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CHAPTER I 

INTRODUCTION 

The need for stochastic approaches in visual object tracking 

 

Visual Object Tracking is an active research area within the Computer Vision community and has 

been rigorously studied due to its relevance in achieving key practical functionalities in today’s 

increasingly complex cyber-physical world. Some of the more well-known applications include 

real-time video surveillance and security systems, smart traffic monitoring and autonomous 

vehicle navigation. While object trackers aim to identify distinguishing features of targets across 

multiple frames of interest in sequential images, several challenging issues arise that pose as 

potential failure modes. Varying environmental and behavioural conditions such as complex object 

motion, partial or complete occlusion of the region of interest, changes in illumination and scale, 

injection of noise etc. lead to inefficient and at many times failed tracking. Constrained 

optimization approaches in mitigating tracking failures have demonstrated notable success. The 

existing methods use either deterministic [1-3] or stochastic approaches [4-11]. Deterministic 

approaches typically employ gradient descent search in order to minimize a cost function and 

obtain parametric estimates. One such example that has been extensively used is the Snakes model 

introduced by Kass et al [1]. Hager and Belhumer defined the cost function as the sum of squared 

deviations of candidate solutions from the ground truth [2] whereas Comaniciu minimized the cost 

difference between two colour histograms by using the Mean Shift Algorithm [3]. Deterministic 

approaches are computationally less expensive, however they are susceptible to getting trapped in 
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local optima. Stochastic approaches involve probabilistic operators and better estimate parameters 

by intelligently querying the multidimensional search space for the global optima, with the tradeoff 

being computational load. Several approaches have been proposed in [4-11] which effect better 

performance compared to their deterministic counterparts but the curse of dimensionality remains 

for high dimensional problems. Due to the dynamic nature of the environment, a unified object 

tracking scheme is very difficult to accomplish. Particle Filters [12] are recursive implementations 

of Monte Carlo methods and are ideal for analyzing highly non-linear, non-Gaussian state 

estimation problems where classical Kalman Filter based approaches fail. The generic Particle 

Filter suffers from the degeneracy and Sampling Importance Resampling (SIR) induced particle 

impoverishment problem, leading to proposed enhancements in the sampling stage as in [13-14].  

Overview of the work 

 

This work incorporates a memory guided motion model and a hybrid Quantum-behaved Particle 

Swarm Optimization (QPSO) resampling scheme using annealing and weighted mean best 

operators (Annealed Weighted QPSO-AWQPSO) to effectively recast particles to the higher 

likelihood regions in the posterior probability landscape. The methodology is tested out on two 

benchmark problems containing a set of environmental test conditions. Performance metrics like 

Root Mean Square Error (RMSE), Number of Frames Successfully Tracked, Tracking Precision 

versus Centre Error Threshold, Recall versus Overlap Threshold and Frames per Second (FPS) are 

analyzed over batches of computations. Such statistical analyses suggest performance 

improvements using the proposed method in comparison to the Particle Swarm Optimization 

Resampling inspired Particle Filter (PSO-PF) as well as the standard Particle Filter (PF).  
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The rest of the work is summarized as follows: Chapter II reviews related work at the intersection 

of Evolutionary Computation and particle resampling in Particle Filters, Chapter III outlines the 

resampling techniques used and Chapter IV details the proposed approach. Chapter V lists the 

tracking quality indices used in the model followed by Chapter VI which elaborates on the 

experimental conditions and results on benchmark problems. Chapter VII provides an analysis of 

the results obtained and Chapter VIII concludes the paper with possible directions for future work.  
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CHAPTER II 

RELATED WORK 

A Bayesian Inference approach to object tracking 

 

A Bayesian inference approach to the object tracking problem involves dynamic state transition 

through time using a System Model and state measurement through an Observation Model. A 

Markovian system model in this regard can be formulated as a state transition from the previous 

one to the current. 

 

𝑋𝑘 = 𝑓(𝑋𝑘−1, 𝜈𝑘) ↔ 𝑝(𝑋𝑘 |𝑋𝑘−1)                                   (1) 

 

The observation model can be expressed as: 

 

𝑂𝑘 = ℎ(𝑋𝑘 , 𝜂𝑘) ↔ 𝑝(𝑂𝑘 | 𝑋𝑘)                     (2)    

                                

The sequences {Xk , k ∈ I+}  along with {Ok , k ∈ I+} denote the target states and the measurement 

set of the state sequence in frame k. νk and ηk are mutually independent system noise and 

measurement noise. The central goal of a particle filter is to find an approximation of the posterior 

probability distribution of observations given the current state p(Ok |Xk), using a set of weighted 

samples drawn from a proposal distribution with an associated particle rank defined by a one to 

one correspondence between high posterior likelihood and large weight. The weights 𝜅 are 

generally computed using the following proportionality relation:        
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 𝜅𝑘
𝑖 ∝   𝜅𝑘−1

𝑖
𝑝(𝑂𝑘  |𝑋𝑘

𝑖
)𝑝(𝑋𝑘

𝑖  |𝑋𝑘−1
𝑖

)

𝑝(𝑋𝑘  |𝑋𝑘−1
𝑖  , 𝑂𝑘)

                                       (3) 

which is the previous weight scaled by the ratio of the conditional joint probability of the 

observation Ok in the current state and the probability of the current state given the previous to the 

probability of the current state given the joint probability of the previous state and the current 

observation. 

 

The posterior distribution is then updated as the following weighted sum:     

     

𝑝(𝑋𝑘| 𝑂𝑘) = ∑  𝜅𝑘
𝑖𝑁

𝑖=1  𝛿(𝑋𝑘 − 𝑋𝑘
𝑖 )                                                      (4) 

                  

where p(Ok|Xk) is the likelihood and δ(.) is the Dirac-delta function.  

