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Abstract

Many real-world optimization problems have multiple objectives that have to be opti-

mized simultaneously. In multi-objective optimization problems, the major challenge is to

find the set of solutions that achieve the best compromise with regard to the whole set of

objectives. Although a great deal of effort has been devoted to solving multi-objective op-

timization problems, the problem is still open and the related issues still attract significant

research efforts. The possibility to get a set of Pareto optimal solutions in a single run is

one of the attracting and motivating features of using population based algorithms to sol-

ve optimization problems with multiple objectives. Most of the proposed approaches make

use of metaheuristics. Their basic idea is to introduce the Pareto dominance concept into

nature inspired algorithms such as Genetic Algorithms (GAs) and Particle Swarm Opti-

mization (PSO). Quantum-behaved Particle Swarm Optimization (QPSO) is a recently

proposed population based metaheuristic that relies on quantum mechanics principles.

Since its inception, much effort has been devoted to developing improved versions or new

applications of QPSO designed for single objective optimization. However, many of its

advantages are not yet available for multi-objective optimization. In this thesis, we deve-

lop a new framework for multi-objective problems using QPSO. The contribution of the

work is threefold. First a hybrid leader selection method has been developed to compute

the attractor of a given particle and applied in unconstrained optimization case. Its aim

is to foster convergence of the obtained Pareto fronts while maintaining good diversity.

Second, an archiving strategy has been proposed to control the growth of the archive size



in order to achieve a balance between the quality of solutions of an unbounded archive

method and the cost effectiveness of a bounded archive method. Third, the developed

framework has been further extended to handle constrained optimization problems. A

comprehensive investigation of the developed framework has been carried out under dif-

ferent selection, archiving and constraint handling strategies. The developed framework

is found to be a competitive technique to tackle this type of problems when compared

against the state-of-the-art methods in multi-objective optimization.
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Notations and Conventions

In the following list, we provide some definitions of the notations and acronyms used

throughout the thesis:

• MOP: Multi-objective Optimization Problem.

• SOP: Single-objective Optimization Problem.

• EA: Evolutionary Algorithms.

• MOEA: Multi-Objective Evolutionary Algorithms.

• NIC: Nature Inspired Computing.

• SI: Swarm Intelligence.

• PSO: Particle Swarm Optimization.

• QPSO: Quantum-Behaved Particle Swarm Optimization.

• MOPSO: Multi-Objective Particle Swarm Optimization.

• MOQPSO: Multi-Objective Quantum-behaved Particle Swarm Optimization.

• CMOP: Constrained Multi-objective Optimization Problem.

• CMOQPSO: Constrained Multi-objective Quantum-behaved Particle Swarm Op-

timization.



• MOQPSO-Clust: Multi-Objective Quantum-behaved Particle Swarm Optimiza-

tion for Clustering.

• Swarm: Population of candidate solutions in one generation of the evolutionary

algorithm.

• Particle:One of the candidate solutions in the swarm.

• sbest: Self best position of a given particle. it is the best position a given particle

has reached so far.

• gbest: Global best position. It is the best position found so far by the whole swarm.

• mbest: Mean best position. It is the mean of self best positions of all particles.

• GBA: Global Best Archive. It is the archive of the non-dominated feasible solutions.

• GBIA: Global Best Infeasible Archive. It is the archive of the best infeasible solu-

tions.

• N: Population size.

• D: Problem dimension.



KAPITEL 1

Introduction

1.1 Context of the Work

Optimization represents an important scientific field on its own. It is at the heart of many

different disciplines ranging from science to industry and covering a number of areas like

business, finance and economics to name just a few. In the computing field, optimization

is concerned with the development of computational models, methods and tools that help

making the best choice among a set of alternatives based on some criteria. An alternati-

ve represents a potential solution to the problem. The set of alternatives represents the

search space and the criteria refer usually to objective functions. In its simplest form, an

optimization problem has only one objective to be optimized. In this case, we deal with

single objective optimization. For example, maximizing a profit function or minimizing

a cost function requires finding the values of the problem’s decision variables that give

the best value of this function. A plethora of methods in the literature are devoted to

solving single objective optimization problems. However, real-world problems are intrinsi-

cally multi-objective. Multi-objectivity adds a supplementary difficulty as the objectives

are generally conflicting with each other, and should be optimized simultaneously. Such
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problems are known as Multi-objective Optimization Problems (MOPs). These problems

are challenged to determine balanced solutions that achieve the best compromise between

objectives. Converting a MOP into a single objective optimization problem by aggregation

of objectives was among the first attempts to solve MOPs. However, this is not always

easy to do. Another alternative was to order objectives and accomplish a series of single

objective optimizations. Generally, it is difficult, if not impossible, to establish such an

ordering. The complexity of MOPs is such that efforts have been spent to design new

methodologies based on nature inspired metaheuristics [31].

Nature Inspired Computing (NIC) is the field of developing new computing models

that are inspired from natural systems. The reason is that natural systems exhibit im-

portant abilities such as learning, adaptation and optimization. Therefore, studying such

systems in the quest to develop computational models is certainly a promising research

area. NIC represents a paradigm shift in problem solving methodology. Nowadays, several

nature inspired computational models exist such as evolutionary computation and swarm

intelligence. Swarm intelligence deals with the collective behaviour within swarms such as

colonies of ants and bees, flocks of birds and schools of fish. Within this context, several

metaheuristics have been developed among which Particle Swarm Optimization (PSO),

Ant Colony Optimization (ACO), Artificial Bee Colony (ABC) and very recently Quan-

tum Behaved PSO (QPSO) [121][21].

The subject of this thesis lies at the intersection of two fields: Optimization and Swarm

Intelligence. In the former, the focus is on multi-objective optimization problems while in

the latter we are interested in the QPSO model.
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1.2 Motivation

When solving a multi-objective optimization problem, it is often not possible to improve

one objective without deteriorating another conflicting one. Therefore, multi-objective op-

timization is challenged to determine the set of solutions that achieve the best compromise

with respect to all objectives. In order to identify such solutions, the concept of Pareto

dominance has been used. It offers a way to compare solutions and to classify them into

non-dominated and dominated solutions. A solution dominates another one if it is at least

as good as the other in all objectives and it is strictly better than the other in at least one

objective. Although a great deal of effort has been devoted to solve multi-objective opti-

mization problems, the problem is still open and the related issues still attract the interest

of researchers. Most of the proposed approaches make use of metaheuristics. Pareto based

metaheuristics for MOPs aim to introduce Pareto dominance into nature inspired algo-

rithms. Population based metaheuristics such as Genetic Algorithms(GAs) and Particle

Swarm Optimization (PSO) are particularly attractive to MOPs as they provide multiple

non-dominated solutions in a single run [31][3].

Evolutionary Algorithms (EAs) have been largely investigated as stochastic search

methods for handling multiple objectives. These methods are found to be well suited to

solving a large number of MOPs. Moreover, EAs show the ability to cope with complex

problems regardless of the shape of the Pareto surface [9][31].

However, EAs for MOPs share a common drawback, which is the overhead of the set-

ting of many genetic parameters such as mutation, crossover, and selection [67]. That is

why the PSO algorithm, a stochastic optimization technique inspired by social behaviour

of bird flocking or fish schooling, has become an attractive alternative to solve MOPs due
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to its simplicity, easy implementation, and less tunable parameters when compared with

EAs [67][96]. Multi-Objective Particle Swarm Optimization (MOPSO) algorithms have

been shown to be highly competitive with multi-objective genetic algorithms [92].

Recently, quantum computing principles have been introduced into EAs and PSO.

While some of them focus on quantum representation of individuals [48], others suggest

the use of a quantum behaviour defining a new philosophy for exploring the search space

[9]. This latter was the basic idea behind the Quantum Behaved Particle Swarm Opti-

mization (QPSO) algorithm, a quantum variant of PSO algorithm introduced by Sun

et al. [105]. QPSO has been shown as a promising algorithm for many single objective

optimization problems. Like PSO, QPSO is characterized by its simplicity and easy im-

plementation. Besides, it has a better search ability and fewer parameters to adjust when

compared against PSO [37]. Actually, only one tunable parameter is required. With the

new search philosophy it suggests, QPSO could improve the convergence capability for

global optimization [106].

The original PSO with related improvements or variants has been successfully applied

to a large number of applications [93][111]. QPSO can be viewed as the result of intro-

ducing quantum mechanics principles into the traditional PSO. In this regard, QPSO

proposes a new philosophy to explore the search space through the use of a quantum

behavior while maintaining the spirit of the traditional PSO (i.e., the use of a swarm of

particles that behaves according to local and global influence). Since its inception, QPSO

has been subject to some improvements and has been shown to offer good performance

when applied to a variety of problems [12][55][70]. Furthermore, QPSO presents some inte-

resting characteristics [37][104] that may impact positively the performance of the search

in a multidimensional space with multiple objectives. Hence, it is worth investigating how
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it impacts a MOP algorithm’s behavior. These characteristics are basically summarized

in the following points:

• The QPSO model introduces the use of the mean best position (mbest) which is

considered as an improvement of the algorithm. In classical PSO, each particle con-

verges directly to the global best position independent of the other particles in the

swarm. This could lead to a premature convergence problem. However, with the

mean best position in QPSO, particles do not converge to the global best posi-

tion on their own without considering the other particles. The particles with self

best positions far from the global best position are called lagged particles. Through

mbest, the particle swarm never neglects any lagged particle. As a consequence, self

best positions and mean best positions do not converge quickly to the global best

position until lagged particles are close to the global best position. This “wait me-

chanism” [37] makes the particles close to the global best position able to explore

globally around the global best. It is worth investigating the extent to which this

wait mechanism will impact the search in a multi-objective context.

• QPSO has been shown to have a better search capability when compared with

PSO. This is due to the fact that the PSO dynamic is based on Newtonian laws

where a particle flies along a specified trajectory. Sun et al. [105][106] argue that

the behavior of a swarm of birds or fish is much more complex than to be depicted

by the basic Newtonian laws and suggest that quantum mechanics could be more

suitable. Depicting the behavior by a quantum based model offers a new search

philosophy that leads to better global optimality [37].

• Unlike PSO, QPSO has one tunable parameter to adjust which is the Contraction

Expansion (CE) parameter β. While PSO algorithm has more parameters to set such

as the inertia weight, the cognitive parameter which is related to the influence of
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the self best performance, and the social parameter which is related to the influence

of the global best performance. [37].

Based on the above characteristics of QPSO and the promising results reported in

[105][106] comparing QPSO to PSO in the single objective domain, it is natural to ask

whether it would be possible to extend its use to tackle MOPs in order to achieve better

Pareto fronts in terms of convergence and diversity. Such an extension is not yet well

investigated in the literature, to our knowledge. We found one published paper that used

QPSO in a multi-objective context, by Omkar et al. [78] and deals with a specific applica-

tion related to laminated composite structures. In this approach, the authors incorporated

the vector evaluated technique within QPSO taking inspiration from Vector Evaluated

PSO (VEPSO) [81].

1.3 Research Questions

In its current form, QPSO cannot be used in a straightforward way for MOPs. The

question to be asked at the first glimpse is how can QPSO be extended to a multi-

objective context to achieve a better balance between exploration and exploitation of the

search process which would help to approach the targeted Pareto Front? In this work four

important research questions are to be addressed:

• First, how to derive a local attractor of a given particle to compute its new position

which in turn requires a selection strategy to select a leader for that particle and to

decide about the policy for updating its self-best performance at each new position?

• Second, how to update the set of non-dominated solutions, which requires a decision

about the archiving method?

• Third, how to handle multi-objective constrained problems using QPSO?
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• Fourth, what is the potential of multi-objective quantum behaved particle swarm

optimization when applied to a real-world problem?

1.4 Contributions

The main contributions of this thesis are:

• The development of a general framework of multi-objective quantum behaved par-

ticle swarm optimization, in which the global leader of each particle is selected by

the proposed hybrid selection strategy.

• The development of a mechanism to handle the archive size, which we call the

Redundancy Removal archiving method.

• The development of a constraint handling strategy for solving multi-objective con-

strained problems with QPSO. The design incorporates the infeasible solutions when

computing the local attractors of particles and adopts a policy that achieves a ba-

lance between searching in infeasible and feasible regions.

• A novel application of the framework for solving the cluster analysis problem, which

we call the MOQPSO-Clust.

1.5 Publications

• Heyam Al-Baity, Souham Meshoul, and Ata Kaban. On Extending Quantum Beha-

ved Particle Swarm Optimization to Multi-objective Context. In Proceedings of the

IEEE World Congress on Computational Intelligence (IEEE CEC 2012), pp. 1-8,

2012.

• Heyam Al-Baity, Souham Meshoul, and Ata Kaban. Constrained Multi-Objective

Optimization using a Quantum Behaved Particle Swarm. The International Confe-
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rence on Neural Information Processing (ICONIP 2012), Part III, LNCS 7665, pp.

456-464. Springer-Verlag Berlin Heidelberg, 2012.

• Heyam Al-Baity, Souham Meshoul, Ata Kaban and Lilac Alsafadi. Quantum Be-

haved Particle Swarm Optimization for Data Clustering with Multiple Objectives.

IEEE Sixth International Conference on Soft Computing and Pattern Recognition,

(IEEE SOCPAR), pp. 215-220, 2014.

• Heyam Al-Baity, Souham Meshoul, and Ata Kaban. Swarm Based Multi-Objective

Optimization with Quantum Behaved Particles. International Journal of Bio-Inspired

Computation (IJBIC), submitted, 2014.

1.6 Thesis Outline

This thesis consists of 8 chapters that are organized as follows:

Chapter 2 lays out the essential background and the basic concepts of multi-objective

optimization problems including the problem formulation and the definition of dominan-

ce and Pareto optimality followed by an exposition of the differences between single and

multi-objective optimization. We then give an introduction to swarm based metaheuristi-

cs followed by a description of particle swarm optimization and the paradigm shift from

PSO to QPSO. At the end of this chapter, we provide a review of the most important ap-

proaches developed so far in the literature to solve multi-objective optimization problems

and multi-objective particle swarm optimization problems.

Chapter 3 presents a new framework of Multi-Objective Quantum behaved Partic-

le Swarm Optimization (MOQPSO). The chapter starts by describing the extension of

QPSO to handle multiple objectives. This includes the definition of the proposed hybrid

8



leader selection strategy that selects the global leader for each particle and the policy we

follow to maintain the set of non-dominated solutions throughout the search process. A

comparative study is presented at the end of this chapter on the performance of MOQP-

SO for unconstrained test problems against some of the state-of-the-art multi-objective

evolutionary algorithms.

In Chapter 4, we propose the use of MOQPSO to solve constrained multi-objective

optimization problems. A new constraint handling strategy is proposed which deals with

both feasible and infeasible solutions when computing the local attractors of particles.

The aim of this strategy is to maintain a balance between searching in infeasible and

feasible regions and to obtain better results by incorporating infeasible solutions in the

search process. This new strategy is then tested and compared with the death penalty

constraint handling strategy. Discussion of results is presented at the end of the chapter.

Chapter 5 provides an extensive investigation of the potential of MOQPSO under

different leader selection strategies on unconstrained and constrained test problems. In

addition, a comparison between MOQPSO and MOPSO is performed. A discussion of

results and conclusions derived from the experiments conducted are presented at the end

of the chapter.

Chapter 6 presents a thorough empirical study of the influence of different archiving

methods on the performance of MOQPSO on constrained and unconstrained test pro-

blems. A discussion of results and conclusions drawn from the experiments performed are

presented at the end of the chapter.

Chapter 7 provides an application of the proposed MOQPSO framework in cluster
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analysis problems. The search process is carried out over the space of cluster centroids

with the aim to find out partitions that optimize two objectives simultaneously, name-

ly compactness and connectivity. The proposed framework has been tested using both

synthetic and real data sets and compared to the state-of-the-art methods.

In Chapter 8, we summarize the main contributions of the thesis, give conclusions of

the proposed work, and state the possible future work directions.
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KAPITEL 2

Background and Review of Related Work

The work in this thesis is at the intersection of two broad fields, namely optimization and

nature inspired computing. Concerning the former, we are particularly interested in multi-

objective optimization while in the latter our focus is on quantum behaved particle swarm

optimization. Therefore, in this chapter we present the basic concepts and background

knowledge necessary to follow the core of the present work. We also provide a review of

some of the most relevant research approaches that have appeared in the literature related

to multi-objective optimization in general and multi-objective particle swarm optimization

in particular.

2.1 Basic Concepts of Multi-objective Optimization

2.1.1 Optimization Problems

Many real-world decision making problems require selecting the best element from a set

of alternatives with regard to some criteria which is typically an optimization process.

Indeed, optimization lies at the heart of many tasks in different domains ranging from

science to industry, commerce, and finance, to name just a few. For example, in business
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intelligence, optimization is involved in recommending near optimal decisions. Basically,

optimization is the process of finding the best solution among all possible solutions of

a problem without violating any of its constraints. More formally, it is a mathematical

discipline that searches in the feasible region for a solution with the minimum or maximum

value of the objective function. A potential solution of an optimization problem is usually

defined as a decision vector composed of decision variables. A solution is feasible if it

satisfies the problem’s constraints. The set of all feasible solutions form the feasible region

in the decision space [19][31].

An optimization problem can be of several types:

• Constrained or unconstrained depending on whether it is subject to functional con-

straints or not.

• Single-objective or multi-objective depending on the number of objectives to be

optimized.

• Linear or non-linear depending on the form of the objective and constraint functions.

• Continuous or discrete depending on whether decision variables are continuous or

discrete.

These types are illustrated in Figure 2.1.

2.1.2 Single Objective Optimization Problems

As the name suggests, in a Single-objective Optimization Problem (SOP), the task is to

search for values that optimize a single objective function [31]. For instance, buying a

mobile phone with minimum cost is considered as a single optimization problem. The ob-

jective to be optimized in this case is minimizing the cost. A single optimization problem

can be formulated as follows:
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Figur 2.1: Types of optimization problems

A D-dimensional SOP consists of finding the decision vector ~x∗ = (x∗
1, x∗

2, . . . , x∗
D)T

that optimizes (minimizes or maximizes) an objective function F (~x) subject to:

• Inequality and equality constraints that delimit the feasible region containing po-

tential solutions

gj(~x) < 0 j = 1, 2, . . . , J

hk(~x) = 0 k = 1, 2, . . . , K

• Domain constraints are specified by the lower bound x
(L)
i and upper bound x

(U)
i of

each decision variable xi. They delimit a subspace of the D-dimensional space RD

called the search space which includes the feasible region [15].
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(L)
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(U)
i i = 1, 2, . . . , D

A plethora of methods and techniques have been proposed to solve SOPs. A compre-

hensive review of these methods is beyond the scope of our work. Interested reader can

refer to [112] for more details. Briefly, techniques devoted to solve SOPs can be broadly

classified into two main categories namely deterministic and stochastic techniques - de-

pending on the way exploration of the search space is performed.

Deterministic techniques find optimal solutions however they cannot be applied to all

types of optimization problems. This class of methods includes hill climbing, mathemati-

cal programming techniques and enumerative methods among others.

Hill climbing is a local search algorithm that is popular for its simplicity and its greedy

search nature. It is sensitive to initial starting point and gets stuck into local optima. As

examples of methods from mathematical programming field, we can cite those numerical

methods that are based on the gradient of the objective function. They iteratively refine a

solution by moving in the objective space in the direction of the local gradient. However,

they need to have differentiable objective functions, with their gradient available - which

is often not the case in practice especially in black-box settings where only function eva-

luations are available, not their analytical forms. Another disadvantage is that gradient

methods only guarantee to reach a local optimum.

Other mathematical optimization methods include the simplex method proposed by

Dantzig [30]to solve linear programming, and have been also extended to deal with non-

linear programming problems such as quadratic programming problems. However, it is
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limited to linear and quadratic programming.

Enumerative methods, as their name suggests, seek for the optimal solution by perfor-

ming evaluation of each and every feasible solution of a finite or discretized infinite search

space. Examples of such methods include Branch and Bound and Dynamic programming.

Obviously, these methods perform well in case of small size search spaces and cannot be

applied to solve problems of even moderate size and complexity. On the other hand, sto-

chastic methods have been developed to deal with large size search spaces with the aim to

seek for good quality solutions in a reasonable time. They propose a stochastic exploration

of the search space. Meta-heuristics like genetic algorithms, differential evolution, particle

swarm optimization and others have been largely used for this purpose.

2.1.3 Multi Objective Optimization Problems

Most real-world optimization problems involve multiple conflicting objectives that should

be optimized (minimized or maximized) simultaneously. This simultaneous optimization

could provide better quality solutions and better insights to the problem which in turn will

help making better decisions. Such problems are known as Multi-objective Optimization

Problems (MOPs). In MOP, there is no longer a single optimum solution, but rather a set

of trade-off solutions known as the Pareto optimal set or Pareto optimal solutions from

which the decision maker can select one according to his/her preference. These solutions

are optimal in a sense that no other solution is superior when all objectives are considered

[31][3].

For example, consider the problem of determining the most efficient choice for purcha-

sing a mobile phone. Assume we use two criteria to be optimized: the width of the mobile

screen (to be maximized) and the price or the cost of the mobile(to be minimized). Due
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to the conflicting relationship between these two objectives, many trade-off solutions can

be found. For instance, the buyer can choose one of the trade off solutions (A, B, C) that

are shown in Figure 2.2. If the buyer is concerned about the cost, then he/she can choose

solution A. If the buyer is interested in a wide screen mobile, then he/she can choose

solution C.

MOP Formulation

Three basic elements define any MOP, namely: a set of decision variables, a set of ob-

jectives and a set of constraints. Basically, a MOP consists of exploring the search space

of the decision variables in order to find the vector of variables that optimizes the set

of objectives while satisfying the set of constraints. More formally, a MOP is defined as

follows [31][15]:

A D-dimensional multi-objective optimization problem consists of finding a decision vector

~x∗ = (x∗
1, x∗

2, . . . , x∗
D)T that optimizes (minimizes or maximizes) a vector of M objectives

~F (~x) = (f1(~x), f2(~x), ...., fM (~x)) subject to:

• Inequality and equality constraints that delimit the feasible region containing po-

tential solutions

gj(~x) < 0 j = 1, 2, . . . , J

hk(~x) = 0 k = 1, 2, . . . , K

• Domain constraints are specified by the lower bound x
(L)
i and upper bound x

(U)
i of

each decision variable xi . They delimit a subspace of the D-dimensional space RD

called the search space which includes the feasible region [15].

x
(L)
i 6 xi 6 x

(U)
i i = 1, 2, . . . , D
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Figur 2.2: Simple example of a MOP inspired by [31]

.

Dominance and Pareto Optimality

The notion of optimality does not apply directly to the multi-objective context as in

the single objective optimization domain. In the context of single objective optimization

problems, the solutions are easily compared against each other according to their objective

values. The question is how to handle the comparison among solutions in the multi-

objective context? Pareto Dominance is the concept used for this purpose. For instance,

we say that solution x1 dominates solution x2 if it is better than x2 in at least one objective

and not worse than x2 in all other objectives. In this case x1 is better than x2 and we

call x1 a non-dominated solution. Therefore, a non-dominated solution is the one that
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dominates all other potential solutions to the problem. Moreover, if x1 does not dominate

x2 and vice versa, then both x1 and x2 are considered as non-dominated solutions [31].

• Pareto Dominance

Definition [22]: A vector u = (u1, . . . , uk) is said to dominate vector v = (v1, . . . , vk)

denoted by (u � v) if and only if (in the minimization case):

∀i ∈ {1, 2, . . . , k}, ui 6 vi ∧ ∃i ∈ {1, 2, . . . , k} : ui < vi

Therefore, the best solutions with respect to the Pareto dominance relation consti-

tute the Pareto optimal set and are called non-dominated solutions.

• Pareto Optimal Set

Definition [3][22]: A solution is said to be Pareto optimal if and only if it is not

dominated by any other solution in the search space Ω. The set of all Pareto optimal

solutions is called Pareto optimal set P ∗ and is defined as:

P ∗ = {~x ∈ Ω|¬∃~x′ ∈ Ω~f(~x′) � ~f(~x)}

• Pareto Front

Definition [22]: Each solution vector in the Pareto optimal set corresponds to a

vector of the related objectives values. Therefore, a Pareto front represents the set

of Pareto optimal solutions in the objective space [22][31]. The Pareto front is defined

as:

Given a MOP ~F (x) and Pareto optimal set P ∗, the Pareto front PF ∗ is defined as :

PF ∗ = {~u = (f1(x), . . . , fk(x))|x ∈ P ∗}
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Figure 2.3 shows an example of a Pareto front of a MOP with two objective functions

and some other solutions dominated by the Pareto front solutions.

Figur 2.3: Example of a Pareto front and dominated solutions in the objective space for

a minimization problem. Taken from [31].

SOP versus MOP

Figure 2.4 illustrates the difference between the single objective and the multi-objective

optimization problems. We can see from Figure 2.4 (a) that we need to find the best

solution which is shown as the global optimum point in the figure. Figure 2.4 (b) shows

the curve that represents the set of optimal solutions we have to find in the case of MOP.
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Figur 2.4: Difference between SOP and MOP inspired by [31].

With SOP, we deal with only one search space which is the decision space. While in

MOP, we deal with two search spaces, namely the decision space and the objective space.

The objective space is defined as the space in which the objective vector belongs. The

decision space is the feasible search space of the problem in which the decision variables

belong [31]. Table 2.1 summarizes the differences between single objective and multi-

objective optimization problems.

SOP MOP

One objective function Multiple objective functions

One search space (decision search space) Two search spaces(decision and objective search spaces)

Interested in one optimal solution Interested in a set of optimal solutions

Requires search only Requires search and decision making

Optimality is related to objective fitness value Optimality is related to dominance concept

Tabel 2.1: SOP vs. MOP

The main difference between a single objective and a multi-objective optimization pro-
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blem is that in the case of multi-objective optimization, a multi-dimensional space called

the objective space is constituted by the objective functions. Therefore, each solution in

the decision space maps to a point in the objective space. Figure 2.5 shows the mapping

process from decision space to objective space.

Figur 2.5: Mapping between decision space and objective space taken from [31].

The challenge in a multi-objective optimization problem is to find the Pareto optimal

solutions that are as close as possible to the true Pareto optimal front and to maintain

diversity in this developed Pareto optimal set [31].

Multi-objective optimization problems have been solved in different ways by several

methods as will be seen in the review of related work given in section 2.3. Some of these

methods produce only one solution at each run. Therefore to obtain a set of compromise

solutions, several runs are required. This issue has raised interest toward population based

metaheuristics as they can produce several solutions at each run and they exhibit good
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search capabilities in the search space [31][25]. In our study, we are interested in swarm

based metaheuristics for which a presentation is given in section 2.2.

2.1.4 Computational Complexity Considerations

Complexity analysis aims at quantifying the amount of time and space, among others,

required for solving problems. It is usually required for problems where the space of pos-

sible solutions is very large. It allows comparing different algorithms designed to solve a

problem. For instance, it helps to know whether an algorithm A is better than another

algorithm B in terms of time or space complexity, if it is optimal or if it cannot be used.

Time complexity can be recorded according to three situations or scenarios namely the

worst case, the best case, and on average. Different degrees of complexity can be defined

ranging from the lowest namely logarithmic complexity going through polynomial com-

plexity to the highest namely exponential complexity.

The branch of Theoretical Computer Science that deals with complexity is Computa-

tional Complexity Theory (CCT). CCT makes use of mathematical models to study the

inherent difficulty of solving a computational problem. It aims to determine the practical

limits on what computers can and cannot do. Basically, it focuses on decision problems,

that is problems that verify whether a given input satisfies a certain property and give

a YES/NO answer. For the other classes of problems, a decision version can be derived

for a given problem. For example, for a minimization problem where we seek for the so-

lution that optimizes a given objective f, a decision version of this problem could be the

following: Is there a solution S that satisfies f(S) < V , such that V is a given objective

value?

A problem may be regarded as easy or difficult to solve. A problem is classed as a
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difficult problem if it requires significant resources, such as time and storage. Basically,

we are interested in how algorithms scale with an increase in the input size.

The resource required to solve a problem is calculated as a function of the size of the

problem instance. For example, the worst-case time complexity T (n) is defined to be the

maximum time taken over all inputs of size n. In CCT, different classes of complexity are

defined to classify problems according to the complexity of the algorithms used to solve

them [110]. The well-known classes of complexity encompass the class P and the class NP.

The class P consists of problems that are solvable in polynomial time (where P stands

for Polynomial time) that is, there is some polynomial p such that the algorithm runs in

time at most p(n) on inputs of length n. Thus, the P class includes those problems that

are considered easy. The class NP comprises the problems that are solvable in polynomial

time by a non-deterministic Turing machine. The term NP stands for Non-deterministic

Polynomial [110][36].

The reduction concept is used to define and relate the different complexity classes.

A reduction can be regarded as the transformation of one problem into another one. A

problem A can be reduced to a problem B if A can be solved using an algorithm for B. A

is reduced to B means that the problem A is no more difficult than the problem B. For

example computing a power of a number can be reduced to multiplication. Many types

of reductions exist in the literature. The most used one is the polynomial time reduction

[110] where the reduction process is a polynomial time task.

The concept of reduction helps defining NP-hard problems and NP-Complete pro-

blems. A problem is hard for a class of problems if every problem in this class can be

reduced to it which means no problem in this class is harder than it. Therefore, the set
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of problems that are hard for NP is the set of NP-hard problems [110]. More simply, a

problem is NP-hard when every problem in class NP can be reduced in polynomial time

to it. Problems in NP-hard do not have to be elements of NP, as they may not even be

decidable problems. A problem is said to be complete for a given class if it is a problem

of this class and if it is hard for this class. Therefore, the class of NP-complete problems

contains the most difficult problems in NP. Each element of NP-complete has to be an

element of NP [36][110].

