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Brain–​machine interfaces
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School of Computing and Intelligent Systems, Ulster University, UK

A brain–​machine interface (BMI) is a biohybrid system primarily intended to act as an alter-
native communication channel for people suffering from severe motor impairments, such as 
those with a motor neuron disease or with spinal cord injuries. A BMI can be realized either 
invasively, using electrodes implanted in the cortex or placed directly on its surface (an electro-
corticogram) or by using non-​invasive imaging systems. In either case, the aim is to measure 
the cortical or neurophysiological correlates of brain activity during voluntary cognitive tasks. 
The focus of this chapter is on non-​invasive BMI (seeVassanelli, Chapter 50, this volume for 
a discussion of invasive interfaces) where the technologies available include:  electroencepha-
lography (EEG) which measures changes in brain electrical activity through the skull; magne-
toencephalography (MEG) which measures changes in the magnetic fields produced by brain 
activity using highly sensitive magnetometers; and various techniques, detailed below, that 
detect changes in the brain’s hemodynamic response (blood flow) and that are indicative of 
activity in localized brain areas.

Among these non-​invasive approaches EEG-​based BMI is the most widely investigated. Event-​
related de-​synchronization/​synchronization (ERD/​ERS) of sensorimotor rhythms (SMRs), the 
P300 event-​related potential (a wave of electrical activity linked to decision making), and steady-​
state visual evoked potential (SSVEP) are the three main cortical activation patterns in EEG used 
for designing an EEG-​based BMI. Being a pattern recognition system, a BMI involves multiple 
stages: brain data acquisition, pre-​processing, feature extraction, and feature classification along 
with a device to communicate or control with or without explicit neurofeedback.

Despite worldwide extensive research towards making the BMI as practical as possible for 
daily use, there are still several challenges to be overcome. One crucial challenge is to account 
for non-​stationary brainwaves dynamics resulting in time-​variant performance. Also, some 
people may find it difficult to establish a reliable BMI with sufficient accuracy, although most 
improve over time with repeated practice. Despite these challenges, the BMI research is pro-
gressing in two broad application areas: alternative communication by replacing neuromuscu-
lar pathways, and neurorehabilitation by helping to activate desired cortical areas for targeted 
brain plasticity.

Biological principles of non-​invasive interfaces
A brain–​machine interface (BMI), also called a brain–​computer interface (BCI), is normally 
established by uniquely identifying repeatable metabolic or electric brain activity (e.g. cortical 
activation) patterns occurring in response to a set of well-​defined cognitive tasks. The activa-
tion patterns are detected using a pattern recognition system (based on one of the technologies 
listed above), whose output can be used to select keypad letters, display messages, play computer 
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Brain-machine interfaces460

games, control household devices, control prosthetic/​orthotic limbs, or command and control a 
tele-​presence robotic device or a smart wheelchair. Thus, via the cognitive task, the BMI enables 
communication with a computer-​controlled machine or device directly through brain activation, 
bypassing the peripheral nervous and muscular systems. BMI is primarily aimed at providing 
alternative communication to people suffering from severe motor impairments such as motor 
neuron disease (MND) and spinal cord injuries (SCIs).

EEG-​based approaches
In addition to speech, gestures, including facial expressions and motor tasks such as right 
hand movement and/​or left hand movement, are naturally used by human beings in their 
routine communications. Coincidently, it was found that hand movement execution may 
result in changes in EEG signals known as sensorimotor rhythm (SMR) activations in the 
form of event-​related desynchronization (ERD) in the contra-​lateral hemisphere (relative 
to the moved hand) and event-​related synchronization (ERS) in the ipsilateral hemisphere 
(Pfurtscheller and Neuper 2001). The ERD is manifested as a reduction in EEG signal ampli-
tude mainly in the rolandic alpha (or µ band) and the ERS as an enhancement in the signal 
amplitude mainly in the β band. Fortunately, it has been found that the planning or prepa-
ration for real hand movement and hand movement imagination also lead to very similar 
cortical activations in the sensorimotor cortex (Pfurtscheller and Neuper 2001), therefore 
those with movement impairments can instead perform motor imageries to generate similar 
cortical activations in µ and β bands (cf. Figure 49.1). Pioneered by Pfurtscheller’s group in 
Graz (Pfurtscheller et al. 2000), the sensorimotor rhythm (SMR) modulation in the form of 
ERD/​ERS is by far the most predominant neurophysiological phenomenon used in devising 
a non-​invasive EEG-​based BMI.