Sample degeneracy and sample impoverishment 

 

It is fundamentally important to generate a proposal distribution such that the sampled particles 

belong to the region of significant likelihood of the posterior. Particle filters often run into sample 

degeneracy problems [15] because a large fraction of particles have negligibly small weights after 

only a few iterations, Sampling Importance Resampling (SIR), which is a probabilistic particle 

selection method mitigates the problem somewhat and has therefore been adopted widely as a 

solution [16]. In the resampling step, particles having small weights have low chances of being 

propagated to the next iteration. A major weakness of PF-SIR in effectively addressing the Sample 

Degeneracy Problem is that particle diversity can decrease over the course of iterations. This leads 

to the Sample Impoverishment Problem [17] wherein the resampled particle set does not accurately 
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reflect the underlying statistical properties of the original particle set. As the number of effective 

particles decreases, the collective information carried by them also declines resulting in suboptimal 

object representations. The number of effective particles Neff can be expressed as: 

 

𝑁𝑒𝑓𝑓 =
1

∑ (𝜅𝑘
𝑖 )2𝑁

𝑖=1

                                      (5) 

Mitigation strategies 

     

The Sample Impoverishment Problem has led to several mitigation strategies use prior knowledge 

processing or multi-layered sampling. Partitioned Sampling [17], Annealed Importance Sampling 

[19] and Kernel Particle Filters [13] are some of the commonly used techniques in this regard.  The 

Auxiliary Particle Filter by Pitt and Shephard, 1999 [20] samples particles corresponding to points 

mapped to an importance density with high conditional likelihood. Some researchers have 

proposed moving particles of lower importance towards regions of higher posterior likelihood 

where they might better approximate the underlying probability density function. For example, the 

Kernel Particle Filter accomplishes this particular objective, however its use of a deterministic 

search over a continuous probability distribution limits its utility.  

 

In recent years, the use of Particle Swarm Optimization [21] in non-differentiable and ill-structured 

multidimensional problems has gained popularity due to co-operative exchange of social and 

cognitive information among swarm members and the relatively low cost of individual particle 

fitness computation. While it yields promising results for non-differentiable cost functions, it is 

also limited in its ability to converge to the global best (Van den Bergh, 2001) [22] as per the 

convergence criteria put forward by Solis and Wet [23]. Numerous updates to the canonical PSO 
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put forward by Clerc and Kennedy [24], have been made possible by factoring in different 

initialization conditions, position and velocity updates and hybridization [24-27]. Among these, 

Quantum-behaved Particle Swarm Optimization (QPSO) [25-26] is a particularly attractive choice 

as its convergence to an optimum is theoretically guaranteed [27]. Promising results using QPSO-

inspired Particle Filters in several tracking datasets have been reported by Sun et al (2015) [7] and 

by Hu, Fang and Ding (2016) [8].  
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Fig. 1. Particle redistribution towards regions of high likelihood.
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CHAPTER III 

OUTLINE OF METAHEURISTICS USED 

 

Particle Swarm Optimization (PSO) 

PSO [21] is one of many nature-inspired metaheuristics in the broad category of Swarm 

Intelligence. It has been motivated by observed social co-operation among bird flocks and fish 

schools. Each particle in PSO is a candidate solution representing a point in a d-dimensional search 

space. In a multidimensional search space, the particles mimic the behaviour exhibited by a group 

of birds or a school of fish flocking in a multidimensional search space by updating their position 

coordinates and velocity using information of personal best position so far (cognitive operator - 

pbest) and global best (social operator - gbest). An iterative process of movement dependent on 

social co-operation guides the swarm towards the global optimum. The position and velocity 

equations in basic PSO are as follows: 

 

𝑣𝑖

𝑡+1 = 𝜔 𝑣𝑖
𝑡 +  𝐶1 𝑟1(𝑝𝐵𝑒𝑠𝑡𝑖 − 𝑋𝑖

𝑡) +  𝐶2𝑟2(𝑔𝐵𝑒𝑠𝑡 − 𝑋𝑖
𝑡)                                          (6)  

             

𝑋𝑖

𝑡+1 =  𝑋𝑖
𝑡 +  𝑣𝑖

𝑡+1                                                                                                  (7) 

 

𝐶1 and 𝐶2 are cognition and social acceleration constants and 𝑟1 and 𝑟2 are random numbers between 

0 and 1 drawn from a uniform distribution. 𝑋𝑖

𝑡+1 ,  𝑣𝑖

𝑡+1  represent the position and velocity of the 𝑖th 

d-dimensional particle respectively at the end of the t-th iteration whereas 𝑝𝐵𝑒𝑠𝑡 and 𝑔𝐵𝑒𝑠𝑡 are the 
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personal and global best positions. Term 1 in the R.H.S of eq. (6) represents inertia of the swarm 

and can be adjusted by tuning 𝜔 while the next two terms perturb noise in the direction of the 

individual and population best. The fitness f is updated in the following manner for a cost 

minimization objective: 

𝑓(𝑥𝑖

𝑡 ) < 𝑓(𝑝𝐵𝑒𝑠𝑡𝑖)) ⇒ 𝑝𝐵𝑒𝑠𝑡𝑖 = 𝑥𝑖

𝑡                                                    (8) 

          

𝑓(𝑥𝑖

𝑡 ) ≥ 𝑓(𝑝𝐵𝑒𝑠𝑡𝑖)) ⇒  𝑝𝐵𝑒𝑠𝑡𝑖 = 𝑝𝐵𝑒𝑠𝑡𝑖                                                      (9)  

 

Algorithm 1  Particle Swarm Optimization 

 

  1: for each particle xi  

 

  2:      initialize position and velocity   

 

  3: end for 

 

  4: do 

 

  5:   for each particle xi 

 

  6:        Calculate particle fitness fi 

 

  7:        if fi is better than individual best (pBest)  

