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Abstract A method is presented for the calculation of roots of non-polynomial
functions, motivated by the requirement to generate quadrature rules based on non-
polynomial orthogonal functions. The approach uses a combination of local Taylor
expansions and Sturm’s theorem for roots of a polynomial which together give a
means of efficiently generating estimates of zeros which can be polished using New-
ton’s method. The technique is tested on a number of realistic problems including
some chosen to be highly oscillatory and to have large variations in amplitude, both
of which features pose particular challenges to root–finding methods.

Keywords Root-finding · Orthogonal functions · Quadrature rules

1 Introduction

Root–finding is one of the classical problems in numerical analysis, and continues to
stimulate research. Our motivation in this paper is to develop methods for the roots
of functions with distinct real roots. Our particular application comes from the study
of orthogonal functions, both classical and of types with more general orthogonality
properties [3, for example], though we emphasize that our method is not limited to
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these functions and applies to any function which can be represented locally by a
Taylor series.

A concrete motive for finding the roots of orthogonal functions is the deriva-
tion of quadrature rules, including quadrature rules on the unit circle. The classical
orthogonal polynomials—Legendre, Jacobi, Hermite—have well-known quadratures
associated with them and a correspondingly extensive body of work on efficient
methods for their roots. There are also quadrature rules based on the orthogonal-
ity properties of special functions, such as the Bessel-function rules used for the
evaluation of Hankel transforms.

While various methods exist which exploit particular special properties of the clas-
sical orthogonal functions, the methods of choice for general functions are probably
those based on the use of ordinary differential equations for the function. The original
form of this algorithm is that of Glaser, Liu, and Rokhlin [8], whose technique uses
the second-order ordinary differential equation for the function to generate high-order
approximations for stepping between successive roots. Their method uses a Prüfer
transform to step from one root to an approximation of the succeeding root, which is
then polished using Newton’s method applied to a high (thirty or more) order Taylor
expansion of the function. The coefficients of the Taylor expansion are efficiently
generated using a recursion derived from the differential equation, which allows the
function to be evaluated from its Taylor expansion to near machine precision.

The o.d.e. techniques have since been extended using the theory of non-oscillatory
phase functions [6] with a recent paper by Bremer [5] presenting a root-finding algo-
rithm which yields roots of the function in O(1) operations per root after a set-up
operation which requires very little computation. The algorithm also allows parallel
computation of roots, unlike the previous version [8] which required that roots be
found sequentially.

Another approach to root-finding for general functions [2] is to represent the func-
tions as combinations of Chebyshev polynomials on sub-intervals of the appropriate
domain. Roots, if any, can then be found on each sub-interval as the eigenvalues of the
companion matrix of the Chebyshev approximation. This gives good approximations
to the roots but does require that the interpolation be generated in advance.

While o.d.e. techniques are probably most convenient for many functions, they do
require that a differential equation be available for the stepping between roots, and for
generation of the Taylor expansion. When the differential equation is not available,
we are forced back on more classical root-finding methods with the corresponding
difficulties of root isolation and accurate evaluation. In this paper, we make use of
the Taylor series to step from root to root, and as a means of isolating approximations
to roots which can then be polished using Newton’s method. The approach is not
as powerful as the o.d.e.-based algorithm, but is more flexible in that it can be used
when a differential equation is either not available or is computationally difficult to
use for expansions.

Our root-finding method is based on a combination of two ideas. The first is the
use of truncated Taylor series to approximate a function near some point. This is
valid over a finite interval whose size depends on the order of terms retained in the
Taylor series. Over that interval, the expansion is an accurate representation of the
underlying function, to within some user-specified tolerance. The second idea is the
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use of Sturm sequences to find a root of the Taylor series in the interval. Our argument
is that if the Taylor polynomial faithfully represents the function over an interval, then
its roots in that interval are good approximations to the roots of the function proper.

