411 research outputs found

    Design and development of the sEMG-based exoskeleton strength enhancer for the legs

    Get PDF
    This paper reviews the different exoskeleton designs and presents a working prototype of a surface electromyography (EMG) controlled exoskeleton to enhance the strength of the lower leg. The Computer Aided Design (CAD) model of the exoskeleton is designed,3D printed with respect to the golden ratio of human anthropometry, and tested structurally. The exoskeleton control system is designed on the LabVIEW National Instrument platform and embedded in myRIO. Surface EMG sensors (sEMG) and flex sensors are usedcoherently to create different state filters for the EMG, human body posture and control for the mechanical exoskeleton actuation. The myRIO is used to process sEMG signals and send control signals to the exoskeleton. Thus,the complete exoskeleton system consists of sEMG as primary sensor and flex sensor as a secondary sensor while the whole control system is designed in LabVIEW. FEA simulation and tests show that the exoskeleton is suitable for an average human weight of 62 kg plus excess force with different reactive spring forces. However, due to the mechanical properties of the exoskeleton actuator, it will require an additional liftto provide the rapid reactive impulse force needed to increase biomechanical movement such as squatting up. Finally, with the increasing availability of such assistive devices on the market, the important aspect of ethical, social and legal issues have also emerged and discussed in this paper

    Design and development of the sEMG-based exoskeleton strength enhancer for the legs

    Get PDF
    This paper reviews the different exoskeleton designs and presents a working prototype of a surface electromyography (EMG) controlled exoskeleton to enhance the strength of the lower leg. The Computer Aided Design (CAD) model of the exoskeleton is designed,3D printed with respect to the golden ratio of human anthropometry, and tested structurally. The exoskeleton control system is designed on the LabVIEW National Instrument platform and embedded in myRIO. Surface EMG sensors (sEMG) and flex sensors are usedcoherently to create different state filters for the EMG, human body posture and control for the mechanical exoskeleton actuation. The myRIO is used to process sEMG signals and send control signals to the exoskeleton. Thus,the complete exoskeleton system consists of sEMG as primary sensor and flex sensor as a secondary sensor while the whole control system is designed in LabVIEW. FEA simulation and tests show that the exoskeleton is suitable for an average human weight of 62 kg plus excess force with different reactive spring forces. However, due to the mechanical properties of the exoskeleton actuator, it will require an additional liftto provide the rapid reactive impulse force needed to increase biomechanical movement such as squatting up. Finally, with the increasing availability of such assistive devices on the market, the important aspect of ethical, social and legal issues have also emerged and discussed in this paper

    Computational Intelligence in Electromyography Analysis

    Get PDF
    Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles. EMG may be used clinically for the diagnosis of neuromuscular problems and for assessing biomechanical and motor control deficits and other functional disorders. Furthermore, it can be used as a control signal for interfacing with orthotic and/or prosthetic devices or other rehabilitation assists. This book presents an updated overview of signal processing applications and recent developments in EMG from a number of diverse aspects and various applications in clinical and experimental research. It will provide readers with a detailed introduction to EMG signal processing techniques and applications, while presenting several new results and explanation of existing algorithms. This book is organized into 18 chapters, covering the current theoretical and practical approaches of EMG research

    A Survey on Reservoir Computing and its Interdisciplinary Applications Beyond Traditional Machine Learning

    Full text link
    Reservoir computing (RC), first applied to temporal signal processing, is a recurrent neural network in which neurons are randomly connected. Once initialized, the connection strengths remain unchanged. Such a simple structure turns RC into a non-linear dynamical system that maps low-dimensional inputs into a high-dimensional space. The model's rich dynamics, linear separability, and memory capacity then enable a simple linear readout to generate adequate responses for various applications. RC spans areas far beyond machine learning, since it has been shown that the complex dynamics can be realized in various physical hardware implementations and biological devices. This yields greater flexibility and shorter computation time. Moreover, the neuronal responses triggered by the model's dynamics shed light on understanding brain mechanisms that also exploit similar dynamical processes. While the literature on RC is vast and fragmented, here we conduct a unified review of RC's recent developments from machine learning to physics, biology, and neuroscience. We first review the early RC models, and then survey the state-of-the-art models and their applications. We further introduce studies on modeling the brain's mechanisms by RC. Finally, we offer new perspectives on RC development, including reservoir design, coding frameworks unification, physical RC implementations, and interaction between RC, cognitive neuroscience and evolution.Comment: 51 pages, 19 figures, IEEE Acces

    Development of an EMG-controlled mobile robot

    Get PDF
    This paper presents the development of a Robot Operating System (ROS)-based mobile robot control using electromyography (EMG) signals. The proposed robot’s structure is specifically designed to provide modularity and is controlled by a Raspberry Pi 3 running on top of an ROS application and a Teensy microcontroller. The EMG muscle commands are sent to the robot with hand gestures that are captured using a Thalmic Myo Armband and recognized using a k-Nearest Neighbour (k-NN) classifier. The robot’s performance is evaluated by navigating it through specific paths while solely controlling it through the EMG signals and using the collision avoidance approach. Thus, this paper aims to expand the research on the topic, introducing a more accurate classification system with a wider set of gestures, hoping to come closer to a usable real-life applicatio

    Brain– machine interfaces

    Get PDF

    Myo-Elektriksel Sinyaller İle İnsansız Kara Aracının Uzaktan Kontrolü

    Get PDF
    Bu çalışma kapsamında insansız bir kara aracının kişinin el ve parmak hareketleri ile uzaktan kontrolü gerçekleştirilmiştir. Beyinden kol kaslarına iletilen ve kişinin el hareketlerini gerçekleştirmesini sağlayan Elektromiyografi (EMG) sinyalleri, kişinin koluna giydiği sekiz EMG sensör içeren bileklik vasıtası ile gerçek zamanlı olarak alınmıştır. Raspberry pi 3 gömülü sistem kartı üzerinde geliştirilen sinyal işleme, öznitelik çıkarımı ve sınıflandırma algoritmaları kullanılarak anlamlandırılmıştır. Başka bir deyişle el hareketin örüntüsü (el kapama, parmak açma, serçe parmak temas, bilek dışa bükme, vs.) ile EMG sinyal grubu arasındaki ilişkiler tanımlanmıştır. Anlamlandırılan her bir el hareketi araç için bir hareketi kontrol komutu (el kapama: araç ileri, parmak açma: araç dur, serçe parmağa temas: sola dönüş, bilek dışa bükme: sağa dönüş, vs.) olarak kullanılmıştır. Böylece insan – mobil araç etkileşim ağı kurulmuştur. Kurulan insan- mobil araç etkileşim ağı sayesinde el hareketleri ile mobil aracın gerçek zamanlı hareket kontrolü ortalama % 92 başarı ile gerçekleştirilmiştir
    corecore