Uniquely identifiable cortical activations also occur in another EEG-​based measure—​event-​
related potentials (ERPs). Two of the most commonly used in devising EEG-​based BMIs are P300 
and steady-​state visual evoked potential (SSVEP). In P300-​based BMI, all the objects or options 
that may need to be selected are arranged in the form of a grid as part of a graphical user interface 
(GUI). Exploiting the odd ball paradigm concept, the objects are displayed repeatedly one-​by-​one 
in a sequential order and the BMI user focuses his/​her attention on the desired object. This creates 
a uniquely identifiable event-​related potential change after a latency of about 300 ms. Farwell and 
Donchin (1988) were the first to use P300 as the basis for a BMI.

In SSVEP-​based BMI, corresponding to each of the objects or options to be selected, a flicker-
ing display is created either through an external device such as an LED or a flickering graphical 
display as part of a GUI. Each of the displays flickers at a certain fixed frequency. When a BMI 
user focuses his/​her attention on one of the displays, the cortical activations (i.e. the amplitude of 
the potential) corresponding to the flickering frequency and its harmonics in the occipital cortex 
get enhanced (Wolpa and Wolpa 2012, chapter 14).

MEG-​based BMI
Another non-​invasive approach to recording electrical brain activity is by means of recording the 
magnetic field produced by the electrical impulses generated by cortical neurons, through a pro-
cess called magnetoencephalography (MEG). An MEG system may contain up to three hundred 
sensors and must be operated at the temperature of liquid helium. The MEG provides whole-​head 
views, a high spatiotemporal resolution and its signal’s spatial distribution is impervious to the 
varying masses within the structure of the head. Mellinger et al. (2007) showed that a sensorimo-
tor rhythm (SMR)-​based BMI using MEG was as effective as that using EEG.
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BMI based on brain hemodynamics
In recent years BMI systems have also been devised based on the on-​line detection of changes 
in metabolic brain activities in the form of the blood oxygen level dependent (BOLD) signals 
obtained from functional magnetic resonance imaging (fMRI). During mental tasks, neurons use 
up their energy supply, which must be replenished by the blood in the form of oxygen and glu-
cose, and thereby allowing identification of areas of the brain that are active. Similar to MEG, 
fMRI offers a high spatial resolution but unlike MEG it is able to penetrate deep within the brain 
in order to measure neuronal activity. Yoo et al. (2004) demonstrated that volunteers were able 
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Figure 49.1 ER D/​ERS Phenomena in EEG-​based SMR BMI. Left panel: EEG channels C3 and C4 
connections in bi-​polar mode are highlighted in blue. Middle panel: ERD maps for a single subject 
calculated for the cortical surface of a realistic head model. The spline surface Laplacian method was 
applied to the bandpass filtered (9–​13 Hz) single-​trial EEG data and the distribution of the alpha 
band ERD was calculated for left and right motor imagery. Right panel: Grand average ERD curves 
recorded during motor imagery from the left (C3) and right sensorimotor cortex (C4). The ERD 
time courses were calculated for the selected bands in the alpha range for 16 subjects. Positive and 
negative deflections, with respect to baseline, represent a band power increase (ERS) and decrease 
(ERD), respectively. The gray bars indicate the time period of cue presentation (modified from 
Pfurtscheller et al. (2000)).
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to steer their way through a two-​dimensional maze using an fMRI-​based BMI by performing 
four different mental tasks each of which allowed separate areas of the brain to be activated. This 
study, although showing high accuracies, made use of only two participants and took around two 
minutes to generate each command which resulted in a relatively low information transfer rate.