2 Algorithm

The underlying principle of the root-finding algorithm is to locally replace the func-
tion f (x) whose distinct real roots are to be found with a polynomial approximation
of controlled accuracy. In principle, if the Taylor polynomial (truncated Taylor series)
is accurate enough over some range, roots of the Taylor polynomial will be close
approximations of roots of the underlying function f (x). Our method is thus com-
posed of two basic tools: the Taylor polynomial as a local representation of the
function, and the Sturm sequence which can be used to isolate roots of the Taylor
polynomial as initial guesses for the roots of the function proper.

2.1 Taylor polynomials

The Taylor polynomial TN(�x, x0) of order N is an approximation of a function
f (x) in the vicinity of a point x0,

TN(�x, x0) =
N∑

n=0

tn(�x)n, (1)

tn = 1

n!
dnf

dxn

∣∣∣∣
x=x0

,

�x = x − x0

with a corresponding estimate of the remainder,

RN(�x, x0) ≈ 1

(N + 1)!
dN+1f

dxN+1

∣∣∣∣
x=x0

(�x)N+1, (2)

|f (x) − TN(�x, x0)| < RN(�x, x0).

We will use this error estimate to fix the range of validity of the Taylor polynomial
used in approximating the function whose roots are to be found.

Our method does not depend on any particular means of generating derivatives
for the coefficients of the Taylor polynomial, and to some degree a choice of method
will depend on the application. In the approach closest to ours [5, 8], an o.d.e. is used
to generate the required information about the function: our aim here is to provide a
method which can be used when an o.d.e. is not readily available. We note that in the
general case, high-order derivatives of an analytic function can be stably and accu-
rately found using numerical evaluation of Cauchy integrals [1] though in practice
we believe that in most applications there is usually enough local information about
the function to provide efficient methods for the computation of derivatives without
recourse to Cauchy integrals.



Numer Algor

In the applications which motivate this work, the function f (x) is often defined
by a sequence of functions {fn(x)} which satisfies a three–term recursion of the form

fn+1(x) = an(x)fn(x) + bn−1(x)fn−1(x), (3)

so that one means of generating the derivatives required for the Taylor polynomial is
repeated differentiation of the recursion,

dm

dxm
fn+1(x)=

m∑

q=0

(
m

q

)(
dq

dxq
an(x)

dm−q

dxm−q
fn(x)+ dq

dxq
bn−1(x)

dm−q

dxm−q
fn−1(x)

)
.

(4)

Although this is the form of recursion used for orthogonal polynomials, for which
bn−1 is independent of x, there is no requirement that an or bn−1 be polynomial, and
we impose no such restriction. For example, the Bessel function recursion makes use
of rational functions [9, 8.471],

Zν+1(x) = 2ν

x
Zν(x) − Zν−1(x),

and in our numerical tests we will include functions defined by recursions based on
algebraic functions.

2.2 Sturm sequences

The Sturm sequence is a method for the isolation of roots of a polynomial on the
real line, dating to the nineteenth century [13] and which has previously been imple-
mented for use in a polynomial root-finding algorithm based on bisection [10].
Sturm’s theorem states that for any polynomial p(x), with simple real roots, there
exists a sequence of polynomials pi(x), i = 1, 2, . . . , m. At any point x, the func-
tion s(x) can be calculated as the number of sign changes in the sequence pi(x). The
number of roots lying between x = a and x = b, with a < b, is then the difference
s(a) − s(b). This gives us a means of determining the number of roots of our Taylor
polynomial as a first step towards finding roots of f (x).

The Sturm sequence for any polynomial p(x) with simple real roots is generated
by initializing the sequence with p1(x) = p(x), p2(x) = p′(x). Subsequent terms
pk(x) are generated as the remainder of the polynomial division pk−1(x)/pk(x) with
its sign reversed. An implementation of this algorithm in C has been published [10]
and consists of the following steps for a polynomial p(x) = ∑N

n=0 anx
n:

1. Set p1(x) = p(x) and p2 = p′(x);
2. Scale p2(x) on the absolute value of its leading coefficient;
3. Set k = 3.
4. While order(pk(x)) �= 0:

(a) Set pk(x) = −remainder (pk−2(x)/pk−1(x));
(b) Scale pk(x) on the absolute value of its leading coefficient;
(c) Set k = k + 1.

