65 research outputs found

    Chaotic Quantum Double Delta Swarm Algorithm using Chebyshev Maps: Theoretical Foundations, Performance Analyses and Convergence Issues

    Full text link
    Quantum Double Delta Swarm (QDDS) Algorithm is a new metaheuristic algorithm inspired by the convergence mechanism to the center of potential generated within a single well of a spatially co-located double-delta well setup. It mimics the wave nature of candidate positions in solution spaces and draws upon quantum mechanical interpretations much like other quantum-inspired computational intelligence paradigms. In this work, we introduce a Chebyshev map driven chaotic perturbation in the optimization phase of the algorithm to diversify weights placed on contemporary and historical, socially-optimal agents' solutions. We follow this up with a characterization of solution quality on a suite of 23 single-objective functions and carry out a comparative analysis with eight other related nature-inspired approaches. By comparing solution quality and successful runs over dynamic solution ranges, insights about the nature of convergence are obtained. A two-tailed t-test establishes the statistical significance of the solution data whereas Cohen's d and Hedge's g values provide a measure of effect sizes. We trace the trajectory of the fittest pseudo-agent over all function evaluations to comment on the dynamics of the system and prove that the proposed algorithm is theoretically globally convergent under the assumptions adopted for proofs of other closely-related random search algorithms.Comment: 27 pages, 4 figures, 19 table

    A quantum behaved particle swarm approach to multi-objective optimization

    Get PDF
    Many real-world optimization problems have multiple objectives that have to be optimized simultaneously. Although a great deal of effort has been devoted to solve multi-objective optimization problems, the problem is still open and the related issues still attract significant research efforts. Quantum-behaved Particle Swarm Optimization (QPSO) is a recently proposed population based metaheuristic that relies on quantum mechanics principles. Since its inception, much effort has been devoted to develop improved versions of QPSO designed for single objective optimization. However, many of its advantages are not yet available for multi-objective optimization. In this thesis, we develop a new framework for multi-objective problems using QPSO. The contribution of the work is threefold. First a hybrid leader selection method has been developed to compute the attractor of a given particle. Second, an archiving strategy has been proposed to control the growth of the archive size. Third, the developed framework has been further extended to handle constrained optimization problems. A comprehensive investigation of the developed framework has been carried out under different selection, archiving and constraint handling strategies. The developed framework is found to be a competitive technique to tackle this type of problems when compared against the state-of-the-art methods in multi-objective optimization

    Training ANFIS Model with an Improved Quantum-Behaved Particle Swarm Optimization Algorithm

    Get PDF
    This paper proposes a novel method of training the parameters of adaptive-network-based fuzzy inference system (ANFIS). Different from the previous works which emphasized on gradient descent (GD) method, we present an approach to train the parameters of ANFIS by using an improved version of quantum-behaved particle swarm optimization (QPSO). This novel variant of QPSO employs an adaptive dynamical controlling method for the contraction-expansion (CE) coefficient which is the most influential algorithmic parameter for the performance of the QPSO algorithm. The ANFIS trained by the proposed QPSO with adaptive dynamical CE coefficient (QPSO-ADCEC) is applied to five example systems. The simulation results show that the ANFIS-QPSO-ADCEC method performs much better than the original ANFIS, ANFIS-PSO, and ANFIS-QPSO methods

    Quantum-enhanced multiobjective large-scale optimization via parallelism

    Get PDF
    Traditional quantum-based evolutionary algorithms are intended to solve single-objective optimization problems or multiobjective small-scale optimization problems. However, multiobjective large-scale optimization problems are continuously emerging in the big-data era. Therefore, the research in this paper, which focuses on combining quantum mechanics with multiobjective large-scale optimization algorithms, will be beneficial to the study of quantum-based evolutionary algorithms. In traditional quantum-behaved particle swarm optimization (QPSO), particle position uncertainty prevents the algorithm from easily falling into a local optimum. Inspired by the uncertainty principle of position, the authors propose quantum-enhanced multiobjective large-scale algorithms, which are parallel multiobjective large-scale evolutionary algorithms (PMLEAs). Specifically, PMLEA-QDE, PMLEA-QjDE and PMLEA-QJADE are proposed by introducing the search mechanism of the individual particle from QPSO into differential evolution (DE), differential evolution with self-adapting control parameters (jDE) and adaptive differential evolution with optional external archive (JADE). Moreover, the proposed algorithms are implemented with parallelism to improve the optimization efficiency. Verifications performed on several test suites indicate that the proposed quantum-enhanced algorithms are superior to the state-of-the-art algorithms in terms of both effectiveness and efficiency
    • …
    corecore