2.1.5 Why Metaheuristics for Continuous MOPs

In our work, we tackle multi-objective continuous optimization problems. In these pro-

blems, the task is to find the values of D decision variables xi, i = 1..D that are defined

over a continuous range of values (usually real numbers) and that optimize a vector of

objective functions. The general MOP formulation given in section 2.1.3 can be rewritten

in the context of continuous problems as follows:

A D-dimensional multi-objective optimization problem consists of finding a decision vector

~x∗ = (x∗
1, x∗

2, . . . , x∗
D)T ∈ RD that optimizes (minimizes or maximizes) a vector of M ob-

jectives ~F (~x) = (f1(~x), f2(~x), ...., fM(~x)) subject to:

• Inequality and equality constraints that delimit the feasible region containing po-

tential solutions

gj(~x) < 0 j = 1, 2, . . . , J

hk(~x) = 0 k = 1, 2, . . . , K

• Domain constraints are specified by the lower bound x
(L)
i and upper bound x

(U)
i of

each decision variable xi . They delimit a subspace of the D-dimensional space RD

called the search space which includes the feasible region [15].
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x
(L)
i 6 xi 6 x

(U)
i i = 1, 2, . . . , D

Obviously, the search space is exponential in the problem dimension. Suppose that all

decision variables are defined over the smallest range [Bl..Bu] (given Bl the lower bound

and Bu the upper bound), then the number of possible solutions is BD where B is the

number of possible values within the range [Bl..Bu] obtained using a step increment.

Although the range [Bl..Bu] is bounded, the number of possible real values in the D-

dimensional search space [Bl..Bu]D, using a discretization with a fixed step increment,

grows exponentially with D. In general, such problem is NP-hard and it is very difficult if

not impossible to come up with an algorithm that produces an optimal or close to optimal

solution within a time bound that is polynomial in the problem dimension. Furthermore,

the number (multiple objectives) and type of objectives and constraints (linearity and

convexity) make the problem even more difficult to solve using the standard methods

from the field of mathematical programming such as non linear programming. Therefore, a

global search heuristic method is needed to find approximate solutions within a reasonable

amount of time.

2.2 Introduction to Swarm Based Metaheuristics

With the complex real-world optimization problems, conventional optimization methods

become inefficient in that it takes prohibitively long computational time to get exact solu-

tions. Therefore, recently, general purpose stochastic algorithms have emerged for finding

approximate solutions to such hard optimization problems (i.e., problems that involve

very large search spaces as explained in section 2.1.4). One such class of algorithms is re-

ferred to as metaheuristic algorithms. These algorithms are often inspired by mechanisms

taken from nature. Therefore, they are referred to as nature inspired algorithms. These

methods have become the focus of research due to their efficiency, flexibility, and broad
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applicability [43].

Swarm intelligence based algorithms (SI) are a subset of nature inspired metaheuristic

algorithms. These represent a new computation technique that is inspired by the collecti-

ve intelligence behavior of a group of social insects such as bees, ants, or wasps [111].

There is no clear definition for swarm intelligence but it can be described as “a collective

behavior of decentralized, self organized systems” [111]. There are many kinds of living

organisms in nature that exhibit the social behaviors and self-organization systems such

as bird flocking, fish schooling, and ant colonies. The individuals of these various social

animals aggregate in groups called swarms. These individuals interact with each other

and collaborate in order to accomplish a certain task like finding a food source. In the

case of bird flocking, the flock will move towards the food area as a single unit with no

previous plan nor a centralized leader. The flock movement is accomplished based on some

simple rules of the individual birds which allow them to coordinate their movements with

their mates in the flock. Each bird contributes to its flock by sharing its experience and

gets benefit from the flock by taking their experiences. In other words, all the flock birds

share their experiences with each other to reach their goal. This kind of sharing leads to

a global behavior without any supervision [64].

The swarm intelligence field has gained wide popularity in the past decades and is

becoming a powerful Artificial intelligence tool for solving difficult optimization problems.

Particle swarm optimization, ant colony optimization, bee colony optimization and wasp

colony optimization are some popular swarm intelligence algorithms [111][64].
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2.2.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) techniques are a form of swarm intelligence based

methods that are developed based on the social behavior of bird flocking or fish schooling.

These are population-based stochastic optimization methods developed by Dr. Eberhart

and Dr. Kennedy in 1995. In particle swarm optimization, the collection of birds or fish

constitute the swarm. The birds or fish are represented by points called particles. The PSO

algorithm attempts to find the optimal solution through moving the particles toward bet-

ter regions in the search space influenced by the improvements obtained by the other

particles in the swarm. PSO follows the principle of bird flocking or fish schooling in

that they start searching for a food source without any idea about its location but with

the interaction and sharing mechanism they follow, they can finally reach the best loca-

tion of the food source [63]. Particle swarm optimization is very effective for continuous

optimization problems. It is similar to evolutionary computation in that [111][93][96]:

1. Both initialize the population with random solutions.

2. Both search for the global optimum over generations.

3. Reproduction of new generations is based on previous ones.

4. Both use the fitness function to evaluate a potential solution.

5. Both use randomized techniques to update the population.

However, PSO differs from evolutionary computation in that:

1. PSO does not have evolutionary operators such as crossover and mutation. The

potential solutions in PSO update their positions based on their own experience

and the experience of other particles in the swarm.
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2. There is no selection mechanism in PSO. All particles will survive, unlike in genetic

algorithms, where the low fitness individuals will die.

3. PSO uses an internal velocity to direct the particles in their movement within the

search space. This can be viewed as a directional mutation. By contrast, in evolu-

tionary computation, the mutation operator sets the individuals into any direction.

PSO consists of a collection of particles which represent the problem search space,

where each particle represents a candidate solution. In PSO, the swarm is initialized with

random positions. The potential solutions (particles) will move through the search space

toward better areas where the optimal solutions may reside by following the current best

particles. Each particle in the swarm holds three vectors. These are:

• The current position (the candidate solution to the problem) denoted as Xi =

(xi1, xi2, . . . , xiD).

• A memory of best position found by the particle so far called the personal best

position or self best (sbest) denoted as sbesti = (sbesti1, sbesti2, . . . , sbestiD)

• The velocity denoted as Vi = (vi1, vi2, . . . , viD), where D is the dimension of the

search space.

In PSO, a candidate solution is encoded in terms of a position of the particle. During

each time step, each particle adjusts its position toward the current optimum particles

according to the best position found by itself (sbest) and the best position achieved by

the whole swarm called the global leader or global best position (gbest). The global best

position acts as the guide to the swarm in its search, i.e., all the swarm particles will

follow the gbest during the search process [111][83].

28



The Basic Particle Swarm Optimization

In a D-dimensional problem space, each particle is defined by a vector of positions repre-

senting a candidate solution and a vector of velocities that defines the amount of change

in the position of a particle. When moving in the search space, a particle is influenced by

its self-best position sbesti = (sbesti1, sbesti2, . . . , sbestiD) and the best position among all

particles in the swarm gbest = (gbest1, gbest2, . . . , gbestD). The velocity and the position

of a particle i at time (t + 1) are updated according to the following equations [97][98]:

V t+1
ij = W.V t

ij + C1rt
1j(sbestt

ij − xt
ij) + C2rt

2j(gbestt
j − xt

ij) (2.1)

xt+1
ij = xt

ij + V t+1
ij (2.2)

where

• W is the inertia weight that plays a role in maintaining a good balance between

the global and local search ability of PSO. larger values of W will promote global

exploration of the search space. However, smaller values of W will favor local exploi-

tation. Therefore, setting the value of W is quite a difficult task as it has a great

impact on the algorithm convergence.

• V
(t)

ij is the velocity at time t for dimension j of particle i.

• C1 and C2 are two positive acceleration constants that balance the influence of

the particle’s self best position and that of the swarm respectively for moving the

particle towards the target. C1 and C2 are called the cognitive and social constants

as they determine the weight of attraction to sbest and gbest respectively.
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• r1j and r2j are two random numbers within the range [0, 1] for dimension j, which

are used to maintain the population diversity.

• sbest
(t)
ij is the self best position recorded by the particle i so far for dimension j.

• x
(t)
ij is the position for dimension j of particle i at time t.

• gbest
(t)
j is the global best position of dimension j found by the swarm so far.

The update velocity in equation (2.1) consists of three terms. The first term is called

habit or momentum. This term tends to keep the impact of the previous velocity when

computing the current velocity by moving the particle in the same direction as previously.

The second term is known as the cognitive part or self influence of a particle which pulls

the particle towards its own best position. This term represents the local search ability of

the particle. The third term which is known as cooperation or social influence will move

the particle towards the global best position of the entire swarm and is related to the

global search ability of the particle [97][98].

Other Variants of PSO and Applications

In order to improve the premature convergence and the global optimization ability of

the classical PSO, many changes have been proposed to PSO parameters such as the

swarm size, the acceleration coefficients (C1, C2) and the inertia weight (W). Moreover,

the update equation of a particle’s velocity is a key factor in PSO variants. An example

of a PSO variant is the Discrete PSO, which is designed to solve discrete optimization

problems. Another PSO variant is the Bare-bones PSO. This variant does not use the

position or the velocity update equations. Instead, it uses a procedure that is similar to a

parametric probability density function in order to update the particles positions [93][111].
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PSO has been successfully applied to a broad range of application areas including

neural network training, scheduling, forecasting, feature selection, telecommunications,

data mining and many more [93][111]. A good review of the PSO metaheuristic can be

found in [83][111].

Advantages and limitations of PSO algorithm

The following are some advantages of PSO algorithm [11][93]:

1. Simple algorithm with easy implementation.

2. Few parameters that need to be adjusted compared with the genetic evolutionary

algorithms.

3. Has been applied successfully in many application areas such as neural network and

function optimization.

4. The velocity calculation is very simple.

5. Fast convergence to global optima.

6. Can take real numbers as particles.

7. Efficient computational cost.

However, the risk of PSO to be trapped in local optima is very high as the algorithm

has the tendency to find the near optimal solution quickly rather than finding the optimal

global one. And hence, all particles are grouped around this solution causing a premature

convergence that could provide low quality solutions. As a result, the algorithm may suffer

from lack of solution diversity as well [92].
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2.2.2 From PSO to QPSO

The basic PSO algorithm suffers from the premature convergence problem because if the

global best particle is trapped in a local minimum, all particles will quickly converge to

the position of the global best particle found so far. Hence, the matter is how to let the

search explore areas far from the local attractor of particles instead of focusing only on

the neighbourhood of these local attractors. This issue has encouraged several attempts to

further enhance the diversification or exploration ability of searching with PSO. Improved

results have been achieved by introducing EA operators like mutation or hybridization of

PSO with other metaheuristics [37][92].

In order to avoid the drawbacks of the PSO algorithm, some authors found other va-

riants of PSO to improve its performance. Others like Sun et al. rewrote the PSO model

by developing a new evolutionary equation that does not need the velocity vector. At the

same time it follows the same principle of PSO in that we have a swarm of particles and

each particle moves in the search space under the influence of its self best performance

and the global best performance of the entire swarm. Encouraged by the fact that the

social behavior of a swarm is too complicated to be depicted by classical mechanics, Sun

et al. [105] merged the classical PSO algorithm with quantum mechanics resulting in the

emergence of the Quantum behaved PSO algorithm termed as (QPSO).

QPSO changed and improved the search strategy of PSO by introducing the use of

a new global point called the mean best position (mbest), which is the average of the

self best positions of all particles. One of the disadvantages of PSO is that each particle

converges to the global best position directly without waiting for the remaining particles

in the swarm, and this could cause a premature convergence problem. However, with the

mbest feature in QPSO, particles in the swarm do not converge to the global best position
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directly without considering their mates. That is, particles that are close to the global

best position will wait for the lagged particles (the particles that are far from the global

best position) until they become closer to the global best position. This wait mechanism

allows the particles close to the global best position to explore globally in the area around

the global best position. As a result, QPSO is able to maintain a good balance between

exploration and exploitation in the swarm, which decreases the risk of facing the prema-

ture convergence problem that is typically observed with PSO.

Sun et al. [105] found that the position of a particle includes two basic terms. The first

term is nothing other than the attractor of the particle and the second term is related

to the gap between the particle’s current position and the mean best performance of the

whole swarm. Hence, the particle position at the (t + 1)th iteration is updated according

to the following equations [105][104]:

xt+1
ij = pt

ij ± β.|mbestt
j − xt

ij|. ln(1/ut
ij) (2.3)

where:

• pt
ij is the local attractor and is evaluated by:

pt
ij = ϕt

ij.sbestt
ij + (1 − ϕt

ij).gbestt
j (2.4)

with ϕt
ij = rand(0, 1)

• β is the Contraction Expansion coefficient (CE). It is the only tunable parameter

of QPSO and has a significant impact on controlling the convergence speed of the

algorithm [37].

• mbest called the Mainstream Thought point or the mean best position. It is the
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mean of sbest positions of all particles and is evaluated by:

mbestt =
1

N

N
∑

i=1

sbesti = (
1

N

N
∑

i=1

sbesti1,
1

N

N
∑

i=1

sbesti2, . . . ,
1

N

N
∑

i=1

sbestiD) (2.5)

provided that N is the population size and D is the problem dimension of the search

space.

• ut
ij that appears in equation (2.3) is a random number within the range [0,1].

Since its inception, many improved versions have been proposed to enhance its expl-

oration and exploitation capabilities. A good review of QPSO with related improvements

can be found in [37][104]. As described by the outlines of PSO and QPSO given in Algo-

rithms 1 and 2, both have the same general dynamics. The difference between them lies

in the equations that govern their dynamics.

Algorithm 1 Pseudocode of PSO

1: Initialize swarm (position and velocity vectors)

2: Initialize self best particles

3: Locate global best particle (gbest)

4: Initialize PSO parameters

5: while (not termination-condition) do

6: for Each particle do

7: update position according to equation (2.2)

8: evaluate position

9: update self best particle (sbest)

10: end for

11: Update global best particle (gbest)

12: end while

Generally, when dealing with a global optimization problem, a crucial question that
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Algorithm 2 Pseudocode of QPSO

1: Initialize swarm (position vectors)
2: Initialize self best particles
3: Locate global best particle (gbest)
4: Initialize contraction-expansion parameter
5: while (not termination-condition) do
6: Compute mbest position according to equation(2.5)
7: for Each particle do
8: update position according to equation (2.3)
9: evaluate position

10: update self best particle (sbest)
11: end for
12: Update global best particle (gbest)
13: Decrease contraction-expansion parameter linearly
14: end while

might arise is how to explore the search space in order to find good quality solutions.

Therefore, the evolutionary computation algorithms can be classified according to the

mechanism they adopt to move through the search space. In GAs, the global optimiza-

tion process is performed through the genetic operators, selection, crossover, and muta-

tion. The GA evolves through iterations by creating new subsequent populations from

individuals in previous generations [108]. However, the optimization process in QPSO is

performed using its evolutionary update equation. By this equation, the position of each

particle of the swarm, which represents a potential solution to the problem, is updated

under the influence of the self best performance located by the particle so far, the global

best performance of the whole swarm so far, and the mean of the self best positions of

all particles. It can be noticed that QPSO updates its population according to the social

behaviour of the swarm by following the best particle. This mechanism facilitates the

improvement of the particles positions through generations. In this way, the global best

position is updated and improved through generations as well [105].
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2.3 Review of the Past Related Work

A great deal of effort had been devoted to solving multi-objective optimization problems

in the literature. A comprehensive review of related methods can be found in [23]. Exi-

sting Multi-Objective Evolutionary Algorithms (MOEA) fall into four classes as shown

in Figure 2.6 where a summary of the most important methods is given. This review

emphasizes the Pareto-based approaches and more specifically the PSO-based ones.

Figur 2.6: Taxonomy of multi-objective evolutionary algorithms
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In the sequel we will describe the various evolutionary approaches to solving multi-

objective optimization problems.

2.3.1 Weighted Sum Aggregation Function Based Approaches

This algorithm was proposed by Hajela and Lin [46]. It is the simplest method of the

classical non-Pareto EA approaches that is based on plain aggregation. Each objective

is assigned a weight value reflecting its importance such that the sum of all weights is

one (
∑

wi = 1). All weighted objective functions are summed into a single fitness value.

In this way, the multi-objective functions are transformed into a single objective fun-

ction
k

∑

i=1
wifi(x) where wi are the weights and k is the number of the objective functions

[31][120].

The shortcoming of this approach is the difficulty of specifying the weights for the

objective functions which requires a prior knowledge of the objectives’ importance [31].

In addition, the performance of this method is influenced by the Pareto front shape. For

instance, the weighted sum method fails to find the Pareto optimal solution in concave

regions [81]. Furthermore, the aggregated function generates only one solution in a single

run and hence the trade-offs between the objectives cannot be evaluated easily [31].

Zitzler et al. in [120] compared four multi-objective EAs (among them VEGA and weigh-

ted aggregation function) on a multi-objective 0/1 knapsack problem with nine different

parameter settings. The results showed that VEGA outperformed the weighted sum met-

hod. VEGA method will be described later in section 2.3.3.

2.3.2 Lexicographic Ordering Based Approaches

In this approach, a predefined preference (ordering) is specified among objective functions.

Then each objective is optimized separately according to the assigned order of importan-

ce. The drawback of this approach is that it requires a prior knowledge of the objectives’
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importance in order to set the ordering. Moreover, this approach is similar to the weighted

sum method in that it finds only one single solution in each run [24][31].

Under the umbrella of this class of methods, Dozier et al. [35] proposed an algorit-

hm that can be used for multi-objective path planning systems. This algorithm adopted

the lexicographic preferences for selecting the candidate paths together with some com-

plicated fuzzy set-based methods [73]. The results show that the algorithm was able to

converge to optimal or near optimal paths. Also, the idea of lexicographic ordering has

been adopted by Hu and Eberhat [56] who proposed a dynamic neighbored PSO algo-

rithm. In this algorithm, objective functions are ranked according to their importance.

Then each objective is optimized separately following the order of importance. A PSO

variant with dynamic neighborhoods was incorporated. This approach is suitable for two

or three objective optimization problems because when the number of objectives grows, it

becomes too difficult to establish a good ordering for the objectives and this will heavily

affect the performance of the algorithm.

Generally, the classical methods for solving MOPs as the weighted sum and lexico-

graphic ordering require a high computational cost due to the several runs that have to

be performed to obtain a set of non-dominated solutions. Moreover, they require a pri-

or problem knowledge such as suitable objective weights and importance of objectives.

Furthermore, these algorithms face difficulties in solving non-convex problems [31][81].

2.3.3 Non-Pareto Vector Evaluated Approaches

Three algorithms have been proposed for this approach. The Vector Evaluated Genetic Al-

gorithm (VEGA), Vector Evaluated Particle Swarm Optimization (VEPSO), and Vector

Evaluated Quantum Particle Swarm Optimism (VEQPSO).
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• Vector Evaluated Genetic Algorithms (VEGA)

This algorithm, the first GA dealing with multi-objectives, was proposed by Schaf-

fer [95] during the mid 1980s. It is an extended version of a single GA to handle

multi-objective problem in a single run. VEGA divides the population into subpo-

pulations according to the number of the objective function to be optimized. Each

subpopulation is controlled by its own objective function. Then the algorithm per-

forms a selection mechanism for each objective function independently in order to

find the optimal solutions for each objective in each subpopulation. Crossover and

mutation are applied on the selected solutions to create the next generation [24][31].

Although it is simple and easy to implement, VEGA tends to converge to one best

solution of one objective function neglecting the other objectives, i.e., the concept of

trade off between objectives is missing [31]. Moreover, VEGA is unable to preserve

solutions with promising performance along the run [24]. Finally, VEGA is not well

suited for problems with concave surfaces [40].

• Vector Evaluated Particle Swarm Optimization (VEPSO)

This algorithm was suggested by Parsopoulos and Vrahatis [81]. In VEPSO, the

idea of VEGA [95] was adopted in the PSO algorithm. Two swarms were used,

one for each objective function. In addition, the weighted aggregation approach was

also adopted. Experiments were performed to solve five benchmark problems. The

results showed that the conventional weighted sum was able to give good results

when the test functions were convex. In the concave case, the weighted sum could

not obtain the Pareto optimal solutions. Whereas, VEPSO was able to converge

near the Pareto front. However , it is only designed for two objective problems as

it tends to divide the swarm into subswarms based to the number of objectives to

be optimized. When dealing with a large number of objectives, the subswarm size

becomes small and this will cause a deterioration in the diversity of the obtained
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solutions. As a consequence, the algorithm will not be able to converge to the entire

Pareto front.

• Vector Evaluated Quantum Particle Swarm Optimization (VEQPSO)

Few research on extending QPSO to multi-objective optimization have been reported

in the literature. A paper proposed by Omkar et al. [78] was devoted to the design

of a genetic framework for multi-objective optimization for laminated composite

structures. In this approach, a multi-objective optimization algorithm that is based

on vector evaluated quantum PSO (VEQPSO) is presented. The authors of the

paper incorporated a vector evaluated technique within QPSO taking inspiration

from Vector Evaluated PSO (VEPSO) [81]. The performance of QPSO is compared

against PSO. QPSO shows slower convergence to the Pareto front than the PSO.

However, QPSO has better global search capability than PSO.

2.3.4 Pareto-based EAs Approaches

These are the approaches that use the concept of Pareto dominance in order to determine

the non-dominated solutions. There exists in the literature many metaheuristics for MOPs

that use the Pareto-based concept as GA and PSO.

• Pareto-based GA Approaches

The algorithms of this approach may be categorized into non-elitist and elitist al-

gorithms.

– Non-elitist Algorithms

The algorithms of this approach do not use an elite-preservation operator which

retains better solutions through generations. Therefore, promising solutions

may not survive during the algorithm run [31]. The following are the most

common non-elitist algorithms:
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∗ Multi Objective Genetic Algorithm (MOGA)

This algorithm was introduced by Fonseca and Fleming in 1993 [41]. In

MOGA , the individuals are sorted according to their ranks. The rank of

each individual is related to the number of solutions by which it is domina-

ted. A fitness value is assigned for each individual based on its rank with

non-dominated solutions having highest fitness value. Individuals with the

same rank will share the same fitness value. To maintain diversity, a ni-

ching mechanism has been introduced to the algorithm [31][100]. Although

the fitness assignment procedure is simple, the algorithm requires a large

population size in order to obtain good results. Also, an adjustment of the

sharing factor value or the sharing radius (σ) is required as it affects the

performance of the algorithm [31]. The sharing factor or the sharing radius

(σ) defines the threshold of dissimilarity in the niche such that individu-

als with this radius (σ) will be considered similar to each other and share

fitness.

∗ Niched-Pareto Genetic Algorithm (NPGA)

This algorithm was proposed by Horn et al. [52][53] in 1993,1994. NPGA

incorporates a tournament selection based on the concept of Pareto domi-

nance that differs from the selection methods used in VEGA, MOGA and

NSGA. With this Pareto domination tournament scheme, two randomly

chosen individuals are compared against a subset of the population of size

around 10% of the population called (tdom) in order to specify whether

they are dominated or not. The one that is non-dominated by the subset is

then selected. If both are non-dominated or both are dominated, then the

tournament result is determined by fitness sharing [31][40]. The selected

parents from the Pareto domination tournament scheme will then be used
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to create the next population. The main advantage of this algorithm is

that no explicit fitness assignment procedure is needed. In addition, the

algorithm is efficient in solving many objective optimization problems. The

drawback of this approach is that the manner of tuning the two parameters

tdom and σ, has a great influence on the algorithm performance [31].

∗ Non-dominated Sorting Genetic Algorithm (NSGA)

This algorithm was developed by Srinivas and Dep in 1994 [101]. In NS-

GA, the population is classified into subpopulations (fronts) based on the

ordering of Pareto dominance. The fronts are found in the following way:

the second front is found from what remains after the first front is remo-

ved, and the third front is found from what remains after the second front

has been removed etc. The fitness assignment is performed according to

the non-dominated sorting fronts. So that, solutions belonging to the first

non-dominated front will be assigned the highest fitness value. In addi-

tion, solutions in the same front will be assigned the same fitness value.

For this reason, a diversity maintenance scheme is required. In NSGA, The

diversity is maintained by a fitness sharing strategy that is applied to each

non-dominated front. A roulette wheel selection mechanism is incorpora-

ted to select the parents for creating the next generation. The advantage

of this algorithm is the simple fitness assignment procedure that is based

on non-dominated set. The disadvantage of this approach is the required

tuning of σ share parameter which is basically a user defined parameter

that has high influence on the sharing function performance [31].

According to [24], a comparative analysis of MOGA, NPGA, NSGA and

VEGA in [27] [112] shows that MOGA exhibits the best performance fol-

lowed by NPGA, NSGA and VEGA. Another comparative study of VE-
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GA, NPGA, NSGA and weighted aggregation function was done by Zitzler

et al. [120] on multi-objective 0/1 Knapsack problem. The results show

that NSGA achieved the best performance followed by VEGA. For NPGA

and weighted sum aggregation function, NPGA performed better in the

two objective case. Whereas, weighted sum performed better in the three-

objective case.

The fundamental disadvantage of this generation (Non-elitist GA algorit-

hms) is its inability to retain promising intermediate solutions during the

algorithm run due to the absence of the elite preservation operator. As a

result, non elitist algorithms perform worse than elitist algorithms [31].

– Elitist Algorithms

The elitist algorithms incorporate an elite operator in their procedure. By the

elite operator, the algorithm search capability can be improved. Therefore,

elitist algorithms could offer better solutions and guarantee better convergence

to the Pareto front [31]. The most common elitist algorithms are:

∗ Strength Pareto Evolutionary algorithm (SPEA) and SPEA2

This algorithm was suggested by Zitzler et al. [120] in 1998. The basic idea

of this algorithm is to adopt the elitism mechanism by preserving all non-

dominated solutions found along the algorithm run in an external archive

called external population. At each generation, the current population is

combined with the external population. The set of non-dominated solu-

tions result from the current population is added to external population

archive in a way that keeps the archive domination free. As such, the exter-

nal population will always contain the non-dominated solutions found thus

far. The result non-dominated solutions of the mixed population are as-
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signed fitness values according to the number of solutions they dominate.

The fitness assignment procedure is done in two steps. First, the individu-

als in the external population are assigned fitness values called strength.

Then, the individuals in the current population are evaluated based on the

strength values of the external solutions. A clustering technique was ap-

plied to fix the external population size and to maintain diversity [24][31].

The algorithm is characterized by its simple assignment procedure. Be-

sides, the used clustering algorithm has no additional parameter to fix.

However, the drawback of this approach is to find the appropriate size of

the external population [31].

An improved version of SPEA called SPEA2 is proposed by Zitzler et al.

[118]. This approach differs from the previous one in that it incorporated

an enhanced fitness assignment procedure that records for each solution

the number of individuals it dominates and it is dominated by, a nearest

neighbour density estimation scheme in order to guide the search process

more efficiently, and a new archive truncation method to avoid the loss of

boundary solutions and maintain good diversity.

∗ Non-dominated Sorting Genetic Algorithm II (NSGAII)

This algorithm was introduced by Deb et al. [32]. In NSGAII, a crowding

comparison operator is used to maintain diversity of population along the

Pareto optimal front without any additional parameters. The algorithm

works on two populations, the first population is created at the beginning

of the algorithm and the second population is the offspring. As in NSGA,

the algorithm uses a fast non-dominated sorting method for sorting the

population into fronts. Each solution is ranked based on the number of

44



solutions it dominates and the set of solutions by which it is dominated.

The crowding distance value is then computed for each solution in each

front. This crowding distance operator measures the density of solutions

surrounding a given solution in the population. The population needs to be

sorted according to each objective function value before using the crowding

distance mechanism. Thereafter, the crowding distance estimation proce-

dure selects the solutions according to both, their non-domination rank

and their crowding distance values.

The advantage of NSGAII algorithm is that the crowding comparison ope-

rator used to maintain diversity between solutions requires no additional

parameters. The drawback of this approach is the 2N population size that

is required to perform the non-dominated sorting [31].

• Pareto-based Evolutionary Strategy Elitist Approach

Pareto Archive Evolutionary Strategy (PAES) has been proposed for this approach.

– Pareto Archive Evolutionary Strategy (PAES)

This algorithm was suggested by Knowels and Corne [66]. It is based on a

simple (1 + 1) evolutionary strategy combined with an external archive of all

non-dominated solutions found so far by the algorithm. PAES creates a ran-

dom solution (parent) which is evaluated and added to the archive. The parent

solution is then mutated to create a new solution (offspring). The offspring

solution is evaluated and compared to the external archive solutions. If the

offspring solution dominates any member in the archive, then the offspring so-

lution is added to the archive and the solutions dominated by the offspring

are deleted from the archive. For maintaining population diversity along the

front, an adaptive grid is applied. Each solution is located in a certain grid or
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hypercube according to its objective values [24][31]. Solutions that are located

in less crowded hypercubes tend to be selected for the next population. The

main advantage of this approach is the use of the adaptive grid that has direct

control on the population diversity. The drawback of this approach is the dif-

ficulty in finding the appropriate archive size [31].

Grosan et al. [45] proposed a comparative study of the most commonly used

algorithms (SPEA, PAES, and NSGAII) based on five test functions intro-

duced by Deb, Zitzler, and Thiele (1999). For test function (T1) and (T2)

where the Pareto optimal front is convex and nonconvex respectively, all algo-

rithms show the same performance. For test function (T3), all algorithms exhi-

bit a good approximation of the Pareto front. For test function (T4), NSGAII

and SPEA were capable to converge to the true Pareto front. For test fun-

ction (T5), PAES gave good results. Skolpadungket et al. [100] applied various

multi-objective genetic algorithm techniques (VEGA, Fuzzy VEGA, MOGA,

SPEA2, and NSGAII) to solve portfolio optimization with some constraints.

The results show that NSGAII gives better approximation of the Pareto front

than SPEA2. SPEA2 and MOGA performed better in terms of maintaining

diverse solutions.