BMI systems have also been developed based on the on-​line detection of changes in metabolic 
brain activities in response to motor imageries tasks, in the form of hemodynamic signals obtained 
from near-​infrared-​spectroscopy (NIRS). The NIRS systems offer high spatial resolution but low 
temporal resolution. However, such quality systems may be too bulky and expensive for day-​to-​
day constant use. The use of NIRS for BMI is a relatively new concept; it operates by measuring 
changes in both the regional cerebral blood flow (rCBF) and the cerebral oxygen metabolic rate 
(rCMRO2). When certain areas of the brain become active they require more oxygenated blood 
and hence the detection of increased amounts of oxygenated hemoglobin signals. For this, the 
light of a certain wavelength is emitted then collected by a sensor which is subsequently analyzed. 
The attenuation which the light undergoes on its passage between emitter and sensor is an indica-
tion of the structure of the tissue which it has passed through. Coyle et al. (2007) were the first 
to study an NIRS-​based SMR BMI which detected motor imagery tasks to make a binary choice. 
Although the system shows great potential, the study results in an information transfer rate (ITR) 
of 1 bit/​min and does not contrast well when measured against other similar EEG-​based systems. 
Its advantages lie in the fact that it is low-​cost, convenient and portable for the user, and provides 
good temporal resolution when compared against MEG and fMRI.

The most recent entrant in the BMI field is a technique involving the detection of changes 
in cerebral blood flow velocity (CBFV), called Transcranial Doppler (TCD) sonography. By its 
design, TCD is inherently immune from electrical interference such as the power line interfer-
ence which affects EEG recordings. TCD is a relatively cost-​effective method of detecting changes 
in the brain when compared against MEG or fMRI and exhibits good temporal resolution and 
whose hardware is also relatively portable. It has been used for BMI in a mental task discrimina-
tion study (Myrden et al. 2011) involving nine able-​bodied participants who were each asked to 
perform one of two mental exercises. Sensors placed at the left and right transtemporal windows 
detected a bilateral increase in the CBFV during a mental rotation task whilst a word generation 
task produced left lateralization.

Biohybrid systems
A biohybrid system implementing a BMI will be built around a pattern recognition system and 
thus, as seen in Figure 49.2, it requires a multi-​stage system consisting of brain data acquisition, 
pre-​processing, feature extraction, feature classification, and finally a command and control inter-
face for controlling or communicating to a device, with or without an explicit neurofeedback. The 
most predominantly used brain signal is EEG, which is an ultra-​low voltage signal with very low 
signal-​to-​noise-​ratio (SNR), as the skull dampens signals, dispersing and blurring the electromag-
netic waves created by the activations of cortical neurons. Therefore as part of the data-​acquisition 
system, very high quality electrodes and a cap assembly are needed for appropriately attaching 
sensors to the scalp, following the international 10–​20 system of electrode placement, and then 
high gain op-​amp based amplifiers are normally used to substantially amplify the signal in appro-
priate frequency ranges, so as to obtain a practically useful signal.

Signal pre-​processing
Raw EEG signals have a very low signal-​to-​noise (SNR) ratio due to several factors such as the 
interference from the electrical power line, motion artifacts, and EMG/​EOG interference. Low 
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SNR may also occur because EEG contributions from neuronal activations related with BMI tasks 
maybe overshadowed with the activations resulting from multifarious autonomic and other cog-
nitive activities. Pre-​processing is therefore carried out to remove unwanted components embed-
ded within the EEG signal leading to increase in signal quality and resulting in better feature 
separability and classification performance. The pre-​processing filter is designed in such a way 
that most of the EEG components unrelated with BMI tasks are suppressed. Pre-​processing car-
ried out using a recurrent quantum neural network (RQNN) based stochastic filter was reported 
by Gandhi et al. (2014a) to result in a statistically significant improvement in performance across 
multiple subjects.