5. Set m = k.
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The output of this algorithm is a sequence of m polynomials which can be evaluated
at a point x to check for sign changes as follows:

1. Set s(x) = 0;
2. For k = 2, 3, . . . , m:

(a) a = pk−1(x), b = pk(x);
(b) if ab < 0 or a = 0, increment s(x).

Given these algorithms for evaluation of the Sturm sequence and for counting
sign-changes, we can check for and, if necessary, bracket one root in an interval
0 < x < h, by the following bisection method, where α is a desired interval size for
the bracketing:

1. Apply the Sturm sequence at x = 0 and x = h, if s(0) = s(h) terminate and
report no root;

2. Set xmin = 0, xmax = h, smin = s(0), smax = s(h);
3. Set x1 = (xmin + xmax)/2, s1 = s(x1);
4. If s1 �= smin, set xmax = x1, smax = s1;
5. Otherwise, set xmin = x1, smin = s1;
6. If |xmax − xmin| < α and |smax − smin| = 1, terminate;
7. Return to step 3.

The algorithm isolates the root in [0, h] with smallest absolute value, i.e., the ‘next’
root in our stepping procedure. Replacing h with −h in the first two steps gives a pro-
cedure which steps in the negative direction, which allows our root-finding algorithm
to be applied starting from an arbitrary point. For example, this allows the method to
work forwards and backwards from some starting point to find all roots of a function
in a given interval, even when there is no symmetry or other information available
about the distribution of roots. This ability to start from an arbitrary point means that
the method can also be implemented in parallel to seek multiple roots independently.

2.3 Summary

To summarize, we give an algorithm for stepping from an initial point x0 to the next
largest root of f (x), f (x0 + �x) = 0. This step can be repeated to find subsequent
roots, and reversed to find roots x0 − �x. The user supplies a starting point, which
may be a previously-found root, and an error tolerance ε which is used to control the
precision of the Taylor expansion by setting the range over which a root is sought.

To step from point x0 to the next largest root, using expansions of order N :

1. Localize region containing roots:

(a) Generate TN(�x, x0);
(b) Generate Sturm sequence for TN(�x, x0), using method of Section 2.2;
(c) Evaluate step size h = (ε/|tN |)1/N ;
(d) Use Sturm sequence to check for roots in interval 0 ≤ �x ≤ h;
(e) If no roots, set x0 = x0 + h and repeat, otherwise terminate.
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2. Isolate one root:

(a) When interval containing roots is found, use bisection method of
Section 2.2 to isolate one root �x;

(b) Refine root using Newton’s method;
(c) Set x0 to x0 + �x + δ and repeat.

The tolerance ε is user-defined and will depend to some degree on the problem being
solved. The small increment δ is required to shift the starting point off the root which
has just been found in order to take that root out of the interval covered by the Sturm
sequence, to machine precision.

2.4 Some notes on implementation

In our numerical examples, we consider functions which have amplitudes comparable
to machine precision, a stringent test of a numerical root-finding method. In our
experience, the choice of N , ε, and δ affect the performance of the algorithm and we
outline how they can be set.

Firstly, the order N of the method interacts with the tolerance ε in setting the step
size h. At high order, small tolerance, and large |tN |, h cannot be reliably evaluated,
limiting the maximum usable order. We find that priority should be given to ε and
the order adjusted rather than vice versa. Given that

hN = ε/|tN |

a usable criterion is to fix a minimum value of hN , one or two orders of magnitude
greater than machine precision say, and use this to fix a minimum value for ε/|tN |
which will allow accurate evaluation of h. In our second test case, ε varies over many
orders of magnitude at various values of N and the method still gives accurate results.

Secondly, too small a value of δ risks making the method fail on functions of very
small amplitude. In our implementation, we shift x0 by repeatedly incrementing it
by δ until |f (x0)| > fmin, with fmin some small tolerance set by the user. Values of
these settings are given in the principal tests which we present.