• Pareto-based PSO Approaches

There are different Pareto-based MOPSO approaches proposed in literature for se-

lecting the suitable guide. The guide is the particle that is used to direct another

particle in its journey towards better areas of the search space. The guide is also cal-

led global best position or leader. Most of these methods are based on some density

measures calculated in the objective space in order to choose the leader [6]. In this

section we present the most important selection methods with a brief description of

their properties. A comprehensive review of PSO algorithms for solving MOPs can
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be found in [92][82].

Different Variations of Leader Selection Schemes

Coello et al. [20] proposed one of the earliest Pareto-based multi-objective PSO

approaches (MOPSO). An external archive is used to store the non-dominated so-

lutions found during the search process. This external archive is of fixed size and is

maintained by giving priority to particles located in less crowded regions of the ob-

jective space. The search space is divided into hypercubes inspired by the adaptive

grid of PAES approach [66]. A roulette wheel selection scheme is used to select a

hypercube and then a global best (leader) is selected randomly from the chosen hy-

percube. Mutation has been incorporated into the algorithm to maintain diversity.

The algorithm is compared against PAES and NSGAII using two test functions. The

experimental results show that MOPSO outperforms the other competing algorit-

hms on one test function and gives similar results on the second test function. This

approach deals only with bi-objective optimization problems because the number

of non-dominated solutions increases greatly with the number of objectives. Sub-

sequently, the update process of the adaptive grid, which stores the non- dominated

solutions, becomes more difficult and time consuming as it needs to be maintained

at each iteration.

Fieldsend et al. [38] proposed an approach similar to MOPSO [20] except for the

external archive size. This approach overcomes the disadvantage of the limited ar-

chive size of previous proposals by using an unconstrained archive called dominated

tree. The global best of each particle is selected based on the closest member of

the dominated tree archive to the given particle. The algorithm uses a mutation

operator to promote diversity. Like MOPSO [20], Fieldsend algorithm is suitable for
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only two objective functions. This is because with many objectives, the dominated

tree archive size gets large due to the increase in the number of non-dominated

solutions. As a result, the update operation of the dominated tree archive becomes

too difficult and time consuming.

A new density measure scheme called sigma method is proposed by Mostaghim and

Teich [75] to select the global best leader for each particle. This approach is called

(Sigma-MOPSO). Each particle in the swarm is assigned a sigma value as well as all

the archive members. To select a gbest for a particle, the external archive member

with the closest sigma value of the given particle is selected as its gbest guide. The

algorithm uses a mutation operator to maintain diversity. The algorithm requires a

large population size to obtain well distributed solutions in order to find the best

guide for each particle in the swarm. Besides, The sigma value may cause a pre-

mature convergence in some cases [92]. When compared with the dominated tree

of Fieldsend et al. [38] on four test functions, the sigma method outperformed the

dominated tree method. This approach has been successfully tested on a molecular

force field problem giving promising results. In a further proposal, Mostagim and

Teich [74] studied the effect of the archiving method ε-dominance on multi-objective

PSO (MOPSO). The authors use the ε-dominance strategy in order to bound the

archive size. This proposed archiving method is compared to the existing clustering

archiving approach [79] giving promising results in terms of computation time, con-

vergence and diversity. The clustering method is an archiving technique that is used

to maintain the archive size of the non-dominated solutions. It will be described

later in section 6.1.1.
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Another new mechanism for selecting the global best leader called stripes is pro-

posed by Villalobos et al. [113]. The stripes are applied on the objective space in

order to select a leader and to promote diversity as well. The algorithm is compared

against NSGAII and another state-of-the-art approach (εMOEA) that is based on

ε-dominance concept. The experimental results show that the proposed algorithm is

a good performer. A different approach is proposed by Huo et al. [57] called (Smart-

MOPSO). The basic idea of this approach is to evaluate each particle with respect

to each objective function independently. The selected global best of the swarm is

the mean of the best particles per objective function. The algorithm is not fully

evaluated with respect to other methods.

A new hybridized approach that introduces NSGAII non-domination sorting me-

chanism [32] into PSO algorithm has been proposed by Li [68] and termed as Non-

dominated Sorting PSO (NSPSO). As NSGAII works with 2N population, the al-

gorithm combines the self best positions of all particles in the swarm with all the

new positions to form the 2N population. The non-dominated solutions within this

population are recorded and sorted according to a niche count or crowding distance

values. Then for each particle in the swarm, the global best leader is selected ran-

domly among the top part of the sorted list of the non-dominated solutions. The

size of this top part is user-specified (5%, 10%, ...). A mutation operator is also

used in NSPSO to promote diversity. The experimental results show that NSPSO

is highly competitive when compared with NSGAII in terms of convergence and

distribution of solutions. Another approach by Li [69] called MaximinPSO which

employs the maximin fitness function proposed by Balling [8] in order to obtain the

non-dominated solutions. As the algorithm adopts the maximin function, it does

not require any additional niching or clustering schemes for maintaining popula-

49



tion diversity. The non-dominated solutions are stored in an external archive and

sorted according to their maximin values. For each particle, the leader is selected

randomly among the top part of the sorted external archive. The number of can-

didates in this part is user-specified. MaximinPSO is compared with NSGAII on

the ZDT test function series. The ZDT is a popular test suite created by Zitz-

ler et al. [117]. Each of the ZDT test functions contains a particular characteristic

that could cause difficulty in converging to the true Pareto front. The results show

that MaximinPSO outperforms NSGAII in terms of convergence, time complexity,

and diversity. However, MaximinPSO is tested only on unconstrained problems [69].

In a further work, Bartz et al. [13] studied the influence of elitist archiving on the

performance of PSO in a multi-objective context. Each particle is assigned a se-

lection and deletion fitness values calculated by using two functions Fsel and Fdel

respectively. An archive member is selected as a leader based on Fsel in a roulette

wheel selection scheme. On the other hand, an archive member is selected for dele-

tion based on Fdel when the archive is full. The method was analysed thoroughly to

demonstrate the good performance of the proposed approach. Furthermore, Alva-

rez et al. [6] proposed three different leader selection techniques that are based on

Pareto dominance concepts, namely Rounds, Random, and Prob. Each technique

maintains a specific feature in the algorithm. For instance, Rounds maintains di-

versity, Random maintains convergence, and Prob is a combination of the previous

two techniques. The algorithm also handles constraints concluding that regions near

constraint boundaries have to be explored properly in order to ensure convergence

to the Pareto front.
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In recent work, Wickramasinghe Li [114] proposed a new hybrid particle swarm

optimization algorithm (MDEPSO) which uses a Differential Evolution (DE) ope-

rator to create a diverse range of leaders. By this feature, the algorithm was able

to overcome the premature convergence problem when solving problems with many

local optimal fronts. The algorithm has been shown to be very competitive when

compared to NSGAII and other existing multi-objective PSO algorithms. Thereaf-

ter, Jiang et al. [61] presented a novel method to maintain the external archive and

to select the global guide for each particle in each iteration. The method divides the

non-dominated solutions in the archive into two types based on the dominance rela-

tionship among archive members. The first type is the non-dominated solutions wit-

hout any domination to enhance convergence. The second type is the non-dominated

solutions with domination to improve diversity. The algorithm shows competitive

results when compared to other multi-objective evolutionary algorithms on three

test problems [114].

Moreover, Pang et al. [80] proposed a novel MOPSO algorithm that adopts a new

leader selecting strategy which is based on entropy information. The entropy value

is evaluated for each particle, then the particle from the Pareto optimal set with

a higher entropy value will be selected as the leader for the current particle using

the roulette wheel selection scheme. With this new leader selection strategy, the

algorithm will maintain good convergence to the Pareto front and maintain good

diversity of the obtained Pareto optimal solutions. In addition, an adaptive chaotic

mutation operator is adopted in order to avoid premature convergence. The propo-

sed algorithm is compared with two existing PSO multi-objective algorithms on the

six benchmark functions, namely ZDT1-4, DTLZ1 and DTLZ2. The results reveal

that the proposed algorithm outperformed the other two algorithms.

51



PSO Combined with Crowding Distance Scheme

The leader selection mechanism adopted in the algorithm proposed by Ray et al. [90]

is based on the crowding radius-based mechanism combined with a roulette wheel

selection scheme to maintain diversity. The set of non-dominated solutions is deter-

mined by using a multi level ranking strategy that ranks solutions by the Pareto

ranking scheme. The Pareto ranking scheme is also used as the handling constraint

procedures in this method. The algorithm is validated on two test functions and

on an engineering design optimization problem. The algorithm exhibits competitive

results when compared to NSGAII.

Similar to Ray et al. [90], Raquel et al. [89] proposed an approach called (MOPSO-

CD) that adopts the crowding distance scheme for selecting the suitable leader for

each particle, as well as for deleting leaders from the non-dominated external ar-

chive when it is full. Each non-dominated solution is assigned a crowding distance

value. For leader selection, the non-dominated external archive is sorted in terms of

the crowding distance value in descending order and the particle’s leader is selected

randomly from top of the archive. On the other hand, when the external archive

size exceeds the threshold, it is also sorted in descending order according to leaders’

crowding distance values and the archive member to be deleted is selected random-

ly from the bottom of the archive. Mutation is incorporated to the algorithm for

diversity promotion. The constraint handling technique from NSGAII [32] is also

employed to solve constrained problems. The algorithm has been shown to be hig-

hly competitive when compared to MOPSO [89].
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Two External Archives Approaches

In a further proposal, Branke and Mostaghim [17] studied the impact of archiving

the personal best positions in MOPSO. In this approach, a personal archive is used

for each particle to keep all the personal best solutions found during its journey.

Different techniques from literature are adopted in order to select the sbest particle

from the personal archive such as Random selection and diversity preservation. Such

techniques are compared on some benchmark test problems to demonstrate the big

influence of selecting the suitable self best on the algorithm performance.

Following the same principle, Sierra and Coello [99] used two external archives in

their approach. One of the archives is used to store the best positions of the cur-

rent generation of the algorithm. While the other archive is used to store the final

non-dominated solutions. The algorithm adopts the crowding distance estimator

for leader selection and leader deletion with respect to their crowding values. In

addition, mutation and ε-dominance are incorporated for diversity promotion and

non-dominated archive bounding respectively. The proposed algorithm has shown

to outperform three other MOPSO algorithms and to be highly competitive to NS-

GAII and SPEA2.

Like [17] and [99], Ho et al. [51] proposed a PSO-based vector algorithm for multi-

objective design problems. In this approach, a novel formula for updating the ve-

locity and position of each particle is introduced in order to improve the global

search capabilities of PSO. In addition, a craziness operator is proposed to maintain

population diversity. This approach uses two external archives, one is global for the

whole swarm and the other is local for each particle to preserve the most recent non-

dominated solutions it has encountered. During the particle’s update procedures, the
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particle selects its personal best position from the local archive and the global best

position from the global archive using a roulette wheel selection scheme. The algo-

rithm is validated on two test functions with no comparison to other algorithms [51].

Another similar approach is presented by Abido [1]. This approach uses two external

archives local and global.The basic idea of this approach is to store not only the

non-dominated solutions obtained during the search process, in order to select the

global best solution, but also to store the self best solutions found by each particle

in order to select its local best solution. The proposed method has been tested on

four test problems and compared with SPEA. The results show the superiority of

the proposed method over SPEA.

Sub-Population Approaches

Unlike the previous approaches that adopt two external archives[17][99][51][1], Puli-

do and Coello [86] developed a new MOPSO called another multi-objective particle

swarm optimization (AMOPSO) which is based on Pareto ranking and clustering

algorithm. The main idea of this approach is to divide the decision variable space

into several subswarms using the clustering mechanism in order to explore more

regions of the search space and to maintain diversity. Each subswarm has its own

group of leaders from which one is selected randomly to guide the particle in its

flight. At a certain predefined point, the subswarms exchange information through

leaders migration. With this feature, the algorithm does not need to use an external

archive. The algorithm has been shown to be very competitive with state of the art

multi-objective evolutionary algorithms. In a further work, Pulido et al. [109] devel-

oped an enhanced version of AMOPSO [86] called Efficient MOPSO (EMOPSO). In

order to maintain diversity, the authors proposed a mechanism called Hyper-plane

54



distribution in addition to ε-dominance and adaptive grid archiving methods. A tur-

bulence operator is also incorporated to avoid premature convergence. Constraints

are handled using a strategy already proposed by Coello and Pulido in [85]. The

algorithm was able to achieve promising results with a very small number of fitness

function evaluations [109].

Similarly to AMOPSO [86], Janson and Merkle [60] proposed a new hybrid multi-

objective PSO called (ClusterMPSO). The hybridization involves the incorporation

of PSO algorithm into the clustering K-means algorithm in order to split the popu-

lation into several subswarms. Each subswarm has its own set of leaders. The final

set of leaders is the union of all subswarms’ set of leaders. The algorithm is tested

on artificial optimization functions as well as on a real world biochemistry problem

with promising results.

Another approach following the subswarm concept is proposed by Mostaghim and

Teich [76]. In this approach, an algorithm for covering the Pareto front called (cove-

ring MOPSO) is proposed. The algorithm has two phases. The first phase uses a

restricted archive MOPSO method to find the non-dominated solutions that are

very close to the Pareto front. In the second phase, the population is divided into

subswarms that are initialized around the non-dominated solutions obtained from

phase one using the covering MOPSO with unbounded archive. As such, the search

process will be limited to the neighbourhood around each non-dominated solution.

The algorithm outperformed an existing MOEA covering method called Hybrid MO-

EA when both applied to a real world antenna design problem.
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2.4 Inadequacies of Previous Work

From the above literature, we can see that there exist several methods for solving MOPs.

Now we are going through the methods in Figure 2.6 and highlight the advantages and

disadvantages of the various approaches.

The classical methods (weighted sum aggregation and lexicographic ordering)

convert the multi-objective problem into a single objective problem using scalar optimiza-

tion techniques. For instance, the weighted sum aggregation approach converts the MOP

into a SOP by combining all the objectives into a higher scalar function based on prior

information of the problem. Although this method is easy to implement, selecting the

weights of the objectives is not an easy task, there is no straightforward way to do it

because it requires a profound domain knowledge, which is often not available for most

real-world problems. The determination of these weights becomes even more difficult as

the number of objectives increases. Furthermore, it produces only a single compromise

solution per run based on the selected weights. As such, the algorithm has to be run repe-

atedly in order to obtain the set of non-dominated solutions. In addition, this approach

does not work well with non-convex Pareto fronts [81], regardless of the weights used.

The lexicographic ordering approach treats MOP as SOP by optimizing a single ob-

jective at each run of the algorithm according to its order of importance. This approach

is easy to implement. However, it requires prior information from the user to rank the ob-

jectives in order of importance. This pre-defined ordering of objectives is very important

as it affects the performance of the algorithm. A good ordering is even more difficult to

establish with many objectives. Also this method generates one single solution at each

run like the weighted sum aggregation methods. Generally, these classical methods are
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well suited for cases where prior knowledge about the objectives is known.

Unlike the classical methods, the Vector Evaluated Genetic Algorithms (VE-

GA) approach is able to generate multiple non-dominated solutions in parallel. Besides,

it is easy enough to implement. However, this approach suffers from a bias towards some

solutions that excel in only one of the objectives. This fact prevents the algorithm from

generating compromise solutions with regard to all objectives. Another weakness of this

approach is its inability to solve non-convex Pareto fronts [40].

The three approaches mentioned above (weighted sum aggregation, lexicographic or-

dering, and VEGA) do not make direct incorporation of the actual definition of Pareto

optimality. In other words, the concept of trade off between objectives is missing. That

is why they are called Non-Pareto based approaches. These approaches are susceptible to

the shape of the Pareto front, for example it cannot find non-convex fronts [81][40]. This

weakness of the search efficiency make their direct use inappropriate for handling many

objectives, since in the case of many objectives there is a high chance that non-convex

Pareto fronts arise.

Pareto based evolutionary algorithm approaches compare solutions according

to the Pareto dominance relation, i.e., the concept of Pareto dominance is applied, in

order to find the set of high fitness non-dominated solutions in the population. Pareto-

based GA approaches require a Pareto ranking procedure to direct the search towards

the Pareto front. They also require a diversity preserving mechanism (niching) to main-

tain diversity in the population and prevent the GA from converging to a single solution.

Although they are relatively easy to implement, their main drawback is that their perfor-

mance depends highly on the selection of the sharing factor.
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On the other hand, we can see that the bulk of work of Pareto based PSO appro-

aches has concentrated on three main directions:

• The first direction consists of developing an effective leader selection strategy for

global best particle and self best particle. Most of these selection methods are based

on a niching technique, random selection, and some density measure methods such

as the crowding distance scheme [92][79].

• The second direction deals with developing an efficient archiving mechanism to store

the non-dominated solutions over iterations

• The third direction is the need to use a diversity preserving mechanism in order to

obtain a diverse set of non-dominated solutions.

We identified a number of limitations of multi-objective PSO:

• Although a great deal of effort has been devoted to solve MOPs with PSO, the

problem is still open in a sense that till now the approximation to the Pareto front

still requires improvement.

• PSO uses several tunable parameters (W, c1, and c2). Finding the best setting of

those parameters is a time consuming process.

• Most of MOPSO algorithms are combined with a mutation (turbulence) opera-

tor that has been shown to promote diversity. However, choosing a good mutation

operator is a non easy task. For instance [92], a decision should be made on the

component of the particle that has to be mutated and the probability of mutation.

To recapitulate, the Pareto based evolutionary algorithms (metaheuristic techniques)

overcome the limitations of the Non-Pareto based approaches when generating the Pareto
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front. First, they can obtain the set of non-dominated solutions in a single run as they

can allow simultaneous exploration of different points of the Pareto front. Second, they

can perform the optimization process without any prior knowledge about the problem.

Third, they are not susceptible to the shape or continuity of the Pareto front. However,

their main weakness is that their performance degrades when the number of objectives to

be optimized increases. The Pareto based GA approaches need computationally efficient

methods for performing the Pareto ranking procedure as it has to be repeated over and

over during the evolutionary process. Besides, they are very sensitive to the value of the

sharing factor. When dealing with many objectives, the performance of the Pareto based

PSO approaches relies heavily on the leader selection strategy being used. For instance,

the MOPSO approach proposed by Coello [20] used the adaptive grid scheme to select

the suitable guide for each particle. This technique does not scale well with an increasing

number of objectives because the update of the adaptive grid becomes more difficult and

time consuming.

Many objectives lead to further difficulties with respect to decision making, visua-

lization, search efficiency and computational cost [94]. Decision making and visualization

remain easy to perform with aggregation based methods and lexicographic methods unlike

the other methods that provide a set of non-dominated solutions per run. The challenge

of search efficiency and computational cost becomes even more important for all of them

to solve many objective problems. Nowadays, the scalability of methods and the design

of new methods to handle many objective problems is becoming a very hot topic.

2.5 Summary

In this chapter, we have introduced the basic definitions, notations, and concepts as-

sociated with multi-objective optimization, particle swarm optimization and quantum
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behaved particle swarm optimization. Then we presented an overview of the different

multi-objective evolutionary algorithms that have been developed and successfully ap-

plied to solve multi-objective optimization problems. We emphasized the PSO-Pareto

based methods because these are most relevant for the remainder of the thesis, and they

represent the current state of art. The chapter ends with a summary of the important

strengths and weaknesses of the different MOP approaches.

In the following chapter, a new addition to the canyon of swarm based multi-objective

optimization methods will be devised. Following the same spirit of MOPSO, we propo-

se an extension of QPSO to solve continuous multi-objective optimization problems that

aims to achieve better convergence and diversity simultaneously. Our new approach is ter-

med in the following as Multi Objective Quantum-behaved Particle Swarm Optimization

(MOQPSO). It is shown in Figure 2.6 with the dashed box.
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KAPITEL 3

A New Framework for MOP: Multi-Objective

Quantum-behaved Particle Swarm Optimization

(MOQPSO) for Unconstrained Problems

In this chapter,1 we propose a new approach for multi-objective optimization based on

QPSO. In particular, we show how we extended QPSO, and developed it to handle un-

constrained multi-objective optimization problems. This extension includes a definition of

a leader selection strategy, a policy to maintain the Pareto set during the search process

and an overall dynamics that helps evolving an initial Pareto set towards the optimal one.

Specifically, we address the way the global best solutions are recorded within an archive

and used to compute the local attractor point of each particle.

1A shorter version of the work in this chapter has been published in the following:
Heyam Al-Baity, Souham Meshoul, and Ata Kaban. On Extending Quantum Behaved Particle Swarm
Optimization to Multi-objective Context. In Proceedings of the IEEE World Congress on Computational
Intelligence (IEEE CEC 2012), pp. 1-8, 2012.
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3.1 Main Features of the Proposed MOQPSO

The typical dynamics of a multi-objective Pareto based swarm algorithm include two main

phases. In the first phase, the initial swarm is generated, the algorithm parameters are

set and an initial set of non-dominated solutions is derived. The second phase is generally

an iterative procedure during which the positions of particles are recomputed according

to equations (2.3) and (2.4) as explained in section 2.2.2. Self best performance of each

particle is updated along with the current Pareto set of non-dominated solutions. There-

fore, extending QPSO to multi-objective optimization should be done in a way to find

a Pareto front as close as possible to the optimal one while ensuring a uniform distri-

bution of the non-dominated solutions within it. We refer to the proposed approach as

MOQPSO (Multi-Objective Quantum-behaved Particle Swarm Optimization). Generally,

in single objective QPSO, only one self best particle and one global best particle have

to be considered when updating particles’ positions. In a multi-objective context, a set

of non-dominated solutions should be handled. Recall the main equation (2.3) in section

2.2.2, that governs the move of particles in the search space:

xt+1
ij = pt

ij ± β.|mbestt
j − xt

ij|. ln(1/ut
ij)

We can identify from this equation, in a direct way, the two main channels through

which the extension of QPSO to MOP should be studied, namely: the local attractor (pt
ij)

and the mean best (mbest). In an indirect way, the impact of the contraction expansion

parameter β has to be investigated as well. Therefore, the computation of each particle

position requires three main components namely:

• The local attractor point of a particle. As given in equation (2.4) in section 2.2.2:

pt
ij = ϕt

ij.sbestt
ij + (1 − ϕt

ij).gbestt
j with ϕt

ij = rand(0, 1)

It is calculated in a way that balances the influence of the self best performance of

the particle and the global best performance of the entire swarm.
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• The mean best position (also called mainstream thought by Sun et al. [105]), which

is obtained by averaging all the self best positions as shown in equation (2.5) in

section 2.2.2:

mbestt = 1
N

N
∑

i=1
sbesti = ( 1

N

N
∑

i=1
sbesti1,

1
N

N
∑

i=1
sbesti2, . . . , 1

N

N
∑

i=1
sbestiD)

• The contraction expansion parameter β

Figure 3.1 below illustrates the key components that influence the design of multiobjective

QPSO (MQPSO).

Figur 3.1: The key components in MOQPSO design

Another way to highlight the main features of the proposed MOQPSO is through

the differences between single objective QPSO and the proposed multi-objective QPSO
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algorithm in terms of the number of self best and global best particles, the update strategy,

the selection strategy, and the mbest. These differences are summarized in Table 3.1.

Therefore, designing MOQPSO leads naturally to the following important research

questions:

• How should the local attractor be updated for a given particle?

• How should the mean best performance be derived?

• What is the impact of the contraction-expansion parameter (β) on the convergence

of the algorithm?

• Which leader to select as the global best position for a particular particle to properly

guide the particle’s navigation in a D-dimensional search space?

• Which archiving strategy to use to maintain the set of non-dominated solutions

during the search process?

3.2 Description of the Proposed MOQPSO

Over the next sections, we will describe the proposed framework by bringing answers to

the above questions. Our attempts in addressing these issues, while taking into account

the proposals available in the literature, have resulted in defining new strategies for leader

selection and archiving of non-dominated solutions.

3.2.1 Computing Local Attractor Points in MOP

The convergence of an individual particle relies heavily on the local attractor point [103].

It helps achieving a certain balance between the self best performance of the particle and

the global best performance as it is a function of both of them. With several objectives,

the global best positions and the self best positions should be computed in a different

manner than in the single objective case using the Pareto dominance relation.
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Tabel 3.1: Comparison between a single-objective and multi-objective QPSO optimizations

Swarm Parti-

cles

Single objective context Multi-objective context

Number Update strategy Select strategy Mbest Number Update strategy Select strategy Mbest
Casual

particles

many At each iteration accor-
ding to equation (2.3)

None N/A Many At each iteration accor-
ding to equation (2.3)

None N/A

Self best

particle

One -For each particle.
-At each iteration
according to a
simple comparison

Straightforward Average One -For each particle.
-At each iteration
according to
dominance relation

Straightforward Average

Global

best par-

ticle

One At each iteration
according to a
simple comparison

Straightforward N/A Many
(GBA)

At each iteration accor-
ding to the
archive update strategy

-For each particle,
at each iteration ac-
cording to the lea-
der selection strate-
gy

N/A
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• For global best positions, an archive is used to keep the non-dominated solutions

found during the search process. We call such an archive the Global Best Archive

(GBA). The global best position of each particle is then selected from the GBA. The

difficulty arises as all the GBA members are equally important in the sense of Pareto

optimality. However, selecting one of them should be properly performed in order

to improve both convergence and diversity of the obtained set of non-dominated

solutions. The convergence property refers to the ability to achieve fronts that are

as close as possible to true Pareto fonts while the diversity property refers to the

ability to achieve a good spread of non-dominated solutions along the obtained

fronts. The diversity of the set of non-dominated solutions is important in the MOP

domain as it can provide better choices to the decision makers. For this purpose, we

propose a new selection strategy that is inspired from the sigma method proposed in

[75] and the crowding distance information proposed in [32]. A detailed description

of this selection strategy is given in the following section.

• For self best position, the strategy we followed in our work is to keep only one

solution as a self best point for each particle. Once a new position is computed for

a particle, three cases may appear:

1. The new position dominates the self best position in which case this latter

should be updated.

2. The new position is dominated by the self best position in which case this latter

remains the same.

3. None of the two dominates the other; in this case one of them is randomly

selected and kept as the self best position for the particle.

• Finally, once the sbest and gbest positions are determined for a particular particle,

the local attractor can be computed as given in equation (2.4) in section 2.2.2.
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3.2.2 Calculating the Mean Best Position

As only one solution is kept as the self best position for each particle, the mean best

position is computed as in single objective optimization context which is shown in equation

(2.5) in section 2.2.2 :

mbestt = 1
N

N
∑

i=1
sbesti = ( 1

N

N
∑

i=1
sbesti1,

1
N

N
∑

i=1
sbesti2, . . . , 1

N

N
∑

i=1
sbestiD)

3.2.3 Setting of the Contraction Expansion Parameter β

We use a time varying parameter β. It has been shown [37][104] that in the case of single

objective optimization, good results have been obtained when decreasing β linearly from

an initial value βmax to a final value βmin during the search process. At each iteration t,

the new value of β is calculated as a function of the current value of β at iteration t, βmax,

βmin, and the maximum number of iterations T :

βt+1 = βt − (βmax−βmin)
T

Before an in-depth investigation of our proposed selection and archiving strategies, let

us first describe the outline of the proposed MOQPSO.

3.2.4 Outline of the General Framework of MOQPSO for

Unconstrained Problems

A specification of an unconstrained MOP includes the definition of the problem dimension

and the fitness functions along with the lower and upper bounds for each decision variable.

Let us denote the set of non-dominated solutions or the archive of global best solutions

in Pareto sense encountered at iteration t by GBAt. St refers to the swarm of particles

at iteration t. The proposed MOQPSO is described in Algorithm 3.
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Algorithm 3 Pseudocode of MOQPSO
1: Input: MOP specification

2: N= population size

3: D= problem dimension

4: S0= Initialize-Positions()

5: sbesti= initialize self best position of particle Pi for i=1..N

6: T= maximum number of iterations

7: ~Fi= evaluate particle Pi for i=1..N

8: GBA0= initial set of non-dominated solutions

9: t = 1

10: βt = βmax

11: repeat

12: Compute mean best position using eq. (2.5)

13: for (each particle Pi ) do

14: gbest = Select − leader(GBAt, Pi)

15: for (each dimension j ) do

16: pt
ij = Compute local attractor using eq. (2.4)

17: uij = rand(0, 1)

18: if rand(0, 1) > 0.5 then

19: xt+1
ij = pt

ij + βt.|mbestt
j − xt

ij |. ln(1/ut
ij) for j=1..D

20: else

21: xt+1
ij = pt

ij − βt.|mbestt
j − xt

ij |. ln(1/ut
ij) for j=1..D

22: end if

23: end for

24: Evaluate particle Pi

25: Update self best position

26: end for

27: GBAt+1 = Update − Archive(GBAt, St)

28: βt+1 = βt − (βmax−βmin)
T

{Decrease β linearly}

29: t = t + 1

30: until (t ≻ T )

31: Output : GBA
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At the beginning of the algorithm, the N particles’ positions are initialized with uni-

formly distributed pseudo-random numbers within the allowable ranges [minj, maxj] at

each dimension as outlined by the procedure ‘Initialize-Positions’ below where rand( )

refers to a function that returns pseudo-random scalar drawn from the standard uniform

distribution in the open interval (0,1). [minj, maxj] is the range of the jth decision vari-

able’s values. The initial positions of the particles are then assigned to the corresponding

self best positions. MOQPSO uses an external unbounded archive called GBA to keep

the non-dominated solutions obtained during the search process. At each iteration, the

mean best position is computed over the self best positions. Then for each particle Pi, a

leader is selected as the gbest position to compute its local attractor and a new position

is derived for this particle. The self best position is updated accordingly based on the

dominance relation. Note that in our work, we keep only one self best position per parti-

cle. Once all particles have been processed, the GBA is then updated with the new set of

non-dominated solutions. The behaviour of the algorithm is controlled by decreasing the

contraction expansion parameter linearly. High values of this parameter favour explora-

tion capabilities of the search space while small ones foster its intensification capabilities.