 

  8:           Set fi as the new pBest 

 

  9:        end if 

 

10:   end for 

 

11:  Set best among pBest as the global best (gBest) 

 

12:  for each particle  

 

13:         Calc. particle velocity acc. to eq. (6) 

 

14:        Update particle position acc. to eq. (7) 

 

15:  end  

 

16: while max. iter or convergence criterion  not met 



 

  11 

 

 

 

 

Fig. 2. Particle movement mechanics using PSO. 
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Quantum-behaved Particle Swarm Optimization (QPSO) 

 

Trajectory Analysis in [28] proved the convergence of PSO necessitates the convergence of each 

particle to its local attractor 𝑝𝑖

𝑡 = (𝑝𝑖1

𝑡  , 𝑝𝑖2

𝑡 , 𝑝𝑖3

𝑡 , … 𝑝𝑖𝑑
𝑡 ) and in the process the current position (𝑋𝑖

𝑡 ) , the 

personal best (pBest) and the global best (gBest) approach the same value. In Quantum-behaved 

Particle Swarm Optimization, the state of a particle is formally characterized by a wave function 

𝜓 with |𝜓|2 representing its probability density function. Using recursive Monte Carlo, the QPSO 

position update equation reduces to: 

 

𝑋𝑖𝑗

𝑡+1 =  𝑝𝑖𝑗
𝑡  ± (

𝐿𝑖𝑗
𝑡

2
) 𝑙𝑛 (

1

𝑢𝑖𝑗
𝑡 )                                                  (10)    

 

𝑢𝑖𝑗
𝑡 ~𝑈(0,1) is a uniformly distributed random number and the local attractor 𝑝𝑖𝑗

𝑡  can be formulated 

as: 

 

𝑝𝑖𝑗

𝑡 =
𝐶1𝑟𝑎𝑛𝑑(0,1)𝑖𝑗

𝑡 𝑝𝑏𝑒𝑠𝑡𝑖𝑗
𝑡 +𝐶2𝑟𝑎𝑛𝑑(0,1)𝑖𝑗

𝑡 𝑔𝐵𝑒𝑠𝑡𝑖𝑗
𝑡

𝐶1𝑟𝑎𝑛𝑑(0,1)𝑖𝑗
𝑡 +𝐶2𝑟𝑎𝑛𝑑(0,1)𝑖𝑗

𝑡                                         (11) 

 

rand(0,1) generates different random numbers for pairing with cognitive and social operators. 

Further simplification results in the following widely used form: 

 

𝑝𝑖𝑗

𝑡 =  Φ𝑖𝑗
𝑡 𝑝𝐵𝑒𝑠𝑡𝑖𝑗

𝑡 + (1 − Φ𝑖𝑗
𝑡 )𝑔𝐵𝑒𝑠𝑡𝑖𝑗

𝑡                                (12) 

 

where Φ𝑖𝑗
𝑡 ~𝑈(0,1) is a generated random number distributed uniformly. 
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The parameter 𝐿𝑖𝑗
𝑡 is the characteristic length of the underlying wave function and is evaluated as: 

 

𝐿𝑖𝑗

𝑡 =  2𝛽 |𝑝𝑖

𝑡 − 𝑋𝑖𝑗

𝑡 |                               (13) 

 

The contraction-expansion co-efficient 𝛽 is tuned to maintain the balance between exploration and 

exploitation. The complete position update equation is thus given by: 

 

𝑋𝑖𝑗

𝑡+1 =   𝑝𝑖𝑗
𝑡 ±  𝛽 |𝑝𝑖

𝑡 − 𝑋𝑖𝑗

𝑡 | 𝑙𝑛 (
1

𝑢𝑖𝑗
𝑡 )                                                          (14) 

 

𝐿𝑖𝑗

𝑡  controls the accuracy and convergence speed of QPSO. The “Mainstream Thought” or Mean 

Best, introduced in [25] is the mean of all 𝑝𝐵𝑒𝑠𝑡 positions of the particles.  

 

𝑚𝑏𝑒𝑠𝑡𝑡 = (𝑚𝑏𝑒𝑠𝑡1
𝑡  ,  𝑚𝑏𝑒𝑠𝑡2

𝑡  , … , 𝑚𝑏𝑒𝑠𝑡𝑑
𝑡  )                                                                              (15) 

        

              = [
1

𝑀
∑ 𝑝𝑖1

𝑡𝑀
𝑖=1 ,

1

𝑀
 ∑ 𝑝𝑖2

𝑡𝑀
𝑖=1 , … ,

1

𝑀
∑ 𝑝𝑖𝑑

𝑡𝑀
𝑖=1 ]   

 

An alternate way of writing the position update equation is adopted by re-expressing 𝐿𝑖𝑗

𝑡  : 

 

𝐿𝑖𝑗

𝑡 =  2𝛽 |𝑚𝑏𝑒𝑠𝑡𝑗

𝑡 − 𝑋𝑖𝑗

𝑡 |                                                                                                               (16)  

 This yields the final form of the popular mainstream thought based position update equation of 

the QPSO algorithm. 
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𝑋𝑖𝑗

𝑡+1 =  𝑝𝑖𝑗
𝑡  ± 𝛽 |𝑚𝑏𝑒𝑠𝑡𝑗

𝑡 − 𝑋𝑖𝑗

𝑡 | 𝑙𝑛 (
1

𝑢𝑖𝑗
𝑡 )                           (17)  

 

The second term in the RHS of (17) is additive when a generated random number is less than 0.5 

and is subtracted when ut
ij is greater than 0.5. 