Finally, in principle, there might be functions for which the method of Section 2.3
fails to terminate. We have not encountered this problem in our tests, but for com-
pleteness the algorithm should stop and report failure if the number of steps exceeds
some user-defined limit.

3 Numerical examples

We present a number of numerical examples intended to illustrate the behaviour of
our algorithm and to show its performance on the kind of problem for which it is
intended. The algorithm of Section 2.3 is applied with the Newton refinement step
used to evaluate roots to near machine precision in all cases.
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3.1 Trigonometric plus Gaussian function

Our first test case is used to graphically illustrate the behaviour of the method on
a simple function which has closely-spaced roots or near-zeros which are not roots.
The function is a combination of a Gaussian and a trigonometric function,

f (x) = cos x − (1 + a)e−x2/σ 2
, (5)

which can have a pair of zeros near x = 0 as well as the usual zeros of cos x.
The parameter σ controls the spacing of these zeros while the value of a determines
whether or not they exist. For a < 0, there are no zeros near the origin, though the
function may come very close to zero, while for a > 0 there are two zeros which can
be made arbitrarily close. Figure 1 shows the behaviour of the function for different
values of σ when there are two roots near the origin.

Figure 2 shows the behaviour of the algorithm on the test function for three dif-
ferent values of σ when there are two well-separated roots near zero (a = 1/4) and
when the function approaches, but does not touch, the axis (a = −1/128). In each
case, the root-finding was initialized at x = −2. Four roots were sought for a = 1/4,
and two for a = −1/128, using eighth-order Taylor polynomials with ε = 10−10 and
δ = 10−12. The roots are indicated by solid boxes, while intermediate values of the
function at the points x0 used to generate Taylor expansions are shown as circles. The
first obvious point to note is that the method does indeed locate the roots accurately.
The second point of interest is that the adaptivity is clearly shown by the varying
density of the circles on the curve, especially near maxima and minima. This is espe-
cially pronounced for σ = 1/4, where the circles are quite dense near the peaks of
the function, and separate as the curve descends through the two central roots before
bunching again around the minimum.

3.2 Highly-oscillatory trigonometric function

The next test case is f (x) = sin(1/x) which is chosen for being highly oscillatory
making root-finding a challenging task as x → 0. Roots of the function for x > 0

Fig. 1 Test function of (5), a = 1/4, σ = 1, 1/2, 1/4
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Fig. 2 Root-finding for trigonometric–Gaussian test function, left hand column, a = 1/4; right-hand
column, a = −1/128; top to bottom, σ = 1/4, 1/2, 1; squares indicate roots; circles indicate expansion
points

are xn = 1/(nπ), n ∈ N, so that the spacing between successive roots |xn − xn+1| ≈
1/(πn2) = πx2

n , x → 0. As a test of the root-finding method, we seek roots starting
from points increasingly close to the origin. A basic requirement of the method is that
it should work until the distance between successive roots is comparable to machine
precision, at which point roots become indistinguishable.

The test involved seeking ten roots moving toward the origin from a starting point
x0 = 10−m, m = 0, 1, . . . , 7. Roots found were checked to ensure that they cor-
responded to successive values of n in xn = 1/(nπ). To allow for the increasing
frequency of oscillation as x0 → 0, the tolerance for setting the step size h was set
to ε = x2

0/10, while the small increment required to shift the starting point away
from a just-found root was set to δ = x2

0/1000. The measure of computational effort,
shown in Fig. 3, is the total number of function evaluations in finding the ten roots,
as a function of m and of the order of the Taylor polynomial. As expected, increas-
ing the order of the method reduces the computational effort considerably—by more
than two orders of magnitude for the cases considered here—and starting nearer the
origin leads to an increase in effort as the roots become more closely spaced and the
interval of validity of the Taylor polynomial becomes smaller so that more function
evaluations are needed.
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Fig. 3 Number of function evaluations ns to find roots of sin(1/x) against starting point x0 = 10−m,
squares: fourth order; diamonds: sixth order: circles: eighth order; triangles: tenth order; solid lines: linear
fit ns = mb

In this test case, the tolerance is varied over many orders of magnitude 10−15 ≤
ε ≤ 10−3 in order to adapt to the increasing frequency of oscillation of the function,
with 4 ≤ N ≤ 10. In all cases, the method continued to give accurate answers with
no difficulties arising in selecting a step size h.