The termination criterion used in MOQPSO is the maximum number of iterations.

Algorithm 4 Initialize-Positions( )
1: Input: Population size, Problem dimension, Domain [min, max] in each dimension

2: for (each particle Pi ) do

3: for (each dimension j ) do

4: xij = minj + (maxj − minj) ∗ rand;

5: end for

6: end for

7: Output : Particles positions X = [xij ] for i=1..N and j=1..D
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3.3 The Proposed Leader Selection Strategy

The main goals of a multi-objective optimization process are to minimize the distance

between the obtained Pareto optimal solutions and the true Pareto optimal front and to

maximize the spread of the generated Pareto optimal solutions and ensure that they are

uniformly distributed along the true Pareto front [31]. In order to achieve the above goals,

a suitable guiding of the search process that fosters exploitation and exploration using

an effective selection strategy of the leader particle should be adopted. The leader is the

particle that is used to guide another particle in its trajectory towards better areas of the

search space. The leader is also called global best position or guide. Therefore, one of the

key issues when dealing with MOP is how to select a leader or a guide among a set of non-

dominated solutions, which are all equally important, in order to guide the swarm in its

movement. The concept of “global best solution” in single objective optimization context

is substituted by the concept of “set of the non-dominated solutions” in multi-objective

optimization. Therefore, selecting the global best guide is a non-trivial task as it has a

significant impact on the algorithm performance in terms of convergence and diversity

because the global best individual attracts all other particles of the swarm to its direction

[31].

In our approach, we propose a new hybrid leader selection method that is based on

the combination of both the sigma method [75] and the crowding distance method [32].

The rationale is to help convergence of each particle using sigma values while favouring

less crowded regions in the objective space to attain a uniformly spread-out Pareto front

using crowding distance values. The proposed method is a two level selection strategy that

operates as follows. Given a particle for which we need to select a global leader in order to

compute its local attractor point, the procedure first determines the members in the GBA
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that are close to the particle in terms of sigma values. Then, the less crowded solution

among these neighbours is chosen as the global best solution for the given particle. This

principle is illustrated in Figure 3.2.

Figur 3.2: Selecting global leader from GBA for k=4: filled circles are GBA members,

empty circle represents particle P

More specifically, it first computes the sigma values of all GBA members as well as of

the current particle for which we seek a leader. Then, the k members from the GBA that

are close to the particle in terms of sigma value are selected and sorted based on their

crowding distance values. The less crowded solution among the k ones is then selected as

the leader for that particle. More formally, the proposed selection method is described in

Algorithm 5.
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Algorithm 5 Select-Leader(GBA, P)
1: Input: Current archive GBA, Current particle P

2: for i=1 to |GBA| do

3: Sigma(i)= Compute-Sigma-Value(GBA(i));

4: end for

5: Sigma-P = Compute-Sigma-Value(P);

6: Neighbors= Find-k-Nearest-Neighbors(k, Sigma, Sigma-P);

7: Sorted-Neighbors= Sort(Crowding-Distance(GBA), Neighbors, Descending);

8: leader = Sorted-Neighbors(1);

9: Output : leader

As described in [75], a sigma value is a metric that measures the closeness of particles

in the objective space. The sigma value of a particle Pi defines the line joining the corre-

sponding point in the objective space to the origin. The closeness of two sigma values is

in fact an indication that the two corresponding particles lie on two lines that are close to

each other. This fact is used to guide the particle by the suitable leader. That is why the

k nearest neighbors are selected according to the ascending order of the distance between

their sigma value and the particle’s sigma value. The sigma value for any particle Pi whose

corresponding point in the objective space is the vector ~F = (fi1, fi2, ...., fim)T is given

by:

~σ =

























































f 2
i1 − f 2

i2

.......

f 2
i1 − f 2

im

f 2
i2 − f 2

i3

.......

f 2
i2 − f 2

im

.......

f 2
i(m−1) − f 2
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j=1
f 2
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The crowding distance is a density estimation method that describes the density of

particles that are around a particular particle. It is used to maintain diversity in the Pareto

optimal solutions. The crowding value is computed in a similar way as in NSGAII [32].

Solutions in the GBA are first sorted in the objective space according to each objective

function in ascending order based on their objective function value. The crowding distance

value of each particle for each objective is set as the average distance of its two closest

particles, then the final crowding distance value is computed as the sum of the particle

crowding distance values with respect to each objective function. The following is the

description of the crowding distance scheme [32].

Algorithm 6 Crowding-Distance(GBA)
1: Input: Current archive GBA

2: for i=1 to |GBA| do

3: Distance(i)= 0 {initialize distance for each member in GBA}

4: end for

5: for m=1 to M do

6: GBA = sort (GBA, m) {sort using each objective value}

7: Distance(1) = Distance(|GBA|) = ∞ {boundary points are always selected}

8: for i = 2 to (|GBA|-1 ) do

9: Distance(i) = Distance(i)+(GBA(i+1) ·objective(m)−GBA(i−1) ·objective(m))/(fmaxm −

fminm){fmaxm and fminm are the max. and min. values of objective m}

10: end for

11: end for

12: Output : Distance

3.4 Archiving Mechanism

As described earlier, the algorithm maintains an external archive (GBA) of non-dominated

solutions. At each iteration of the search process, the set of non-dominated solutions ne-

eds to be updated and maintained dominance-free since new positions have been calcu-
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lated. Therefore, the new particles become potential candidates for joining the set of

non-dominated solutions in GBA. Each new particle should be compared with each mem-

ber of the GBA using the Pareto dominance relation. In case the particle is dominated

by any GBA member its candidature is discarded. If not, it should be added to the GBA

with the removal of all GBA solutions that it dominates. The following is the outline of

the proposed update archive procedure.

Algorithm 7 Update-Archive(GBA, S)
1: Input: Current archive GBA, Current swarm S

2: for (each particle Pi in S) do

3: Non-Dominated= TRUE

4: for (each Pj in GBA) do

5: if ~Fi dominates ~Fj then

6: GBA= GBA - {Pj} { Pi dominates Pj , therefore Pj should be removed from GBA}

7: else

8: if ~Fj dominates ~Fi OR Pi= Pj then

9: Non-Dominated= FALSE

10: Break

11: end if

12: end if

13: end for

14: if Non-Dominated then

15: GBA= GBA + {Pi}

16: end if

17: end for

18: Output : GBA
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3.5 Time Complexity Analysis of MOQPSO for

Unconstrained Problems

As described previously in section 3.2.4, the proposed MOQPSO evolves through two

stages: an initialization stage followed by an iterative process. In order to analyze the

efficiency of the algorithm, we consider the following parameters that impact the size of

the problem:

• D: the problem dimension that is the number of decision variables

• M: the number of objective functions

• N: the population size and

• L: the archive size

The main computation during the initialization phase consists of the evaluation of the

initial positions and the generation of the initial Pareto front. For each position, M values

of objective functions need to be computed. Therefore the number of functions evaluations

is O(NM). It is worth to note that the focus is on the number of functions evaluations

rather than on the evaluations themselves because the evaluations are performed in the

same way whatever the method used. Regarding the generation of the initial front, in the

worst case, each solution needs to be compared to all other solutions (the extreme case

where the initial solutions are all non-dominated) therefore its time complexity is O(N2).

The overall time complexity of the initialization phase is O(N2) as N is largely greater

than M in general.
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On the other hand, the main computation in the iterative process encompasses the

following tasks:

1. Update of Particles’ Positions

Since positions are updated for all particles in all dimensions, the time complexity

of this task is O(ND). Hence, the complexity of the updating step of the algorithm

grows in polynomial time with respect to the problem dimension.

For the whole analysis, we assume that the population size parameter N is big-

ger than the dimension parameter D. Therefore, the time complexity of this task

becomes O(N2).

2. Evaluation of Positions

As in the initialization phase, the number of objective evaluations is O(NM). Hence,

the complexity of the evaluation step of the algorithm grows in polynomial time with

respect to the number of objectives. As can be seen, the dimension parameter D

does not impact the number of objective evaluations but it impacts the evaluation

of each objective. The complexity of an objective function evaluation task is related

to the function itself rather than to the method used for its optimization.

3. Leader Selection

In the leader selection strategy, the main operations consist of three types of sorting:

• Sorting of the archive members according to their crowding distance. This sor-

ting is performed once during each iteration for all particles. Its time complexity

is O(LlogL).

• Sorting of the archive members according to the objectives during the com-

putation of the crowding distances as described in Algorithm 6, section 3.3.
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It requires M independent sorting operations of the archive according to each

objective. This yields to a time complexity of O(MLlogL) per iteration.

• Sorting of archive members according to their closeness to the current particle

in terms of sigma values computed using the values of the M objectives which

yields a time complexity O(MLlogL) for each particle since the computation

of the sigma values is proportional to the number of objectives M . For all

particles, N independent sorting operations are required. Therefore, the overall

time complexity for the leader selection task is O(MNLlogL). As the archive

size L is generally proportional to the population size N , this complexity can

be expressed as O(MN2logN).

• Update of the Archive or Pareto Front

Finally in the update archive procedure, each particle in the current swarm

needs to be compared to the archive members to decide whether it is non-

dominated. At the worst case, ML comparisons are needed for each particle.

Therefore, the overall time complexity of this update archive task is O(MNL)

per iteration. Since the archive size L is generally proportional to the popula-

tion size, the time complexity of this task can be expressed as O(MN2).

From the above complexities, it comes out that the estimated time complexity of the

proposed framework MOQPSO is O(MN2logN) per iteration, which shows a polynomial

complexity with regard to the problem parameters.

3.6 Evaluation of the Proposed MOQPSO Algorithm

In the following, we describe the experimental study that has been performed to evaluate

the proposed MOQPSO. We first describe the used test problems as well as the perfor-

mance measures and then the different experiments that have been conducted to study

the behaviour of MOQPSO.
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3.6.1 Test Functions

In order to assess the performance and prove the efficiency of the proposed MOQPSO for

solving unconstrained problems, MOQPSO has been applied to various benchmark test

problems related to numerical optimization [32]. The difficulties of these test problems

range from trivial to non-trivial regarding the ability to find the Pareto optimal solutions

and the ability to maintain diversity along the obtained Pareto front. All the used test

functions are minimization problems. Their use will allow us to investigate a wide varie-

ty of Pareto optimal front characteristics such as convexity, non-convexity, connectivity,

disconnectivity, sparsely distributed solutions near the Pareto optimal front and non-

uniformity. The true Pareto optimal fronts of these test functions are known. A detailed

description of the test problems considered in our experiments is given below.

Test Function 1

The first test function is proposed by Schaffer [95]. It has been widely used by multi-

objective evolutionary algorithms in order to test how well the non-dominated solutions

are distributed along the Pareto front [119]. It is a bi-objective optimization problem with

a convex Pareto optimal front. The function is called SCH and is defined as follows:

SCH :































Minimize f1(x) = x2

Minimize f2(x) = (x − 2)2

where: xi ∈ [−103, 103], i = 1.

Test Function 2

This test function is called FON and is proposed by Fonseca and Fleming [39]. It is a

minimization bi-objective optimization problem with non-convex Pareto optimal front.

The two objective functions are:
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FON :



































Minimize f1(x) = 1 − exp
(

−
3

∑

i=1
(xi − 1√

3
)2

)

Minimize f2(x) = 1 − exp
(

−
3

∑

i=1
(xi + 1√

3
)2

)

where: xi ∈ [−4, 4], i = 1, 2, 3.

Test Function 3

The ZDT1 function is one the ZDT family of functions [117]. It has a convex Pareto

optimal front and two objective functions to be minimized:

ZDT1 :































Minimize f1(x) = x1

Minimize f2(x) = g(x)
[

1 −
√

x1/g(x)
]

where: g(x) = 1 + 9
( n

∑

i=2
xi

)

/(n − 1) xi ∈ [0, 1], n = 30.

Test Function 4

The fourth test function is ZDT2 [117]. This function has a non-convex Pareto optimal

front. The two objective functions are:

ZDT2 :































Minimize f1(x) = x1

Minimize f2(x) = g(x)
[

1 − (x1/g(x))2
]

where: g(x) = 1 + 9
( n

∑

i=2
xi

)

/(n − 1) xi ∈ [0, 1], n = 30.

Test Function 5

The ZDT3 function [117] has a Pareto optimal front that consists of several disconnected

convex parts. ZDT3 function is defined as follows:
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ZDT3 :































Minimize f1(x) = x1

Minimize f2(x) = g(x)
[

1 −
√

x1/g(x) − x1

g(x)
sin(10Πx1)

]

where: g(x) = 1 + 9
( n

∑

i=2
xi

)

/(n − 1) xi ∈ [0, 1], n = 30.

Test Function 6

The ZDT6 function [117] has a non-convex Pareto optimal front and the Pareto optimal set

is non-uniformly distributed along the Pareto front. In addition, the number of solutions

decreases near the Pareto optimal front and increases away from it. Therefore, it is used

to evaluate the ability of the algorithm in finding Pareto optimal solutions with good

distribution. The objective functions are defined as:

ZDT6 :































Minimize f1(x) = 1 − exp(−4x1) sin6(6Πx1)

Minimize f2(x) = g(x)
[

1 −
(

f1(x)/g(x)
)2]

where: g(x) = 1 + 9
[( n

∑

i=2
xi

)

/(n − 1)
]0.25

xi ∈ [0, 1], n = 10.

3.6.2 Performance Measures

For any multi-objective problem, the two main goals of optimization are to obtain a

Pareto optimal set which closely approximates the true Pareto optimal front and to spread

out the non-dominated solutions uniformly throughout the Pareto front [31]. In order to

assess the ability of the proposed approach in accomplishing these goals and to allow a

quantitative comparison of results, we used the two metrics related to convergence and

diversity described in [32] and we adopted the same testing procedures described there

for sake of comparison. The computation of the values of such measures for a given test

problem requires knowing its optimal front. For the used test problems, optimal fronts
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have been derived using the specifications of the optimal solutions given in [32].

The Convergence Metric

As described in [32], the convergence measure (denoted as Θ) gives an idea about the clo-

seness of the obtained front to the true Pareto optimal front. It is measured as the average

of the sum of minimum distances of each obtained non-dominated solution in the GBA

to the true Pareto optimal front. The smaller the Θ value, the better the convergence of

the obtained front. Given an obtained Pareto front (GBA), the related value of Θ is given

by:

Θ(GBA) =
|GBA|

∑

i=1
di/|GBA| and di = min(dij), j = 1..|Paretoptimalfront|

Where dij is the Euclidean distance of the ith member of GBA to the jth member of

the true optimal front.

The Diversity Metric

The diversity metric [32] (denoted as ∆) measures how well the obtained front widely

spread and uniformly distributed. Like the convergence metric, the smaller the ∆ metric

value, the most uniformly spread out the set of non-dominated solutions. This metric is

calculated according to the following equation given in [32]:

∆ =
(

df + dl +
|GBA|−1

∑

i=1

|di − d̄|
)

/(df + dl + (|GBA| − 1)d̄)

where:
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• df and dl are the Euclidean distances between the end solutions (boundary solutions)

of the true Pareto front and the boundary solutions of the obtained front.

• di is the ith distance between two successive points of the obtained front in the

objective space.

• d̄ is the average of all (|GBA|-1) distances of di.

3.6.3 Parameter Settings

As mentioned earlier, the advantage of QPSO is that the contraction expansion parameter

β is the only specific tunable parameter that needs to be set in addition to the two common

parameters, the swarm size and maximum number of iterations. β is decreased linearly

within the range [1.2 - 0.5]. Several runs of MOQPSO with different ranges of β have been

performed on the employed test functions. Convergence and diversity values have been

recorded for each test function and presented in Table 3.2. As it can be seen, results show

that best results in terms of convergence and diversity for all test functions have been

achieved within the range [1.2 - 0.5] which is in compliance with the settings established

in the literature for β in the case of single objective optimization [105][104].

On the other hand, good quality Pareto fronts have been obtained with varying values

of swarm size and maximum number of iterations parameters depending on the complexity

of the test functions. For instance, the algorithm is set to perform 18000 fitness function

evaluations for FON, 7500 fitness function evaluations for SCH , and 25000 fitness function

evaluations for the ZDTs. For each test function, 30 independent runs were performed in

order to collect the statistical results. The algorithm’s parameter configurations for each

test function are summarized in Table 3.3.
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Range of β Function name Convergence Diversity

[4 - 3.3]

FON
SCH

ZDT1
ZDT2
ZDT3
ZDT6

0.0835
0.0560
0.7805
0.8343
0.3642
0.8525

0.4897
0.9210
0.7292

1
0.6884
1.1569

[2 - 1.2]

FON
SCH

ZDT1
ZDT2
ZDT3
ZDT6

0.0057
0.0033
0.1531
0.2985
0.1549
0.3365

0.2459
0.2352
0.6329
0.6326
0.7613
0.8473

[0.5 - 0.1]

FON
SCH

ZDT1
ZDT2
ZDT3
ZDT6

0.0011
0.0031
0.0513
0.7027
0.0498
0.5153

0.1875
0.1851
0.4456
N/A

0.9452
N/A

[1.2 - 0.5]

FON
SCH

ZDT1
ZDT2
ZDT3
ZDT6

0.0015
0.0030
0.0100
0.0140
0.0066
0.0289

0.2594
0.1966
0.2361
0.2468
0.7941
0.8422

Tabel 3.2: Convergence and diversity values of the used test functions with different ranges
of parameter β

Test function Population size Number of Iterations β k

FON 300 60 1.2 - 0.5 10

SCH 150 50 1.2 - 0.5 10

ZDT1 100 250 1.2 - 0.5 10

ZDT2 100 250 1.2 - 0.5 10

ZDT3 100 250 1.2 - 0.5 10

ZDT6 100 250 1.2 - 0.5 10

Tabel 3.3: Parameter settings of MOQPSO for unconstrained test problems.
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The number k of nearest neighbors in the proposed selection strategy has been set to

10. We decided to choose 10 as a value of k as we intend to maintain a balance between

the effect of the sigma method and the crowding distance method on the proposed hybrid

selection strategy. A small value of k (when k=1) will promote the sigma method influence

on the proposed selection strategy, while large value of k (when k= |GBA|) will emphasize

the crowding distance effect on the proposed selection scheme.

3.6.4 Experimental Results and Discussions

In Figure 3.3, we illustrate the Pareto fronts that have been obtained for each test fun-

ction together with their true Pareto fronts. For qualitative assessment, the plots clearly

show the ability of the proposed MOQPSO to achieve good quality Pareto fronts in terms

of convergence and diversity simultaneously without using a mutation operator.

In order to quantitatively assess its performance, MOQPSO has been compared to the

most well known algorithms for solving MOPs, namely NSGAII, SPEA and PAES. These

algorithms represent the state-of-the-art. Results reported in [32] for unconstrained test

problems have been used as the baseline to carry out this comparative study. The same

setting and the same testing procedure as in [32] have been used for this purpose, i.e., the

same number of function evaluations (<= 25000) have been carried out for the employ-

ed test functions. These test functions allow us to investigate different characteristics of

the Pareto optimal front, such as convexity, non-convexity, connectivity, disconnectivity,

sparsely distributed solutions near the Pareto optimal front and nonuniformity. The mean

and variance of the convergence and diversity metrics have been recorded and presented

in Tables 3.4 and 3.5 respectively to measure the performance of the algorithms.

In terms of convergence, as we can observe in Table 3.4, MOQPSO exhibits similar

84



results to NSGAII real coded and SPEA in SCH function for which PAES gives the best

results.

For the second test function (FON), MOQPSO performs similarly to NSGAII real coded

but presents better convergence values than PAES, SPEA and NSGAII binary coded.

For the third test function (ZDT1) and the fourth test function (ZDT2), MOQPSO’s

performance is inferior to NSGAII binary coded and SPEA, yet superior to NSGAII real

coded and PAES.

MOQPSO outperforms the other algorithms in test functions 5 (ZDT3) and 6 (ZDT6).

It can be noticed that NSGAII binary coded is the only algorithm that shows comparable

results to our proposed MOQPSO algorithm in terms of convergence to the true Pareto

front.

As for diversity metric, it is clearly apparent from Figure 3.3 that an excellent spread

among the set of obtained solutions has been achieved. This fact is corroborated by the

results reported in Table 3.5. It is notable that MOQPSO outperforms the other algorit-

hms in all cases, except for the sixth test function (ZDT6) where NSGAII real and binary

coded present slightly better diversity values, without adopting any mutation mechanism.

We attribute this to the dynamics of QPSO together with the hybrid selection mechanism

which distributes the particles uniformly along the Pareto front.

It was not feasible to compare the running time of our algorithm with the publis-

hed results in [32] because the published results were obtained using different platforms

and different implementations. However, we are able to compare the per generation ti-

me complexities. Given N the population size and M the number of objectives, the ti-

me complexity of NSGAII is O(MN2), the time complexity of SPEA is O(MN3) and

the time complexity of PAES is O(MN2) [32]. The time complexity of our algorithm is
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O(MN2logN). As it can be seen, the complexity of the proposed MOQPSO does not de-

viate too much compared to the other complexities. In addition, we can see that all these

methods have in common a quadratic scaling with the population size N , and a linear

scaling with the number of objective functions M . Our new method scales in the same

way with M , and has an additional log(N) scaling with N - a logarithmic term is not a

big overhead and this is the price we pay for getting the improvements demonstrated in

sections 3.3, 3.6.4, and 5.2.

Algorithms Schaffer Fonsesca Zitzler1 Zitzler2 Zitzler3 Zitzler6

MOQPSO
0.0031 0.0015 0.0103 0.0136 0.0053 0.0389

4.56 ∗ 10−9 2.33 ∗ 10−9 3.40 ∗ 10−7 2.14 ∗ 10−6 1.05 ∗ 10−7 8.17 ∗ 10−4

NSGAIIreal coded[32]
0.003391 0.001931 0.033482 0.072391 0.114500 0.296564

0 0 0.004750 0.031689 0.007940 0.013135

NSGA II Binary coded[32]
0.002833 0.002571 0.000894 0.000824 0.043411 7.806798
0.000001 0 0 0 0.000042 0.001667

SPEA [32]
0.003403 0.125692 0.001799 0.001339 0.047517 0.221138

0 0.000038 0.000001 0 0.000047 0.000449

PAES [32]
0.001313 0.151263 0.082085 0.126276 0.023872 0.085469
0.000003 0.000905 0.008679 0.036877 0.00001 0.006664

Tabel 3.4: Comparison with other MOEA: Convergence results. Mean (first row) and
variance (second row)

Algorithms Schaffer Fonsesca Zitzler1 Zitzler2 Zitzler3 Zitzler6

MOQPSO
0.2328 0.2372 0.2304 0.2156 0.5729 0.7908

0.0001516 0.0004620 0.0009323 0.0007011 0.0018 0.0675

NSGAII real coded [32]
0.477899 0.378065 0.390307 0.430776 0.738540 0.668025
0.003471 0.000639 0.001876 0.004721 0.019706 0.009923

NSGA II Binary coded[32]
0.449265 0.395131 0.463292 0.435112 0.575606 0.644477
0.002062 0.001314 0.041622 0.024607 0.005078 0.035042

SPEA [32]
1.021110 0.792352 0.784525 0.755148 0.672938 0.849389
0.004372 0.005546 0.004440 0.004521 0.003587 0.002713

PAES [32]
1.063288 1.162528 1.229794 1.165942 0.789920 1.153052
0.002868 0.008945 0.004839 0.007682 0.001653 0.003916

Tabel 3.5: Comparison with other MOEA: Diversity results. Mean (first row) and variance
(second row)
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Figur 3.3: The true Pareto optimal and obtained fronts of the used test functions
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3.7 Summary

In this chapter, we have built a novel framework for multi-objective optimization using

QPSO (MOQPSO). We have also investigated the features related to the application of

QPSO to handle multiple objectives. The main contribution is the proposal of a new leader

selection strategy called the hybrid selection strategy that aims to achieve good conver-

gence and diversity simultaneously without using any diversity preserving mechanism.

It is a two level selection strategy that uses sigma values (to help convergence of each

particle) and crowding distance information (to maintain diverse solutions) in order to

select the suitable guide for each particle. MOQPSO has first generation time complexity

of O(MN2logN) which is only by a log factor larger than the well known multi-objective

evolutionary algorithms, namely NSGAII, PAES and SPEA. From the experiments shown,

we can say that the developed MOQPSO framework is a competitive algorithm to tackle

MOPs and has demonstrated its effectiveness on unconstrained benchmark test problems.

As the MOQPSO framework was tested only on unconstrained test functions, an

extension of it to handle constrained problems is required since most real-world problems

include constraints. The following chapter will present such work.
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KAPITEL 4

Constraint Handling in MOQPSO

This chapter presents an important development that extends the MOQPSO framework

proposed in the previous chapter to enable it to handle constraints.1 Two strategies to

handle constraints are investigated. The first one is the death penalty strategy which

discards infeasible solutions that are generated during the search process forcing the search

process to explore only the feasible region. The second approach takes into account the

infeasible solutions when computing the local attractors of particles and adopts a policy

that achieves a balance between searching in infeasible and feasible regions.

4.1 Constrained Multi-objective Optimization

Problems (CMOPs)

Most real-world multi-objective optimization problems involve linear and/or non linear

constraints that can be of equality or inequality type. Generally, constrained optimiza-

tion problems are difficult to solve. This is because finding a solution that satisfies all

1A shorter version of the work in this chapter has been published in the following:
Heyam Al-Baity, Souham Meshoul, and Ata Kaban. Constrained Multi-Objective Optimization using
a Quantum Behaved Particle Swarm. The International Conference on Neural Information Processing
(ICONIP 2012), Part III, LNCS 7665, pp. 456-464. Springer-Verlag Berlin Heidelberg, 2012.
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constraints is not an easy task. The constraints split the search space into two regions

depending on the feasibility of solutions. The feasible region encompasses all solutions

satisfying all constraints. Hence, it contains all solutions of the problem. The infeasible

region contains solutions that violate at least one of the constraints. Constraints can be

categorized as hard – in which case they must be satisfied – or soft – in which case they

may be satisfied to some extent [31].

There are a considerable number of methodologies found in the literature to solve

constrained optimization problems with multiple objectives. One of these methodologies

is to completely ignore infeasible solutions. Although it is simple, this approach may face

difficulties in finding feasible solutions [31]. Penalty function methods are the most po-

pular constraint handling techniques in evolutionary algorithms. In this method, penalty

values are added to individuals violating the constraints [31]. Deb et al. [32] suggested a

new idea to modify the definition of domination by turning it into constrained dominance

of solutions by incorporating infeasible solutions during the search process.

Most of constraint handling methods for MOPs (CMOPs) proposed in the literature

are used within evolutionary algorithms [26]. However, no in-depth study is available

for handling constraints using swarm based algorithms like particle swarm optimization.

In [22], Coello et al. proposed a simple scheme that has been used without a thorough

investigation of how this impacts the search. The aim of this work is twofold. First,

we study the ability of QPSO to deal with CMOPs and second we study the impact

of discarding or keeping infeasible solutions during the search process. In chapter 3, we

presented a new framework to extend QPSO to solve unconstrained MOPs which we

called MOQPSO. In this chapter, we further extend this framework to handle constrained

MOPs by investigating two strategies to deal with infeasible solutions generated during
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the search process.

4.2 The Proposed MOQPSO for CMOPs

One of the main issues when solving constrained optimization problems is how to incor-

porate the infeasible solutions in the search process. In QPSO, as shown in equation (2.3)

in section 2.2.2, the computation of a particle position requires calculating its attractor

which is a function of the self best position of the particle and the global best position

recorded within the whole swarm as described by equation (2.4) in section 2.2.2. There-

fore, the level at which constraint handling can be considered when extending QPSO to

solve constrained problems is when the local attractor of each particle has to be compu-

ted. This fact is behind the idea we propose in this work.

In our work, besides considering the use of the death penalty function as a first strategy

to further extend MOQPSO to solve constrained problems, we also propose a second new

strategy that considers the levels at which infeasible solutions may intervene when new

positions are computed. In the following, we adopt the acronym CMOQPSO to refer to

the proposed MOQPSO with constraint handling strategies.

4.2.1 CMOQPSO with the First Constraint Handling Strategy

Our first strategy consists simply in discarding infeasible solutions and using only the

feasible ones throughout the search process. In this way, the whole swarm is forced to

move within the feasible region. Therefore, only feasible solutions are used to update

the local attractors of the particles, i.e., when an infeasible solution is generated, it is

discarded until a feasible one is developed. The initialization process of particles positions

is described in Algorithm 8.

In Algorithm 8, the function ‘check-constraint’ is checking if the current position sa-
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Algorithm 8 Initialize-Positions( )
1: Input: Population size, Problem dimension, Domain [min, max] in each dimension
2: for (each particle Pi ) do
3: feasible = false
4: repeat
5: for (each dimension j ) do
6: xij = minj + (maxj − minj) ∗ rand;
7: end for
8: feasible = check-constraint(Xi)
9: until (feasible)

10: end for
11: Output : Particles positions X = [xij ] for i=1..N and j=1..D

tisfies the problem constraints in which case it returns TRUE. The Algorithm 9 illustrates

CMOQPSO with the first constraint handling strategy.

4.2.2 CMOQPSO with the Second Constraint Handling

Strategy

The second strategy we propose to handle constraints couples the search in the feasible

region with the search in the infeasible region. The aim is to take advantage of the infea-

sible solutions that could lead to promising areas in the feasible region.

