21,014 research outputs found

    Quasi-analytical root-finding for non-polynomial functions

    Get PDF
    Made available in DSpace on 2018-12-11T16:46:02Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-11-01Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)A method is presented for the calculation of roots of non-polynomial functions, motivated by the requirement to generate quadrature rules based on non-polynomial orthogonal functions. The approach uses a combination of local Taylor expansions and Sturm’s theorem for roots of a polynomial which together give a means of efficiently generating estimates of zeros which can be polished using Newton’s method. The technique is tested on a number of realistic problems including some chosen to be highly oscillatory and to have large variations in amplitude, both of which features pose particular challenges to root–finding methods.Departamento de Matemática Aplicada UNESP–University Estadual PaulistaDepartment of Mechanical Engineering University of BathDepartamento de Matemática Aplicada UNESP–University Estadual PaulistaFAPESP: 2014/17357-1FAPESP: 2014/22571-

    Rational approximation for solving an implicitly given Colebrook flow friction equation

    Get PDF
    The empirical logarithmic Colebrook equation for hydraulic resistance in pipes implicitly considers the unknown flow friction factor. Its explicit approximations, used to avoid iterative computations, should be accurate but also computationally efficient. We present a rational approximate procedure that completely avoids the use of transcendental functions, such as logarithm or non-integer power, which require execution of the additional number of floating-point operations in computer processor units. Instead of these, we use only rational expressions that are executed directly in the processor unit. The rational approximation was found using a combination of a Pade approximant and artificial intelligence (symbolic regression). Numerical experiments in Matlab using 2 million quasi-Monte Carlo samples indicate that the relative error of this new rational approximation does not exceed 0.866%. Moreover, these numerical experiments show that the novel rational approximation is approximately two times faster than the exact solution given by the Wright omega function.Web of Science81art. no. 2

    An Analytical Study on the Multi-critical Behaviour and Related Bifurcation Phenomena for Relativistic Black Hole Accretion

    Full text link
    We apply the theory of algebraic polynomials to analytically study the transonic properties of general relativistic hydrodynamic axisymmetric accretion onto non-rotating astrophysical black holes. For such accretion phenomena, the conserved specific energy of the flow, which turns out to be one of the two first integrals of motion in the system studied, can be expressed as a 8th^{th} degree polynomial of the critical point of the flow configuration. We then construct the corresponding Sturm's chain algorithm to calculate the number of real roots lying within the astrophysically relevant domain of R\mathbb{R}. This allows, for the first time in literature, to {\it analytically} find out the maximum number of physically acceptable solution an accretion flow with certain geometric configuration, space-time metric, and equation of state can have, and thus to investigate its multi-critical properties {\it completely analytically}, for accretion flow in which the location of the critical points can not be computed without taking recourse to the numerical scheme. This work can further be generalized to analytically calculate the maximal number of equilibrium points certain autonomous dynamical system can have in general. We also demonstrate how the transition from a mono-critical to multi-critical (or vice versa) flow configuration can be realized through the saddle-centre bifurcation phenomena using certain techniques of the catastrophe theory.Comment: 19 pages, 2 eps figures, to appear in "General Relativity and Gravitation

    Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems II: Strongly monotone quasi-Newtonian flows

    Get PDF
    In this article we develop both the a priori and a posteriori error analysis of hp–version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω⊂Rd,d \Omega \subset R^{d}, d = 2,3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm which are explicit in the local mesh size and local polynomial degree of the approximating finite element method. A series of numerical experiments illustrate the performance of the proposed a posteriori error indicators within an automatic hp–adaptive refinement algorithm

    Polynomial Lie algebra methods in solving the second-harmonic generation model: some exact and approximate calculations

    Get PDF
    We compare exact and SU(2)-cluster approximate calculation schemes to determine dynamics of the second-harmonic generation model using its reformulation in terms of a polynomial Lie algebra supd(2)su_{pd}(2) and related spectral representations of the model evolution operator realized in algorithmic forms. It enabled us to implement computer experiments exhibiting a satisfactory accuracy of the cluster approximations in a large range of characteristic model parameters.Comment: LaTex file, 13 pages, 3 figure

    Approximating the Permanent of a Random Matrix with Vanishing Mean

    Full text link
    We show an algorithm for computing the permanent of a random matrix with vanishing mean in quasi-polynomial time. Among special cases are the Gaussian, and biased-Bernoulli random matrices with mean 1/lnln(n)^{1/8}. In addition, we can compute the permanent of a random matrix with mean 1/poly(ln(n)) in time 2^{O(n^{\eps})} for any small constant \eps>0. Our algorithm counters the intuition that the permanent is hard because of the "sign problem" - namely the interference between entries of a matrix with different signs. A major open question then remains whether one can provide an efficient algorithm for random matrices of mean 1/poly(n), whose conjectured #P-hardness is one of the baseline assumptions of the BosonSampling paradigm
    • …
    corecore