 

Algorithm 2  Quantum-behaved PSO  

  

  1:  for each particle xi  

 

  2:       initialize position  

 

  3:  end for 

 

  4:  do 

 

  5:    Compute mean best position using eq. (15) 

 

  6:       for each particle xi 

 

  7:           for each dimension j 

 

  8:                 Calculate local attractor using eq. (12) 

 

  9:                 if rand(0,1)<0.5 

 

10:                    Update pos. using eq. (15) with ‘+’ 

 

11:                 else Update pos. using eq. (15) with ‘-’ 

 

12:                 end if 

 

13:            end for 

 

14:           Evaluate fitness function 

 

15:           Update pBest according to eq. (8) and (9) 

 

16:       end for 

 

17:    Set best among pBest as the global best (gBest) 

 

18:  while max. iter or convergence criterion  not met 
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CHAPTER IV 

ANNEALED-WEIGHTED QPSO FOR VISUAL OBJECT TRACKING 

 

 

Particle propagation  

The uniform weighting scheme in the Mean Best calculation in eq. (15) is not an optimum choice 

as particles of varying fitness values contribute equally to it. Thus, in alignment with predator-

prey population models where the fitter of the two survives to pass on their genes, the mean best 

update is recomputed by assigning a set of variable weights with the particles. Each particle is 

associated with a weight in proportion to its fitness value thereby making it favorable for the fittest 

particle to contribute most to the mean best update [27].  

 

The mbest calculation thus changes to: 

 

𝑚𝑏𝑒𝑠𝑡𝑡 = (𝑚𝑏𝑒𝑠𝑡1
𝑡  ,  𝑚𝑏𝑒𝑠𝑡2

𝑡  ,… , 𝑚𝑏𝑒𝑠𝑡𝑑

𝑡  )                                     (18)     

          

              = [
1

𝑀
∑ 𝜏𝑖1

𝑡 𝑝𝑖1
𝑡𝑀

𝑖=1 ,
1

𝑀
 ∑ 𝜏𝑖2

𝑡 𝑝𝑖2
𝑡𝑀

𝑖=1 , … ,
1

𝑀
∑ 𝜏𝑖𝑑

𝑡 𝑝𝑖𝑑
𝑡𝑀

𝑖=1 ] 

 

where 𝜏𝑖𝑗
𝑡  is the j-th dimensional weight of the i-th particle in iteration t. The standard QPSO suffers 

from unsatisfactory fine tune during the latter part of the search process [29] and the fitness update 

scheme rejects particles whose likelihood values are worse than the personal best. However, these 

particles may evolve over iterations to guide the swarm towards the globally optimum mode and 

disregarding them from the start of the search process may effectively reduce the diversity of the 
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swarm. Thus, the fitness update scheme is replaced by an exponential acceptance score where the 

probability of accepting a particular particle is given by the Metropolis criterion [30]: 

 

𝜃 = {
1, 𝑖𝑓 𝛥𝑓 < 0

𝑒𝑥𝑝 (−
 𝛥𝑓

𝑇𝑡
) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                 (19) 

  

 𝛥𝑓 is the difference in fitness, 𝜃 is probability that the current particle is accepted and Tt is the 

annealing temperature in iteration t. A suitable exponential cooling schedule is adopted with an 

initial high value of T0: 

  

𝑇𝑡 = 𝑇0𝑒𝑥𝑝 (−𝑡)                                                                                                  (20) 

                           

The value of the contraction-expansion factor 𝛽 is decreased linearly from 0.9 to 0.5 over the 

iteration count to facilitate exploitation in the latter part of the search: 

 

𝛽 = (0.9 − 0.5) [
(𝑡𝑚𝑎𝑥 −𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝑡𝑚𝑎𝑥
] + 0.5                                                       (21)            
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  Algorithm 3  Annealed Weighted QPSO  

 

  1:   for each particle xi  

 

  2:        initialize position  

 

  3:   end 

 

  4:   do 

 

  5:     Compute mean best position using eq. (18) 

 

  6:     for each particle xi 

 

  7:           for each dimension j 

 

  8:                 Calculate local attractor using eq. (12) 

 

  9:                 if rand(0,1)<0.5 

 

10:                    Update pos. using eq. (17) with ‘+’  

 

11:                 else Update pos. using eq.(17) with ‘-’  

 

12:                end if 

 

13:          end for 

 

14:     Accept new solution according to eq. (19) 

 

15:     Update pBest according to. eq. (8) and (9) 

 

16:     end for 

 

17:     Set best among pBest as the global best (gBest) 

 

18:    while max. iter or convergence criterion  not met 

 

 

Proposal distribution and sensing model  

The dynamic state update stage of the filter makes use of a weight normalized velocity looking 

back three steps in memory. A Gaussian distribution Xk+1 ~ N(Xk ,ΣM)  is used to spread particles 
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around the current state which results in the following motion model with the importance weight 

vector λ sorted in ascending order of values. ΣM is the covariance matrix of the distribution, 𝑣𝑓 is 

the adaptive step size update, Ω is a uniform random number in [-1,1] and 𝑣𝑔 is the velocity of the 

g-th frame. 

 

𝑋𝑘+1 =  𝑋𝑘 + 𝛺𝑣𝑓                                                                                                       (22)           

          

𝜆 = 𝑠𝑜𝑟𝑡 ({ 
𝑣𝑔

∑ 𝑣𝑒
𝑘
𝑒=𝑘−2

 }
𝑔=𝑘−2

𝑘

, 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔)                             (23)               

                

𝑣𝑓 = 2 ∑ 𝜆{𝑎 + 1}. {𝑣𝑘−𝑎}2
𝑎=0                                                                 (24)      

                                                                       

Now, it is known to all that a good observation model is critical to implementing an efficient 

tracker. However, in practice varying conditions necessitate the use of specific feature descriptors 

for different tracking scenarios. In this work, the appearance of the targeted object is modeled 

using a Gaussian fitness function as: 

 

𝑓(𝐶, Σ) = (
1

2𝜋𝑛/2|Σ|1/2) exp (−
Δ2

2
)                                                                        (25)      