As mentioned earlier, the local attractor is the means through which searching in the

feasible and infeasible regions can be conducted. Hence, we suggest to explore both feasible

and infeasible regions using new probabilistic selection rules of global best position and

self best position. These selection rules are described as follows:

Global Best Position Selection Rule

Global best infeasible solutions encountered during the search process are kept within an

archive that we denote by Global Best Infeasible Archive (GBIA). The best infeasible

solution is the one with the lowest constraint violation. In case of a tie, the best infeasible

solution is the one with the better objective values because it is closer to the feasible
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Algorithm 9 Pseudocode of CMOQPSO with First Strategy
1: Input: MOP specification
2: N= population size
3: D= problem dimension
4: S0= Initialize-Positions()
5: sbesti= initialize self best position of particle Pi for i=1..N
6: T= maximum number of iterations
7: ~Fi= evaluate particle Pi for i=1..N
8: GBA0= initial set of non-dominated solutions
9: t = 1
10: βt = βmax

11: repeat

12: Compute mean best position using eq. (2.5)
13: for (each particle Pi ) do

14: gbest = Select − leader(GBAt, Pi)
15: feasible = false
16: repeat

17: for (each dimension j ) do

18: pt
ij

= Compute local attractor using eq. (2.4)

19: uij = rand(0, 1)
20: if rand(0, 1) > 0.5 then

21: xt+1
ij

= pt
ij

+ βt.|mbestt
j

− xt
ij

|. ln(1/ut
ij

) for j=1..D

22: else

23: xt+1
ij

= pt
ij

− βt.|mbestt
j

− xt
ij

|. ln(1/ut
ij

) for j=1..D

24: end if

25: end for

26: feasible = check-constraint(Xi)
27: until (feasible)
28: Evaluate particle Pi

29: Update self best position
30: end for

31: GBAt+1 = Update − Archive(GBAt, St)

32: βt+1 = βt − (βmax−βmin)
T

{Decrease β linearly}
33: t = t + 1
34: until (t ≻ T )
35: Output : GBA

region. In other words, the best infeasible solution is assessed from both the number of

constraint violation and quality of objective functions. Given a particle for which a new

position has to be computed, the global best solution for this particle is selected either

from the Global best feasible archive (GBA) or the infeasible archive (GBIA) according

to a probabilistic rule as follows:

Algorithm 10 GLobal best selection rule

1: p = rand();
2: if p < PG then
3: select global best position from GBIA
4: else
5: select global best position from GBA
6: end if
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PG is the selection probability and can be set according to the importance we wish

to devote to infeasible solutions. Selecting a leader from GBIA is straightforward. It

consists of choosing the global leader randomly as all infeasible solutions in the GBIA

have the same quality measure in terms of number of constraint violations. For GBA

leader selection, we follow the same leader selection strategy we described in section 3.3,

where the decision about which GBA member to choose as a leader for a given particle

is made based on the closeness of each GBA member to the current particle in terms of

sigma values and the extent to which the local area around the member is crowded.

Updating Archives

Both archives, GBA and GBIA need to be updated after computing all particles’ new

positions. For a current particle, if a new infeasible solution is derived, its insertion in

GBIA is considered. This new infeasible position enters the GBIA archive only if it has

less constraint violation than any infeasible solution in GBIA. In this case, all GBIA

contents with higher constraint violations have to be deleted from the archive. The new

infeasible position is also included in GBIA in case it is equal to all GBIA solutions in

terms of number of constraint violation and not dominated by any of the GBIA members.

This update strategy is handled by the procedure ‘Update-Archive-Infeasible’. On the

other hand, GBA is updated as done with unconstrained MOQPSO. That is, if a new

feasible solution is derived, it has to be checked against the GBA contents. The comparison

here is based on the usual dominance concept. The new feasible position is entered into

the GBA in a way that keeps GBA maintain only non-dominated solutions.

Self Best Position Selection Rule

Basically, the strategy we followed in our work was to keep only one solution as a Self

Best Feasible (SBF) point for each particle. In CMOQPSO, we keep track of the Self Best

Infeasible solution (SBI) for each particle as well. The SBI solution is the one with lowest
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constraint violations. When a new position has to be computed for a particle, the self

best solution for this particle is selected either as the self best feasible (SBF) solution or

the self best infeasible (SBI) solution according to a probabilistic rule as follows:

Algorithm 11 Self best selection rule

1: p = rand();
2: if p < Ps then
3: select SBI as the self best position
4: else
5: select SBF as the self best position
6: end if

Ps is the selection probability and can be set according to the importance we wish

to devote to infeasible solutions. Finally, once self best and global best positions are

determined for a particular particle, the local attractor can be computed as given in

equation (2.4) in section 2.2.2.

Updating the Self Best Position

Once the new position of a particle has been computed, its self best position has to be

updated. If the new position is feasible, then SBF is updated based on the usual dominance

relation. On the other hand, if the new position is infeasible, then SBI is updated with

respect to the number of constraint violations.

Modification of the Leader Selection Strategy

Because of the new proposed selection rules of global best and self best positions, the

Select-Leader procedure described earlier in section 3.3 for unconstrained MOQPSO

should be modified in a way to allow the combined search in feasible and infeasible regions.

The ‘Modified-Select-Leader’ procedure includes the selection of a global best leader as

well as a self best position according to the probabilistic selection rules that balance the

search process in the two regions. The description of ‘Modified-Select-Leader’ procedure

is as follows:
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Algorithm 12 Modified-Select-Leader (GBA, GBIA, SBF, SBI, P, PG, PS)
1: Input: Current archive GBA, Current GBIA, SBF solution, SBI solution, Current particle P, PG, PS

2: p1 = rand();

3: if p1 < PG then

4: G= Select-randomly(GBIA)

5: else

6: G= Select-Leader( GBA,P)

7: end if

8: p2 = rand();

9: if p2 < PS then

10: S=SBI

11: else

12: S=SBF

13: end if

14: Output : G, S

According to the ‘Modified-Select-Leader’ procedure, given a particle for which a new

position has to be computed, the global best position for this particle is selected either

from the Global Best Archive (GBA) or the infeasible archive (GBIA) according to the

probabilistic selection rule of gbest. In the same manner, the self best position for the

given particle is selected either as the SBI or SBF based on the probabilistic selection rule

of sbest. Finally, CMOQPSO with the second constraint handling strategy is described in

Algorithm 13.

At the start of the algorithm, the N particles’ positions are initialized with uniformly

distributed random numbers in the interval [0, 1]. These initial positions are then assigned

to the corresponding self best positions. The pseudocode of the initialization process is

given in Algorithm 14.
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Algorithm 13 Pseudocode of CMOQPSO with Second Strategy
1: Input: MOP specification
2: N= population size
3: D= problem dimension
4: S0= Initialize-Positions()
5: T= maximum number of iterations
6: ~Fi= evaluate Particle Pi for i=1..N
7: SBFi= initialize self best feasible position of particle Pi for i=1..N
8: SBIi= initialize self best infeasible position of particle Pi for i=1..N
9: GBA0= initial set of non-dominated feasible solutions
10: GBIA0= initial set of best infeasible solutions
11: t = 1
12: βt = βmax

13: repeat

14: Compute mean best position using eq. (2.5)
15: for (each particle Pi ) do

16: [gbest, sbest]= Modified-Select-Leader (GBA, GBIA, SBF, SBI, P, PG, PS)
17: for (each dimension j ) do

18: pt
ij

= Compute local attractor using eq. (2.4)

19: uij = rand(0, 1)
20: if rand(0, 1) > 0.5 then

21: xt+1
ij

= pt
ij

+ βt.|mbestt
j

− xt
ij

|. ln(1/ut
ij

) for j=1..D

22: else

23: xt+1
ij

= pt
ij

− βt.|mbestt
j

− xt
ij

|. ln(1/ut
ij

) for j=1..D

24: end if

25: end for

26: Evaluate particle Pi

27: feasible = check-constraint(Xi)
28: if (feasible) then

29: Update self best feasible position (SBF)
30: else

31: Update self best infeasible position (SBI)
32: end if

33: end for

34: GBAt+1 = Update − Archive(GBAt, St)
35: GBIAt+1 = Update − Archive − infeasible(GBIAt, St)

36: βt+1 = βt − (βmax−βmin)
T

{Decrease β linearly}
37: t = t + 1
38: until (t ≻ T )
39: Output : GBA

Algorithm 14 Initialize-Positions( )

1: Input: Population size, Problem dimension, Domain [min, max] in each dimension

2: for (each particle Pi ) do

3: for (each dimension j ) do

4: xij = minj + (maxj − minj) ∗ rand;

5: end for

6: [feasible, violations] = check-constraint(Xi)

7: end for

8: Output : Particles positions X = [xij] for i=1..N and j=1..D
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In this case, the ‘check-constraint’ function returns whether the current solution is

feasible or not and records the number of constraint violations.

4.3 Time Complexity Analysis of CMOQPSO for

Constrained Problems

In the analysis of the constrained CMOQPSO algorithm, we consider the following para-

meters that influence the size of the problem:

• D: the problem dimension that is the number of decision variables

• M: the number of objective functions to be optimized

• N: the population size

• L: the archive size and

• R: the maximum number of trials required to produce a feasible solution

As described in the previous section 4.2, two variants of MOQPSO have been investigated

to handle constraints according to two strategies. In the first strategy, infeasible solutions

are discarded. The algorithm based on this strategy acts as MOQPSO for unconstrained

problems. However, discarding infeasible solutions induces an extra computing time since

the related positions are recomputed until feasible solutions are produced. The number

of trials required to produce a feasible solution for a given particle is stochastic. Let R

be the maximum number of trials. The strategy of discarding infeasible solutions impa-

cts mainly the Update Particles’ positions task, for which the time complexity becomes

O(RND). The time complexity of the other tasks described earlier in section 3.5 remains

the same as for unconstrained problems which is O(MN2logN). Therefore, the overall

time complexity of the first strategy is O(MN2logN + RND).
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In the second strategy, the main difference with MOQPSO for unconstrained problems

consists of the modified leader selection strategy. In the worst case, this later acts as the

proposed leader selection strategy described in section 3.3 the time complexity of which

is at most O(MN2logN) as explained in section 3.5.

As can be seen, the extra computational time required by the first strategy compared

to the second strategy can be explained by the factor (RND) due to discarding infeasible

solution.

4.4 Experiments

In order to check the ability of the proposed CMOQPSO algorithm to optimize constrai-

ned problems, several benchmark test problems found in the specialized literature are

employed. These test functions have been chosen because they have a variety of chara-

cteristics of the Pareto optimal front, such as convexity, non-convexity, connectivity and

disconnectivity. They are broad and popular test functions for investigating the perfor-

mance of multi-objective Pareto optimization methods. All the employed test functions

are constrained minimization problems except for Kita test function and include two

objectives. The definition of each of these test functions is presented next.

Test Function 1

The first test function is called SRN [101]. The difficulty of this function lies in that the

constraints exclude some part of the unconstrained Pareto front. It is defined as follows:
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SRN :














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




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

























Minimize f1(x) = (x1 − 2)2 + (x2 − 1)2 + 2

Minimize f2(x) = 9x1 − (x2 − 1)2

where: xi ∈ [−20, 20], and i = 1, 2

subject to: g1(x) = x2
1 + x2

2 6 225

g2(x) = x1 − 3x2 6 −10

Test Function 2

The CONSTR function [31] has a convex non-smooth Pareto optimal front. Similar to

SRN, part of the unconstrained Pareto optimal front becomes infeasible due to the con-

straints. The two objective are:

CONSTR :




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




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


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

Minimize f1(x) = x1

Minimize f2(x) = (1 + x2)/x1

where: x1 ∈ [0.1, 1.0] and x2 ∈ [0, 5]

subject to: g1(x) = x2 + 9x1 > 6

g2(x) = −x2 + 9x1 > 1

Test Function 3

The third test function is KITA [65]. It is defined as follows:
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KITA :


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

Maximize f1(x, y) = −x2 + 1

Maximize f2(x, y) = 0.5x + y + 1

where: 0 6 x, y 6 7

subject to: x, y > 0

0 >
1
6
x + y − 13

2

0 > 0.5x + y − 15
2

0 > 5x + y − 30

Test Function 4

The fourth test function is TNK [107]. It has a discontinuous Pareto optimal front. It is

used to test the ability of the algorithm in finding a good spread of solutions along the

Pareto front [33]. TNK is defined as follows:

TNK :
























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











Minimize f1(x) = x1

Minimize f2(x) = x2

where: xi ∈ [0, Π], and i = 1, 2

subject to: g1(x) = −x2
1 − x2

2 + 1 + 0.1 cos(16 arctan(x1/x2)) 6 0

g2(x) = (x1 − 0.5)2 + (x2 − 0.5)2 6 0.5

Test Function 5

The MOBES function is proposed by Binh et al. [15]. It has a non-convex feasible region.

It is defined as follows:
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MOBES :




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
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



Minimize f1(x1, x2) = −4x2
1 + 4x2

2

Minimize f2(x1, x2) = (x1 − 5)2 + (x2 − 5)2

where: −15 6 xi 6 30 ∀i = 1, 2

subject to: (x1 − 5)2 + x2
2 − 25 6 0

−(x1 − 8)2 − (x2 + 3)2 + 7.7 6 0

4.4.1 Experimental Set up

In order to assess the performance of CMOQPSO using the two constraint handling strate-

gies described in section 4.2, 10 independent runs for each test function in each constraint

handling strategy have been conducted. In all experiments, we follow the same parameter

settings of β and k we used for unconstrained MOQPSO in the previous chapter. The

contraction expansion parameter β has been decreased linearly within the range [1.2 -

0.5] which is in compliance with the settings reported in the literature [105][104] as it

shows good results in terms of convergence and diversity. The number k of neighbors in

the selection of the global feasible leader has been set to 10 to maintain a balance between

the effect of the sigma method and the crowding distance method on the proposed hybrid

selection strategy. The selection probability PG is set to 0.5 in order to maintain a balance

between the search in the feasible and the infeasible regions and PS is set to 0.3 to favor

the feasible self best positions.

Now we are going to describe how we set the number of particles and the number of

iterations. We started by running the algorithm with a small number of particles (60) and

a small number of iterations (100) and we plotted the obtained Pareto front. We then

continued repeating the process with an increase in the number of particles (100, 120,

150) and an increase in the number of iterations ( 200, 300, 400, 500 ) until we reached a
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good quality Pareto front in terms of convergence and diversity for all the test functions.

Finally, we got good quality solutions with the following setting: the number of particles

is set to 150 for all test functions and the maximum number of iterations has been set to

700 for KITA function and 500 for the remaining functions. The parameter configurations

for CMOQPSO with the first and the second constraint handling strategies for each test

function are summarized in Table 4.1.

Test function Population size Number of Iterations β k
CONSTR 150 500 1.2 - 0.5 10
MOBES 150 500 1.2 - 0.5 10

SRN 150 500 1.2 - 0.5 10
KITA 150 700 1.2 - 0.5 10
TNK 150 500 1.2 - 0.5 10

Tabel 4.1: Parameter settings of CMOQPSO with first and second constraint handling
strategies for the constraint test functions.

4.4.2 Performance Measures

In order to evaluate the performance of both strategies in terms of convergence and

diversity of the obtained fronts, the two metrics that have been used for measuring the

performance of unconstrained MOQPSO, namely the convergence and diversity metrics

described in section 3.6.2 have been also used for CMOQPSO.

4.4.3 Experimental Results and Discussions

Figures 4.1 and 4.2 show the obtained Pareto fronts along with the true Pareto optimal

fronts using the first and the second constraint handling strategies for SRN, MOBES,

KITA, TNK, and CONSTR test functions. At a first glance, we can see that both stra-

tegies are similar in achieving very good convergence and diversity; although it can be

noticed that the first strategy exhibits a slightly better performance when compared with

the second strategy. To corroborate this fact, quantitatively speaking, ten runs in each

strategy for each test function have been conducted. Statistical results have been gathe-
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red in Table 4.2. This table presents the convergence and the diversity metric values for

the two strategies together with the p-value as obtained from the Wilcoxon rank sum

test. This latter is a nonparametric test used to compare the median of two samples.

The convergence metric computes the average distance between the obtained front and

the true Pareto front. The smaller the value of this metric, the better the convergence

of the obtained Pareto front. The diversity metric measures how uniformly are spread

the obtained non-dominated solutions. The smaller the value of the diversity metric, the

most widely and uniformly spread the set of non-dominated solutions. The p-value is a

probability that indicates if there is a statistically significant difference between the two

samples. If the p-value is less than or equal to the significance level 0.05, then there is

a difference between the results of the two algorithms. Otherwise, there is no difference

detected between the performance of the compared algorithms. The values of the stan-

dard deviation show the robustness and the high quality of the found solutions in both

strategies.

Regarding the two investigated strategies, it is apparent from Table 4.2 that discar-

ding infeasible solutions during the search process (first strategy) slightly outperforms the

second strategy with respect to convergence in all cases and diversity in most of the cases.

The first strategy has led to the best results from both convergence and diversity points

of view in case of SRN, KITA, and MOBES functions whereas the second strategy is more

efficient in terms of diversity in case of TNK and CONSTR functions only. The superiority

of the first strategy over the second is because the second strategy is mainly based on

the number of constraint violations when evaluating the infeasible solutions. This seems

not enough when handling constraints through involving infeasible solutions in the search

process. Another criterion should be focused on, together with the number of constraint

violations, which is the distance measure of the infeasible solutions to the feasible region
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boundary when evaluating infeasible solutions. By adding this new criterion, the second

constraint handling strategy might be improved.

However, the first strategy requires more computational time than the second strategy.

This can be explained by the fact that with the death penalty function, as long as an

infeasible solution is generated, a new one is recomputed until a feasible solution is ob-

tained.

The Wilcoxon rank sum test [34] with α = 0.05 is used to assess the difference between

the two constraint handling strategies. We can see from the p-values shown in Table 4.2

that there is a high significant statistical difference between the two compared strategies

in most of the cases except on the diversity metric for KITA and TNK functions.
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Figur 4.1: The true Pareto optimal and the obtained fronts of SRN and MOBES test

functions using the first strategy (left column) and the second strategy (right column).
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Figur 4.2: The true Pareto optimal and the obtained fronts of KITA, CONSTR, and

TNK test functions using the first strategy (left column) and the second strategy (right

column).
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Tabel 4.2: Convergence and diversity values of the used test functions for the first and

the second constraint handling strategies

Statistics
Convergence Diversity

Test Problem First Second P-value First Second P-value

SRN

Best 0.2916 0.3060

1.826 ∗ 10−4

0.2651 0.3407

1.816 ∗ 10−4

Worst 0.3072 0.3351 0.2987 0.3981

Average 0.2986 0.3198 0.2878 0.3789

Median 0.3000 0.3208 0.2883 0.3828

Std. 0.0051 0.0085 0.0113 0.0177

CONSTR

Best 0.0049 0.0130

1.726 ∗ 10−4

0.5702 0.3984

1.776 ∗ 10−4

Worst 0.0054 0.0184 0.7188 0.5486

Average 0.0051 0.0159 0.6537 0.4444

Median 0.0051 0.0158 0.6611 0.4431

Std. 0.0001 0.0016 0.0543 0.0439

KITA

Best 0.0555 0.0891

0.0017

0.2572 0.2139

0.9097

Worst 0.1127 0.2483 0.7021 0.8577

Average 0.0719 0.1399 0.4580 0.5017

Median 0.0606 0.1317 0.4302 0.4707

Std. 0.0210 0.0495 0.1313 0.2332

MOBES

Best 0.2535 0.3059

1.736 ∗ 10−4

0.3174 0.3326

1.726 ∗ 10−4

Worst 0.2651 0.3449 0.2788 0.4764

Average 0.2582 0.3281 0.3017 0.3899

Median 0.2575 0.3305 0.3025 0.3884

Std. 0.0040 0.0138 0.0147 0.0389

TNK

Best 0.0081 0.0084

4.288 ∗ 10−4

0.4319 0.3751

0.850

Worst 0.0094 0.0107 0.5187 0.5230

Average 0.0087 0.0097 0.4884 0.4690

Median 0.0089 0.0096 0.4995 0.4749

Std. 0.0005 0.0006 0.0305 0.0404
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4.4.4 Study of the Effect of the Probabilistic Selection Rules of

gbest and sbest positions

In this section, we investigate the impact of the probabilistic selection values (PG and PS)

on the performance of CMOQPSO with the second constraint handling strategy. Different

combinations of PG and PS have been set and tested on each test function. The statistical

results of convergence and diversity metrics were collected after conducting 5 runs for each

test function in each combination of (PG and PS) and presented in Table 4.4 until Table

4.9. The infeasible self best and global best combinations we used in our experiments are

presented in Table 4.3.

% of incorporation of infeasible sbest % of incorporation of infeasible gbest

30% 30%, 50%, and 70%

50% 30%, 50%, and 70%

70% 30%, 50%, and 70%

Tabel 4.3: The different combinations of infeasible sbest and gbest used in this study

In general, it can be seen statistically that this study did not find a significant dif-

ference between the results under the different combinations of infeasible self best and

infeasible global best.

With respect to the convergence metric, the 30% favouring infeasible global best always

has better performance with the different percentages of infeasible self best. Moreover, the

combination of incorporating 30% of infeasible self best and 30% of infeasible global best

shows better convergence values. On the other hand, the algorithm behaves very similar

from diversity point of view.
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As a result, we can say that CMOQPSO performs better when infeasible solutions

of self best or global best are less employed in the search process. Therefore, we tested

the algorithm behaviour when using only feasible self best positions, i.e., 0% of using

infeasible self best solutions. From Tables 4.10 and 4.11, we can observe that CMOQPSO

gained a slight improvement in its performance in terms of convergence and diversity. We

can attribute this fact to the constraint strategy technique we propose that is based on

the number of constraint violations only when dealing with the infeasible solutions, which

seems not enough. In order to get the advantage of incorporating the infeasible solutions

during the search process, we may need to improve the second constraint strategy by

adding the distance of infeasible solutions to the feasible region boundary as another

criterion when evaluating infeasible solutions.
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30% favouring infeasible gbest(Convergence)

30% favouring infeasible sbest

Max Min Mean Median Std

CONSTR 0.0176 0.0164 0.0170 0.0172 0.0005

MOBES 0.3172 0.2784 0.2945 0.2913 0.0162

SRN 0.3049 0.2843 0.2952 0.2991 0.0087

KITA 0.2158 0.0671 0.1228 0.1098 0.0615

TNK 0.0103 0.0089 0.0096 0.0096 0.0006

50% favouring infeasible gbest

CONSTR 0.0184 0.0130 0.0159 0.0158 0.0020

MOBES 0.3449 0.3094 0.3334 0.3395 0.0144

SRN 0.3351 0.3157 0.3230 0.3208 0.0072

KITA 0.2483 0.0891 0.1580 0.1541 0.0597

TNK 0.0116 0.0090 0.0107 0.0114 0.0012

70% favouring infeasible gbest

CONSTR 0.0250 0.0204 0.0235 0.0241 0.0019

MOBES 0.3426 0.2981 0.3197 0.3204 0.0188

SRN 0.3263 0.3122 0.3180 0.3138 0.0069

KITA 0.2284 0.0796 0.1516 0.1377 0.0696

TNK 0.0142 0.0101 0.0115 0.0111 0.0016

Tabel 4.4: Statistical results of convergence metric with 30% favouring infeasible sbest
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30% favouring infeasible gbest (Diversity)

30% favouring infeasible sbest

Max Min Mean Median Std

CONSTR 0.3666 0.3047 0.3317 0.3357 0.0242

MOBES 0.3366 0.3018 0.3213 0.3266 0.0169

SRN 0.3385 0.3079 0.3249 0.3265 0.0121

KITA 1.1130 0.7386 0.9289 1.0007 0.1640

TNK 0.5175 0.4742 0.4972 0.5004 0.0162

50% favouring infeasible gbest

CONSTR 0.5486 0.3984 0.4598 0.4478 0.0554

MOBES 0.4764 0.3590 0.4013 0.3926 0.0456

SRN 0.3932 0.3638 0.3801 0.3870 0.0137

KITA 0.8577 0.2405 0.5408 0.4983 0.2330

TNK 0.5188 0.4666 0.4935 0.4941 0.0185

70% favouring infeasible gbest

CONSTR 0.3507 0.3341 0.3413 0.3375 0.0073

MOBES 0.4839 0.3906 0.4321 0.4217 0.0370

SRN 0.4100 0.3360 0.3566 0.3450 0.0302

KITA 1.1239 0.7560 0.9794 1.0889 0.1693

TNK 0.5113 0.4542 0.4744 0.4688 0.0216

Tabel 4.5: Statistical results of diversity metric with 30% favouring infeasible sbest
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30% favouring infeasible gbest(Convergence)

50% favouring infeasible sbest

Max Min Mean Median Std

CONSTR 0.0191 0.0164 0.0177 0.0178 0.0011

MOBES 0.3252 0.2736 0.3065 0.3148 0.0214

SRN 0.3203 0.2954 0.3073 0.3093 0.0093

KITA 0.0984 0.0738 0.0887 0.0946 0.0105

TNK 0.0135 0.0089 0.0111 0.0109 0.0016

50% favouring infeasible gbest

CONSTR 0.0221 0.0185 0.0207 0.0210 0.0014

MOBES 0.3414 0.2984 0.3138 0.3050 0.0177

SRN 0.3411 0.3118 0.3208 0.3183 0.0117

KITA 0.1399 0.0707 0.0935 0.0866 0.0277

TNK 0.0129 0.0101 0.0117 0.0121 0.0011

70% favouring infeasible gbest

CONSTR 0.0255 0.0221 0.0242 0.0248 0.0013

MOBES 0.3464 0.3062 0.3270 0.3298 0.0159

SRN 0.3366 0.3200 0.3285 0.3297 0.0066

KITA 0.1842 0.0969 0.1412 0.1297 0.0393

TNK 0.0137 0.0099 0.0119 0.0120 0.0017

Tabel 4.6: Statistical results of convergence metric with 50% favouring infeasible sbest
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30% favouring infeasible gbest (Diversity)

50% favouring infeasible sbest

Max Min Mean Median Std

CONSTR 0.3479 0.2992 0.3266 0.3333 0.0214

MOBES 0.3790 0.3139 0.3508 0.3587 0.0266

SRN 0.3605 0.3126 0.3341 0.3344 0.0172

KITA 1.0097 0.7390 0.8309 0.7947 0.1074

TNK 0.5404 0.4442 0.4827 0.4884 0.0396

50% favouring infeasible gbest

CONSTR 0.3689 0.3096 0.3452 0.3564 0.0267

MOBES 0.4581 0.3531 0.3964 0.3816 0.0414

SRN 0.3608 0.3209 0.3377 0.3331 0.0164

KITA 0.9929 0.7320 0.8392 0.8360 0.1000

TNK 0.5779 0.4467 0.5207 0.5255 0.0477

70% favouring infeasible gbest

CONSTR 0.4238 0.2895 0.3488 0.3402 0.0487

MOBES 0.4678 0.4052 0.4407 0.4409 0.0252

SRN 0.3867 0.3301 0.3603 0.3686 0.0221

KITA 1.0826 0.6694 0.9155 0.9625 0.1528

TNK 0.5757 0.4070 0.5116 0.5455 0.0708

Tabel 4.7: Statistical results of diversity metric with 50% favouring infeasible sbest
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30% favouring infeasible gbest(Convergence)

70% favouring infeasible sbest

Max Min Mean Median Std

CONSTR 0.0222 0.0182 0.0203 0.0209 0.0016

MOBES 0.3437 0.2916 0.3220 0.3263 0.0193

SRN 0.3165 0.3047 0.3115 0.3137 0.0057

KITA 0.1726 0.0764 0.1193 0.1152 0.0346

TNK 0.0116 0.0108 0.0112 0.0112 0.0003

50% favouring infeasible gbest

CONSTR 0.0258 0.0215 0.0239 0.0238 0.0017

MOBES 0.3549 0.3270 0.3397 0.3382 0.0103

SRN 0.3499 0.3157 0.3293 0.3304 0.0137

KITA 0.2337 0.0933 0.1344 0.1119 0.0568

TNK 0.0130 0.0097 0.0118 0.0128 0.0015

70% favouring infeasible gbest

CONSTR 0.0304 0.0223 0.0261 0.0257 0.0029

MOBES 0.3709 0.3369 0.3564 0.3612 0.0140

SRN 0.3558 0.3275 0.3391 0.3402 0.0113

KITA 0.2588 0.1511 0.1857 0.1682 0.0429

TNK 0.0147 0.0104 0.0123 0.0121 0.0015

Tabel 4.8: Statistical results of convergence metric with 70% favouring infeasible sbest
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30% favouring infeasible gbest (Diversity)

70% favouring infeasible sbest

Max Min Mean Median Std

CONSTR 0.3511 0.3078 0.3262 0.3181 0.0204

MOBES 0.4114 0.3625 0.3859 0.3935 0.0207

SRN 0.3654 0.3215 0.3412 0.3358 0.0164

KITA 1.0160 0.7119 0.8686 0.8872 0.1141

TNK 0.4921 0.4358 0.4680 0.4739 0.0240

50% favouring infeasible gbest

CONSTR 0.3740 0.2987 0.3377 0.3509 0.0319

MOBES 0.4478 0.3945 0.4220 0.4218 0.0191

SRN 0.3906 0.3357 0.3585 0.3522 0.0221

KITA 1.0869 0.6563 0.8829 0.9294 0.1681

TNK 0.5140 0.4672 0.4903 0.4903 0.0185

70% favouring infeasible gbest

CONSTR 0.3654 0.3325 0.3482 0.3492 0.0118

MOBES 0.5261 0.4161 0.4580 0.4526 0.0413

SRN 0.4097 0.3333 0.3670 0.3679 0.0283

KITA 1.0718 0.8808 1.0045 1.0012 0.0773

TNK 0.5201 0.4696 0.4971 0.5085 0.0239

Tabel 4.9: Statistical results of diversity metric with 70% favouring infeasible sbest
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30% favouring infeasible gbest(Convergence)

0% favouring infeasible sbest

Max Min Mean Median Std

CONSTR 0.0153 0.0132 0.0143 0.0142 0.0008

MOBES 0.3065 0.2856 0.2994 0.3027 0.0087

SRN 0.2989 0.2919 0.2955 0.2947 0.0033

KITA 0.1182 0.0706 0.0841 0.0797 0.0197

TNK 0.0108 0.0089 0.0096 0.0094 0.0008

50% favouring infeasible gbest

CONSTR 0.0201 0.0183 0.0189 0.0188 0.0007

MOBES 0.3070 0.2966 0.3033 0.3059 0.0047

SRN 0.3121 0.2846 0.2971 0.2963 0.0098

KITA 0.1147 0.0878 0.0992 0.0923 0.0127

TNK 0.0121 0.0077 0.0097 0.0096 0.0016

70% favouring infeasible gbest

CONSTR 0.0246 0.0204 0.0221 0.0213 0.0017

MOBES 0.3405 0.3141 0.3260 0.3234 0.0114

SRN 0.3291 0.3093 0.3168 0.3164 0.0079

KITA 0.1427 0.0954 0.1200 0.1241 0.0225

TNK 0.0124 0.0088 0.0109 0.0118 0.0018

Tabel 4.10: Statistical results of convergence metric with 0% favouring infeasible sbest
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30% favouring infeasible gbest (Diversity)

0% favouring infeasible sbest

Max Min Mean Median Std

CONSTR 0.3596 0.3213 0.3316 0.3248 0.0159

MOBES 0.3049 0.2347 0.2768 0.2838 0.0258

SRN 0.2972 0.2642 0.2801 0.2865 0.0151

KITA 1.1295 0.7028 0.8263 0.7755 0.1742

TNK 0.5115 0.4516 0.4772 0.4765 0.0218

50% favouring infeasible gbest

CONSTR 0.3472 0.2900 0.3236 0.3246 0.0212

MOBES 0.3623 0.2912 0.3217 0.3189 0.0276

SRN 0.3196 0.2978 0.3093 0.3097 0.0081

KITA 1.0750 0.8080 0.8800 0.8265 0.1132

TNK 0.5357 0.4608 0.5026 0.5185 0.0338

70% favouring infeasible gbest

CONSTR 0.3359 0.2753 0.3002 0.2947 0.0269

MOBES 0.4607 0.3040 0.3485 0.3237 0.0647

SRN 0.3533 0.3228 0.3385 0.3434 0.0143

KITA 0.9797 0.7082 0.8161 0.8111 0.1038

TNK 0.5214 0.4290 0.4769 0.4829 0.0335

Tabel 4.11: Statistical results of diversity metric with 0% favouring infeasible sbest

4.5 Summary

In this chapter, we further developed and investigated the use of QPSO to handle constrai-

ned multi-objective optimization problems. Two strategies to deal with infeasible solutions

have been studied that consist of discarding versus keeping infeasible solutions. In both

cases, the extended QPSO has been successfully applied to CMOPs. The first strategy

has been found to achieve the best results in terms of convergence and diversity in most

of the cases. However, this comes at the expense of an additional O(RND) computation
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time per generation in comparison to the second constraint strategy. The second con-

straint strategy has the same scaling as the MOQPSO for unconstrained problems from

the previous chapter.
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KAPITEL 5

An Extensive Empirical Comparison of Different

Selection Strategies for Constrained and

Unconstrained Problems

This chapter provides an extensive study of the potential of MOQPSO under several

leader selection strategies on unconstrained and constrained test problems.1 Besides, a

comparative study of MOQPSO with MOPSO is performed.

