140 research outputs found

    Analysis, filtering, and control for Takagi-Sugeno fuzzy models in networked systems

    Get PDF
    Copyright © 2015 Sunjie Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The fuzzy logic theory has been proven to be effective in dealing with various nonlinear systems and has a great success in industry applications. Among different kinds of models for fuzzy systems, the so-called Takagi-Sugeno (T-S) fuzzy model has been quite popular due to its convenient and simple dynamic structure as well as its capability of approximating any smooth nonlinear function to any specified accuracy within any compact set. In terms of such a model, the performance analysis and the design of controllers and filters play important roles in the research of fuzzy systems. In this paper, we aim to survey some recent advances on the T-S fuzzy control and filtering problems with various network-induced phenomena. The network-induced phenomena under consideration mainly include communication delays, packet dropouts, signal quantization, and randomly occurring uncertainties (ROUs). With such network-induced phenomena, the developments on T-S fuzzy control and filtering issues are reviewed in detail. In addition, some latest results on this topic are highlighted. In the end, conclusions are drawn and some possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 11301118 and 61174136, the Natural Science Foundation of Jiangsu Province of China under Grant BK20130017, the Fundamental Research Funds for the Central Universities of China under Grant CUSF-DH-D-2013061, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Nonlinear optimal control for the synchronization of biological neurons under time-delays

    Full text link
    The article proposes a nonlinear optimal control method for synchronization of neurons that exhibit nonlinear dynamics and are subject to time-delays. The model of the Hindmarsh–Rose (HR) neurons is used as a case study. The dynamic model of the coupled HR neurons undergoes approximate linearization around a temporary operating point which is recomputed at each iteration of the control method. The linearization procedure relies on Taylor series expansion of the model and on computation of the associated Jacobian matrices. For the approximately linearized model of the coupled HR neurons an H-infinity controller is designed. For the selection of the controller’s feedback gain an algebraic Riccati equation is repetitively solved at each time-step of the control algorithm. The stability properties of the control loop are proven through Lyapunov analysis. First, it is shown that the H-infinity tracking performance criterion is satisfied. Moreover, it is proven that the control loop is globally asymptotically stable. © 2018, Springer Nature B.V.Funding was provided by Unit of Industrial Automation/Industrial Systems Institute (Grant No. Ref 5805 - Advances in applied nonlinear optimal control)

    Finite-time anti-synchronization of multi-weighted coupled neural networks with and without coupling delays

    Get PDF
    The multi-weighted coupled neural networks (MWCNNs) models with and without coupling delays are investigated in this paper. Firstly, the finite-time anti-synchronization of MWCNNs with fixed topology and switching topology is analyzed respectively by utilizing Lyapunov functional approach as well as some inequality techniques, and several anti-synchronization criteria are put forward for the considered networks. Furthermore, when the parameter uncertainties appear in MWCNNs, some conditions for ensuring robust finite-time anti-synchronization are obtained. Similarly, we also consider the finite-time anti-synchronization and robust finite-time anti-synchronization for MWCNNs with coupling delays under fixed and switched topologies respectively. Lastly, two numerical examples with simulations are provided to confirm the effectiveness of these derived results

    A STUDY ON DYNAMIC SYSTEMS RESPONSE OF THE PERFORMANCE CHARACTERISTICS OF SOME MAJOR BIOPHYSICAL SYSTEMS

    Get PDF
    Dynamic responses of biophysical systems - performance characteristic
    corecore