        

Δ = √(𝐶 − 𝐶𝐺𝑇)𝑇Σ−1(𝐶 − 𝐶𝐺𝑇) is the Mahalanobis distance of the observable C with respect to the 

goal state CGT given covariance Σ. Here, colour cue is used as the feature descriptor to construct 

likelihood scores because of its simplicity in implementation while providing invariance to 

translational and rotational change, as well as scale change and partial occlusion. The Euclidean 
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distance between i-th of N particles and the manually annotated ground truth for the k-th frame is 

used in subsequent centre error estimation and is given by the following equation: 

𝑑𝑖

𝑘 =  √(𝑋𝐺𝑇 −  𝑋𝑖
𝑘)2     ∀𝑖 𝑖𝑛 𝐼+ ∈ [1, 𝑁]                                                (26) 

    

Proposed tracker model  

 

 

 

       

Fig. 3. Flowchart of the AWQPSO tracking model. 
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CHAPTER V 

TRACKING PERFORMANCE INDICES 

 

A quantitative characterization of tracker performance has been made using precision and recall 

evaluated over the test sequences. Precision, in the context of visual tracking can be defined as the 

ratio of the number of frames over the total having a centre to swarm deviation less than a preset 

threshold. Recall, on the other hand is the ratio of number of frames over the total that pass a 

tracker to ground truth bounding box overlap score greater than a preset threshold. In more formal 

terms, these are expressed as: 

Precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐹𝑟𝑎𝑚𝑒𝑠𝑅𝑀𝑆𝐸 <𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑇𝑜𝑡𝑎𝑙 𝐹𝑟𝑎𝑚𝑒𝑠
 = 𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                         (27) 

Recall: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐹𝑟𝑎𝑚𝑒𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑆𝑐𝑜𝑟𝑒>𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑇𝑜𝑡𝑎𝑙 𝐹𝑟𝑎𝑚𝑒𝑠
  = 𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                       (28)        

Overlap Score: 

The Overlap Score is computed as  (
𝐵𝐵𝑇𝑟𝑎𝑐𝑘𝑒𝑟 ⋂  𝐵𝐵𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ

𝐵𝐵𝑇𝑟𝑎𝑐𝑘𝑒𝑟 ⋃  𝐵𝐵𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ
) . TP, FP and FN are true positives, false 

positives and false negatives, respectively and BB denotes the Bounding Box. 

Root Mean Square Error: 

𝑅𝑀𝑆𝐸 =

∑ [
√∑ {(𝑋𝑧,𝑥−𝑋𝐺𝑇,𝑥)

𝑘

2
+(𝑋𝑧,𝑦−𝑋𝐺𝑇,𝑦)𝑘

2}𝑁
𝑧=1

𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
]

𝑘𝑚𝑎𝑥
𝑘=1

𝑘𝑚𝑎𝑥
                                                         (29)  

Frames per Second:  

𝐹𝑃𝑆 =
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑟𝑎𝑚𝑒𝑠 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐼𝑛 𝑆𝑒𝑐𝑜𝑛𝑑𝑠
                                          (30)  
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CHAPTER VI 

EXPERIMENTS AND RESULTS 

 

Experimental setup 

To evaluate the performance of the AWQPSO tracker, three competitive tracking algorithms viz. 

PF (described in Chapter II), PSO – PF (described in Chapter III) and AWQPSO-PF (described in 

Chapter IV) have been considered. A comparative analysis of computational load and error 

margins are calculated using the same observation model for all. Two different video sequences 

acquired at 25 fps are taken. The first one is the dataset OneStopNoEnter2cor.mpg from the EC 

Funded CAVIAR project/IST 2001 37540 [31]. The Corridor Views of the Lisbon Sequence from 

the CAVIAR Project are considered. These sequences are shot in a shopping mall using a 

surveillance camera and variations include scale change, different lighting conditions, nearby 

moving object (particle hijacking problem) and partial occlusion. The second sequence is 

aerobatics_1.avi from the Aircraft Tracking Database-Open Remote Sensing [32] which 

introduces scale change, camera movement, abrupt motion and specular reflection into the 

observation. 

Table 1. 

 

List of Implementation Terms and Parameters for the Metaheuristic Algorithms.  

 

 

Term 

 

 

Discussion 

 

 

Some General Terms 

 

Population (X) The collection or ‘swarm’ of agents employed in the search space 

Fitness Function (f) A measure of convergence efficiency  

Current Iteration The ongoing iteration among a batch of dependent/independent runs  

Maximum Iteration Count The maximum number of times runs are to be performed 
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Particle Filter 

 

Population (X)  Collection of agents approximating states of target under consideration 

Proposal  Initial guess of possible target states given some/no apriori knowledge 

Observation  Sensed states of the target after the prediction stage is complete 

Importance Weights (κ) A high posterior likelihood implies a large weight 

Effective Sample Size (ESS) Low value of Effective Sample Size implies necessity of resampling  

 

Particle Swarm Optimization 

 

Position (X) Position values of individual swarm members employed in a 

multidimensional search space 

Velocity (v) Velocity values of individual swarm members 

Cognitive Acceleration Co-

efficient (C1) 

Empirically found scale factor of pBest attractor  

Social Acceleration Co-

efficient (C2) 

Empirically found scale factor of gBest attractor 

Personal Best (pBest) Position corresponding to historically best fitness for a swarm member 

Global Best (gBest) Position corresponding to best fitness over history for swarm members  

Inertia Weight Co-efficient 

(ω) 

Facilitates and modulates exploration in the search space 

Cognitive Random 

Perturbation (r1) 

Random noise injector in the Personal Best attractor 

Social Random 

Perturbation (r2) 

Random noise injector in the Global Best attractor 

 

Quantum-behaved Particle Swarm Optimization 

 