We present a thorough comparison of various guide selection methods for global best

position, namely the proposed hybrid strategy, the crowding distance method, the sigma

method, and the random selection method in order to study the effect of combining the

sigma method and the crowding distance method in the proposed hybrid strategy and

to investigate which of these methods is likely to give the best performance in terms of

convergence, diversity and computational time. Furthermore, we replaced the QPSO in

1The content of this and the next chapter has been submitted to the following:
Heyam Al-Baity, Souham Meshoul, and Ata Kaban. Swarm Based Multi-Objective Optimization with
Quantum Behaved Particles. International Journal of Bio-Inspired Computation (IJBIC), submitted,
2014.
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our proposed MOQPSO with PSO in order to compare the behavior of both algorithms

in the same environment and under the same selection and archiving strategies.

A thorough experimental study has been conducted to gauge the behavior of MOQPSO

under different scenarios regarding the leader selection methods for unconstrained and

constrained test problems. In order to quantitatively assess the performance of MOQPSO,

three important questions have been addressed:

1. What is the impact of the leader selection strategies on the algorithm performance

in terms of convergence, diversity, and run time?

2. What is the impact of the constraint handling strategies on the performance of

MOQPSO with different leader selection methods?

3. Does QPSO behave better than PSO in multi-objective context and to what extent?

In the following, we will describe the experiments designed to answer each of above

questions along with a discussion of the obtained results.

5.1 Experiments

All experiments are evaluated using the same benchmark test problems employed in chap-

ters 3 and 4 for the same reasons explained in section 3.6.1 for unconstrained problems

and section 4.4 for constrained problems. For each test problem in each method, 30 inde-

pendent runs are performed.

5.1.1 Experiment1: Impact of Leader Selection Strategies

This experiment has been conducted to study the impact of the proposed hybrid leader se-

lection strategy on unconstrained and constrained MOQPSO compared to other selection

strategies. The idea is, this strategy selects the leader for a particular particle as the less
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crowded solution among the k nearest GBA members in terms of sigma values. When k

is too small (k = 1), it tends to behave like the sigma method and when k is too large

(k = |GBA|), it tends to behave like the crowding distance based selection method. We

recall that the objective behind the proposed design of the hybrid strategy is to achieve

a good convergence while preserving a good spread of solutions along the front. In this

experiment, MOQPSO has been run with the four different selection strategies, namely

1. The proposed hybrid selection strategy

2. The crowding distance based selection strategy

3. The sigma based selection strategy

4. The random selection strategy

All experiments are conducted using the unbounded archive strategy. In this experi-

ment, we followed the same parameter settings used in the previous chapters for uncon-

strained and constrained test problems as explained in sections 3.6.3 and 4.4.1. These

settings are summarized in Table 5.1 for unconstrained problems and Table 5.2 for con-

strained problems with β value ranging in [1.2 - 0.5] and k =10. The selection probability

PG is set to 0.5 and PS is set to 0.3.

The values of the convergence and the diversity metrics of the obtained fronts are

illustrated by statistical box plots as shown in Tables 5.3, 5.4, 5.5, and 5.6 respectively. The

meaning of those metrics are explained in section 4.4.3, page 104. In order to claim that

the statistical results of the proposed hybrid selection method are significantly different

from the other considered methods, Friedman test has been conducted. Friedman test is

a non-parametric statistical test used for detecting the difference between several related

samples [34][28]. The Friedman test is followed by a multicomparison test [28] in order
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to provide graphs that show the difference between each pair of methods. The p-values

obtained from the Friedman test at the significance level α = 0.05 are given with the

box plots in Table 5.3 - Table 5.6. The p-value is a probability that indicates if there

is a statistically significant difference between the related samples. If the p-value is less

than or equal to the significance level 0.05 then there is at least one of the samples differs

from the rest. Otherwise, there is no difference detected between the performance of the

compared methods. The graphs related to multicomparison tests are shown in Figure 5.1

for the convergence metric and in Figure 5.2 for the diversity metric.

Test function Population size Number of Iterations

FON 300 60

SCH 150 50

ZDT1 100 250

ZDT2 100 250

ZDT3 100 250

ZDT6 100 250

Tabel 5.1: Parameter settings of MOQPSO for experiments to compare different selection

methods on unconstrained test problems.

Test function Population size Number of Iterations

CONSTR 150 100

MOBES 150 150

SRN 150 150

KITA 250 100

TNK 250 100

Tabel 5.2: Parameter settings of CMOQPSO with the first and the second constraint

handling strategies for experiments to compare different selection methods.
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The results related to the convergence metric in Tables 5.3 and 5.4 show that the

hybrid strategy exhibits better performance than the random selection strategy and the

crowding distance strategy for all unconstrained test problems. According to the p-values

in Tables 5.3 and 5.4 and the multicomparison tests in Figure 5.1, there is a significant

difference between the hybrid strategy and the random strategy in all test functions except

for SCH function. On the other hand, the hybrid strategy achieves significantly different

results on SCH and FON compared to the crowding method and no significant difference

on ZDTs functions. Compared to the sigma method, the hybrid method achieves better

results in FON, SCH, and ZDT2 functions with a significant difference on ZDT2. The sig-

ma method has a slightly better performance on the remaining functions ZDT1, ZDT3,

and ZDT6 with no significant difference with the hybrid selection strategy. However, the

sigma method performed quite badly when solving ZDT2 test function. The algorithm

with sigma method finds it hard to converge to the true Pareto front due to the selection

pressure problem that the sigma method suffers from, which may cause premature conver-

gence. On the other hand, the hybrid method is the one which performs the best for this

test problem. In general, as expected, the hybrid method performs better than the crow-

ding and random selection methods and competes with the sigma method even achieves

better convergence results than the sigma method in some cases.

Regarding the diversity metric, as illustrated in Tables 5.5 and 5.6, MOQPSO with the

crowding method obtains the best diversity values. However, the proposed hybrid strategy

exhibits better results than with the other strategies for ZDT2 problem and intermediate

results for the remaining test problems. In other words, It performs better than random

and sigma methods in most of the test functions and performs slightly less than the crow-

ding method.
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With respect to the p-values in Tables 5.5 and 5.6 and the multicomparison tests

in Figure 5.2, the difference between the hybrid method and the other strategies was

significant in some cases (on SCH, ZDT3, and ZDT6) compared to the crowding method,

on ZDT1 compared to the random method and on ZDT2 compared to the sigma method

and not significant in the remaining cases.

In general, MOQPSO with the sigma method recorded good convergence yet poor diversity

in most of the test functions compared with hybrid and crowding strategies. On the other

hand, MOQPSO with the crowding distance method exhibited good diversity but poor

convergence in most of the test functions compared with hybrid and sigma strategies.

As for the run time, it can be seen from Figure 5.3 that the hybrid method has the

highest computational time for FON, ZDT2, and ZDT3 test functions when compared

to the other selection methods. On the other hand, the random method shows the least

computational time in all the test functions.
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Tabel 5.3: Box plots and p-values with respect to (p < α = 0.05) related to convergence

results on unconstrained functions (FON, SCH, ZDT1) with four selection methods based

on 1.Hybrid method, 2.Crowding distance, 3.Sigma method, 4.Random selection.
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Tabel 5.4: Box plots and p-values with respect to (p < α = 0.05) related to convergence

results on unconstrained functions (ZDT2, ZDT3, ZDT6) with four selection methods

based on 1.Hybrid method, 2.Crowding distance, 3.Sigma method, 4.Random selection.

126



Diversity p-value

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

1 2 3 4

Selection Methods

Fonsceca
Di

ve
rs

it
y 

me
tr

ic 0.1604

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

1 2 3 4

Selection Methods

Schaffer

Di
ve

rs
it

y 
me

tr
ic 0.0003

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

1 2 3 4

Selection Methods

ZDT1

Di
ve

rs
it

y 
me

tr
ic 0.0002

Tabel 5.5: Box plots and p-values with respect to (p < α = 0.05) related to diversity

results on unconstrained functions (FON, SCH, ZDT1) with four selection methods based

on 1.Hybrid method, 2.Crowding distance, 3.Sigma method, 4.Random selection.
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Tabel 5.6: Box plots and p-values with respect to (p < α = 0.05) related to diversity

results on unconstrained functions (ZDT2, ZDT3, ZDT6) with four selection methods

based on 1.Hybrid method, 2.Crowding distance, 3.Sigma method, 4.Random selection.
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Figur 5.1: Graphs of multicomparison tests of selection methods based on Friedman sta-

tistics on convergence values for unconstrained functions. Overlapping intervals indicate

no significant difference
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Figur 5.2: Graphs of multicomparison tests of selection methods based on Friedman sta-

tistics on diversity values for unconstrained functions. Overlapping intervals indicate no

significant difference

130



200

300

400

500

600

700

800

1 2 3 4

Selection Methods

Fonsceca

C
P
U
 
t
i
m
e

200

250

300

350

400

450

500

550

600

650

700

1 2 3 4

Selection Methods

Schaffer

C
P
U
 
t
i
m
e

200

300

400

500

600

700

800

1 2 3 4

Selection Methods

ZDT1

C
P
U
 
t
i
m
e

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4

Selection Methods

ZDT2

C
P
U
 
t
i
m
e

300

400

500

600

700

800

900

1000

1100

1200

1 2 3 4

Selection Methods

ZDT3

C
P
U
 
t
i
m
e

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4

Selection Methods

ZDT6

C
P
U
 
t
i
m
e

Figur 5.3: Box plots of CPU time for unconstrained functions with four selection methods

based on 1. Proposed hybrid method, 2. Crowding distance, 3. Sigma method, 4. Random

selection.
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For constrained problems, we decided to employ the second constraint handling stra-

tegy in this study since the first constraint handling strategy requires more computational

time than the second constraint handling strategy and exhibits just a slightly better per-

formance than the second constraint handling strategy. This has been demonstrated in

section 4.4.3. Table 5.7 - Table 5.10 illustrate the convergence and the diversity results

obtained in the form of box plots together with the p-values when applying the first and

the second constraint handling methods with each of the leader selection strategies re-

spectively.

For the first constraint handling strategy, it can be clearly seen from Table 5.7 that

CMOQPSO exhibits better convergence results with sigma method and worse convergence

results with crowding method. However, the hybrid method outperforms its counterparts

in MOBES function and competes with sigma method in achieving best convergence

values as in CONSTR and KITA test functions. This fact can be corroborated by the

multicomparison test graphs in Figure 5.4 that shows a significant difference between the

hybrid and the crowding methods in all cases. In addition, CMOQPSO with the crowding

method for TNK test function presents better values in convergence metric than with the

other selection methods. This can be attributed to the discontinuous nature of the TNK

Pareto front. According to the p-values that have been recorded in Table 5.7 for the con-

vergence metric with the first constraint handling strategy, there is a significant difference

between the selection methods for all constrained test functions at the significance level

α = 0.05.

For the diversity metric, as seen in Table 5.8, CMOQPSO shows better performance with

the crowding method than with the rest on most of the test functions. The hybrid method

is the second best performer in most cases. An exception for TNK function can be obser-

ved where CMOQPSO with the hybrid method performs better than with the crowding

method. The p-values of the diversity metric presented in Table 5.8 show that there is a
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significant difference between the selection methods at the significance level α = 0.05 for

all constrained test functions except for TNK function where p-value = 0.3561.

With respect to the second constraint handling strategy, we can observe from the box

plots presented in Tables 5.9 and 5.10 that CMOQPSO gives best convergence results

with the random strategy for CONSTR, SRN, and KITA functions and worst convergen-

ce results with the crowding method for CONSTR and SRN. In general, the proposed

hybrid selection method competes with the sigma and the random selection strategies in

achieving best convergence and competes with the crowding selection method in giving

best diversity. An exception can be noticed for MOBES and KITA test functions where

CMOQPSO with the crowding method performs slightly better in terms of convergence

compared to the hybrid and sigma selection strategies and slightly worse in diversity com-

pared to the sigma method in the case of MOBES function. However, the difference is not

significant as shown by the p-values in Table 5.9 and multicomparison tests in Figure 5.5.

Regarding the run time, Figure 5.6 displays the box plots related to the CPU time of

the first and the second constraint handling strategies. Generally, it is apparent that the

second constraint strategy requires less computational time than the first constraint stra-

tegy. This is due to the fact that the first constraint strategy deals only with feasible

solutions and neglects any infeasible ones generated during the search process. Therefo-

re, an extra time is spent in generating feasible solutions. For both constraint handling

strategies, the hybrid and the sigma methods require more computational time than the

crowding and the random selection methods except on CONSTR test function where the

random method has a higher computational time than the remaining methods for the

second constraint handling strategy.

In general, the obtained results for both constrained and unconstrained problems cor-

roborate the fact that the hybrid strategy achieves a balance between convergence and

diversity compared to the sigma based strategy and the crowding distance based strategy.
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Tabel 5.7: Box plots and p-values with respect to (p < α = 0.05) related to convergence

results for constrained functions with first constraint strategy on four selection methods

based on 1.Hybrid method, 2.Crowding distance, 3.Sigma method, 4.Random selection.
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Tabel 5.8: Box plots and p-values with respect to (p < α = 0.05) related to diversity

results for constrained functions with first constraint strategy on four selection methods

based on 1.Hybrid method, 2.Crowding distance, 3.Sigma method, 4.Random selection.

135



Convergence p-value

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

1 2 3 4

Selection Methods

CONSTR second strategy

Co
nv

er
ge

nc
e 

me
tr

ic

4.6694 ∗ 10−6

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

1 2 3 4

Selection Methods

MOBES second strategy

Co
nv

er
ge

nc
e 

me
tr

ic

0.1176

0.3

0.31

0.32

0.33

0.34

0.35

0.36

1 2 3 4

Selection Methods

SRN second strategy

Co
nv

er
ge

nc
e 

me
tr

ic

0.0109

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4

Selection Methods

KITA second strategy

Co
nv

er
ge

nc
e 

me
tr

ic

0.0732

0.009

0.0095

0.01

0.0105

0.011

0.0115

0.012

0.0125

0.013

1 2 3 4

Selection Methods

TNK second strategy

Co
nv

er
ge

nc
e 

me
tr

ic

0.2096

Tabel 5.9: Box plots and p-values with respect to (p < α = 0.05) related to convergence

results for constrained functions with second constraint strategy on four selection methods

based on 1.Hybrid method, 2.Crowding distance, 3.Sigma method, 4.Random selection.
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Tabel 5.10: Box plots and p-values with respect to (p < α = 0.05) related to diversity

results for constrained functions with second constraint strategy on four selection methods

based on 1.Hybrid method, 2.Crowding distance, 3.Sigma method, 4.Random selection.
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Figur 5.4: Graphs of multicomparison tests of selection methods based on Friedman stati-

stics on convergence values for the first constraint strategy. Overlapping intervals indicate

no significant difference.
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tistics on convergence values for the second constraint strategy. Overlapping intervals

indicate no significant difference.
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Figur 5.6: Box plots of CPU time on constrained functions with four selection methods based on 1.Hybrid method,

2.Crowding distance, 3.Sigma method, 4.Random selection. First constraint strategy (left column) and second constraint

strategy (right column).
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5.1.2 Experiment2: MOQPSO vs MOPSO

In order to compare QPSO with PSO in multi-objective optimization context the fol-

lowing procedure has been employed. MOPSO has been implemented with the same le-

ader selection strategy (the proposed hybrid strategy) and the same archiving methods

(redundancy removal for unconstrained problems and unbounded archive for constrained

problems). The archiving methods will be explained in chapter 6. We used the proposed

second constraint handling strategy, described in section 4.2.2, to handle the constrained

test problems in this experiment. Note that like QPSO, a basic version of PSO has been

considered that is no mutation operator has been introduced. In Tables 5.13 and 5.14,

we summarize the results of the convergence and the diversity metrics for constrained

and unconstrained problems obtained over 10 runs for each algorithm. Furthermore, to

study the significance of differences between the two algorithms, Wilcoxon rank sum test

equivalent to the Mann-Withney U test has been performed [34]. The meaning of these

metrics is explained in section 4.4.3. For PSO parameters, we adopted the most commonly

used settings in the literature [22]. In all cases, the PSO parameters have been set as fol-

lows: W=0.4, C1=1.5, and C2=1.5. The number of iterations and the number of particles

used in this experiment are presented in Table 5.11 for unconstrained test functions and

Table 5.11 for constrained test problems with PG= 0.5 and PS= 0.3. These settings were

obtained based on the same reasoning explained in sections 3.6.3 and 4.4.1.

From the results displayed in Tables 5.13 and 5.14 we can clearly observe the high com-

petitiveness of QPSO with PSO. For unconstrained problems, MOPSO performs slightly

better than MOQPSO in terms of convergence. However, MOPSO performs very poorly

in the case of ZDT2 function due to the premature convergence problem which makes

the algorithm converge to a single solution. That is why no results have been reported

in Table 5.14 for ZDT2. While MOQPSO is less likely to get stuck in a local optimum
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when solving ZDT2 and hence it achieves better results. In addition, MOQPSO performs

slightly better than MOPSO for SCH function.

From diversity point of view, MOQPSO outperforms MOPSO in all ZDT functions

and achieves competitive results in FON and SCH functions.

For constrained functions, we can notice a slight advance of MOPSO over MOQPSO

except for SRN and CONSTR where MOQPSO shows better convergence results in terms

of average and median.

In all cases, MOQPSO achieves results that are significantly different from those of

MOPSO except in the case of diversity of FON and MOBES fronts and convergence of

CONSTR front.

Test function Population size Number of Iterations β k

FON 300 60 1.2 - 0.5 10

SCH 150 50 1.2 - 0.5 10

ZDT1 100 250 1.2 - 0.5 10

ZDT2 100 250 1.2 - 0.5 10

ZDT3 100 250 1.2 - 0.5 10

Tabel 5.11: Parameter settings of MOPSO and MOQPSO for unconstrained test problems.

Test function Population size Number of Iterations β k
CONSTR 150 500 1.2 - 0.5 10
MOBES 150 500 1.2 - 0.5 10

SRN 150 500 1.2 - 0.5 10

Tabel 5.12: Parameter settings of MOPSO and MOQPSO with second constraint handling
strategy for the constraint test functions.
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Statistics
Convergence Diversity

Test Problem MOPSO MOQPSO P-value MOPSO MOQPSO P-value

SRN

Best 0.3063 0.3060

1.823 ∗ 10−4

0.3360 0.3407

1.816 ∗ 10−4

Worst 0.3326 0.3351 0.3799 0.3981

Average 0.3217 0.3198 0.3587 0.3789

Median 0.3236 0.3208 0.3628 0.3828

Std. 0.0086 0.0085 0.0139 0.0177

CONSTR

Best 0.0123 0.0130

0.545

0.3091 0.3984

1.827 ∗ 10−4

Worst 0.0196 0.0184 0.3764 0.5486

Average 0.0164 0.0159 0.3383 0.4444

Median 0.0173 0.0158 0.3377 0.4431

Std. 0.0025 0.0016 0.0216 0.0439

MOBES

Best 0.2837 0.3059

1.776 ∗ 10−4

0.3604 0.3326

0.6770

Worst 0.3198 0.3449 0.4530 0.4764

Average 0.3021 0.3281 0.3988 0.3899

Median 0.3013 0.3305 0.3874 0.3884

Std. 0.0126 0.0138 0.0355 0.0389

Tabel 5.13: Results of MOPSO and MOQPSO for constrained test functions in terms of statistics

on convergence, diversity and the p-value with respect to (p < α = 0.05).
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Statistics
Convergence Diversity

Test Problem MOPSO MOQPSO P-value MOPSO MOQPSO P-value

FON

Best 0.00010 0.0019

1.688 ∗ 10−4

0.2159 0.1901

0.3057

Worst 0.00089 0.0024 0.2575 0.2846

Average 0.00093 0.0021 0.2398 0.2448

Median 0.00095 0.0021 0.2430 0.2531

Std. 0.00004 0.0002 0.0119 0.0325

SCH

Best 0.0033 0.0030

1.086 ∗ 10−4

0.2056 0.2238

0.0072

Worst 0.0035 0.0032 0.2398 0.2561

Average 0.0034 0.0031 0.2223 0.2382

Median 0.0034 0.0031 0.2218 0.2313

Std. 0.0001 0.0001 0.0096 0.0125

ZDT1

Best 0.0034 0.0108

1.786 ∗ 10−4

0.4865 0.2315

1.786 ∗ 10−4

Worst 0.0076 0.0135 0.9183 0.2782

Average 0.0057 0.0122 0.7478 0.2571

Median 0.0060 0.0123 0.7425 0.2574

Std. 0.0019 0.0010 0.1249 0.0151

ZDT2

Best - 0.0111

6.340 ∗ 10−4

- 0.1897

6.386 ∗ 10−5

Worst - 0.0136 - 0.2644

Average - 0.0126 - 0.2313

Median - 0.0129 - 0.2351

Std. - 0.0009 - 0.0221

ZDT3

Best 0.0034 0.0046

1.278 ∗ 10−4

0.8006 0.5244

1.285 ∗ 10−4

Worst 0.0036 0.0058 0.8186 0.6694

Average 0.0035 0.0051 0.8132 0.5967

Median 0.0034 0.0051 0.8186 0.5863

Std. 0.0001 0.0004 0.0087 0.0527

Tabel 5.14: Results of MOPSO and MOQPSO for unconstrained test functions in terms of

statistics on convergence, diversity and the p-value with respect to (p < α = 0.05).
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5.2 Summary

From the experiments discussed in this chapter, we can draw the following conclusions:

• For unconstrained test problems:

– The MOQPSO with the sigma method exhibits best convergence results yet

low diversity in most of the test functions. On the other hand, MOQPSO with

the crowding method records best diversity values yet poor convergence in most

of the test functions.

– The proposed hybrid method competes with the sigma method in obtaining

best convergence results and competes with the crowding method in achieving

best diversity values. In other words, the hybrid method shows its ability in

maintaining a balance in obtaining good convergence and good diversity values.

The hybrid method even exhibits better convergence results than the sigma

method in some of the test functions specially in the case of ZDT2 function

where the sigma method failed to solve this function due to the premature

convergence problem.

– Regarding the computational time, the proposed hybrid method has the highest

computational time in some of the test functions. On the other hand, the

random method shows the least computational time in all of the test functions.

• For constrained test problems:

– The first and the second constraint handling strategies show similar results in

that CMOQPSO with the sigma method exhibits better convergence results

and CMOQPSO with the crowding method shows better diversity results.
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– As expected, the proposed hybrid method competes with the sigma method

in achieving best convergence and competes with the crowding method in ob-

taining best diversity values. It outperforms the crowding method in terms of

convergence and outperforms the sigma method in terms of diversity.

– The first strategy outperforms the second strategy in obtaining best conver-

gence and diversity results in all of the test functions.

– The first strategy requires more computational time than the second constraint

strategy.

• For comparison of PSO against QPSO:

– No variant has shown to be the best in all unconstrained and constrained test

problems from both convergence and diversity points of views.

– MOPSO failed to solve ZDT2 test function due to the premature convergence

problem while MOQPSO obtained the best performance when solving the same

function.

It can be clearly observed that the rationale behind the proposed hybrid selection

strategy in achieving good convergence using the sigma method while maintaining good

diversity using the crowding distance method has been experimentally confirmed. Our

experiments have shown that the best convergence results have been recorded with the

sigma selection method and the best diversity results have been obtained with the crow-

ding selection method. However, the sigma method fails to obtain good diversity and the

crowding method fails to maintain good convergence.
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KAPITEL 6

An Extensive Empirical Study of the Impact of

Different Archiving Strategies for Constrained and

Unconstrained MOPs

In this chapter,1 we will introduce a new unbounded archive strategy for handling the

archive size of the non-dominated solutions, which we called redundancy removal. This

strategy will be described and then compared with other archiving methods, namely

the unbounded archive method, the clustering method, the crowding method, and the

maximin method. An extensive experimental study is performed to study the influence

of several archiving methods on the performance of proposed MOQPSO with respect to

convergence, diversity, and computational time. The experiments are designed to answer

the following research questions:

1. What is the impact of the archiving strategies on the algorithm performance in

terms of convergence, diversity, and CPU time?

1A shorter version of the work in this chapter is included in the following submission:
Heyam Al-Baity, Souham Meshoul, and Ata Kaban. Swarm Based Multi-Objective Optimization with
Quantum Behaved Particles. International Journal of Bio-Inspired Computation (IJBIC), submitted,
2014.
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2. What is the impact of the constraint handling strategies on the performance of

MOQPSO with the different archiving methods?

6.1 Handling Archive Size

The archive size of the non-dominated solutions is a critical parameter as it influences the

performance of the algorithm and the quality of the obtained fronts. If Lt = |GBAt| is the

size of the archive at iteration t, the number of tests for domination in the Update-Archive

procedure, described in section 3.4, in the worst case scenario is equal to (N ∗ Lt) where

N is the number of particles. The archive can be of bounded or unbounded size. The

unbounded archive may lead to good quality Pareto fronts at the expense of a growing

run time as the size would grow large through iterations. On the other hand, with a bo-

unded archive, the number of the stored non-dominated solutions will be reduced to the

bounding size. In this case, an archiving strategy is required to filter the archive in a way

to maintain its size fixed whenever the archive becomes full. Therefore, the matter is how

to determine a suitable size of the archive to obtain a good balance between run time

and quality of the obtained fronts. Hence, with a bounded size, the algorithm may be less

time demanding provided that the used archiving strategy itself is not computationally

expensive. However, limiting the size of the archive may impact the quality of the obtai-

ned solutions [77][79]. There are several bounded archiving methods in the literature. A

review can be found in [61][79].

To study the impact of the archiving methods on our proposed MOQPSO, we consi-

dered three popular state-of-the-art archiving methods, namely clustering [118], crowding

[32] and maximin [69]. The details of clustering and maximin archiving methods are gi-

ven by the two procedures described shortly in Algorithms 16 and 17. For the crowding

method, the principle is to sort solutions according to their crowding distance values
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computed as described in section 3.3 and keep those solutions that are less crowded.

6.1.1 The Proposed Redundancy Removal Archiving Strategy

In this section, we propose a new simple yet effective method to handle the archive size

of the non-dominated solutions, which we call redundancy removal archiving strategy.

Its aim is to reap advantage from both policies, i.e., bounded and unbounded size. That

is, getting the advantage of the unbounded archive in reaching good convergence to the

Pareto front and maintaining diversity while reducing the computational time of the

algorithm and providing less number of final non-dominated solutions compared to the

unbounded policy. The underlying idea is to use an unbounded archive size while keeping

the archive redundancy free. That is why we call this archiving strategy as redundancy

removal method. Periodically during the search process, the archive undergoes a filtering

operation that removes redundant solutions. A solution is said to be redundant depending

on its closeness to the other solutions in the archive based on a threshold value. The

metric used to compute the closeness between solutions is the usual Euclidean distance.

