3D shapes are shown in Figure 56 (c), and 

the overlapped image of original image and 3D segmented result is shown in Figure 57. 



146 
 

 

Figure 56     Model Matching for Obturator Muscles   

 

Figure 57     Overlap of MR Image and Segmentation Result of Obturator Muscles 
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7.3.4 Taguchi Analysis 

Since the same control parameters were used for the 3D segmentation, the Taguchi 

control factor table and orthogonal table is same as the tables used for 2D segmentation. 

The specific results for the experimental runs are shown in Table XII. 

Experimental 
Runs 

Sigmoid 
Mapping 

Anisotropic 
Filter Model Matching 

Outcome 
α β σ k J K c 

1 1 1 1 1 1 1 1 0.2072 
2 1 1 2 2 2 2 2 0.0494 

3 1 1 3 3 3 3 3 0.1564 

4 1 2 1 2 2 3 3 0.0827 

5 1 2 2 3 3 1 1 0.1732 

6 1 2 3 1 1 2 2 0.0632 

7 1 3 1 3 3 2 2 0.086 

8 1 3 2 1 1 3 3 0.1278 

9 1 3 3 2 2 1 1 0.0934 

10 2 1 1 2 3 2 3 0.0998 

11 2 1 2 3 1 3 1 0.1059 

12 2 1 3 1 2 1 2 0.0911 

13 2 2 1 3 1 1 2 0.1507 

14 2 2 2 1 2 2 3 0.0822 

15 2 2 3 2 3 3 1 0.1554 

16 2 3 1 1 2 3 1 0.0883 

17 2 3 2 2 3 1 2 0.1421 

18 2 3 3 3 1 2 3 0.0957 
19 3 1 1 3 2 3 2 0.0732 
20 3 1 2 1 3 1 3 0.1372 
21 3 1 3 2 1 2 1 0.0754 
22 3 2 1 1 3 2 1 0.0799 
23 3 2 2 2 1 3 2 0.1358 
24 3 2 3 3 2 1 3 0.0812 
25 3 3 1 2 1 1 3 0.1472 
26 3 3 2 3 2 2 2 0.0559 
27 3 3 3 1 3 3 1 0.1075 

 Table XII    Taguchi L27 Orthogonal Table 
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The S/N value and the significance index and trend for each control factor are 

shown in Table XIII and Table XIV. 

S/N 
Sigmoid 
Mapping 

Anisotropic 
Filter Model Matching 

α β σ k J K c 

Lower the Better 17.99 18.43 18.37 18.32 17.72 16.99 17.83 

Mean the Better 18.74 18.54 18.49 19.64 22.07 22.15 19.91 

Higher the Better 19.65 19.29 19.43 18.39 17.7 18.53 18.73 

 Table XIII     S/N Table 

  

Sigmoid 
Mapping 

Anisotropic 
Filter Model Matching 

α β Σ k J K c 

Max-Min 1.661 0.861 1.062 1.321 4.368 5.156 2.08 

Significance Index 0.322 0.167 0.206 0.256 0.847 1 0.403 

Trend HB HB HB MB MB MB MB 

Table XIV    Significance Index and Trend 

Some of the same control parameters have significance and trends in 3D 

segmentation of obturator muscles, as is 2D segmentation of the levator ani muscle. 

These include J, K, and c for model searching. However, the significance of intensity 

mapping is become greater for 3D segmentation of obturator muscles. This could because 

obturator muscles have higher contrast than the levator ani muscle in MR imaging so 

obturator muscles can have clearer borders using an intensive mapping operation. Besides 

this, the significance value of the weight for the feature map of the 3D segmentation is 
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increased compared to 2D segmentation, suggesting that for a better quality image or 

higher contrast structures, segmentation should rely more on the local image features.   