Feature extraction
In the feature extraction stage, the pre-​processed signal is used to extract features that are likely 
to provide uniquely identifiable patterns providing enhanced separability among the classes of 
cognitive tasks used to operate the BMI. The primary aim of feature extraction is to extract mental 
task-​correlated information (or features) from the brain signal regardless of the quality of the EEG 
signal. The output of the feature extraction stage highly impacts on the performance of the fol-
lowing feature classification stage. For instance, the probability of correct brain state identification 
can be increased if the feature extraction stage transforms the EEG signal in such a way that the 
SNR is maximized as much as possible.

The main distinguishing features in all the EEG patterns used for BMI design are changes in 
power in certain frequency bands, e.g. ERD in SMR of the µ band. The power spectral density 
(PSD) is therefore the most commonly used feature for visually demonstrating the EEG modula-
tions resulting from the BMI task-​related cortical activations. Some form of PSD is also found to 
be one of the best features in enhancing BMI performance (Herman et al. 2008) and is the most 
widely used feature in BMI design. Other frequently reported features are band-​power, wavelets, 
and common spatial patterns (CSP). A feature extraction technique using one of the higher order 
statistics methods called bispectrum, was shown to provide significantly enhanced performance 
(Shahid and Prasad 2011)  by effectively accounting for the fact that the motor imagery (MI)-​
related EEG signals are highly non-​Gaussian and have non-​linear dynamic characteristics.
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Figure 49.2 A  Brain–​Machine Interface.
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Feature classification
In the classification stage, a pattern classifier is designed for high accuracy in classifying the 
particular features obtained from the feature extraction stage. A  range of linear and non-​
linear classification algorithms such as linear discriminant analysis (LDA), type-​2 fuzzy logic, 
multi-​layer perceptrons, and support vector machines, have been investigated and reported 
to provide mixed results (Herman et al. 2008). Some form of LDA is one of the most popular 
classification algorithms used in BMIs. One of the main reasons for the mixed performance of 
sophisticated classification algorithms is the non-​stationary nature of the brain signals used 
in BMI design.

User interface, neurofeedback, and BMI operation
BMI systems often require a graphical command and control interface customized to their spe-
cific BMI paradigm to control user interaction and as well to issue commands to operate the 
intended device. In proportion to the detected cortical activations, some type of neurofeedback 
(often in a visual form) is created and provided to the BMI user in real-​time to help assess his/​her 
effectiveness in operating the BMI (cf. Gandhi et al. 2014b).

Normally a BMI operates in a cue-​initiated timed paradigm, which is called a dependent or 
synchronous mode of operation. An SMR-​based BMI can also be operated in a paradigm-​free 
mode. This is called a self-​paced or asynchronous mode of operation. Although the asynchronous 
mode is more natural to operate, it is difficult to achieve sufficiently reliable performance in this 
mode. However, a long-​term constant use of a BMI is yet to be seen, though pilot trials of a range 
of BMI applications have been reported. Frequently reported applications include using BMI for 
environment control, typing letters, operating a robotic system or a wheelchair, and neuroreha-
bilitation, e.g. by helping to activate desired cortical areas for targeted brain plasticity so as to 
restore movements in paralyzed limbs. A brief discussion of a range of promising applications 
reported recently follows.