The outline of the redundancy removal archiving method is described in Algorithm 15.

Algorithm 15 Redundancy-Removal (A)

1: Input: Current set of non-dominated solutions A
2: NewArchive(1) = A(1)
3: for i = 2 to |A| do
4: Found = FALSE
5: for j = 1 to |NewArchive| do
6: if Norm(A(i) − NewArchive(j)) ≺ Threshold then
7: FOUND = TRUE
8: Break { exit For j loop if redundant solution is found }
9: end if

10: end for
11: if NotFound then
12: NewArchive(|NewArchive| + 1) = A(i) {insert A(i) solution into NewArchive}
13: end if
14: end for
15: Output : NewArchive
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Algorithm 16 Clustering (A)[79]
1: Input: Current set of non-dominated solutions A

2: Z = |A|;

3: while (Z > MaxSize ) do

4: x1, x2 = FindClosestPair(A)

5: d1 = FindSecondClosest(A, x1)

6: d2 = FindSecondClosest(A, x2)

7: if d1 < d2 then

8: remove x1 from A

9: else

10: remove x2 from A

11: end if

12: Z = Z − 1

13: end while

Algorithm 17 Maximin(A)[79]
1: Input: Current set of non-dominated solutions A

2: Z = |A|

3: for i =1 to Z do

4: for j =1 to Z do

5: if j 6= i then

6: for k =1 to M do

7: Difference(k) = Fi(k) − Fj(k) { M is the number of objectives}

8: end for

9: MinV alues(j) = min(Difference)

10: end if

11: A(i).MaximinV alue = max(MinV alues)

12: end for

13: end for

14: Sort (A, MaximinValue, Ascending)

15: A = A(1 : MaxSize) {MaxSize is the archive size}
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6.2 Time Complexity Analysis of the Archiving

Methods

In this section, we will describe the time complexity of the archiving methods used in this

study.

Time Complexity of Redundancy Removal Archiving Method

The time complexity of the proposed redundancy removal algorithm can be measured in

terms of the number of comparisons used to detect redundancy. According to Algorithm

15, this number is as follows:

(1 + 2 + 3 + · · · + (L − 1)) ∗ M = ML(L − 1)/2

where L is the archive size and M is the number of objective functions. Therefore

the overall time complexity of redundancy removal is O(ML2). It should be noted that

redundancy removal occurs at periods of time and not at each iteration of the algorithm.

That is, it is performed (Maxiter/period) times where Maxiter is the maximum number

of iterations and period is the number of iterations up to which redundancy removal is

triggered.

Time Complexity of Clustering Archiving Method

The clustering archiving algorithm has been described in Algorithm 16. According to this

algorithm, MaxSize operations are performed to find the closest pairs where MaxSize

is the archive size. At the beginning, we need to identify the smallest distance among

L(L−1)/2, then among (L−1)(L−2)/2, and so on until among MaxSize(MaxSize+1)/2.
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Therefore, the overall time complexity of this algorithm is:

O((
1

2
L(L − 1) +

1

2
(L − 1)(L − 2) + · · · +

1

2
MaxSize(MaxSize + 1)) ∗ M)

which can be approximated by O(ML2).

Time Complexity of Maximin Archiving Method

The maximin archiving algorithm described in Algorithm 17 shows that the main opera-

tions consist of calculating the maximin values of each archive member and then sorting

them according to these values. The time complexity of computing the maximin values

is O(ML2) and the time complexity of the sorting process is O(LlogL). Therefore, the

overall time complexity of the maximin algorithm is O(ML2).

Time Complexity of Crowding Archiving Method

The crowding based archiving procedure consists of computing the crowding distance va-

lue for each archive member the complexity of which is O(MLlogL) then sorting them

in descending order according to the crowding distance values the complexity of which

is O(LlogL). Therefore, the time complexity of the crowding based archiving method is

O(MLlogL + LlogL), which leads to O(MLlogL) [32].

As can be seen, all archiving strategies scale linearly with the number of objective

functions M . However, the crowding based archiving strategy scales quasi-linearly with

the archive size while the other strategies have a quadratic scaling with the archive size.

Therefore, better time complexity is achieved with the crowding based archiving strategy.
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6.3 Experiment: Impact of archiving methods

In order to study the behavior of MOQPSO under varying archiving strategies, this expe-

riment has been conducted with the aim to compare its performance with five archiving

strategies:

1. The unbounded archive size strategy

2. The clustering archive strategy

3. The crowding archive strategy

4. The maximin archive strategy

5. The proposed redundancy removal archive strategy

We used in this study the same test functions as in the previous chapters for the same

reasons explained in section 3.6.1 for unconstrained problems and section 4.4 for constrai-

ned problems. All experiments are conducted following the same parameter configurations

of the experiments of the leader selection strategies presented in section 5.1.1 with archive

size limit =100. The hybrid selection method is the method employed in these experiments

for selecting the gbest particle. For each scenario, we keep the archiving strategy as the

only difference between the five scenarios. Convergence, diversity, and CPU time have

been recorded for both unconstrained and constrained test problems. Friedman tests have

been performed as well as the multicomparison tests in order to obtain the statistical

significance of the differences between the archiving methods. Table 6.1 - Table 6.4 show

the box plots related to convergence and diversity metrics for unconstrained functions

respectively together with the obtained p-values at the significance level α = 0.05. The

meaning of the metrics used is explained in section 5.1.1, page 121.
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Tabel 6.1: Box plots and p-values with respect to (p < α = 0.05) related to convergence results

on unconstrained functions (FON, SCH, ZDT1) with five archiving methods numbered as 1.

Unbounded, 2. Clustering, 3. Crowding 4. Maximin and 5. Redundancy removal
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Tabel 6.2: Box plots and p-values with respect to (p < α = 0.05) related to convergence results

on unconstrained functions (ZDT2, ZDT3, ZDT6) with five archiving methods numbered as 1.

Unbounded, 2. Clustering, 3. Crowding 4. Maximin and 5. Redundancy removal
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Tabel 6.3: Box plots and p-values with respect to (p < α = 0.05) related to diversity results

on unconstrained functions (FON, SCH, ZDT1) with five archiving methods numbered as 1.

Unbounded, 2. Clustering, 3. Crowding 4. Maximin and 5. Redundancy removal.
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Tabel 6.4: Box plots and p-values with respect to (p < α = 0.05) related to diversity results

on unconstrained functions (ZDT2, ZDT3, ZDT6) with five archiving methods numbered as 1.

Unbounded, 2. Clustering, 3. Crowding 4. Maximin and 5. Redundancy removal.
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We can see from these box plots that no variant has shown to be the best of all un-

constrained problems from both convergence and diversity points of view. In terms of

convergence, MOQPSO with the unbounded archive size strategy and maximin strate-

gy exhibits better results in general compared with the other strategies. As expected,

MOQPSO with the proposed redundancy removal archiving method has achieved inter-

mediate results (better than clustering and crowding methods and less than unbounded

and maximin methods) for all test problems except for ZDT3 where it presents the best

result compared to all other strategies. The clustering and the crowding strategies alterna-

te to occupy the fourth and the fifth position in the performance ordering. The p-values

that have been recorded for the convergence metric in all unconstrained test functions

and shown in Tables 6.1 and 6.2 present a significant difference between methods at the

significance level α = 0.05.

From the diversity point of view, it comes out that the unbounded archive size and the

clustering strategies compete for the first and second ranks while maximin and crowding

for the fourth and fifth ranks as shown in Tables 6.3 and 6.4. An exception can be clearly

noticed for ZDT6 test function where maximin method presents the best performance

followed by the crowding method. The redundancy removal method achieves intermedi-

ate results in general. This is very interesting because redundancy removal succeeded in

achieving a good balance between convergence and diversity for almost all unconstrained

functions with a remarkable reduction in CPU time when compared to the unbounded

archive size strategy as shown in Figure 6.1. The p-values that have been recorded for

the diversity metric in all unconstrained test functions and displayed in Tables 6.3 and

6.4 reveal that there is a significant difference between methods for all unconstrained test

problems on the diversity metric at the significance level α = 0.05 except for ZDT3 test

problem (p-value= 0.42).
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Figur 6.1: Box plots of CPU time for unconstrained functions with five archiving met-

hods based on 1. Unbounded archive, 2. Clustering, 3. Crowding, 4. Maximin, and 5.

Redundancy removal.
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Analysis of the multicomparison graphs in Figures 6.2 and 6.3 has lead to the fol-

lowing observations: No significant difference has been found from both convergence and

diversity points of view between redundancy removal and unbounded archive strategies,

between redundancy removal strategy and maximin strategy except on diversity of SCH

fronts and between redundancy removal strategy and clustering method except on conver-

gence of SCH and ZDT3 fronts. Furthermore, the crowding archiving method exhibits no

significant difference compared to the redundancy removal method in case of convergence

on ZDT1 and ZDT6 fronts and in case of diversity on SCH, ZDT3 and ZDT6 fronts.

In general, when considering the bounded archive size methods (clustering, crowding and

maximin), MOQPSO achieves better convergence with the maximin method and better

diversity with the clustering method. For the redundancy removal method, competitive

results have been obtained when compared with the results of the unbounded method

with an advantage of gain in CPU time over the unbounded archive size strategy.

Regarding constrained problems, with the first constraint handling strategy it can be

noticed from Table 6.5 that CMOQPSO with the unbounded archive method presents

better convergence metric values in the case of CONSTR, SRN, and KITA test functions.

Whereas, maximin method exhibits better performance in convergence metric on MOBES

and TNK test functions. The redundancy removal method shows intermediate results in

general when compared to the remaining archiving methods. Actually, it performs better

than the maximin method in some cases such as CONSTR, SRN, and KITA functions.

Based on the p-values recorded for the convergence metric and shown in Table 6.5, there

is a significant difference between the archiving methods at the significance level α =

0.05 for all constrained test functions. According to the multicomparison test graphs

shown in Figure 6.4, there is no significant difference between the unbounded archive and

redundancy removal strategies for all constrained test problems.
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Figur 6.2: Graphs of multicomparison tests of archiving methods based on Friedman sta-

tistics on convergence values for unconstrained functions. Overlapping intervals indicate

no significant difference
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Tabel 6.5: Box plots and p-values with respect to (p < α = 0.05) related to convergence results

for constrained functions with first constraint strategy on five archiving methods based on 1.

Unbounded, 2. Clustering, 3. Crowding, 4. Maximin, and 5. Redundancy removal.
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Figur 6.4: Graphs of multicomparison tests of archiving methods based on Friedman

statistics on convergence values for the first constraint strategy. Overlapping intervals

indicate no significant difference.
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For the diversity metric, Table 6.6 presents the diversity values of the constrained

problems with the first strategy. Best results have been recorded for both the clustering

method (on MOBES and SRN) and the crowding method (on CONSTR, KITA, and

TNK). The redundancy removal exhibits intermediate results in all cases. There is also

no significant difference between the unbounded archive and redundancy removal method

based on the multicomparison test graphs in Figure 6.5. Furthermore, the redundancy

removal method requires less computational time than the unbounded archive method.

This can be clearly seen in the box plots of the CPU time in Figure 6.6.

For the second strategy, we can see from Table 6.7 that MOQPSO with the unbo-

unded archive method exhibits better convergence results especially in the case of SRN,

CONSTR, and TNK functions. The maximin method shows good convergence in MO-

BES function whereas the redundancy removal method achieves in general intermediate

results compared to the other archiving methods. For example, it performs better than

maximin in SRN and KITA functions. However, no significant difference has been found

between unbounded archive strategy and redundancy removal strategy as shown by the

multicomparison test graphs in Figure 6.7 except on convergence of CONSTR front.

From diversity point of view and according to the box plots shown in Table 6.8, CMOQP-

SO with the redundancy removal method achieves intermediate results in all cases. Best

diversity results have been achieved with either clustering (SRN, KITA, and MOBES fun-

ctions) or crowding (CONSTR function). No significant differences between redundancy

removal and unbounded archive strategies have been detected except on the SRN function

as shown in Figure 6.8. However, from the box plots of CPU time in Figure 6.9 we can

see that the redundancy removal method requires a CPU time which is up to three times

less than that of the unbounded archive method with a slight gain in convergence quality

achieved by this latter.
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Tabel 6.6: Box plots and p-values with respect to (p < α = 0.05) related to diversity results

for constrained functions with first constraint strategy on five archiving methods based on 1.

Unbounded, 2. Clustering, 3. Crowding, 4. Maximin, and 5. Redundancy removal.
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no significant difference.
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Figur 6.6: Box plots of CPU time for constrained functions with first constraint strategy

on five archiving methods based on 1. Unbounded, 2. Clustering, 3. Crowding, 4. Maximin,

and 5. Redundancy removal.
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Tabel 6.7: Box plots and p-values with respect to (p < α = 0.05) related to convergence results

for constrained functions with second constraint strategy on five archiving methods based on 1.

Unbounded, 2. Clustering, 3. Crowding, 4. Maximin, and 5. Redundancy removal.
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statistics on convergence values for the second constraint strategy. Overlapping intervals

indicate no significant difference.
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Tabel 6.8: Box plots and p-values with respect to (p < α = 0.05) related to diversity results

for constrained functions with second constraint strategy on five archiving methods based on 1.

Unbounded, 2. Clustering, 3. Crowding, 4. Maximin, and 5. Redundancy removal.
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Figur 6.8: Graphs of multicomparison tests of archiving methods based on Friedman

statistics on diversity values for the second constraint strategy. Overlapping intervals

indicate no significant difference.
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Figur 6.9: Box plots of CPU time for constrained functions with second constraint strategy

on five archiving methods based on 1. Unbounded, 2. Clustering, 3. Crowding, 4. Maximin,

and 5. Redundancy removal.
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Generally, the first constraint handling strategy performs better than the second con-

straint handling strategy with respect to the convergence metric for all test problems and

with respect to the diversity metric for most of the test functions. However, the time

complexity of the first constraint strategy is higher than the second constraint strategy.

To recapitulate, from the above results the conclusion is that the proposed redundancy

removal strategy helps archiving the same quality of solutions as the unbounded archive

strategy with a considerable gain in CPU time for both constrained and unconstrained

test problems.

The growth of the archive size through iterations has been also recorded. Figures 6.10, 6.11,

and 6.12 show the archive size growth for both unconstrained and constrained functions

respectively. As it can be seen from these figures, the unbounded archive size method in-

duces a rapid growth while with the clustering, maximin and crowding archiving methods

the archive size grows till the limit is reached. The redundancy removal strategy leads to

a zigzag growth that lies in general between those of the unbounded archive strategy on

one hand and the other bounded methods on the other hand.

174



0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

Size growth
FON function

Iterations

G
B
A
 
s
i
z
e

 

 

Clustering
Crowding
Maximin
Redundancy removal
Unbounded

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Iterations

G
B
A
 
s
i
z
e

Size growth 
SCH function

 

 

Clustering
Crowding
Maximin
Redunduncy removal 
Unbounded

0 50 100 150 200 250
0

100

200

300

400

500

600

700

Iterations

G
B
A
 
s
i
z
e

Size growth
ZDT1 function

 

 

Clustering
Crowding
Maximin
Redunduncy removal
Unbounded

0 20 40 60 80 100 120
0

100

200

300

400

500

600

Iterations

G
B
A
 
s
i
z
e

Size growth
ZDT2 function

 

 

Clustering
Crowding
Maximin
Redunduncy removal
Unbounded

0 20 40 60 80 100 120
0

100

200

300

400

500

600

Iterations

G
B
A
 
s
i
z
e

Size growth
ZDT3 function

 

 

Clustering
Crowding
Maximin
Redundancy removal
Unblunded

0 50 100 150 200 250 300
0

100

200

300

400

500

600

700

Iterations

G
B
A
 
s
i
z
e

Size growth
ZDT6 function

 

 

Clustering
Crowding
Maximin
Rdunduncy removal
Unbounded

Figur 6.10: Archive size growth of the five archiving methods for unconstrained functions.
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Figur 6.11: Archive size growth of the five archiving methods for constrained functions

with the first constraint handling strategy.
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Figur 6.12: Archive size growth of five archiving methods for constrained functions with

the second constraint handling strategy.
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6.4 Summary

For what we can gather from the experiments performed for the archiving methods:

• For unconstrained test problems:

– MOQPSO with the unbounded archive size and the maximin strategies exhibits

better convergence results in general when compared with the other archiving

strategies.

– As expected, MOQPSO with the proposed redundancy removal method achie-

ves intermediate convergence results. It performs relatively better than cluste-

ring and crowding methods and slightly less than unbounded and maximin

methods for all test problems.

– MOQPSO with the unbounded archive size and the clustering strategies records

better diversity results when compared with the rest of the archiving methods.

The redundancy removal strategy achieves intermediate results in general. It

performs better than maximin and crowding methods and slightly less than

unbounded archive and clustering methods.

– For the bounded archive size methods (clustering, crowding and maximin),

MOQPSO achieves better convergence with the maximin method and better

diversity with the clustering method.

– It is observed that MOQPSO with the proposed redundancy removal method

succeeded in maintaining a good balance between convergence and diversity for

almost all unconstrained functions. It actually shows competitive results when

compared against the unbounded archive method with a remarkable saving in

CPU time over the unbounded archive method and no significant difference

between the two methods.
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• For constrained test problems:

– In both constraint handling strategies, CMOQPSO obtains better convergence

results with the unbounded archive and the maximin methods and it obtains

better diversity results with the clustering and the crowding methods.

– CMOQPSO with the proposed removal redundancy method presents interme-

diate results with respect to convergence and diversity metrics when compared

with the other archiving methods.

– The redundancy removal method succeeded in obtaining very competitive re-

sults when compared against the unbounded archive method with an advantage

of gain in CPU time over the unbounded archive size method and no significant

difference between both methods.

– For the first constraint handling strategy with the bounded archive size met-

hods (clustering, crowding and maximin), better convergence results have been

achieved with the maximin method and better diversity results have been ob-

tained with both the clustering and the crowding methods.

– For the second constraint handling strategy with the bounded archive size

methods (clustering, crowding and maximin), better convergence results have

been achieved with the maximin method in most of the test functions and

better diversity results have been obtained with the clustering method in most

of the test functions.

– The first strategy performs better than the second strategy in obtaining best

convergence in all of the test functions and better diversity results in most of

the test functions.

– The first strategy requires more computational time than the second constraint

strategy.
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Generally, the crowding based archiving strategy has a better time complexity than

the redundancy removal method and the remaining bounded archiving methods, namely

clustering and maximin. However, its performance is inferior to these methods in terms

of convergence and diversity. The redundancy removal method scales in the same way as

the maximin and the clustering methods with respect to the archive size and the number

of objectives.

Overall, it is observed that the proposed redundancy removal archiving method suc-

cessfully performed against the other archiving methods (unbounded and bounded). The

experimental results show that the main objectives of the proposed method have been met

in that it takes the advantage of the unbounded archive size method in achieving good

convergence to the Pareto front and maintaining diverse solutions but with an effective

computational time without the need to limit the archive size as required by the other

bounded archiving methods.
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KAPITEL 7

MOQPSO-Clust: An Application of MOQPSO to

Clustering

In the previous chapters we have built a novel framework for multi-objective optimization

and have demonstrated its effectiveness on a battery of benchmark test functions. We

are now in the position to apply our methodology to real-word application domains.

This chapter demonstrates this in application to clustering – an important tool in many

fields such as exploratory data mining and pattern recognition.1 Clustering consists of

organizing a large data set into groups of objects that are more similar to each other than

to those in other groups. Despite its use for over three decades, it is still subject to a

lot of controversy and remains a challenging task. In this chapter, we demonstrate the

application of the proposed MOQPSO in cluster analysis problems. We cast clustering as

a Pareto based multi-objective optimization problem which is handled using a quantum

behaved particle swarm optimization algorithm. The search process is carried out over the

space of cluster centroids with the aim to find out partitions that optimize two objectives

1A shorter version of the work in this chapter has been published in the following:
Heyam Al-Baity, Souham Meshoul, Ata Kaban and Lilac Alsafadi. Quantum Behaved Particle Swarm
Optimization for Data Clustering with Multiple Objectives. IEEE Sixth International Conference on Soft
Computing and Pattern Recognition, (IEEE SOCPAR), pp. 215-220, 2014.
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simultaneously, namely compactness and connectivity.

7.1 Overview on Data Clustering

Recent advances in information technology have fostered the creation of large quantities

of data. These datasets are more often unstructured and therefore difficult to analyze. Da-

ta clustering, also known as cluster analysis, is the process of partitioning a dataset into

meaningful groups (clusters), such that the objects in the same group are similar to each

other and dissimilar to the objects in the other groups. It is considered as an unsupervised

classification problem where classes are not known in advance [42][62]. Clustering is one of

the most important techniques in data mining and has been applied to many interesting

applications such as image processing [59], machine learning [18], bioinformatics [7], and

document classification and web mining [72]. Clustering is a data analysis tool that is used

to reveal hidden patterns and organize the data in a way that allows the users to gain

some insight about the content of the data and summarize data into useful information

[58].

The main objective of clustering is to segment large data into meaningful clusters so

that the intra-cluster homogeneity and the inter-cluster heterogeneity are both maximized

[54][58]. There are many clustering methods that have been proposed in the literature over

the past decades of which we present a short overview in the sequel, for completeness.

According to [59], the clustering techniques can be broadly classified into two types:

• Hierarchical (nested) clustering

This class aims at decomposing data iteratively into nested clusters by using eit-

her the agglomerative (bottom-up or singleton clusters) strategy or the divisive

(top-down) strategy. The agglomerative approach starts with each data point in a

separate cluster (singletons), then recursively merges them into bigger clusters based
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on their similarities until a termination criterion is satisfied. The divisive method is

the opposite of the agglomerative method. It begins with the entire dataset as one

cluster and recursively divides it into smaller clusters until a termination criterion

is reached. The result of hierarchical clustering is a tree-like structure – that is a

graph called a dendrogram [59]. Single-link distance and complete-link distance are

the most known algorithms within this category. They both compute the distance

between clusters (i.e. inter-cluster linkage metric). The single-link distance, also cal-

led minimum distance, is the shortest distance between any two objects from two

clusters and hence maximum of the similarity. On the other hand, complete-link di-

stance, also called maximum distance, is the farthest distance between two objects

from two clusters and hence minimum of the similarity [58][2].

• Partitional (unnested) clustering

This category partitions the data at once into a predefined number of non overlap-

ping clusters (K) based on an objective function [59]. K-means is the most popular

algorithm within this class of methods. It begins by initializing the cluster centres

or centroids. A centroid is the mean of all objects in the cluster. Then, each ob-

ject is assigned to the cluster with the closest centroid. In order to improve the

clustering process, the cluster centroids are updated iteratively and the objects are

reassigned to the new clusters. The algorithm ends when the cluster centroids stop

changing. The aim of this method is to minimize the dissimilarity between objects

and their cluster centres [58][42]. K-medoid is a variant of K-means algorithm. In

this clustering technique, medoid is the object used to represent a cluster instead of

the centroid. Medoid is the object closest to the cluster centre [58][71].

PAM (Partitioning Around Medoid) is a K-medoid based clustering algorithm that

attempts to select the objects (medoids) for each cluster at first. Then the remaining

non-selected objects are assigned to the cluster with the closest medoids [42][58].
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Many other clustering techniques are available in the literature. Interested readers can

refer to [116] for more details on clustering methods.

7.2 Why Multi-objective Clustering

The conventional clustering algorithms suffer from several problems. Their main disad-

vantage is that they attempt to optimize just a single clustering criterion. Such a single

criterion may not be able to capture the intended notion of clusters given the diverse

characteristics of the datasets [54]. Additionally, the quality of clustering resulting from

partitional clustering algorithms depends highly on the initial settings of the centroids

which may lead to locally optimal partitions. A common solution to the latter problem is

to perform multiple runs of the algorithm with different initial centroids and then select

the best partitioning results as the final clustering solution. However, this approach is

not effective when dealing with a large dataset and a large number of clusters [71]. Ano-

ther drawback common to the clustering techniques is the difficulty of choosing the right

number of clusters in the data [71].

7.3 Clustering as a MOP

In order to overcome the problems in the above section and to obtain a good and mea-

ningful clustering, global search optimization techniques such as Genetic algorithms (GAs)

and Particle Swarm Optimization (PSO) can be employed to explore the search space and

achieve better quality solutions. Moreover, the clustering solutions should be assessed from

different aspects or different validity criteria, rather than a single aspect. Therefore, ta-

ckling the clustering problem as a truly multi-objective optimization problem would be

a promising attempt in order to improve the quality of the final clustering solutions and

to obtain a set of trade off solutions in a single run via Pareto based multi-objective

optimization [2][71]. In the following section, we provide a brief review of multi-objective
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nature inspired algorithms for clustering.

7.3.1 Related Work

Due to the importance of clustering in many fields, a large number of algorithms have

been proposed in the literature to solve clustering problems. Recently, nature inspired

algorithms such as Genetic Algorithms (GAs), Simulated Annealing (SA), and Particle

Swarm Optimization (PSO) have been successfully applied to solve data clustering pro-

blems in a multi-objective context. For example, J. Handle and J. Knowles [50] proposed

a multi-objective clustering with automatic K-determination called (MOCK). The algo-

rithm consists of two phases. In the initial clustering phase, two clustering objectives are

optimized namely, compactness and connectedness using the Pareto Envelope based Se-

lection Algorithm (PESAII) [29]. In the second model selection phase, the quality of the

set of partitioning solutions obtained from the first phase is assessed by an automated

selection model called Gap statistic. This model then selects the final clustering solution

and implicitly estimates the number of clusters.

H.Ali et al.[4] proposed a multi-objective PSO (MOPSO) based clustering algorit-

hm for mobile ad hoc networks (MANET). Their aim is to find the optimal number of

clusters and to select the cluster centroid for each cluster which can make the network

energy efficient and hence increase its lifetime. Results show the effectiveness of the pro-

posed approach when compared with two other clustering algorithms.

Sanghamitra Bandyopadhyay et al. [10] proposed a multi-objective fuzzy clustering

algorithm that is based on NSGAII. The Xie-Beni (XB) index [115] and Jm measure [14]

have been selected as the two objectives to be optimized simultaneously. The Jm com-

putes the global intra-cluster variance over all clusters. The lower the values of Jm, the
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better the partitioning solution. The XB index is the result of the division of the global

cluster variance which is similar to Jm by the distance between the two nearest clusters.

Therefore, the XB measure is optimized (minimized) when the global cluster variation is

minimized and the distance between the two closest clusters is maximized.

7.4 The Proposed MOQPSO for Clustering

(MOQPSO-Clust)

In this section, we adopt MOQPSO to solve the data clustering problem in order to

find the possible partitions of various datasets according to multiple objectives, namely

compactness and connectivity. The objective of this work is twofold. We demonstrate on

one hand the ability of MOQPSO to handle the clustering problem, and on the other hand

the ability of our multi-objective clustering to obtain meaningful trade-off partitions.

7.4.1 Problem formulation

The multi-objective clustering problem can be defined as follows [71][50]:

Given a dataset E consisting of n points, E = {e1, e2, . . . , en}, multi-objective cluste-

ring is the task that consists in finding the set of non-dominated partitions or clusters

~C∗ = (c∗
1, c∗

2, . . . , c∗
k) of E that optimizes (minimizes or maximizes) a vector of objective

functions ~Ft, t = 1, . . . , m, which measures the quality of a partition using m objective

functions. Each ci denotes a cluster and k is the number of clusters. More formally, the

problem can be formulated as follows (in case the objectives should be minimized):

Given E = {e1, e2, . . . , en}, find the partition ~C∗ = (c∗
1, c∗

2, . . . , c∗
k) of E such that
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~C∗ = argmin
C∈Ω

( ~Ft(C) = (f1(C), f2(C), . . . , fm(C)))

subject to:

• ∀i ci 6= ∅

• ∀i, j ci ∩ cj = ∅ for i 6= j

• c1 ∪ c2 ∪ . . . ck = E

Where Ω is the set of all potential clustering solutions or partitions. Therefore the

decision search space is defined by the space of partitions.

7.4.2 Cluster Encoding

In order to solve clustering with multi-objective QPSO, a suitable way of particles en-

coding should be adopted in order to represent the potential clustering solutions. As we

propose an approach that is based on the principle of partitional clustering, each particle

position is related to the centroids of the clusters. In other words, the potential solution

in the proposed MOQPSO clustering algorithm represents a partition or clustering which

is given by a set of cluster centroids. Therefore, the search is performed in the space

of centroids. For instance, assume we have a small dataset of 5 points defined by three

attributes and number of clusters k=2 as shown in Figure 7.1. The representation of the

potential partitions of this dataset is shown in Figure 7.2. The problem dimension in this

case is 6.
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Figur 7.1: dataset of 5 points with 3 attributes.

Figur 7.2: Encoding of particle’s position when the number of clusters is k=2

Based on the cluster centroids, each point in the dataset is assigned to the cluster

with the nearest centroid. This is done by computing the Euclidean distance of the cur-

rent point to each cluster’s centroid, then assigning that point to the closest cluster. The

pseudocode of the ‘AssignPointsToClusters’ procedure that carries out this task is given

in Algorithm 18. This procedure allows to assign each data point into the corresponding

cluster based on the centroid information. During the optimization process, the cluster

centroids evolve over iterations by applying the dynamics of QPSO. Consequently, the
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data points are reassigned to the new clusters. This process continues until a termination

criterion is encountered.

Algorithm 18 AssignPointsToClusters( ClustersCentroids, E)

1: Input: Centroids of the clusters, Dataset E

2: for i =1 to |E| do

3: for k =1 to NumberOfClusters do

4: DistanceToCluster(k) = Distance(E(i), ClustersCentroids(k)) {distance is the

Euclidean distance }

5: end for

6: pointInCluster(i) = clusterNumber(min(DistanceToCluster))

7: end for

8: Output: pointInCluster

7.4.3 The objective Functions

The performance of a multi-objective clustering algorithm depends heavily on the selection

of the clustering objectives [71]. In this work, compactness and connectivity have been

chosen as the two complementary objectives to be optimized as they can measure the

clustering quality from different aspects [50].