Finally, based on the trend table, the following values should be assigned to the 

following parameters: α =2 and β=2 for sigmoid intensity mapping, k=3 and σ=0.3 for 

anisotropic smoothing, and J=0.5, K=0.5, c=0.5 for model matching. By running the 

experiment with the above parameter values, the output turns out to be 0.0455 (1-Dice 

Coefficient), once again, a little bit better than the lowest value in experimental runs.
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CHAPTER VIII 

CONCLUSIONS AND FUTURE WORK 

 

 

 

8.1 Conclusions 

In this dissertation, a semi-automatic segmentation method based on a statistical 

shape model is proposed to reduce the time spent  building a VR model of the normal 

female pelvic floor. This method can be applied to the case of pelvic floor structures with 

low contrast in MR images, or the case of pelvic floor structures having similar intensity 

values to surrounding tissues. In both above-mentioned cases, model-free segmentation 

methods such as thresholding, clustering and contouring are not effective. This method 

can also be used for various medical applications of segmentation of other organs and 

structures with relatively fixed shapes in medical images, such as bones, brain, kidney, 

and lungs. In general, the proposed method offered the following features: 
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1) The proposed model-based methods can be performed on both 2D and 3D 

images without modifying the pipeline. All of the components of the segmentation 

pipeline (including modeling building and model matching) are designed to accept both 

2D and 3D images, thus the method can be easily applied with dimensional increase or 

decrease for the images. 

2) A special filtering sequence is designed to extract local image features 

from the MR scans. Specifically, a sigmoid nonlinear intensity mapping filter is used to 

increase the contrast of target structures, an anisotropic smoothing filter is applied to 

reduce noise signal while maintaining the features of border of structures, and the 

gradient magnitude is calculated by a 2D or 3D Sobel operator to separate the edge of 

structures from the image background. The resulting feature maps together with a 

statistical shape model are used as the inputs for the model matching (segmentation) to 

guide the evolving of contour or surface. 

3) An easy and robust method is developed to extract shape information from 

the training samples. Usually, the statistical shape model is built from a set of 

corresponding points of the target shape (landmarks). It is time-consuming to manually 

label all of the corresponding points, and is impossible for complicated 3D shapes. The 

proposed segmentation method utilizes the distance maps instead of the landmarks to 

calculate the shape correspondence and aligns those shapes automatically via the method 
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of centered affine transformation, which greatly speeds the process of building the 

statistical model and increases accuracy.  

4) A performance evaluation standard for image segmentation is proposed. 

Specifically, the Dice coefficient is used to calculate the similarity value for semi-

automatic segmentation and manual segmentation. Compared to the visual evaluation, the 

proposed quantitative measurement is more objective and easier to perform.  

5) For the proposed method, seven control parameters are involved in the 

segmentation pipeline and each parameter has its own value range. Different values can 

lead to different segmentation performance. However, running experiments on every 

possible combination to find a suitable one is extremely inefficient. A Taguchi analysis 

method is applied in this study to analyze the segmentation results. By using the Taguchi 

orthogonal table and the according S/N equation based on the objective setup, the 

parameter that is most significant to the outcome can be shown quickly and adjusted to 

achieve improved segmentation performance. 

The proposed method was tested for segmentation of image of 2D levator ani 

muscle and 3D image of obturator muscles. Both provided the satisfying results. By 

running a Taguchi analysis on both 2D and 3D image, it is concluded that the model 

matching parameters, i.e. the weight for feature map, the weight for statistical shape 

model and propagation step/force, are the most significant factors influencing the 
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segmentation performance. The best value of weights for shape model and feature map is 

0.5 in this example.  

For the segmentation of obturator muscles, control factors of sigmoid intensity 

mapping are more important than factors of anisotropic smoothing. On the contrary, for 

the levator ani muscle, control factors of anisotropic smoothing are more important than 

factors of sigmoid intensity mapping. This is because the obturator muscle has higher 

intensity contrast value in the images. With proper sigmoid intensity mapping, the clearer 

border of the structure of obturator muscles can be obtained, and segmentation 

performance can be improved. 