Applications
The P300-​based BMI has primarily been found to be well suited to tasks requiring direct selec-
tion. Commonly reported applications are spelling, smart home control, or internet browsing 
(Wolpa and Wolpa 2012, chapter 12). Several applications involving mobile robot or wheelchair 
control using control strategies involving SMR as well as P300 BMIs, either one type alone or a 
combination of both, have been reported. For safe wheelchair operation, it is essential that obsta-
cle as well as collision avoidance is ensured at all cost. Robotic systems are therefore equipped 
with a set of appropriate range sensors along with an obstacle avoidance mechanism. As part 
of a shared control strategy, BMIs are primarily used either to initiate an autonomous naviga-
tion or to perform a step-​by-​step navigation control in a supervised mode, while the obstacle 
avoidance as well as collision avoidance is ensured by the robotic side controls. For instance, 
in Gandhi et al. (2014b), a shared control strategy involved a command and control interface, 
called an intelligent adaptive user interface (iAUI), wherein icons of basic movement commands 
such as forward, left, right, backward, and stop are displayed for selection by a two-​class SMR 
BMI (cf. Figure 49.3). Through bi-​directional communication, the positions of the movement 
commands in iAUI are re-​organized based on the position of the mobile robot within the envi-
ronment so that the most probable movement commands could be selected fastest using just a 
two-​class BMI.

In recent years, a very promising application of the EEG/​MEG-​based BMI in post-​stroke neu-
rorehabilitation has been investigated by several research groups. In this the BMI is primarily used 
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to detect cortical activations when the stroke sufferer is performing rehabilitation exercises. Based 
on the extent of cortical activations in the motor cortex, the BMI provides neurofeedback as well 
as commands a robotic exoskeleton if available, to perform physical movements. Thus the BMI 
helps facilitate focused physical practice as well as motor imagery practice of rehabilitation exer-
cises (Prasad et al. 2010; Ramos-​Murguialday et al. 2013), which is found to result in enhanced 
motor recovery even among chronic stroke sufferers (see Ballester, Chapter 59, this volume, for a 
discussion of neurorehabilitation paradigms).

Although there are no obvious technology risks with the use of non-​invasive BMI, its effect 
over long-​term usage is yet to be carried out. Some participants in pilot trials of SMR BMI have 
reported feeling tired and, in some cases, headaches after performing motor imageries to operate 
BMI for more than an hour or so. This is, however, very much dependent upon the kind of appli-
cation, and type and quality of neurofeedback provided to the participants. Also, it is well known 
that people prone to epileptic seizures are adversely affected by the flickering displays used in ERP 
BMIs. In general cortical re-​organization resulting from long-​term use of BMIs is unlikely to have 
any adverse effect, as it is more like learning a new skill.

There are quite a few companies that have launched a range of BMI-​related products1 into the 
market. These companies primarily offer a hardware and software setup, which can be used to 
devise a prototype BMI very quickly for either some specific application or further research and 
innovation. As BMI systems are still mainly in the R&D stage, the companies offering products 
that provide, as much as possible, open access to data and system information (e.g. g.tec Austria) 
have much better market penetration, as these are preferred by university BMI labs around 
the globe.
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Figure 49.3  Intelligent adaptive user interface (iAUI) along with a complete BMI loop. (Adapted from 
Gandhi et al. (2014b).)

1	 http://​en.wikipedia.org/​wiki/​Brain%E2%80%93computer_​interface
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Future directions
There are still several challenges to be overcome before a BMI becomes practical to use on a 
daily basis. For acquiring a good quality EEG signal, active EEG electrodes requiring wet gel for 
attaching to the scalp are still the preferred option. These require professional support for apply-
ing to the user’s head and the gel gets dried up over time, adversely affecting the quality of the 
skin contact. Urgent research is therefore needed towards devising good quality dry electrodes 
which can be easily attached to a head-​gear that can be comfortably worn by the user without any 
professional support.