• Cluster Compactness Measure

This validity measure computes the overall deviation of a clustering by finding the

overall sum of the distances between data points and their cluster centres. It is

calculated according to the following equation given in [50]:

Comp(C) =
∑

ck∈C

∑

i∈ck

δ(i, µk)
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where C is the set of clusters, µk is the centroid of cluster Ck, and δ(., .) is the

selected distance function (Euclidean distance in our case). This objective should

be minimized as it tends to keep the intra-cluster variation small [50].

• Cluster Connectedness Measure

This measure is based on the idea that the neighbouring data points should be pla-

ced in the same cluster. It is computed by the following equation [50]:

Conn(C) =
N
∑

i=1
(

L
∑

j=1
xi,nnij

)

Where xr,s =



















1
j
, if 6 ∃Ck : r ∈ Ck ∧ s ∈ Ck

0, otherwise

where nnij denotes the jth nearest neighbour of point i , N is the size of the dataset,

and L is the number of neighbours of point i. This objective should also be minimized.

7.4.4 Outline of MOQPSO for Clustering (MOQPSO-Clust)

Let E be an input dataset composed of points to be grouped into k clusters. Each point

in E is defined by q attributes. Therefore, the dimension of the problem is D = k ∗ q.

Solving the clustering problem by the MOQPSO algorithm using the particle’s position

encoding described in section 7.4.2 requires first an initialization step where initial parti-

tions are derived from k randomly generated centroids using the ‘AssignPointsToClusters’

procedure. The compactness and the connectivity values of each partition are computed

and then an initial set of non-dominated solutions is created and set as the archive of the

global best solutions or the current Pareto clustering solutions. Then, an iterative process

is performed during which particles’ positions are updated according to QPSO dynamics.
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The hybrid selection method we developed is used as the leader selection scheme to find

the global best guide for each solution. By using the ‘AssignPointsToClusters’ procedure,

each data point is reassigned to the closest cluster according to the centroid information.

Then, the obtained partitions are evaluated and the current Pareto set is updated. At the

end of this process, the obtained Pareto optimal set along with the corresponding Pareto

front are given as the output of the algorithm. Let us denote the set of non-dominated

partitions or the archive of the global best clusterings in Pareto sense encountered at

iteration t by GBAt. St refers to the swarm of particles (cluster centroids) at iteration t.

The proposed MOQPSO-Clust for data clustering can be described as follows:

Algorithm 19 MOQPSO Clust
1: Input: MOP specification
2: N= population size
3: D= problem dimension
4: S0= initialize positions of particles (cluster centroids) with uniformly distributed random numbers
5: pointInCluster = AssignPointsToClusters(S0, E) {assign data points to closest clusters}
6: sbesti= initialize self best position of particle Pi for i=1..N
7: T= maximum number of iterations
8: ~Fi= evaluate Particle Pi for i=1..N
9: GBA0= initial set of non-dominated solutions (potential clustering solutions or partitions)
10: t = 1
11: βt = βmax

12: repeat

13: Compute mean best position using eq. (2.5) ;
14: for (each particle Pi ) do

15: gbest = Select − leader(GBAt, Pi)
16: for (each dimension j ) do

17: pt
ij

= Compute local attractor using eq. (2.4)

18: ui = rand(0, 1)
19: if rand(0, 1) > 0.5 then

20: xt+1
ij

= pt
ij

+ βt.|mbestt
j

− xt
ij

|. ln(1/ut
ij

) for j=1..D

21: else

22: xt+1
ij

= pt
ij

− βt.|mbestt
j

− xt
ij

|. ln(1/ut
ij

) for j=1..D

23: end if

24: end for

25: pointInCluster = AssignP ointsT oClusters(St, E){Reassign data points to new clusters}
26: Evaluate particle Pi

27: Update self best position
28: end for

29: GBAt+1 = Update − Archive(GBAt, St)

30: βt+1 = βt − (βmax−βmin)
T

{Decrease β linearly}
31: t = t + 1
32: until (t ≻ T )
33: Output : GBA

The algorithm has been adapted to comply with the clustering problems by introducing

the objective functions as explained in section 7.4.3 and the ‘AssignPointsToClusters’ pro-
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cedure described in Algorithm 18. This procedure is used at each iteration after updating

the cluster centroids in order to reallocate the data points to the new clusters.

7.5 Time Complexity Analysis of MOQPSO-Clust for

Data Clustering

We consider the following parameters that impact the size of the problem in this analysis:

• D: the problem dimension that is the number of decision variables

• M: the number of objective functions

• N: the population size

• L: the archive size and

• E: the number of data points in the dataset.

Data clustering is an NP-hard problem [5]. The number of partitions that can be

obtained by grouping n data points into k clusters grows exponentially when the data size

increases. The main operations of MOQPSO-Clust are the same as the main operations

of MOQPSO for unconstrained problems described in section 3.5. These operations are:

1. Update of particles’ positions with time complexity O(N2)

2. Evaluation of positions with time complexity O(NM)

3. Leader selection with time complexity O(MN2logN)

4. Update of the archive or Pareto front with time complexity O(MN2)
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The main difference between the basic MOQPSO proposed to solve unconstrained

problems in chapter 3 and the MOQPSO-clust is the ‘Assign points-to-cluster’ procedu-

re. From Algorithm 18, the distance of each data point to each centroid is computed in

order to determine the closest centroid. Therefore, the time complexity of this procedure

is O(Nkq|E|) where k denotes the number of clusters and q denotes the dimension of a

data point or the number of its attributes, which can be expressed as well as O(ND|E|)

knowing that the dimension of the problem D is equal to k ∗ q. The time complexity of

the other parts of MOQPSO-Clust remains the same as that of MOQPSO for unconstrai-

ned problems, which is O(MN2logN) as described in section 3.5. Hence, the overall time

complexity of MOQPSO-Clust is O(MN2logN + ND|E|).

Since MOQPSO-Clust scales like O(MN2logN + ND|E|), it is not suitable for ve-

ry big datasets. However, clustering is important for image segmentation, data mining,

speech recognitions, visualization of scientific data, and many others that do not require

large datasets but require a trade off of solutions to be presented to the user from which

the user can choose the appropriate solution. MOQPSO-Clust is suitable for this purpose.

Further work will be required to improve the abilities of the proposed MOQPSO-Clust

algorithm to handle clustering of big data. According to the computational complexity of

MOQPSO-Clust, it is clear that a prohibitively high computational cost will be induced

if applied to big data due to the data size, the multi-objective nature of the problem, the

high dimension of data and the expensive process of evaluating the quality of solutions

which is problem specific.
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7.6 Experiments

In this section, we describe the experimental setup and the results of the several experi-

ments of MOQPSO-Clust performed for comparison with other clustering techniques.

Data Sets

The proposed algorithm has been applied to both synthetic and real world datasets. The

synthetic datasets are generated by the Gaussian cluster generator described in [49]. Real

datasets are taken from the UCI machine learning databases repository [16]. The detailed

characteristics of the employed datasets are illustrated in Tables 7.1 and 7.2 where K

denotes the number of clusters, Dim is the dimension of data point, size is the dataset

size, and ni is the number of the points in each cluster [88].

The main goal of this chapter is to investigate the applicability of MOQPSO to the

clustering problem. That is why these datasets have been chosen in our study since they

are well known datasets in the clustering field. Thus, experimental results from a variety

of other clustering algorithms are commonly available, which facilitates the comparison

with the proposed algorithm. In addition, the ground truth solutions of these datasets are

available, which simplifies the estimation of the performance of the algorithm.

Tabel 7.1: Characteristics of the used synthetic datasets

Dataset Name K Dim Size ni

2d4c 4 2 1123 369,471,53,230

2d10c 10 2 520 67, 15, 19, 53, 83, 64, 65, 68, 68, 18

10d10c 10 10 436 18, 83, 57, 26, 67, 50, 12, 72, 39, 12
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Tabel 7.2: Characteristics of the used real datasets
Dataset Name K Dim Size ni

Ruspini 4 2 75 20, 23, 17, 15
Iris 3 4 150 50,50,50

Wisconsin 2 9 699 458, 241

Evaluations

Two cluster validity measures have been used in this study in order to assess the quality

of the final partitioning result produced by the proposed MOQPSO-Clust algorithm for

solving clustering problems and to conduct a comparative study with the classical method

(K-means). Generally speaking, there are two types of cluster validity methods, external

and internal validations. The external criteria relies on prior knowledge or external infor-

mation about the data to perform the evaluation. They are used when ground truth data

are available. On the other hand, the evaluation process with the internal criteria is based

on information that is only inherent to the data [47].

There are many cluster validity indexes that have been proposed in the literature

[47][91]. In our study, we will use one external validation measure called F-measure [91]

and one internal validation measure called Silhouette index [91] for measuring the quality

of the partitions produced by the proposed MOQPSO-Clust.

• F-measure

It is one of the commonly used validity measures in the specialized literature. It

measures the digree of similarity of an obtained clustering to each ground truth

class of the given dataset. Assume that GC = (GC1, GC2, . . . , GCK) denotes the

ground truth classes of the dataset and C = (C1, C2, . . . , CK) denotes the obtained

clustering result. Then the F-measure of cluster Ci and class GCj is given by the

following equation [102]:
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F (Ci, GCj) = 2|Ci∩GCj |
|Ci|+|GCj |

the overall F-measure of a clustering C with respect to GC is given by [102]:

F (C, GC) =
∑

j

|GCj |
m

max
i

F (Ci, GCj)

where m is the dataset size. The F-measure values are within the range [0,1]. The

larger the F-measure values, the higher the quality of the clustering [102].

• Silhouette index

This index measures how well each point lies within its cluster. It actually measu-

res both cluster cohesion (intra-cluster) and separation (inter-cluster). Let a = the

average distance of a data point i to all remaining points in its cluster and let b =

the minimum average distance of point i to the points in the other clusters. Then

the silhouette of point i s(i) is given by [91]:

s(i) = (bi)−(ai)
max{(ai),(bi)}

The average s(i) for the entire dataset measures the goodness of the clustering result.

The silhouette index values are within the interval [-1, 1]. The closer the value of

this measure to 1, the higher the quality of the clustering [49][71].

7.6.1 Experimental Set Up

Preliminary experiments have been conducted to set the algorithm’s parameter, namely

the contraction expansion parameter β which varies within the range [1.2 - 0.5] as it shows

good results in terms of convergence and diversity within this interval. In order to set the

remaining problem parameters properly (number of iterations and number of particles),

several experiments have been conducted. We started the experiments by running the

algorithm with a small number of particles (30, 50, 80) and a small number of iterations
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(50, 80, 100) and plotting the obtained Pareto fronts at the end of each run. We continue

repeating the run process by increasing the number of particles (100, 120, 150) and the

number of iterations (120, 150, 200) until we reach a good convergence and diversity of

the Pareto fronts for all the datasets. At the end, we got good quality solutions with the

following setting: the number of particles is set to 150 and the number of iterations is set

to 200 for all the datasets even good results have been obtained with less values as in the

case of 2d4c and Ruspini.

7.6.2 Experimental Results and Discussions

At first, we have tested the ability of the proposed algorithm to solve the clustering

problem on the used datasets. Tables 7.3 and 7.4 show the figures of the ground truth

partitions and the obtained partitions using MOQPSO for the real and the synthetic data

sets respectively. It can be seen from theses figures that MOQPSO was able to find out

good partitions especially in the case of 2d4c, 10d10c and Ruspini.

Furthermore, the obtained results reveal that the algorithm is effective and flexible in

providing a set of diverse partitioning solutions. For example, in the case of 2d4c dataset,

the proposed algorithm provides nine trade-off clustering solutions for the end users so

that they can choose the final solution according to their preferences. Figures 7.3 and 7.4

show these nine Pareto clustering solutions. In all Pareto solutions, MOQPSO was able

to find the core partitions. The difference between these partitions lies in the boundaries

of the clusters. This is particularly interesting in the case of overlapping clusters.

For a quantitative assessment, the algorithm has been run 30 times for each dataset

and the best solutions in terms of F-measure and silhouette index have been recorded.

K-means algorithm has been run the same number of times on the same datasets. Then,
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statistics have been derived using the obtained partitions of both algorithms. Tables 7.5

and 7.6 show the values of F-measure and silhouette index respectively using MOQPSO-

Clust and K-means on the employed datasets. As can be seen from the F-measure results,

our algorithm outperformed K-means in all cases in terms of best values except for 2d10c

dataset where K-means performed slightly better. However, MOQPSO achieved best re-

sults at the average for all data sets. Furthermore, our algorithm exhibits more stability

than K-means as shown in the difference between mean values and median ones as shown

in Table 7.5.

As for silhouette results, we can see that competitive results have been achieved. Our algo-

rithm performed better at the average except for 2d10c and Wisconsin cases. We can see

as well that both algorithms were able to find the optimal solution in case of 10d10c and

Ruspini datasets. Moreover, MOQPSO-Clust has been compared with five other clustering

algorithms from the literature, namely FCM (Fuzzy C-Means), PCA (Possibilistic Cluste-

ring Algorithm), UPFC (Unsupervised Possibilistic Fuzzy Clustering), IQEAC (Improved

Quantum Evolutionary Algorithm for data Clustering) and GA (Genetic Algorithm). The-

se algorithms have been chosen because they are recently proposed methods for clustering

and they demonstrate the state-of-the-art performance. In addition, some of these algo-

rithms are evolutionary algorithms such as IQEAC and GA. Table 7.7 shows the results

in terms of median and interquartile of F-measure using the proposed MOQPSO-Clust

algorithm and the five competing algorithms with settings as reported in [87]. Best results

have been obtained by our algorithm on 2d4c, 10d10c and Ruspini datasets. It also achie-

ved better results than all other algorithms except for IQEAC on 2d10c. Intermediate

results have been achieved with Iris and Wisconsin datasets.
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Ground truth solutions Obtained MOQPSO solutions
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Tabel 7.3: Obtained clustering results vs truth clustering results for real data sets
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Tabel 7.4: Obtained clustering results vs truth clustering results for synthetic data sets
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Figur 7.3: Pareto solutions representing the trade-off partitions for 2d4c dataset (the first

three solutions).
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Figur 7.4: Pareto solutions representing the trade-off partitions for 2d4c dataset (the

remaining six solutions).
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MOQPSO K-means

Data sets Best Mean (Std.) Median Best Mean (Std.) Median

2d4c 0.9982 0.9982 (0.00) 0.9982 0.9730 0.9730(0.00) 0.9730

2d10c 0.9031 0.9031(0.00) 0.9031 0.9190 0.7907(0.0595) 0.7757

10d10c 1.00 0.9965(0.0110) 1.00 1.00 0.8231(0.1231) 0.8406

Ruspini 1.00 1.00(0.00) 1.00 1.00 0.8509(0.1058) 0.8171

Iris 0.9597 0.8605(0.0531) 0.8396 0.8918 0.8323(0.0958) 0.8918

Wisconsin 0.9243 0.9242(1.399 ∗ 10−4) 0.9241 0.8733 0.8733(0.00) 0.8733

Tabel 7.5: F-measure results using MOQPSO-Clust and K-means on synthetic and real

data sets.

MOQPSO K-means

Data sets Best Mean (Std.) Median Best Mean (Std.) Median

2d4c 0.8615 0.8610(0.0010) 0.8615 0.8628 0.8628(1.170 ∗ 10−16) 0.8628

2d10c 0.6973 0.6973(0.00) 0.6973 0.7216 0.6842(0.0312) 0.6889

10d10c 0.8194 0.8165(0.0093) 0.8194 0.8194 0.6098(0.1487) 0.6403

Ruspini 0.9086 0.9086(0.00) 0.9086 0.9086 0.7549(0.1073) 0.7024

Iris 0.8462 0.8462(1.1703 ∗ 10−16) 0.8462 0.7355 0.7121(0.0377) 0.7355

Wisconsin 0.7526 0.7508(0.0015) 0.7499 0.7550 0.7550(0.00) 0.7550

Tabel 7.6: Silhouette measure results using MOQPSO-Clust and K-means on synthetic

and real data sets.

Data sets MOQPSO FCM PCA UPFC IQEAC GA
2d4c 0.9982(0.00) 0.9392(0.00) 0.7428(0.1877) 0.8134(0.0444) 0.9784(0.00) 0.9730(0.00)
2d10c 0.9031(0.00) 0.8861(0.0681) 0.7320(0.1039) 0.7671(0.0804) 0.9582(0.0066) 0.9027(0.0506)
10d10c 1.00(0.00) 0.9254(0.00) 0.6666(0.1122) 0.7747(0.0833) 1.00(0.00) 0.9344(0.0353)

Iris 0.8396(0.0153) 0.8923(0.00) 0.7233(0.2367) 0.9061(0.00) 0.8988(0.00) 0.8923(0.0005)
Wisconsin 0.9241(0.0002) 0.9558(0.00) 0.6812(0.3685) 0.9588(0.00) 0.9677(0.00) 0.9662(0.0014)

Ruspini 1.00(0.00) - - - - -

Tabel 7.7: Comparison with other algorithms based on Median (Interquartile). The results
in this table are quoted from [87].
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7.7 Summary

In this chapter, we have presented the application of the proposed MOQPSO framework

in solving partitional clustering problem. To our knowledge, it is the first Pareto-based

MOQPSO specifically designed for this purpose. The experimental results demonstrate the

ability of MOQPSO to handle the clustering problem. The main feature of this approach is

its ability to provide the end users with multiple optimal clustering options from which a

partition can be chosen according to their specific needs. Our algorithm has been found to

perform successfully on both synthetic and real data sets. The proposed MOQPSO-based

approach outperformed k-means in most cases and shows competitive results compared

to other algorithms. The computational scaling of the current version of MOQPSO-Clust,

which is O(MN2logN + ND|E|), is not suitable for big data applications and this is an

interesting area where future work will be needed.
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KAPITEL 8

Conclusions and Future Work

In this chapter, we will provide a summary of the work and the contributions described

in this thesis followed by an outline of some possible future research directions that could

be drawn from the present work.

8.1 Summary of the Work

Most real-world decision problems have multiple objectives that have to be optimized

simultaneously. Many of these problems are subject to some constraints. In this thesis, we

have begun with a review of the most widely used multi-objective evolutionary algorithms

for solving multi-objective optimization problems. We then developed a new framework

by extending Quantum behaved Particle Swarm Optimization(QPSO) to handle uncon-

strained multi-objective problems.

In our framework, which we called (MOQPSO), we address the way global best so-

lutions are recorded within an archive and used to compute the local attractor point of

each particle. For this purpose, a two level selection strategy that uses sigma values and

crowding distance information has been defined in order to select the suitable guide for
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each particle. The rationale has been to help convergence of each particle using sigma

values while favoring less crowded regions in the objective space to attain a uniformly

spread out Pareto front. The time complexity of MOQPSO is O(MN2logN) which shows

a polynomial scaling with respect to the parameters of the problem. Besides, it is only by

a log factor larger than the state-of-the-art MOEAs such as NSGAII, PEAS and SPEA,

which is considered a little overhead. The proposed approach has been assessed on bench-

mark test problems from convergence and diversity points of view and compared against

some state-of-the-art multi-objective algorithms showing competitive results.

After the encouraging results of MOQPSO for solving unconstrained MOPs, we deve-

loped CMOQPS, which extended the MOQPSO framework to handle constrained multi-

objective problems. Two strategies to handle constraints are investigated. The first one is

the death penalty strategy which discards infeasible solutions that are generated through

iterations forcing the search process to explore only the feasible region. The second appro-

ach which we proposed keeps the infeasible solutions when computing the local attractors

of particles and adopts a policy that achieves a balance between searching in infeasib-

le and feasible regions. The aim of this latter approach is to incorporate the infeasible

solutions during the evolutionary process hoping to find good quality feasible solutions.

Several benchmark test problems have been used for testing and validation. Experimen-

tal results show the ability of QPSO to handle constraints effectively in multi-objective

context. The first constraint handling strategy has been found to be the best in all cases

in terms of convergence. It also has achieved better results in terms of diversity for most

of the test problems. However, it requires an additional computational effort of O(RND)

when compared with the second constraint handling strategy. On the other hand, the

second constraint handling strategy scales as the MOQPSO for unconstrained problems.

In the future work section we give a suggestion of how the second constraint handling
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strategy could be improved.

Further to this work, a thorough investigation of the potential of MOQPSO under

several leader selection strategies (the proposed hybrid selection strategy, the crowding

distance based selection strategy, the sigma based selection strategy, and the random

selection strategy) and several archiving methods (unbounded archive size, clustering,

crowding, maximin, and the proposed redundancy removal method) on unconstrained

and constrained test problems have been provided. In addition, a comparative study of

MOQPSO with MOPSO is performed.

The results obtained from the comparison of the leader selection strategies showed

that the sigma method presented better convergence metric values but poor diversity

and the crowding selection method obtained better diversity values yet poor convergence.

However, the proposed hybrid selection method succeeded in maintaining a balance in

obtaining good convergence and good diversity values for all the test functions.

As for the archiving methods, we proposed the redundancy removal archiving method,

a new simple yet effective mechanism to handle the growth of the archive size. The aim

of this technique has been to take advantage from both the bounded and the unbounded

archiving methods. That is, getting the advantage of the unbounded archive method in

reaching good convergence to the Pareto front and maintaining good diversity. At the

same time, it takes the advantage of the bounded archiving methods in reducing the

computational time of the algorithm and providing a smaller number of non-dominated

solutions to the end users. Results of the comparative study have shown that the best

convergence results have been obtained with the unbounded archive size and the maximin

methods. The best diversity results have been achieved with the unbounded archive size
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and the clustering methods for unconstrained test problems and the clustering and the

crowding methods for constrained test problems. The proposed redundancy removal met-

hod has shown competitive results compared to the unbounded archive method with a

significant reduction in CPU time for both constrained and unconstrained test problems.

The redundancy removal method and the bounded archiving strategies scale linearly with

the number of objective functions. However, better time complexity is achieved by the

crowding based archiving strategy as it scales quasi-linearly with the archive size while

the other archiving methods have a quadratic scaling with the archive size.

The comparison results of MOQPSO against MOPSO revealed that none of the two

algorithms has been found to be the best in all cases. QPSO was highly competitive when

compared with PSO in terms of convergence and diversity. QPSO was able to obtain

quality Pareto fronts for some of the test problems. It even outperforms PSO in ZDT2

function as PSO failed to solve this function due to the premature convergence problem.

After testing the performance of the proposed algorithm and demonstrating its ef-

fectiveness in solving unconstrained and constrained test problems and under different

selection and archiving strategies, we intended to investigate the potential of MOQPSO

in solving real-world application domains. We applied our framework for solving the clu-

ster analysis problem which we called MOQPSO-Clust. We cast clustering as a Pareto

based multi-objective optimization problem which is handled using a quantum behaved

particle swarm optimization algorithm. The search process is performed over the space

of cluster centroids with the aim to find partitions that optimize two objectives simul-

taneously. The proposed hybrid selection method is used as the leader selection strategy

to select the global best leader for each particle. The main objectives of this study are

to demonstrate the ability of MOQPSO to handle the clustering problem and the ability
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of MOQPSO-Clust to obtain meaningful trade-off partitions. MOQPSO-Clust has been

tested using both synthetic and real datasets and compared to the state-of-the-art met-

hods showing competitive results. As MOQPSO-Clust scales like O(MN2logN +ND|E|),

it is not suitable for big data applications. Future work will be required to improve the

abilities of the proposed MOQPSO-Clust algorithm to handle clustering of big data.

Generally, MOQPSO algorithm performs well when solving continuous and disconti-

nuous Pareto fronts in terms of convergence and diversity even without the need of incor-

porating any diversity preserving mechanism. This is due to the dynamics of the QPSO

algorithm that allows to maintain a good balance between exploration and exploitation

in the search space. The merits of the proposed MOQPSO algorithm can be summarized

in the following points:

• Its simplicity and the few number of tunable parameters.

• The leader selection strategy which helps to achieve a good balance between diversity

and convergence of obtained Pareto fronts compared to other strategies.

• The redundancy removal strategy that does not impose any limit on the archive size

which may impact the quality of the obtained fronts from diversity and convergence

points of view. It also ensures a saving in run time compared to the unbounded

archive method while achieving comparable quality of the obtained fronts.

• Ability to deal efficiently with disconnected fronts as seen in the case of ZDT3 test

function where MOQPSO gave significantly better results in comparison with the-

state-of-the-art MOEAs, namely NSGAII, PAEAS and SPEA. This is due to the

efficient global search capability of QPSO that is able to jump through the different

regions of the search space, and the effective influence of the proposed hybrid se-

lection strategy that helps to achieve good quality solutions from convergence and
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diversity points of view.

We have seen in extensive experiments that our proposed approach was able to achie-

ve better results compared to state-of-the-art methods with a very minor extra burden

(logN) on computational complexity.

On the other hand, the limitations of the proposed MOQPSO can be summarized in

the following points:

• MOQPSO faces some difficulties in maintaining diversity when the number of so-

lutions decreases near the Pareto optimal front. This loss of diversity prevents the

algorithm from converging properly to the optimal fronts. This case has been seen

in the ZDT6 test function where the number of solutions decreases near the Pareto

optimal front. Introducing a diversity preserving operator (mutation) will perhaps

enhance the search abilities of the algorithm in this case.

• Time complexity of MOQPSO does not allow application to big data problems. It is

not obvious how this approach could be scaled up, this will require further research.

• The algorithm has been only tested on two objective optimization problems. Dealing

with many objectives is a large area of research as for example the PhD thesis of

Praditwong [84] deals exclusively with the many objective optimization problems.

It will be interesting in the future work to investigate to what extend the proposed

approach can solve problems with many objectives and at which number of objecti-

ves it may break down as it known that many objective problems require special

treatment.
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8.2 Future Work

As mentioned earlier in section 3.2.1, the strategy we follow in our work is to keep only

one solution as the self best point (sbest) for each particle and use the GBA archive to

store the non-dominated solutions obtained by all particles in the swarm from which the

global best leader is selected. There are different approaches in the literature that are

based on saving all the non-dominated solutions visited by each particle in an archive and

then select the self best particle among them [1] [99] [17]. The results show that using two

external archives for global best and self best positions would improve the performance

and effectiveness of the algorithm. We would like to explore the benefits of using this

feature in our proposed MOQPSO algorithm by using one archive which we can call Self

Best Archive (SBA) to store the non-dominated solutions visited by each particle in the

swarm together with the GBA archive.

When extending QPSO to handle constraints, we found that the proposed constraint

handling strategy (the second strategy) which incorporates the infeasible solutions during

the evolutionary process was not able to get the benefits from the infeasible solutions

in obtaining good feasible ones. We believe that this might be related to the constraint

handling scheme we adopted, which is based mainly on the number of constraint viola-

tions when evaluating the infeasible solutions. We might need to improve the constraint

handling mechanism by introducing another criterion when dealing with infeasible solu-

tions which is based on calculating the distance of infeasible solutions to the boundary of

the feasible region.

In chapter 7, we have presented a multi-objective quantum behaved particle swarm

optimization algorithm for solving partitional clustering problem. The main feature of
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this approach is its ability to provide the end users with multiple optimal clustering op-

tions from which a partition can be chosen according to their specific needs. Extension

to the current approach should be studied to include automatic detection of the number

of clusters. Additionally, the approach should be tested on more complex datasets that

exhibit higher volume and dimension of data points as well as complex distributions with

non-linearly separable clusters.

Furthermore, it would be interesting to study the effect of introducing the mutation

operator to the proposed MOQPSO algorithm and demonstrate how this will improve the

diversity of the obtained solutions.

Another area of future work is to study the behavior of the proposed algorithm when

solving many-objective optimization problems (more than two or three objectives) as they

are difficult to solve and there is a little work done in this area. Recent studies have shown

the limitations of MOP methods when many objectives need to be considered. Indeed,

dealing with many objectives raises several challenges that should be properly addres-

sed. This issue is at the heart of recent and ongoing research activities. One of these

challenges is that many objectives imply high dimensional objective spaces. Therefore,

a good approximation of the Pareto-front requires in this case a huge number of points

which increases exponentially with the number of objectives resulting in turn in a high

computational cost and a difficulty of visualization [94]. Furthermore, other challenges

are related to the search ability and the requirements of each method. For the weighted

sum approach, determining the appropriate weights becomes even more difficult when the

number of objectives increases especially when no further information about the problem

is available. Furthermore, it has been shown to deal poorly with non-convex search spaces

- a situation which is worsened with the increase in the number of objectives. In VEGA,
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a subpopulation is assigned to each objective, making selection in each sub-population

based only on this objective without considering the other objectives. This leads in turn

to diversity reduction as it favors solutions performing well in one dimension and ignores

solutions that perform reasonably well in all dimensions [44]. This in turn results in poor

scalability in many objectives context. Furthermore, it has the same issue as the weigh-

ted sum approach regarding non-convexity of search spaces. This will add an additional

difficulty when dealing with many objectives.

For MOEAs like NSGAII, SPEA2, and PAES, the problem of diversity loss limits their

scalability to many objectives. This issue can be explained by the fact that they are den-

sity based and favor Pareto dominance selection while focusing on remote and boundary

solutions [94].

For the case of swarm based approaches, as seen before maintaining diversity relies

heavily on the used leader selection strategy and the search ability governed by the PSO

model equations. For example, the MOPSO approach proposed by Coello [20] used the

adaptive grid scheme to select the suitable guide for each particle. This technique does not

scale well when dealing with many-objective problems because the update of the adaptive

grid becomes more difficult and time consuming.

Although dealing with many-objective problems is a non-trivial task, it can be consi-

dered as a very interesting line of research in the future.
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