Local Attractor  Set of local attractors in all dimensions 

Characteristic Length Measure of scales on which significant variations occur  

Contraction-Expansion 

Parameter (β) 

Scale factor influencing the convergence speed of QPSO 

Mean Best Mean of all personal bests across all particles, akin to leader election 

in the biological world 

 

Annealed Weighted Quantum-behaved 

Particle Swarm Optimization 

 

Weighted Mean Best Fitness weighted mean of all personal bests across all particles 

Metropolis Criterion Criterion facilitating inclusion of worse performing particles in the 

solution pool to preserve diversity of the swarm 

Annealing Temperature Temperature of the system in a particular iteration in the simulated 

annealing process [33] 

Initial Annealing 

Temperature 

Initial temperature of the system in the simulated annealing process 

Contraction Expansion 

Parameter (β) 

Linearly decreasing factor influencing convergence speed of  QPSO 
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Parameter settings 

The values of the cognitive and social learning constants C1 and C2 in Table 1 are both set to 2.05 

as these are empirically found to be the optimal pair. The inertial constant ω in PSO is set to 0.5 

after testing a linear time varying inertia weight (TVIW) as well as in increments of 0.1 between 

0.1 and 0.9 for PSO which results in a fine balance between exploration and exploitation. The 

contraction-expansion factor β in AWQPSO is reduced linearly with the number of iterations to 

explore the search space more in initial iterations and hone in on potential solution regions towards 

the latter iterations. The population size in all test cases are taken to be 300 to allow for reasonably 

on-target behaviour across all frames for each algorithm, exceeding which the time cost increases 

with negligible change in the number of off-target frames. A sufficiently large fitness score 

computed with respect to the goal state or a maximum iteration count of 50 are kept as the 

termination criterion for all in-frame optimization using the algorithms.  

The methodologies discussed so far are implemented on MATLAB R2016a using an Intel(R) 

Core(TM) i7-5500U CPU @ 2.40GHz with 8GB RAM and the independent performances over 30 

trials are analyzed. No use of Graphics Processing Units (GPUs) have been made during the 

experiments. 

 

Table 2. 

 

Parameter selection for the tracking algorithms. 

 

Parameter Population C1 C2 ω β tmax Tt 

Value 300 2.05 2.05 0.5 (0.9-0.5)[(tmax-tcurrent)/tmax]+0.5 50 100 

 

 

 

 

 

 

 



 
 

  24 

Results for Benchmark Problem 1: OneStopNoEnter2cor 

 
 

 

Frame PF PSO-PF AWQPSO-PF 

805 

   

897 

   

966 

   

1035 

   

1081 

   

 

Fig. 4-18. Tracking results for OneStopNoEnter2cor. * 

 
 

 

 

 * Figures 4-18 should be interpreted in a row-major order.  
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Fig. 19. Evolution of RMSE for OneStopNoEnter2cor (301 frames). 

 

Table 3. 

 

Performance comparison of the three trackers for OneStopNoEnter2cor.  
 

Dataset Algorithm FPS Lost Targets 

CET=20 CET=30 

OneStopNoEnter2cor 

 

 

PF 17.23±0.3058 40/301 28/301 

PSO-PF   6.71±0.7285   4/301 0/301 

AWQPSO-PF   8.69±0.7044   0/301 0/301 
 

 
 

Fig. 20. Precision versus Centre Error Threshold for dataset OneStopNoEnter2cor. 
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Fig. 21. Recall versus Overlap Threshold for dataset OneStopNoEnter2cor. 

 
 

 

 
 

Fig. 22. Performance of AWQPSO under varying population sizes for dataset 

OneStopNoEnter2cor. 
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Results for Benchmark Problem 2: aerobatics_1 

 

 

Frame PF PSO-PF AWQPSO-PF 

324 

   

432 

   

513 

   

540 

   

597 

   

 

 

Fig. 23-37. Tracking results for aerobatics_1.* 

 

 

 

 

 * Figures 27-41 should be interpreted in a row-major order.  
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Fig. 38. Evolution of RMSE for aerobatics_1 (301 frames). 
 

Table 4. 

 

Performance comparison of the three trackers for aerobatics_1. 
 

Dataset Algorithm FPS 
Lost Targets 

CET=20 CET=30 

aerobatics_1 

PF 14.34±0.2016 32/301 9/301 

PSO-PF   5.40±0.4783 18/301 3/301 

AWQPSO-PF   5.79±0.3158   5/301 0/301 
 

 
 

Fig. 39. Precision versus Centre Error Threshold for dataset aerobatics_1. 
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Fig. 40. Recall versus Overlap Threshold for dataset aerobatics_1. 

 

 

 

         
 

       Fig. 41. Performance of AWQPSO under varying population sizes for dataset aerobatics_1. 
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CHAPTER VII 

ANALYSIS OF EXPERIMENTAL RESULTS 

 

Using 300 particles, there is an increase in FPS by 29.51% and 7.22% in case of 

OneStopNoEnter2cor and aerobatics_1 using AWQPSO over PSO in the Particle Filtering 

framework. The precision plot for OneStopNoEnter2cor suggests at least 80% of frames pass the 

RMSE threshold of 15 for both AWQPSO and PSO while that for aerobatics_1 suggests the same 

percentage of frames pass the RMSE thresholds of 18 and 23 for AWQPSO and PSO. There are 

13% and 5% increases in number of frames with a 50% overlap between ground truth and tracker 

bounding boxes when using AWQPSO as compared to PSO for OneStopNoEnter2cor and 

aerobatics_1 respectively. In Frames 1075 through 1091 of OneStopNoEnter2cor, the PF tracker 

is distracted by mistaking local objects as the target, whereas PSO-PF and AWQPSO-PF maintain 

tracking the target viz. a human subject walking down the corridor clad in red clothing successfully 

with RMSE<10. Additionally, in aerobatics_1 for Frames 566 to 575 and 594 to 600, PF loses 

track of the target aircraft due to abrupt motion coupled with scale change, however PSO and 

AWQPSO trackers perform efficiently. In both the periods though, the proposed AWQPSO-PF 

tracker has a lower RMSE than the PSO-PF tracker.  