3.3 Orthogonal SR–functions and para-orthogonal polynomials
on the unit circle

Our final set of examples is made up of functions given in terms of a recursion rela-
tion. These functions are not polynomials so that many classical root-finding methods
are ruled out, nor do we have enough information for use in an o.d.e. method [5, 8].

The functions in question have some orthogonality properties defined using a posi-
tive measure dφ(x) on the interval (−1, 1). A sequence of such functions {Wn(x)}∞n=0
has been studied previously [3] using the orthogonality properties

∫ 1

−1
W2n(x)W2m(x)

√
1 − x2 dφ(x) = ρ2m δn,m,

∫ 1

−1
W2n+1(x)W2m+1(x)

√
1 − x2 dφ(x) = ρ2m+1 δn,m, (6)

∫ 1

−1
W2n+1(x)W2m(x) dφ(x) = 0,

for n,m = 0, 1, 2, . . ., with ρ2mρ2m+1 �= 0, δn,m = 0,if n �= m and δn,m = 1,if
n = m.

It has been proved that the sequence of orthogonal functions {Wn(x)}∞n=0 satisfies
the following three–term recurrence relation

Wm+1(x) =
(
x − cm+1

√
1 − x2

)
Wm(x) − dm+1Wm−1(x), m ≥ 1, (7)
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with W0(x) = 1, W1(x) = x − c1
√

1 − x2, where

cm+1 = 1

ρm

∫ 1

−1
x W 2

m(x) dφ(x), m ≥ 0 and

dm+1 = 1

ρm−1

∫ 1

−1

(
x − cm+1

√
1 − x2

)
Wm−1(x)Wm(x)

√
1 − x2 dφ(x), m≥1.

We refer to the functions Wn(x) which satisfy (7) as SR-functions (square-root),
to emphasize that they are not polynomial, though they do reduce to polynomials in
the special case cm+1 = 0.

From the recurrence relation (7), one can see that an SR-function can be written as

Wn(x) = An(x) +
√

1 − x2Bn−1(x), n ≥ 0,

where An(x) ∈ Pn and Bn−1(x) ∈ Pn−1 satisfy An(−x) = (−1)nAn(x) and
Bn−1(−x) = (−1)n−1Bn−1(x),and Pn denotes the space of the polynomials of
degree at most n.

Our interest in these functions comes from the fact that in the interval (−1, 1) an
SR-function, Wn(x), which satisfies the orthogonality properties (6) has exactly n

simple zeros [3].
Furthermore, the orthogonal SR-functions have an interesting connection with

orthogonal polynomials on the unit circle. Let dμ(z) be a positive measure on the
unit circle T = {z = eiθ : 0 ≤ θ ≤ 2π}. Then, we call the sequence of polynomials
{Sn(z)}∞n=0 such that

∫

T

z̄kSn(z)dμ(z) =
∫ 2π

0
e−ikθSn(e

iθ )dμ(eiθ ) = 0, 0 ≤ k ≤ n − 1, n ≥ 1

a sequence of orthogonal polynomials on the unit circle (OPUC).
It is well known that [12] all zeros of these polynomials lie inside the unit disk and

that they satisfy the relations

Sn(z) = zSn−1(z) − αn−1 S∗
n−1(z), n ≥ 1,

where αn−1 = −Sn(0) and the reciprocal polynomial of Sn(z) is S∗
n(z) = znSn(1/z̄).