On the other hand, the levator ani muscle has lower contrast compared to obturator 

muscles. Therefore, noise reduction and proper edge-preserving smoothing is more 

critical. For both cases, segmentation performance can be improved using the suggested 

tuning trend for each parameter with Taguchi analysis. 

8.2 Future Work 

8.2.1 Performance Improvement 

Although the proposed method achieves good results for segmentation of the 

levator ani and obturator muscles, there is a lot of room to improve the segmentation 

performance.  
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1) During the statistical model building process, more samples of target 

structures can be selected, and therefore more shape variations can be covered in the 

training set. As a result, more principle components can be applied in the shape variation 

model. However, efficiency and performance need to be balanced carefully. It is true that 

the more complicated the shape model, the more robust for the model built. It also 

requires extensive computation for the model searching.  

2)  In local image feature extraction, either modification of the existing filters 

or applying more filters in the sequence may improve the performance of segmentation. 

For example, some other nonlinear functions can be used in intensity mapping to enhance 

the contrast of target structures. A wavelet filter could be used for noise reduction and 

smoothing [141]. Morphological operations, such as opening, closing, dilution and 

erosion, can be used for repairing the extracted edge when small parts of the border is 

missing or blurred with other tissues [142].  

3) In model searching, gradient magnitude of the feature map is used to 

attract the contour or surface to the structure borders. Although the gradient direction 

(angle) can also be acquired in the feature map, it is not used in the current model 

matching pipeline. However, if one can utilize this information to guide evaluation of the 

contour or surface, it may speed model searching and improve segmentation performance. 

In addition, improvement could be done with an optimization algorithm, which needs to 

be balanced by efficiency and performance. Although the 1+1 ES performs well on the 
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test examples, it is worth trying and comparing more optimization methods based on 

other examples to find the best candidate. 

8.2.2 Automatically Build VR Model of Female Pelvic Floor 

The objective of this research is to develop a semi-automatic segmentation method 

to speed up building a VR model of female pelvic floor. However, it is also possible to 

build a VR model from MR images automatically based on the developed technique and 

other segmentation algorithms. The proposed segmentation method could be used for any 

pelvic floor structures without large shape variations such as pelvic bones and urethra, 

and a combined shape model of those structures could be developed with additional 

parameters of distance and angles of structures. Such a combined model is expected to 

result in segmentation results that are more robust since missing or blurred shape 

information in one structure could be best estimated by the parameters of other reliable 

structures. Besides, such a model will be more efficient since it matches all of the 

structures to the image simultaneously, not just one by one (Figure 58). 

 

Figure 58     A Combined Model of the Levator Ani Muscle and Obturator Muscles 
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Some structures of the pelvic floor have large shape variations and model-based 

segmentation cannot be applied, such as bladders and vessels. However, since they have 

high contrast on MR images, model free methods can be applied to these structures for a 

semi-automatic segmentation. In our preliminary study, a 3D region growing algorithm 

achieved a satisfying result for segmentation of vessels, and a contouring algorithm 

worked well for segmentation of bladder (Figure 59 and Figure 60). 

 

Figure 59    3D Segmentation of the Vessel 
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Figure 60    Segmentation Result with Axial and Coronal MRI Scans 

As a conclusion, proposed model-based segmentation method can be used to 

segment female pelvic floor structures and build 3D and VR models. Compared to 

conventional manual segmentation, it is more efficient. The model is based on statistical 

analysis of shapes of the target structure, which makes the segmentation robust and 

reliable for low contrast structures in medical images. Furthermore, using Taguchi 

analysis can quickly reveal the significance of segmentation parameters with fewer 

experimental runs, which is very useful when many parameters are involved in the 

segmentation pipeline. Future studies should focus on enhancing the segmentation 

performance by improving current modeling pipeline and model matching algorithms, or 

developing combined shape models.     
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