 

Table 3 lists the results of performance parameters for the OneStopNoEnter2cor sequence using 

the different techniques. Although experimental results suggest that the AWQPSO-PF approach 

tracks the target with the least net error as compared to PF and PSO-PF, it takes at least twice as 

much time to process the same number of frames as the Particle Filter does. The number of lost 

targets for Centre Error Threshold of 20 and 30 are least in AWQPSO-PF and its RMSE is less 
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than 20 in each of the 301 frames of the subsequence, whereas PF and PSO-PF fail to confine the 

RMSE to under 20 in all frames. The number of correctly tracked frames (no lost targets) given a 

RMSE threshold of 20 rose by 1.328% and 13.289% using the proposed approach over PSO and 

PF respectively. While the AWQPSO-PF and PSO-PF approaches reported same number of 

correctly tracked frames for RMSE threshold of 30, there was an increase of 9.302% noticed with 

regard to the PF performance for AWQPSO-PF. 

 

Results from Table 4 indicate AWQPSO-PF has a much tighter bounding box around the target in 

each frame when compared to the other methods. For instance, the number of frames in the 

subsequence where the swarm RMSE is less than or equal to 20 is 296 and 283 in case of 

AWQPSO-PF and PSO-PF respectively – an improvement of 4.318%. Similarly, the concerned 

number of frames are 298 and 301 for swarm RMSE less than or equal to 30 meaning an 

improvement of 0.996% using AWQPSO-PF over PSO-PF.  The proposed approach reported 

8.970% and 2.990% increase in said number of frames for RMSE bounds of 20 and 30 against the 

standard PF for the AWQPSO-PF tracker. 
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CHAPTER VIII 

GENERAL DISCUSSION 

 

The present study has presented and tested an evolutionary Particle Filter which makes use of an 

Annealed - Quantum-behaved Particle Swarm Optimization with a weighted Mean Best operator. 

The better global search ability of the fitness weighted QPSO along with the probabilistic rejection 

of inferior solutions using Metropolis Criterion makes the proposed metaheuristic well suited for 

avoiding local minima in the tracking search space. This preserves the diversity of the posterior 

population and alleviates the sample impoverishment issue to an extent better than the competing 

Particle Swarm Optimization based Particle Filter and the standard Particle Filter. This is 

evidenced by the experimental results obtained in Tables 3 and 4 as well as by the indices in 

Figures 20, 21, 39 and 40. In addition to this, a motion model that looks back three steps in memory 

is adopted to smooth out sudden changes in velocity of the target. The proposed algorithm is tested 

using two sequences and is seen to outperform its competitors in both, yielding better RMSE across 

majority of frames as well as greater area under the curve for both the Precision versus Centre 

Error Threshold and Recall versus Overlap Threshold metrics. It is observed that the computational 

load for the AWQPSO-PF method is lower than the PSO-PF, albeit both being significantly slower 

than the standard PF tracker. This is because of the lesser number of within-frame iterations 

required by AWQPSO to reach the convergence threshold. However, given the large number of 

particles used in all the methods and the large within-frame cutoff iteration of 50, the setup is not 

suitable for real time operation without a reduction in population size and number of in-frame 

iterations or a parallelized implementation.   
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The observation model may be modified to accommodate a multi cue likelihood function requiring 

a multi-objective optimization approach thus effecting a better representation of the target. 

Additionally, the current AWQPSO-PF tracker model can be extended to track multiple targets 

with a focus on occlusion handling and evasion of stagnation in local minima over a large number 

of datasets. Importantly enough, the speedup through parallel computation of particle trajectories 

in the dynamic state transition section and the subsequent metaheuristic optimization module may 

lead to a significant increase in FPS. As with existing swarm optimization inspired tracking models 

such as the Cuckoo Search inspired PF tracker in [9], the QPSO-PF tracker in [7], the Cellular 

QPSO-PF tracker in [8] and other recent ones [10-11], the current metaheuristic too is susceptible 

to performance degradation due to incorrect parametric tuning, necessitating a thorough 

characterization of the operating ranges of its system variables to guarantee convergent behaviour.   
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Appendix A. 

 

A BASIC PARTICLE FILTERING ALGORITHM 

 

The particle filter is a Monte Carlo approximation technique which implies that the posterior  

distribution p (X|O) is expressed as a collection of samples, also known as particles. A particle 

filtering model is set up using: 

 

X: State Variables 

O: Measurements/Observation 

υ: Dynamic Noise 

η: Measurement Noise 

f: State Transition Equation 

h: Observation Equation 

 

The state transition equation and observation equations can be discontinuos, non-linear and non-

differentiable and the Dynamic and Observation Noise can be non-Gausssian as long as it is 

tractable.  

X=(x,κ) where x are the samples and κ are the associated weights. The number of particles chosen 

to represent the posterior density p(X|O) is sometimes referred to as the fidelity of the posterior 

and is a function of the complexity of the posterior and the number of problem dimensions.  

The predict-update cycle of the Particle Filter is given below: 
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Algorithm 4  The Particle Filter 

 

  1: for each particle xi  

 

  2:      initialize state   

 

  3: end for 

 

  4: do 

 

  5:   for each particle xi 

 

  6:        Propagate through state transition equation  

 

  7:        Update weight vector using new observation O  

 

  8:        Normalize updated weights to sum to one 

 

  9:       Compute the desired output as an expectation of updated position and weight   

 

10:   end for 

 

11:  Check if Effective Sample Size (ESS) < ζ where ζ ϵ [0,1] and if so resample  

 

12:   Increase iteration count 

 

 

 

In effect, the particles cluster to new locations in each iteration and new weights are updated 

depending on how well the proposed transitions match the observations. The weights are 

renormalized to make their sum equal to one so that they represent a probability distribution.   
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Appendix B. 