Para-orthogonal polynomials on the unit circle (POPUC) associated with the
sequence of OPUC {Sn(z)}∞n=0 can be given by zSn−1(z)− τn S∗

n−1(z), n ≥ 1, where
{τn}∞n=1 is any sequence of complex numbers such that |τn| = 1. Unlike the OPUC,
the POPUC has all its n zeros simple and lying on the unit circle T.

If the positive measure dφ(x) on (−1, 1) is such that
∫ 1
−1(1−x2)−1/2dφ(x) exists,

then we can define dμ(z), a positive measure on the unit circle, by

dμ(z) = −dφ(x(z))/ sin(θ/2), (8)

where x(z) = (z1/2 + z−1/2)/2 = cos(θ/2), with 0 ≤ θ ≤ 2π and z = eiθ . From the
three-term recurrence relation (7), it is easy to see that polynomials defined by

Rn(z) = 2nzn/2Wn(x(z)), n ≥ 0, (9)

satisfy the three-term recurrence relation

Rn+1(z) = [
(1 + icn+1)z + (1 − icn+1)

]
Rn(z) − 4 dn+1zRn−1(z), (10)
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with R0(z) = 1 and R1(z) = (1 + ic1)z + (1 − ic1). In [7], it was shown that
functions (z−1)Rn(z) are para-orthogonal on the unit circle, with τn = Sn(1)/S∗

n(1),
associated with the measure dμ(z) given in (8).

We must emphasize that, from relation (9), the zeros of the POPUC (z − 1)Rn(z)

which lie on the unit circle and are used in quadrature rules on the unit circle [11] can
easily be computed from zj = eiθj , θj = 2 arccos(xj ), where xj , j = 1, 2, · · · , n,are
the zeros of the orthogonal SR–function Wn(x).

We now use our proposed algorithm to seek roots of Wn(x) for different mea-
sures dφ(x). For our first example, we consider the positive measure dφ(x) =
e−2η cos−1(x)(1 − x2)λ−1dx, with η, λ ∈ R and λ > 1/2. In this case [3],

cm = η

m + λ − 1
and dm+1 = m(m + 2λ) − 1

4(m + λ − 1)(m + λ)
, m ≥ 1.

Note that when η = 0, the orthogonal SR-functions Wn(x) reduce to the monic
ultraspherical polynomials C

(λ−1/2)
n (x).

Varying λ and η gives quite different behaviour to the family of functions and
can lead to quite testing conditions for a root-finding algorithm. Figure 4 shows the
roots of W24(x) with λ = 0.25, η = 0.9. Roots were found working downwards
from x0 = 1 − 10−7, with δ = 10−7. Other than the square-root behaviour at the
end points, this is a reasonably well-behaved function without a large variation in
amplitude. The roots are well-separated as is clear from Fig. 4.

Figure 5 is another matter: the function is of quite large amplitude for x � −1/2
and is then exponentially small, with oscillations of increasing frequency as x → 1,
where the function has a square root singularity. Nonetheless, our method finds the
roots in −1 ≤ x ≤ 1 accurately, as can be seen from the lower plot of Fig. 5 which
gives the detail of the function and roots for 0.9 ≤ x ≤ 1. The roots are correctly
identified despite the small amplitude of the function (note the scaling on the vertical
axis) and the high frequency oscillations.

Finally, Fig. 6 shows the computational effort required to find the roots in Fig. 5,
as a function of the order N of the method. The reduction in effort, shown as the

Fig. 4 Roots of SR-function W24(x), λ = 0.25, η = 0.9
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Fig. 5 Roots of W25(x), λ = 13, η = 3, upper plot: full set of roots in (−1, 1); lower plot: zoom to
0.9 ≤ x ≤ 1 (note scaling of vertical axis)

number of function evaluations required, is quite marked, falling by more than two
orders of magnitude as N increases from 4 to 9, though the improvement is slower
as N increases beyond this point.