On the signal processing side, the main challenge is due to the inherently non-​stationary char-
acteristics of the brainwaves dynamics. The dynamics also change due to cortical plasticity result-
ing from repeated BMI usage over time. Also, it is not uncommon to find degraded electrode 
connections due to several engineering factors such as drying of the gel. As a result, the perfor-
mance of the BMI classifier designed off-​line using previously stored data deteriorates. In order 
to address this, there is a need to continuously monitor the EEG to ascertain whether there is a 
significant change or shift in its characteristics and thereby in the features extracted for devising 
the BMI (Raza et al. 2015). Once the change is detected, the BMI needs to be adapted to the new 
dynamics. If this adaptation can be automated through semi-​supervised on-​line training (Raza 
et al. 2016) so that it does not need constant professional support, it will go a long way towards 
making the BMI practical to use.

Another challenging issue has been that a substantial proportion of users find it difficult to 
operate a particular type of BMI, that is, their two-​class BMI operating accuracy may be 70% or 
lower, and those people may be considered to suffer from a BMI aphasia. However, a person may 
not have aphasia for all types of BMIs at the same time; also, performance improves with train-
ing and experience. There is therefore now greater emphasis on developing multi-​modal hybrid 
BMI (hBMI) by combining two different modalities wherein inputs are either received in paral-
lel or sequentially. In the sequential arrangement, the first BMI acts as a brain switch. Also, an 
hBMI may combine two different EEG patterns, e.g. SSVEP and ERD/​ERS in SMR. It can also be 
designed to combine one brain signal and a different type of input such as heart-​rate (Shahid et al. 
2011) or signals from an NIRS BMI or an eye-​tracking system.

There has also been a lot of emphasis on mainstreaming the application of a BMI, so as to 
enhance its general acceptance in society, more like a consumer product. To this end, some prom-
ising works reported are BMI-​driven computer games, BMI-​based driver attention and fatigue 
monitoring, and BMI-​enabled artistic expression such as music or painting (Wolpa and Wolpa 
2012, chapter 23). However, the central focus of innovations in BMIs still remains targeted towards 
alternative communication for replacing impaired neuromuscular pathways and neurorehabilita-
tion for helping to activate desired cortical areas for targeted brain plasticity.

Learning more
One of the most useful books worth consulting for more information is Brain-​Computer 
Interfaces: Principles and Practice by Wolpa and Wolpa (2012). This book provides very compre-
hensive coverage of all aspects of both invasive and non-​invasive BMIs. Although chapters are 
written by different authors, they are very well integrated and present a highly coherent descrip-
tion of the state of the art in BMI. The book is aimed at scientists, engineers, and clinicians at all 
levels having a basic undergraduate level background in biology, physics, and mathematics. An 
interesting BMI review paper by Silvoni et al. (2011), presents a thorough review of the progress of 
BMI in relation to post-​stroke rehabilitation. Specifically, this paper contextualizes three popular 
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approaches to BMI-​based rehabilitation: substitutive strategy, classical conditioning strategy, and 
operant conditioning strategy.

There are also available several open-​source and/​or open-​access software tools. One of the most 
widely used tools by BMI researchers is EEGlab2. It is a MATLAB-​based toolbox for processing 
event-​related EEG, MEG, and other electrophysiological data. It has a rich library of functions for 
blind source separation, time/​frequency analysis, artifact rejection, event-​related statistics, and 
visualization of averaged and single trial data. The other commonly used open source software 
library is that produced by the BioSig project3. The BioSig library is basically a toolbox for Octave 
and MATLAB with import/​export filters, feature extraction algorithms, classification methods, 
and viewing functions. It can be very effectively used for processing a range of bio-​signals such as 
EEG, ECoG, electrocardiogram (ECG), electrooculogram (EOG), electromyogram (EMG), respi-
ration, and so on. A freely available BMI software system BCI20004 is another very useful tool for 
learning BMI technology as well as developing novel BMI applications. This is a general purpose 
system for BMI research and can be used for data acquisition, stimulus presentation, and brain 
monitoring applications. The BCI2000’s vision is to become most widely used tool for diverse 
areas of real-​time bio-​signal processing and it is claimed that there are over 27005 users around 
the world.
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