93 research outputs found

    Quasi-Majority Functional Voting on Expander Graphs

    Get PDF
    Consider a distributed graph where each vertex holds one of two distinct opinions. In this paper, we are interested in synchronous voting processes where each vertex updates its opinion according to a predefined common local updating rule. For example, each vertex adopts the majority opinion among 1) itself and two randomly picked neighbors in best-of-two or 2) three randomly picked neighbors in best-of-three. Previous works intensively studied specific rules including best-of-two and best-of-three individually. In this paper, we generalize and extend previous works of best-of-two and best-of-three on expander graphs by proposing a new model, quasi-majority functional voting. This new model contains best-of-two and best-of-three as special cases. We show that, on expander graphs with sufficiently large initial bias, any quasi-majority functional voting reaches consensus within O(log⁥n)O(\log n) steps with high probability. Moreover, we show that, for any initial opinion configuration, any quasi-majority functional voting on expander graphs with higher expansion (e.g., Erd\H{o}s-R\'enyi graph G(n,p)G(n,p) with p=Ω(1/n)p=\Omega(1/\sqrt{n})) reaches consensus within O(log⁥n)O(\log n) with high probability. Furthermore, we show that the consensus time is O(log⁥n/log⁥k)O(\log n/\log k) of best-of-(2k+1)(2k+1) for k=o(n/log⁥n)k=o(n/\log n)

    Think locally, act locally: Detection of small, medium-sized, and large communities in large networks

    Get PDF
    It is common in the study of networks to investigate intermediate-sized (or “meso-scale”) features to try to gain an understanding of network structure and function. For example, numerous algorithms have been developed to try to identify “communities,” which are typically construed as sets of nodes with denser connections internally than with the remainder of a network. In this paper, we adopt a complementary perspective that “communities” are associated with bottlenecks of locally-biased dynamical processes that begin at seed sets of nodes, and we employ several different community-identification procedures (using diffusion-based and geodesic-based dynamics) to investigate community quality as a function of community size. Using several empirical and synthetic networks, we identify several distinct scenarios for “size-resolved community structure” that can arise in real (and realistic) networks: (i) the best small groups of nodes can be better than the best large groups (for a given formulation of the idea of a good community); (ii) the best small groups can have a quality that is comparable to the best medium-sized and large groups; and (iii) the best small groups of nodes can be worse than the best large groups. As we discuss in detail, which of these three cases holds for a given network can make an enormous difference when investigating and making claims about network community structure, and it is important to take this into account to obtain reliable downstream conclusions. Depending on which scenario holds, one may or may not be able to successfully identify “good” communities in a given network (and good communities might not even exist for a given community quality measure), the manner in which different small communities fit together to form meso-scale network structures can be very different, and processes such as viral propagation and information diffusion can exhibit very different dynamics. In addition, our results suggest that, for many large realistic networks, the output of locally-biased methods that focus on communities that are centered around a given seed node might have better conceptual grounding and greater practical utility than the output of global community-detection methods. They also illustrate subtler structural properties that are important to consider in the development of better benchmark networks to test methods for community detection

    Vol. 32, no. 5: Full Issue

    Get PDF

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Spherical and Hyperbolic Toric Topology-Based Codes On Graph Embedding for Ising MRF Models: Classical and Quantum Topology Machine Learning

    Full text link
    The paper introduces the application of information geometry to describe the ground states of Ising models by utilizing parity-check matrices of cyclic and quasi-cyclic codes on toric and spherical topologies. The approach establishes a connection between machine learning and error-correcting coding. This proposed approach has implications for the development of new embedding methods based on trapping sets. Statistical physics and number geometry applied for optimize error-correcting codes, leading to these embedding and sparse factorization methods. The paper establishes a direct connection between DNN architecture and error-correcting coding by demonstrating how state-of-the-art architectures (ChordMixer, Mega, Mega-chunk, CDIL, ...) from the long-range arena can be equivalent to of block and convolutional LDPC codes (Cage-graph, Repeat Accumulate). QC codes correspond to certain types of chemical elements, with the carbon element being represented by the mixed automorphism Shu-Lin-Fossorier QC-LDPC code. The connections between Belief Propagation and the Permanent, Bethe-Permanent, Nishimori Temperature, and Bethe-Hessian Matrix are elaborated upon in detail. The Quantum Approximate Optimization Algorithm (QAOA) used in the Sherrington-Kirkpatrick Ising model can be seen as analogous to the back-propagation loss function landscape in training DNNs. This similarity creates a comparable problem with TS pseudo-codeword, resembling the belief propagation method. Additionally, the layer depth in QAOA correlates to the number of decoding belief propagation iterations in the Wiberg decoding tree. Overall, this work has the potential to advance multiple fields, from Information Theory, DNN architecture design (sparse and structured prior graph topology), efficient hardware design for Quantum and Classical DPU/TPU (graph, quantize and shift register architect.) to Materials Science and beyond.Comment: 71 pages, 42 Figures, 1 Table, 1 Appendix. arXiv admin note: text overlap with arXiv:2109.08184 by other author

    Dagstuhl News January - December 2011

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic
    • 

    corecore