Fig. 6 Number of function evaluations to find roots in Fig. 5 against order of method
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Fig. 7 Roots of W29(x), κ = 0.8: upper plot, all roots; lower plot, zoom to near-double root

Fig. 8 Roots of (z − 1)R29(z) on the unit circle for κ = 0.8
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Our second example of an application considers para-orthogonal polynomials on
the unit circle [4] associated with a Lebesgue measure with a mass κ at z = i, which
can be given as

∫

T

f (z)dμ(κ)(z) = (1 − κ)

∫

T

f (z)
1

2π iz
dz + κf (i) (11)

where 0 ≤ κ < 1 and T = {z = eiθ : 0 ≤ θ ≤ 2π} is the unit circle.
In [4, Theorem 5], considering the POPUC (z − 1)Rn(z) associated with the

measure dμ(κ)(z), it was shown that the polynomials Rn(z), satisfy the recur-
rence relation (10), with the coefficients {cn}∞n=1 and {dn+1}∞n=1 given, explicitly, by
dn+1 = (1 − Mn)Mn+1, n ≥ 1, and

c4m+1 = κ

4mκ + 1
, M4m+1 = 1

2

(4mκ + 1)2 + κ2

(4mκ + 1)2
,

c4m+2 = −2κ2

[(4m + 1)κ + 1]2
, M4m+2 = 1

2

(4mκ + 1) [[(4m + 2)κ + 1]2 + κ2]
[(4m + 1)κ + 1]3

,

c4m+3 = −κ

(4m + 2)κ + 1
, M4m+3 = 1

2

[(4m + 2)κ + 1]2 − κ2

[(4m + 2)κ + 1]2
,

c4m+4 = 0, M4m+4 = 1

2

(4m + 2)κ + 1

(4m + 3)κ + 1
,

(12)

for m ≥ 0.
Then, using the relation (8) and definition (11), we see that the functions Wn(x) =

2−nz−n/2Rn(z) satisfy the orthogonality conditions (6), where dφ(x) is such that
∫ 1

−1
f (x)dφ(x) = (1 − κ)

∫ 1

−1
f (x)dx + κf (

√
2/2). (13)

Furthermore, the orthogonal SR–functions Wn(x) satisfy the recurrence relation
(7) with the same coefficients {cn}∞n=1 and {dn+1}∞n=1 given in (12).

Figure 7 shows results of root–finding for n = 29, κ = 0.8. Roots were found
using eighth-order Taylor polynomials, starting from x0 = −0.9999, with δ = 10−7

and ε = 10−12. From the upper plot, it is clear that the roots have been found suc-
cessfully. The lower plot shows that, importantly, the algorithm has correctly detected
and separated two roots which are close but distinct, near x = √

2/2. This is an
essential feature of any root-finding method, especially one used for orthogonal or
para-orthogonal functions which form the basis of a quadrature rule.

Finally, to complete the calculation, Fig. 8 shows the roots of the POPUC (z −
1)Rn(z) for n = 29, associated with the measure dμ(κ)(z) given by (11) with κ =
0.8, computed from the real roots of W29(x), with the addition of the root z = 1.

4 Conclusions

We have presented a method which is well-suited to the problem of finding simple
real roots of non-polynomial functions when a differential equation is not available
for use in alternative algorithms. We have demonstrated that the method works on
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some realistic problems, including some deliberately chosen to pose a challenge to
root-finding methods. The technique is accurate and efficient, and can be imple-
mented using standard coding tools. We note finally that the approach is easily
modified to extract roots of first or other derivatives, such as function extrema, which
are important in many applications, and that it is easily implemented on parallel
systems.

Acknowledgments Work described in this paper was carried out while the second author was visiting
UNESP under FAPESP contract 2014/17357-1, and while the first author was visiting the University of
Bath under FAPESP contract 2014/22571-2.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bornemann, F.: Accuracy and stability of computing high-order derivatives of analytic functions by
Cauchy integrals. Found. Comput. Math. 11(1), 1–63 (2011). doi:10.1007/s10208-010-9075-z

2. Boyd, J.P.: Finding the zeros of a univariate equation: Proxy rootfinders, Chebyshev interpolation and
the companion matrix. SIAM Rev. 55(2), 375–396 (2013). doi:10.1137/110838297
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