RESAMPLING IN PARTICLE FILTERS 

 

After the proposal distribution has been updated in an iteration, some particles are prone to veering 

away towards positions of low likelihood, thus reducing their weights to values close to zero. The 

decision to resample from the population can be taken after calculating the co-efficient of variation. 

Formally, the co-efficient of variation (CV) may be expressed as: 

𝐶𝑉 =
𝑣𝑎𝑟(𝜅)

𝐸2(𝜅)
=  

∑ (𝑁𝜅−1)2𝜅𝑁
𝜅=𝜅1

𝑁
              (31) 

The Effective Sample Size (ESS) can then be formulated from which the decision to resample can 

be taken: 

𝐸𝑆𝑆 =
𝑁

1+𝐶𝑉
                                   (32) 

Whether or not to resample can be intelligently decided by looking at the value of the ESS: when 

the ESS falls to a very low value in an iteration, the resampling scheme can be invoked. A common 

way to resample is to perform selection with replacement which implies unfit particles are rejected 

and their positions are filled with copies of fitter particles. This implies that fitter particles occupy 

the significant chunk of particles remaining in the posterior distribution. This result leads to the 

issue of loss of diversity when there are only a few particles that carry significant weights after an 

iteration. 
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Appendix C. 

 

THE SWARM INTELLIGENCE PARADIGM 

 

Swarm Intelligence (Beni, 2004 and Bonabeau et. al, 1999) [34-35] is a discipline motivating the 

design and analysis of new machine learning techniques and robotic systems and it studies large 

populations of simple agents which solve problems far too complex for an individual agent. These 

populations can also display the adaptability and robust to environmental change exhibited by 

biological agents. Some relevant terminologies are briefly elaborated on, in the following pages. 

For an extended reading on the subject, the reader is referred to any good text on bio-inspired 

computation, such as [36] from which the following is largely adopted: 

 

Collective phenomena and the emergence of patterns 

Collective phenomena are found in abundance in the biological world and render significant 

adaptive functions to individuals in a multi-agent system. These may manifest themselves as 

communication between local neighbours, coordinated movement in adherence to a set of low 

level rules that result in complex high-level group dynamics or simply niche formation where each 

sub swarm is an ecological model.  

 

Self-organization 

Self-organization indicates a process where structures at complex levels may be formed by 

accumulating local information exchange among simple agents. The resulting complex patterns 
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are called emergent patterns because these have implications far greater than that of the sum of its 

formative parts. Equilibrium in such systems rise out of an interplay between positive and negative 

feedback and this equilibrium state is equivalent to an attractor in dynamical systems theory. 

Systems will tend to return to it when perturbed. A self-organizing system can also manifest 

multiple states and chaotic trajectories. These systems can be described by sets of differential 

equations where the change of state is dependent on the state at the previous iteration (positive 

feedback) and a limiting factor (negative feedback) with magnitude inversely proportional to the 

magnitude of the state.  

 

Aggregation 

Aggregation is an example of self-organization that is best explained by positive and negative 

feedback mechanisms. In fish schools, a large number of individuals can swim in close formation 

that may rapidly change direction, reunite or disperse at will.  The coordinated movement of the 

school gives it the appearance of a singular superorganism. Huth and Wissel (1992) [37] suggested 

a simple model of schooling based on both negative and positive feedback. A fish displays four 

behavioural reactions that depend on the position and orientation of other fish:  

(1) If there are other fish in the immediate neighbourhood, then an individual fish of interest 

will move away to avoid collision (Negative Feedback). 

(2) If there is another fish at an intermediate distance, the individual of interest will align its 

orientation. 

(3) If there is a fish at a greater distance, the individual will tend to move towards it (Positive 

Feedback). 
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(4) If there is no fish in sight, the individual of interest will perform random search movements.       

Clustering 

Ant species are known to engage in clustering and sorting behavior. The probability that an ant 

picks up an object is proportional to the number of objects it has experienced within a short time 

window. Therefore, ants tend to pick up objects that isolated objects but do not remove objects 

that are found in clusters. Also, the probability that an ant deposits an object is proportional to the 

number of perceived objects in a short time window. Therefore, ants are likely to deposit an object 

near larger clusters of objects (Deneubourg et. al, 1991 and Theraulaz et. al, 2002). [38-39] 

 

Nest Construction 

Termites and wasps collectively build nests whose architectural complexities exceed the 

perceptual and cognitive abilities of individual agents. Models that seek to explain how such 

engineering achievements are accomplished without a seemingly evident plan rely mostly on 

stigmergic communication (Grassé, 1959) [40]. 

 

Foraging 

Stigmergy can also improve the efficiency of collective foraging. Deneubourg et. al (1990) [41] 

showed that when pheromone laying ants are presented with two choices of a path with equal 

length between nest and food area, they choose the paths with equal probability initially. However 

they crowd one path soon enough and reject the other. This happens because the path with a 

stronger pheromone trail owing to a larger initial ant population visiting it will attract more ants 

and this creates a positive feedback loop.    
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Division of Labour 

In many self-organizing models, all agents have the same set of behavioural rules and perform the 

same task. However, many insect societies also display division of labour and specialization where 

certain individuals are assigned specific tasks.  Genetic factors such as polyethism (age-dependent 

specialization) and polymorphism (varying shape of body) impact the task allocation to an extent.  

Bonabeau et. al (1996) [42] proposed a response threshold model which states that an individual 

performs a task if the stimulus associated is greater than the individual’s threshold. 
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